space propulsion lab

Upload: abhinav-addala

Post on 25-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 space propulsion lab

    1/48

    Energetic Problems in Aerospace Propulsion

    Notes for Students

    Chapter 11 - Appendices and Exercises

    Solid Rocket Motors

    Adriano AnnovazziAvio - Space Propulsion

    22 Corso Garibaldi, I-00034 Colleferro, Rome, Rm, Italy

    and

    Luigi T. DeLucaSPLab, Department of Aerospace Engineering, Politecnico di Milano

    Campus Bovisa, I-20156, Milan, Mi, Italy

    Preliminary International Edition

  • 7/25/2019 space propulsion lab

    2/48

    2 Space Propulsion - DeLuca 2004

    Contents

    1 EXERCISE No. 1: BOOST - SUSTAINER MISSION 4

    1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2 Properties of Combustion Chamber . . . . . . . . . . . . . . . . . . . . 5

    1.3 Optimum Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.4 Evaluating Ballistic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.5 Boost or Acceleration Phase . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.6 Sustainer or Regime Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.7 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.7.1 Thrust Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.7.2 Propellant Grain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.7.3 Total Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.8 Effects of Initial Temperature . . . . . . . . . . . . . . . . . . . . . . . . 14

    1.8.1 Boost or Acceleration Phase . . . . . . . . . . . . . . . . . . . . . . . . 141.8.2 Sustainer or Regime Phase . . . . . . . . . . . . . . . . . . . . . . . 15

    2 EXERCISE No. 2: SUSTAINER - BOOST MISSION 17

    2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2.2 Properties of Combustion Chamber . . . . . . . . . . . . . . . . . . . . 192.3 Optimum Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    2.4 Evaluating Ballistic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2.5 Sustainer Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2.6 Boost or Acceleration Phase . . . . . . . . . . . . . . . . . . . . . . . . . 24

    2.7 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    2.7.1 Thrust Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    2.7.2 Propellant Grain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.7.3 Total Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    2.8 Effects of Initial Temperature . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.8.1 Sustainer or Regime Phase . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.8.2 Boost or Acceleration Phase . . . . . . . . . . . . . . . . . . . . . . . . 28

    3 EXERCISE No. 3: PERFORATED GRAIN SIZING 30

    3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3.2 Ugello Adattato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    3.2.1 Soluzione Grafi

    ca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.2 Soluzione Analitica (verifica) . . . . . . . . . . . . . . . . . . . . . . . 33

    3.3 Grano Propellente Solido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.3.1 Grano a Combustione Frontale . . . . . . . . . . . . . . . . . . . . . . 35

    3.3.2 Grano a Combustione Radiale Progressivo . . . . . . . . . . . . . . . . 36

    3.3.3 Grano a Combustione Radiale Neutro . . . . . . . . . . . . . . . . . . 37

    3.4 Lunghezza Totale Motore (perdmax= 60cm) . . . . . . . . . . . . . . . . . . 39

    3.5 Impulso Totale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.6 Accensione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.7 Erosione (da migliorare) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.8 Velocit di Efflusso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    3.9 Espansione Isentropica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

  • 7/25/2019 space propulsion lab

    3/48

    Chapter 11 - Solid Rocket Engines - AppEx 3

    4 CONCLUSIONI 46

    5 BIBLIOGRAPHY 47

    List of Figures

    List of Tables

    Chapter 11 - Exercises

    SOLID ROCKET MOTORS

    This appendix to Chap.11 deals with a variety of specific matters regarding performanceand design of SRMs; matters of general interest regarding thermochemical rockets in generalare discussed in Chap. 09. Principal features of SRMs, with respect to the important classof LREs, concern simplicity and promptness of use as well as economy of realization butto the detriment of modest level and control of performance. Therefore, solid rocket motorsare favorite for all situations where promptness is a premium (e.g., emergency maneuvers),military applications, and in general for civil tasks where maximum performance is not amandatory constraint.

