space penetrators for solar system exploration

20
SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION Igone Urdampilleta 29 May 2014, UCM, Madrid

Upload: berny

Post on 23-Feb-2016

52 views

Category:

Documents


1 download

DESCRIPTION

SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION. Igone Urdampilleta. 29 May 2014, UCM, Madrid. Contents . What is a Space Penetrator? Internal Architecture Heritage Scientific Motivation Possible targets : Moon Mars Europa Summary References. What is a Space Penetrator ?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

SPACE PENETRATORS FOR

SOLAR SYSTEM EXPLORATION

Igone Urdampilleta

29 May 2014, UCM, Madrid

Page 2: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 2

Contents

• What is a Space Penetrator?• Internal Architecture• Heritage• Scientific Motivation• Possible targets:

Moon Mars Europa

• Summary• References

Page 3: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 3

What is a Space Penetrator?

• Low mass projectile to sample and analyze the surface and subsurface of a planet or satellite

• Mass ~5-20kg• Dimensions ~0.5mx0.2m• High impact speed ~200-500m/s• Very tough ~10.000-50.000g• Penetrate surface ~0.2-3m

Courtesy of Uk Penetratror Consortium, [1]

Sand (Martian Soil) and Ice (Icy body) tests300m/s, 24.000g

Page 4: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 4

Internal Architecture

Gowen,R. et al, IPPW7, 2010

Radiation sensor: Subsurface dose rate,

age and material decayMagnetometers: possible internal

oceanBatteries/RHU

Mass spectrometer: volatiles and biologically important species

Accelerometers: Surface and Subsurface material (harness/composition)Thermal sensor: Subsurface T, regolith T and heat flowBatteries/RHU, Data logger

Micro-seismometers: Determine existence of interior oceans, structure and seismic activityDrill assembly: Subsurface mineralogy and material

AccelerometersPowerCommunicationsProcessing

-Descent Camera-Auxiliary Systems-Instrumentations: 1. Environment 2. Geophysics (surface/chemistry) 3. Geophysics (interior)

Page 5: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 5

Heritage • Deep Space 2 and Mars 96 failed• Lunar-A (space qualified) and MoonLITE cancelled

Deep Space 2 Mars 96

• Russian Space Forces • Mission to Mars• Launched in 1996• Failed to leave Earth orbit

• NASA mission launched in 1999• Mission to Mars• Mars Polar Lander with 2 DS2• Reached Mars, but no comms

Courtesy of NASA [3]

Courtesy of Russian Space [4]

Page 6: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 6

Scientific Motivation• In-situ astrobiological and geophysical investigation• In-situ subsurface chemical inventory• Direct characterization of landing site• Synergy with orbiting instrument data

Advantages:• Hardly accessible

sites• Simpler architecture • Cost effective:

• Low mass• High instruments

heritage• Similar payload for

many surfaces

Disadvantages:• High impact

survivability• Compact and low

mass payload• Limited lifetime (only

batteries)

Page 7: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 7

Possible Targets • Rocky and icy bodies

Page 8: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 8

Moon: Lunar-A

Courtesy of ISAS/JAXA

• Space qualified mission cancelled in 2007

• Objectives: Lunar interior by seismic and heat-flow experiments

• Payload: 2 penetrators (near and far side)

• Mass:~45kg with PDS• V~285m/s, Impact ~ 8000g, Depth~1-3m

Page 9: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 9

Moon: MoonLITE

Gao, Y. et al 2007

Gowen,R. et al, DOI EJSM/Laplace

• MoonLITE: Moon Lightweight Interior and Telecoms Experiment (UK)

• Objectives: Lunar seismic environment, polar water, volatiles and ISRU

• Payload: 4 penetrators• Near side Apollo landing• Two Polar regions• Far side

• Duration: >1year for seismic network

• Mass: ~13kg +23kg propulsion• V~300cm/s

Page 10: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 10

Mars: METNET

Courtesy of FMI [5]

Courtesy of FMI [5]

• Atmospheric Mission to Mars • Objectives:

• Seismic activity and internal structure• Meteorological and environment study

• MEIGA, METNET precursor -> INTA and UCM• Inflatable Entry and Descent System (16.8kg):

1. IBU (Inflatable Braking Unit)2. AIBU (Additional IBU)

Page 11: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 11

Courtesy of FMI [5]

