space plasma physics and magnetometry group o. marghitu, m. echim,h. comişel, o. marghitu, m....

16
Space Plasma Physics and Space Plasma Physics and Magnetometry Group Magnetometry Group O. Marghitu, M. Echim, O. Marghitu, M. Echim, H. Comi H. Comi ş ş el, el, O.D. Constantinescu, A. Bl O.D. Constantinescu, A. Bl ă ă g g ă ă u, u, C. C. Bunescu, M. Ciobanu Bunescu, M. Ciobanu National Institute for Lasers Plasma and National Institute for Lasers Plasma and Radiation Physics Radiation Physics Institute for Space Sciences Institute for Space Sciences July 6, 2004 July 6, 2004

Upload: noah-watts

Post on 11-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Space Plasma Physics and Magnetometry GroupSpace Plasma Physics and Magnetometry Group

O. Marghitu, M. Echim,O. Marghitu, M. Echim, H. ComiH. Comişşel,el, O.D. Constantinescu, A. BlO.D. Constantinescu, A. Blăăggăău,u, C. Bunescu, M. CiobanuC. Bunescu, M. Ciobanu

National Institute for Lasers Plasma and Radiation PhysicsNational Institute for Lasers Plasma and Radiation Physics

Institute for Space SciencesInstitute for Space Sciences

July 6, 2004July 6, 2004

Background: The terrestrial magnetosphereBackground: The terrestrial magnetosphere

Page 2: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Outline

A.Goals

B.Scientific themes

C.Main achievements

D.Selection of scientific results

Page 3: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

2. Theoretical investigation of the solar wind – magnetosphere – ionosphere system.

A Goals A

3. Preparation for ESA (PECS, PRODEX, …), EU (FP6, …), and NASA (… ?) programs.

CLUSTER — sci.esa.int/cluster

INTERBALL — www.iki.rssi.ru/interball

FAST — plasma2.ssl.berkeley.edu/fast

EQUATOR-S — www.mpe.mpg.de/EQS

1. Contribution to the scientific processing of the data collected by the space missions:

Page 4: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

B Scientific Themes B

Methods to derive the satellite attitude based on magnetic field

data and dynamical modeling – MAGION 2, 3, 4 & 5 data

Auroral plasma physics: Arc electrodynamics, magnetosphere –

ionosphere coupling – FAST and CLUSTER data

Theoretical and experimental investigation of the magnetic

mirror instability – EQUATOR-S and CLUSTER data

Fundamental dynamics of space plasma: Plasma transfer at the

terrestrial magnetopause – INTERBALL and CLUSTER data

Page 5: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Romanian involvement in space magnetometry experiments dates back to 1976 – 1981, when the instruments SG-R1, SG-R2, and SG-R3 were flown on the Intercosmos satellites IK-18, IK-20, and IK-21.

More recently, Romanian mag.meters were flown on several Czech sub-satellites: MAGION-2 (AKTIVNII, 1989), MAGION-3 (APEX, 1991), MAGION-4 (INTERBALL-TAIL, 1995), and MAGION-5 (INTERBALL-AURORA, 1996).

An essential task of the magnetometers: to provide information to be used for deriving the satellite attitude.

B Methods to Derive the Satellite Attitude B

MAGION-5

PI Institute: IAP Prague

Launch: August 29, 1996

Orbit: 20000 x 1000, 650

Lost shortly after launch and

recovered in May 1998.

http://www.ufa.cas.cz/html/magion/magion.html

Page 6: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

MAGION-5 trajectory (50 orbits)

Use magnetic field data and additional information produced by specialized sensors (Sun, Earth).

When the additional information is degraded special numerical methods are required.

By using magnetic field data and the dynamic modeling of the satellite motion it was possible to find the attitude of MAGION 2, 3 & 5, although the additional information was limited.

Potential to extend the method to other missions (Double Star ?)

B Methods to Derive the Satellite Attitude B

Attitude parametrization: Euler transf.

Page 7: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Work done in collaboration with Max-Planck-Institut für extraterrestrische

Physik, Garching, Germany, and Space Sciences Lab., Univ. of California,

Berkeley, US.

In order to evaluate the deviation of a real arc from the ideal model we

developed the ALADYN (AuroraL Arc electroDYNamics) method, based

on a parametric model of the arc and able to accommodate experimental

data input.

ALADYN was illustrated with in-situ data measured by Fast Auroral

SnapshoT Explorer (FAST) and ground optical data measured by a CCD

camera developed at MPE.