    Solid rocket motors are typically distinguished in three main categories: space (for space

    access or navigation), ballistic, and tactical motors. This classification reflects sensible differ-ences in terms of size, operating ambient, and design.

    EXERCISES

    EXERCISE No. 1: BOOST - SUSTAINER MISSIONEXERCISE No. 2: SUSTAINER - BOOST MISSIONEXERCISE No. 3: PERFORATED GRAIN SIZING

  • 7/25/2019 space propulsion lab

    4/48

    4 Space Propulsion - DeLuca 2004

    1 EXERCISE No. 1: BOOST - SUSTAINER MISSION

    Preliminary sizing of solid rocket motor of boost - sustainer type

    We wish to get the preliminary sizing of a SRM capable to carry out the two-step propul-sive mission sketched in the following figure:

    boost5 s_____| || || || | sustainer 25 s| b_________________________b ______________________________e________ time, sThe assigned input data are: burning times for each flight segment, tb1= 5s and tb2= 25s; thrust under optimum expansion, T1(z0= 2.5104 m) = 104 + 100Ckg; combustion chamber pressure, pc1= 60 + N atm; For sake of simplicity, consider a unique "cigarette" cylindrical grain consisting of

    two different unmetallized composite propellants featuring, under the reference conditionsofTref= 300K and pref= 68 atm, the following steady-state ballistic properties:

    PROPELLANT 1

    densityp1= 1.70g/cm3

    thermal sensitivity p1= 0.0021/

    Cp, atm 1 10 100

    rb(p), cm/s 0.768 2.165 6.102Tf(p), K 2562 2777 3010

    PROPELLANT 2

    density p2= 1.60g/cm3

    thermal sensitivityp2= 0.0051/

    Cp, atm 5 50 68

    rb(p), cm/s 0.972 2.030 2.240Tf(p), K 2499 2623 2640

    1. Please perform a preliminary sizing of the whole motor (nozzle, combustion chamber,and propellant grain) at the optimum expansion altitude ofz0. In particular, pleasededuce the diameter of the "cigarette" cylindrical grain required to achieve the wantedpropulsive mission. Please evaluate how the main ballistic parameters change duringthe two flight segments.

    2. How would the whole propulsive mission be affected by a decrease of the initial tem-perature fromT0= Tref toT0= 275K ?

    3. Draw and discuss the steady temperature profile in the solid propellant grain.

    Consider a monophase gaseous mixture expanding under chemically frozen conditions.When necessary, with due justifications assume typical values for missing properties andmake reasonable assumptions for undefined processes. Assigned data depend on the digitsC and N, that identify the alphabet position of the first letter of respectively the candidate

    family name andfirst name.

  • 7/25/2019 space propulsion lab

    5/48

    Chapter 11 - Solid Rocket Engines - AppEx 5

    1.1 Introduction

    Let us assume as typical values

    =

    M= 25g/gmole or kg/kmole; k = 1.25; g0= 9.807m/s2;

  • 7/25/2019 space propulsion lab

    6/48

    6 Space Propulsion - DeLuca 2004

    1.3 Optimum Expansion

    z= z0= 25,000 m At this point of the exercise we can only evaluate the nozzle transversalshape !

    Forpc/pa = pc/pe = 60/0.02516 = 2384.7, we can determine for chemically frozen expan-sion the ideal values of both cF

    (cF)ideal =

    r2

    k2

    k 1 ( 2

    k+ 1)k+1k1

    s1

    pepc

    k1k

    (1)

    =

    vuut2

    1.252

    1.25 1( 2

    1.25 + 1)

    1.25 + 1

    1.25 1

    vuuut1

    0.02516

    60

    1.25 11.25 (2)

    = 1.8483 (3)

    and =Ae/At, being

    1/ = At/Ae=

    k+ 1

    2

    1k 1

    pepc

    1k

    vuuuutk+ 1k 1

    1

    pepc

    k 1k

    =

    1.25 + 1

    2

    11.25 1

    0.02516

    60

    11.25

    vuuuut1.25 + 11.25 11

    0.02516

    60

    1.25 11.25

    = 3.1817103

    7.1 = 8.4779103

    and thus=Ae/At= 1/(8.477910

    3) = 117.95

    As acheck, plots of optimum expansion - see Fig. 3.7 Sutton VI [1] p. 60 or Fig. 3.6 SuttonVII [2] p.65 - read by interpolation for k = 1.25:

    - (cF)ideal= 1.85 very good check;- Ae/At = 120 good check.