3. Composition and Structure devices• Magnetometer

Mars: MetNet

2. Optical Devices• PatCam• MetSis-

Irradiance• Dust Sensor

1. Atmospheric Instruments• MetBaro-Presure• MetHumi-Humidity• Temperature Sensor

Page 12: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 12

Europa: EJSM• EJSM: Europa-Jupiter System Mission

(JUICE)• Space Penetrator Objectives:

• The internal structure and its dynamics

• The existence and characteristics of subsurface ocean

• Astrobiology markers• Harder ice impact material, faster body• Mass: ~14.3kg +50kg PDS• Long: ~31cm

Gowen,R. et al, IPPW7, 2010

Courtesy of Astrium

Page 13: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 13

Summary

• Low mass projectile for planetary exploration (rocky and icy bodies)

• In-situ analysis and sampling of environment and subsurface

• Cost effective technology• Multi-landing sites or multi-target

missions• No successful mission yet• Recent increase of Technology

Readiness Level (TRL)

Page 14: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 14

References • Kato,M., Current Status of Japananise Penetrator Mission, ISAS/JAXA• H Mizutani et al 2005, J. Earth Syst. Sci. 114, No. 6 • Gao,Y. et al 2007, DGLR Int. Symp. “To Moon and beyond”, Bremen,

Germany• Gowem, R. et Penetrator Consortium, 2008, Penetrator for TSSM,

TSSM Meeting, Monrovia• Gowen, R. et Penetrator Consortium, 2009, An Update on MoonLITE,

EGU, Viena• Gowen, R. et Penetrator Consortium, 2009, Astrobiologycal

Signatures with Penetrators on Europa, Biosignatures on Exoplanets Workshop, Mulhouse

• Gowen, R. et Penetrator Consortium, 2010, Potential Applications of Micro-Penetrators within the Solar System,IPPW7, Barcelona

• Skulionva, M. et al 2011, World Academic of Science, Engineering and Technology, Vol. 55

• Gowen, R. et al, Surface Element Penetrators, DOI to EJSM/Laplace

Page 15: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 15

References

LINKS[1] ESA: http://sci.esa.int/future-missions-office/52782-high-

speed- tests-demonstrate-space-penetrator-concept/[2] UK PENETRATOR CONSORTIUM: http://www.mssl.ucl.ac.uk/ planetary/missions/ Micro_Penetrators.php[3] DS2:http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?

id= DEEPSP2[4] MARS 96: http://www.russianspaceweb.com/mars96.html[5] METNET: http://metnet.fmi.fi/index.php[6] MEIGA: http://meiga-metnet.org/[7] EUROPA PENETRATOR:http://www.youtube.com/ watch?v=o1A04qzXCgQ

Page 16: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 16

THANK YOU FOR YOUR ATTENTION

Page 17: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators

1. Descent Module release from Orbiter

Reorient

2. Cancel orbital velocity

Penetrator Separation

5. PDS fly away prior to surface Impact

Spin-Down

Delivery sequence courtesy SSTL

6. Operate from below surface

4. PDS (Penetrator Delivery System) separation from penetrator

3. Re-orient

Space Penetrator Descent Sequence

Gowen,R. et al, DOI EJSM/Laplace

Page 18: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 18

MoonCharacteristics:• Telluric satellite• No atmosphere, no plate

tectonics• >30.000 impact craters

>1km• Dark zones (maria): - craters, younger, 15%

area • Bright zones (terrae): + craters, older, 85% areaScience Objectives (Gao,Y. et al 2007) :• Volatiles in the shadowed lunar craters• Lunar seismology: interior and core • In-situ resources, ISRU (water ice/radiation/quakes) • Planetary penetrator demonstrator

Page 19: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 19

Mars

Characteristics:• Telluric planet• Atmosphere • No plate tectonics • Changing topography due to

seasonal variation and dust storms

• Polar ice caps

Science objectives:• Seismic activity and internal structure• Astrobiology markers from depths >2m• Meteorological and environment study• Possible landing sites:

• Polar caps • <40º for seismic network

Page 20: SPACE PENETRATORS  FOR  SOLAR SYSTEM EXPLORATION

Space Penetrators 20

Europa

Characteristics:• Water-icy satellite• Atmosphere-trace Oxygen• Strong tidal forces• Lower slopes/smoother surface• Less regolith (young)• Possible subsurface ocean• Habitable? Life?

Science objectives (Gowen,R. et al, DOI EJSM/Laplace) :

• The internal structure and its dynamics• The existence and characteristics of subsurface

ocean• Bio-signatures and Environment in near-surface • Synergy data with remote sensing