B Auroral Plasma Physics: Arc Electrodynamics B

FAST•PI Institute: UCB-SSL•Launch: August 21, 1996•Orbit: 4000 x 400, 830

http://plasma2.ssl.berkeley.edu/fast/

Ground optical equipment •Low light CCD camera developed at MPE.•Images conjugated with FAST during an auroral campaign in Jan. – Feb. 1997.•Location: Deadhorse, Alaska (Lat. 70.220, Lon. 211.610).Photo courtesy W. Lieb

DC electromagnetic field and particle data. From top to bottom: magnetic field perturbation (a); energy and pitch-angle spectrograms for electrons / ions (b, c) / (d, e); potential drop along the satellite trajectory (f).

Images 4s apart taken during the FAST overpass. The satellite is indicated as a square. ’11’ and ’22’ show the edges of the first two ion beams, as read in the ion spectrograms. North is at the left and East at the bottom.

Page 8: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Work in progress, in collaboration with the Physics Department of the

Umeå University, Sweden, MPE, and UCB-SSL. Focus on potential arc generator region, by using conjugated FAST and

CLUSTER data (at 4000km and 100000km altitude, respectively). CLUSTER

ESA mission consisting of 4 identical s/c, each of them equipped

with 11 identical instruments. Launched in July – August 2000, after a failed start in June 1996. The tetrahedron configuration allows the derivation of the current

density vector, J. By using electric field, E, information from several instruments it is

possible to improve on the reliability of E in the arc generator region The energy density, E•J, inferred from CLUSTER data, can be

compared with the electron energy flux derived from FAST data.

B Auroral Plasma Physics: M – I Coupling B

Page 9: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

B Magnetic Mirror Instability B

Work in collaboration with Institut für Geophysik und extraterrestrische

Physik, Braunschweig, Germania.

The magnetic mirror (MM) instability is common in the Earth magnetosheath

but also in other space plasmas.

A model was built which describe the 3D geometry of the MM; the model

predicts a complex geometrical structure, depending mainly on the plasma

anisotropy and β parameter.

By using measured magnetic field data one can derive the model parameters.

Multi-satellite data, as those provided by CLUSTER, improve on the

reliability of the fit results.

MM – theoretical model•Multi-layer structure•Central ‘unit’ = ‘classical’ MM

Experimental data vs. fit•Fit on data from C1 and C2•C3 and C4 are witness s/c

Page 10: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Work in collaboration with Belgian Institute for Space Aeronomy, Bruxelles

One of the addressed topics: Investigation of the role of collective processes

in the propagation of a solar wind plasma inhomogeneity (plasmoid).

Decoupling of the plasma motion from the “motion” of the magnetic

field lines, because of the electric field parallel to the magnetic field.

The differential drift of ions and electrons results in space charges and a

polarization electric field which supports the plasmoid convection.

B Plasma Transfer at the Terrestrial Magnetopause B

Penetration of a plasmoid into the magnetosphere.

Micro-scale processes at the magnetopause.

Page 11: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Investigation of fundamental processes in space plasma, that cannot be replicated under laboratory conditions.

Participation in the scientific processing and interpretation of data obtained in the frame of the international program IASTP (Inter-Agency Solar Terrestrial Program).

Access to state-of-the-art hardware and software. Expertise in numerical methods related to space applications and space plasma simulations.

Consolidation of an efficient research group, at a time when the space information becomes more and more part of the daily life (space weather).

Successful international collaborations: Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Belgian Institute for Space Aeronomy, Bruxelles, Belgium Institute of Atmospheric Physics, Prague, Czech Republic Institute of Experimental Physics, Košice, Slovakia Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany Physics Department, University of Umeå, Sweden Space Sciences Lab., Univ. of California, Berkeley, US

C Main Achievements C

Page 12: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

D Scientific Results D

Papers in referred journals and proceedings:

1. M. Ciobanu, et al., The SGR-6,7,8 fluxgate magnetometers for MAGION-2, 3, 4 and 5 small satellites, in: Small satellites for Earth observation, Berlin, 1997

2. H. Comisel, et al., Attitude estimation of a near Earth satellite, Acta Astron., 40, 781-788, 1997

3. M. Echim, et al., Multiple current sheets in the double auroral oval observed from the MAGION-2 and MAGION-3 satellites, Ann. Geophys., 15, 412-427, 1997

4. M. Echim, et al., The early stage of a storm recovery phase – a case study, Adv. Space Res., 20, 481-486, 1997

5. H. Comisel, et al., Magion-3 spacecraft attitude from dynamics and measurement, BalkanPhys. Lett., 6, 59-64, 1998

6. M. Echim and J. Lemaire, Laboratory and numerical experiments of the impulsive penetration mechanism, Space Sci. Rev., 95, 565-601, 2000