    For sake of simplicity, let us neglect nozzle losses (for example, a total loss of2%) andlet us accept as effective values cF = 1.85 and = Ae/At = 118. We can now evaluate thegravimetric specific impulse as

    graphical Is(z= z0= 2.5 104 m) = ccFg0

    =1507 1.85

    9.807 = 284.28s

    computed Is(z= z0= 2.5 104 m) = ccFg0

    =1507 1.85

    9.807 = 284.28s (4)

    (a rare agreement, due to the fact that(cF)idealis identical !) and the throat area. based onthe design thrust value, as

    cF = T(z= z0= 2.5 104 m)

    pcAt

    At =

    T(z= z0= 2.5

    104 m)

    pccF =

    10000

    9.807

    60 101325 1.85= 87.196cm2

  • 7/25/2019 space propulsion lab

    7/48

    Chapter 11 - Solid Rocket Engines - AppEx 7

    Immediately, the nozzle exit area is

    Ae= (z= z0 = 2.5 104 m)At= 118 90.09 = 10631cm2

    while the corresponding diameters are

    dt =

    r4 At

    =

    r4

    87.196

    = 10.54cm

    de =

    r4 Ae

    =

    r4

    10631

    = 116.34cm

  • 7/25/2019 space propulsion lab

    8/48

    8 Space Propulsion - DeLuca 2004

    1.4 Evaluating Ballistic Data

    Recall that the Vieille ballistic law can equivalently be written as

    rb(p, Tref) = a(Tref) pn

    (5)rb(p, Tref) = rb(pref, Tref) (p/pref)n (6)

    while the first version is that more commonly used, the second version resorts to the nondi-mensional pressurep/prefinstead of the dimensional value p. Likewise, it may be convenientto write for the flame temperature as well

    Tf(p, Tref) = b(Tref) pnTf (7)Tf(p, Tref) = Tf(pref, Tref) (p/pref)nTf (8)

    Let us observe that the two constants or multiplicative factors in Eq. 5 and 7 represent thevalues of respectively steady burning rate and steady flame temperature at the unit pressure

    (p = 1 atm or 1 bar or 1 MPa...). In general, the two constants can de evaluated at anyselected pressurep of convenience as

    a(Tref) = rb(p, Tref)

    (p)n

    b(Tref) = Tf(p, Tref)

    (p)nTf

    As a further alternative, comparing the two laws of Eq. 5 and 6 for burning rate or the twolaws of Eq. 7 and 8 for flame temperature, the two constants can also be evaluated at theprecise reference pressurepref as

    a(Tref) = rb(p, Tref)(pref)

    n

    b(Tref) = Tf(p, Tref)

    (pref)nTf

    - Thus, the steady burning rate of propellant 1 is:notice that a1= 0.768 is already assigned

    evaluate n1=ln 6.102 ln 2.1652

    ln100 ln10 = 0.45evaluate rb,1(pref, Tref) = 0.768 (68)0.45 = 5.129cm/sverify a1= 6.102/(100)0

    .45 = 0.7682(cm/s)/(atmn) assignedverify also a1= rb,ref/(pref)

    n1 = 5.129/(68)0.45 = 0.768(cm/s)/(atmn) assignedin this instance let us use the form

    rb(p, Tref) = a(Tref) pn =rb,ref (p/68)n rb,1(p, Tref) = 0.7682 p0.45

    - Thus, the steady flame temperature of propellant 1 is:notice that b1= 2562K is already assigned

    evaluate nTf,1= ln 3010 ln 2777

    ln100 ln10 = 0.035evaluate Tf,1(pref, Tref) = 2562 (68)0.035 = 2970Kverify b1= 3010/(100)0

    .035 = 2562assignedverify also b1 = Tf,ref/(pref)

    nTf,1 = 2970/(68)0.035 = 2562.2assigned

    in this instance let us use the form

  • 7/25/2019 space propulsion lab

    9/48

    Chapter 11 - Solid Rocket Engines - AppEx 9

    Tf(p, Tref) = b(Tref) pnTf =Tf,ref (p/68)nTf Tf,1(p, Tref) = 2970 (p/68)0.035

    - Thus, the steady burning rate of propellant 2 is:

    notice that rb,2(pref, Tref) is already assigned

    evaluate n2=ln 2.240 ln 0.97166

    ln68 ln 5 = 0.32evaluate 0.972 =a2(p= 5atm)0.32 a2= 0.972/(50.32) = 0.581(cm/s)/(atmn)verify a2= rb,ref/(pref)

    n2 = 2.240/(68)0.32 = 0.5806 (cm/s)/(atmn) assignedin this instance let us use the form

    rb(p, T ref) = a(Tref) pn =rb,ref (p/68)n rb,2(p, T ref) = 0.581 p0.32

    - Thus, the steady flame temperature of propellant 2 is:

    notice that Tf,2(pref, Tref) = 2640K is already assignedevaluate nTf,2=

    ln 2640 ln 2499ln68 ln 5 = 0.021

    evaluate b2 = 2499/(5)0.021 = 2416K/(atmn) assigned

    verify b2= Tf,ref/(pref)nTf,2 = 2640/(68)0.021 = 2416.1K/(atmn) assigned

    in this instance let us use the form

    Tf(p, T ref) = b(Tref) pnTf =Tf,ref (p/68)0.035 Tf,2(p, T ref) = 2640 (p/68)0.021

    1.5 Boost or Acceleration Phase

    For the assigned boost duration tb1= 5s, the cigarette cylindrical grain of propellant can be

    designed as follows.The propellant flow rate (weight in kgfor mass in kgm) is

    Is(z = z0) =T(z= z0)

    .w

    graphical .w= TIs

    = 10000

    284.28= 35.177kg/s

    computed .w= TIs

    = 10000

    284.28= 35.177kg/s (9)

    while the ideal total propellant amount (weight or mass) neglecting unburnt residuals, tran-

    sients, and various inefficiencies

    (wp)ideal,1= .w tb,1= 35.1775 = 175.89kg (10)

    For sake of simplicity, let us neglect an excess of, say4%and thus keep for the amount (weightor mass) of propellant required by the boost phase

    wp,1= (wp)ideal,1= 175.89kg (11)

    wherefrom the volume of the boost propellant grain (wp is the weight in kgfor mass in kgmof propellant)

    Vp,1= wp,1/p = 175.89/1.70 = 103.46dm3

    = 103460cm3

  • 7/25/2019 space propulsion lab

    10/48

    10 Space Propulsion - DeLuca 2004

    Mass conservation, between the combustion surfaceAb(produced mass) and nozzle throatAt (discharged mass), requires for the motor operation a combustion surface of

    Abprb = CDAtpc=Atpc

    c

    = .w

    Ab = 1

    cAtpcprb

    = 87.196104 (60101325)

    1507.01.7010+3 4.849102 = 0.42673 m2 = 4267.3cm2

    Just as acheck, let us verify the produced flow rate.

    w= prbAb= 1.7010+3 4.849102 0.42673 = 35.177kg/s

    or, asanothercheck, let us verify the combustion surface from the produced flow rate.

    w = prbAb (12)

    graphical Ab=.

    w

    prb=

    35.17710+3

    1.704.849 = 4267.3cm2 (13)

    computed Ab=.w

    prb=

    35.17710+3

    1.704.849 = 4267.3cm2 (14)