Page 13: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

D Scientific Results D

Papers in referred journals and proceedings:

7. O. Marghitu, et al., Observational evidence for a potential relationship between visible auroral arcs and ion beams, Phys. Chem. Earth, 26, 223-228, 2001

8. O.D. Constantinescu, Self-consistent model of mirror structures, J. Atm. Sol.-Terr. Phys., 64, 645- 649, 2002

9. M. Echim and J. Lemaire, Advances in the kinetic treatment of the solar wind magnetosphere interaction: the impulsive penetration mechanism, in: Geophysical Monograph 133, eds. P. Newell si T. Onsager, p. 169-179, AGU, Washington, 2002

10. M. Echim, Test-particle trajectories in ''sheared'' stationary field: Newton-Lorenz and first order drift numerical simulations, Cosmic Research, 40, 534-547, 2002

11. M. Echim and J. Lemaire, Positive density gradients at the magnetopause: interpretation in the framework of the impulsive penetration mechanism, J. Atm. Sol.-Terr. Phys., 64, 2019-2028, 2002

12. O.D. Constantinescu, et al., Magnetic mirrors observed by Cluster in the magnetosheath, Geophys. Res. Lett., 30, 1802-1805, 2003

Page 14: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

Ph.D. Theses:

1. O. Marghitu, Auroral arc electrodynamics with FAST satellite and optical data, Naturwissenschaftliche Fakultät der Technischen Universität Carolo-Wilhelmina, Braunschweig, Germany, Mai 2003, http://www.biblio.tu-bs.de/ediss/data/20030606a/ 20030606a.html. Published also as MPE Report 284, ISSN 0178-0719.

2. M. Echim, Kinetic aspects of the impulsive penetration of solar wind plasma elements into the Earth´s magnetosphere, Université catholique de Louvain, Belgia, July 2004.

3. A. Blăgău – work in progress at Max-Planck-Institut für extraterrestrische Physik, Garching , Germany.

4. O.D. Constantinescu – work in progress at Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany.

D Scientific Results D

Page 15: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

D Scientific Results D

Presentations at international conferences:

1. M. Ciobanu, H. Comişel, et al., Magnetic field data bases: Magion 2, 3, 4 & 5 satellites, COSPAR Colloquium Interball and beyond, Sofia, February 2002

2. M. Echim, The penetrability of the magnetopause tested by numerical integration of single particle orbits, COSPAR Colloquium Interball and beyond, Sofia, February 2002

3. O.D. Constantinescu, et al., Modeling the structure of magnetic mirrors using Cluster data, AGU Fall Meeting, San Francisco, Decembrie 2002

4. M. Echim, Cross-field propagation of plasma irregularities: numerical results relevant for magnetopause investigation, Int. Conf. on Auroral Phenomena and Solar-Terrestrial Relations, Moscow, February 2003

5. O. Marghitu, et al., A new method to investigate arc electrodynamics, EGS–AGU Joint Assembly, Nice, April 2003

6. O. Marghitu, et al., 3D current topology in the vicinity of an evening evening arc, EGS–AGU Joint Assembly, Nice, April 2003

7. O. Marghitu, A. Blăgău, et al., FAST – CLUSTER conjunctions above the auroral oval, STAMMS Conference, Orleans, Mai 2003

Page 16: Space Plasma Physics and Magnetometry Group O. Marghitu, M. Echim,H. Comişel, O. Marghitu, M. Echim, H. Comişel, O.D. Constantinescu, A. Blăgău,C. Bunescu,

D Scientific Results D

Presentations at international conferences:

8. O.D. Constantinescu, et al., Magnetic mirror geometry Uusing Cluster data: case study, STAMMS Conference, Orleans, Mai 2003

9. O.D. Constantinescu, et al., Magnetic mirror geometry Uusing Cluster data: model and correlation technique, IUGG General Assembly, Sapporo, July 2003

10. H. Comişel, M. Ciobanu, A. Blăgău, et al., Attitude determination for Magion 5 satellite using magnetometer data only, Int. Conf. on Magnetospheric Response to Solar Activity, Praga, September 2003

11. O. Marghitu, CLUSTER moments: Error analysis, CIS Workshop, Paris, September 2003

12. O. Marghitu, M. Hamrin, et al., CLUSTER electric field measurements in the magnetotail, EGU General Assembly, Nice, April 2004

13. M. Hamrin, O. Marghitu, et al., Energy transferin the auroral magnnetosphere as derived from CLUSTER and FAST data, EGU General Assembly, Nice, April 2004

14. O.D. Constantinescu, at al., Particle kinetics and distribution function inside magnetic mirrors, EGU General Assembly, Nice, April 2004