    The most important check regards the combustion pressure in the boost phase

    pc =

    AbAt

    pa1c

    11 n1 =

    4267.3

    87.196 1.7010+3 0.7682 10

    2

    (101325)0.45 1507.0

    110.45

    =

    = 6.0793106 Pa= 6.0793MPa = 6.0793/0.101325 atm = 59.998atm OKwherefrom the characteristic velocityccan be verified as

    .

    w = prbAb= CDAtpc=

    Atpcc

    c = Atpc

    .w

    =87.196 104 60 101325

    35.177 = 1507.0m/s

    Since a cigarette grain is required, the requested boost surface combustion is easily pro-vided by an ideally neutral cylindrical grain having diameter

    db=

    r4

    Ab

    =

    r4

    4267.3

    3.1415= 73.712cm

    while the klemmung ratioKbt is

    Kbt=Ab

    At=

    4267.3

    87.196

    = 48.939 (15)

    For the boost phase the length or web thickness of the (ideally) neutral grain is

    b1= rb1tb1= 4.8495 = 24.245cm (16)

    wherefrom the boost grain volume can be verified as

    Vp= Ab b= 4267.3 24.245 = 103.46dm3 = 103.46103 cm3 (17)Assuming a total thickness of1.144cm for the liner (between propellant grain and com-

    bustion chamber case) + possible ablative protection + case wall, the external diameter dcof the combustion chamber (max cross-section clutter) is

    dmax= dc= db+ 2tliner= 73.712 + 21.144 = 76.0cm (18)

  • 7/25/2019 space propulsion lab

    11/48

    Chapter 11 - Solid Rocket Engines - AppEx 11

    1.6 Sustainer or Regime Phase

    Sizing the sustainer propellant grain requires first determining the new operating conditions(sustainer phase or phase 2) in the combustion chamber, including the newpc ! If we neglect

    the (minor) effect ofpc on the ratio (Tc/=

    M), we find again

    c 1CD

    =pcAt

    .m

    =Isg0

    cF=

    c

    cF=

    q(

  • 7/25/2019 space propulsion lab

    12/48

    12 Space Propulsion - DeLuca 2004

    calculate the new non optimum gasdynamic expansion or force again optimum expansion bya variable geometry limited to the nozzle exit area Ae. Let us take this second approach,leading to higher performance. We need to calculatethe new values of both (cF)ideal

    (cF)ideal =

    r2

    k2

    k 1 ( 2

    k+ 1)k+1k1

    s1

    pepc

    k1k

    =

    r2

    1.252

    1.25 1( 2

    1.25 + 1)1.25+11.251

    s1

    0.02516

    16.638

    1.2511.25

    = 1.775

    and =Ae/At

    1/ = At/Ae=k+ 1

    2

    1

    k

    1 pepc

    1

    k vuuuutk+ 1k 1

    1pepc

    k 1k

    =

    1.25 + 1

    2

    11.251

    0.02516

    16.638

    11.25

    vuut1.25 + 11.25 1

    "1

    0.02516

    16.638

    1.2511.25

    #

    = 8.8776103

    6.544 = 2.271102

    and thus=Ae/At= 1/(2.27110

    2) = 44.033

    To be consistent and for sake of simplicity, let us again neglect nozzle losses (for example,

    a total inefficiency of 2%) and let us accept as effective values for the thrust coefficientcF = 1.775and for the expansion geometric ratio = Ae/At = 44.0. We can now evaluateduring the sustainer phase the new (ideal) values of:

    - thrust

    T2(z = z0= 2.5 104 m) = cFpcAt= 1.775 16.638 1.01325 105 87.196 104 = 26092.0N = 26092.0/9.807 = 2660.5kg

    - nozzle exit area

    Ae= (z= z0= 2.5 104 m)At= 44.033 87.196 = 3839.5cm2 (22)

    - gravimetric specific impulse (for c assumed invariant)

    Is(z= z0 = 2.5 104 m) = ccFg0

    =1507.0 1.775

    9.807 = 272.76s (23)

    - and relevant diameters (for the taken approach, only the exit divergent is affected)

    db = dmax= db+ 2tliner = 76.0cm (24)

    dt =

    r4 At

    =

    r4

    87.196

    = 10.537cm (25)

    de = r4 Ae

    = r4 3839.5

    = 69.92cm (26)

  • 7/25/2019 space propulsion lab

    13/48

    Chapter 11 - Solid Rocket Engines - AppEx 13

    1.7 Motor

    1.7.1 Thrust Nozzle

    For the taken approach, the total nozzle length (convergent + divergent) changes dependingon the flight segment. In the boost phase, assuming for the combustion chamber dc = dmaxand for the gasdynamic thrust nozzle a45 convergent and a 15 divergent, we find

    Lconv = (dc dt)/2

    tan 45=

    (76 10.54)/2tan45

    = 32.73cm (27)

    Ldiv = (de dt)/2

    tan 15=

    (116.34 10.54)/2tan15

    = 197.43cm (28)

    Ltot = Lconv+Ldiv= 32.73 + 197.43 = 230.16cm (29)

    In the sustainer phase, under identical assumptions for the relevant geometrical parameters,

    wefi

    nd

    Lconv = (dc dt)/2

    tan45=

    (76 10.54)/2tan45

    = 32.73cm (30)

    Ldiv = (de dt)/2

    tan 15=

    (69.92 10.54)/2tan15

    = 110.80cm (31)

    Ltot = Lconv+ Ldiv = 32.73 + 110.80 = 143.53cm (32)

    Thus, in the sustainer phase the gasdynamic thrust nozzle results less cluttering in termsof both total length (but the convergent has not changed) and exit diameter, thanks to thereduced pressure in the combustion chamber.

    1.7.2 Propellant Grain

    The total length of the (ideally) neutral cylindrical grain, summing up the two burning phases,is

    Lp = Lboost+ Lsustainer = 24.245 + 35.70 = 59.945' 60 cm (33)

    1.7.3 Total Impulse

    The total impulse for each of the burning phases is by definition

    Itot,1(z = z0) = T1(z= z0)tb1= 100005 = 50.0103 kg s (34)

    Itot,2(z = z0) = T2(z= z0)tb2= 2660.525 = 66.513103 kg s (35)

    and thus, summing up the two burning phases, we find

    Itot(z= z0) = T1(z= z0) tb1 + T2(z= z0) tb2= 50.0 103 + 66.513 103 = 116.51 103 kg s

    As acheck, an alternative way (Sutton VI p. 24) to evaluate the total impulse Itotresortsto the gravimetric specific impulseIs

    Itot,1(z = z0) = Is,1(z= z0)(wp,1)ideal = 284.28 175.89 = 50.002103 kg s (36)

    Itot,2(z = z0) = Is,2(z= z0)(wp,2)ideal = 272.76 243.75 = 66.485103

    kg s (37)

  • 7/25/2019 space propulsion lab

    14/48

    14 Space Propulsion - DeLuca 2004

    1.8 Effects of Initial Temperature

    1.8.1 Boost or Acceleration Phase

    We need to evaluate the new combustion chamber pressure at the assigned initial temperatureofT0= 275 K- via mass balance

    pc =

    AbAt

    p1a1c

    11n1

    = (38)

    =

    4267.3

    87.196 1.7010+3 0.7682 10

    2

    (101325)0.45exp[0.002 (275 300)] 1507.0

    110.45

    (39)

    = 5.551106 Pa= 5.551MPa = 5.551/0.101325 atm = 54.784atm (40)

    - or via the thermal sensitivity parameter k

    k,1 = p,11 n1

    = 0.0021 0.45= 3.636410

    3 (41)

    pc(To) = pc(Tref)exp[k,1 (To Tref)] = (42)pc(275) = 60 exp[3.636410

    3 (275 300)] = 54.786atm (43)Knowing the new combustion chamber pressure, for the boost phase at low initial temperaturewe can immediately evaluate the new

    - steady burning rate

    rb1(pc1 = 54.784atm) = a1(Tref) exp[p,1 (To Tref)] pn1 (44)= 0.7682 exp[0.002 (275 300)] 54.7840.45 = 4.4275 cm/s (45)

    - burning time

    tb1(pc1= 54.784atm) =b1/rb1 = 24.245/4.4275 = 5.476s (46)

    - steady flame temperature (accounting only for the dominating pressure effect)

    Tc1= Tf1(pc1= 54.784) = 2970 (54.784/68)0.035 = 2947.6K (47)- characteristic velocity

    c 1CD

    =pcAt

    .m

    =Isg0

    cF=

    c

    cF=

    q(

  • 7/25/2019 space propulsion lab

    15/48

    Chapter 11 - Solid Rocket Engines - AppEx 15

    - gravimetric specific impulse

    Is,1(z= z0 = 2.5 104 m) = ccFg0

    = 1504.6 1.8438

    9.807 = 282.88s

    - thrust

    T1(z= z0= 2.5104 m) = cFpcAt = 1.8438 54.7841.01325 105 87.196104 = 89244N

    1.8.2 Sustainer or Regime Phase

    Again, we need to evaluate the new combustion chamber pressure at the assigned initialtemperature ofT0= 275 K

    - via mass balance

    pc = AbAt

    p,2a2c

    1

    1n2

    =

    =

    4267.3

    87.196 1.6010+3 (0.581 10

    2

    1013250.32) exp[0.005 (275 300)] 1507.0

    110.32

    = 1.4028106 Pa= 1.4028MPa = 1.4028/0.101325 atm = 13.845atm

    - or via the thermal sensitivity parameter k

    k,2 = p,21 n2 =

    0.005

    1 0.32= 7.3529103 (48)

    pc(To) = pc(Tref) exp[k,2 (To Tref)] = (49)pc(275) = 16.638 exp[7.352910

    3

    (275

    300)] = 13.844atm (50)

    Knowing the new combustion chamber pressure, for the sustainer phase at low initial tem-perature we can immediately evaluate the new

    - steady burning rate

    rb2(pc2 = 16.638atm) = a2(Tref) exp[p,2 (To Tref)] pn2 (51)= 0.581 exp[0.005 (275 300)] 13.8440.32 = 1.189cm/s (52)

    - burning time

    tb2(pc2= 16.638atm) = b2/rb2= 39.38/1.189 = 33.120s (53)

    - steady flame temperature (accounting only for the dominating pressure effect)

    Tc1= Tf1(pc1 = 13.844) = 2970 (13.844/68)0.035 = 2809K (54)

    - characteristic velocity

    c 1CD

    =pcAt

    .m

    =Isg0

    cF=

    c

    cF=

    q(

  • 7/25/2019 space propulsion lab

    16/48

    16 Space Propulsion - DeLuca 2004

    - thrust coefficient

    (cF)ideal = r2 k2

    k 1(

    2

    k+ 1

    )k+1k1s1

    pe

    pc

    k1k

    (55)

    =

    r2

    1.252

    1.25 1( 2

    1.25 + 1)1.25+11.251

    s1

    0.02516

    13.844

    1.2511.25

    (56)

    = 1.762 (57)

    - gravimetric specific impulse

    Is,2(z= z0 = 2.5 104 m) = ccFg0

    =1468.8 1.762

    9.807 = 263.90s (58)

    - thrust

    T2(z= z0= 2.5104 m) = cFpcAt= 1.762 (13.8441.01325105)87.196104 = 21552N

  • 7/25/2019 space propulsion lab

    17/48

    Chapter 11 - Solid Rocket Engines - AppEx 17

    2 EXERCISE No. 2: SUSTAINER - BOOST MISSION

    Preliminary sizing of solid rocket motor of sustainer - boost type

    We wish to get the preliminary sizing of a SRM capable to carry out the two-step propul-sive mission sketched in the following figure:

    boost 5 s| _____| | || | || | || sustainer 25 s | || _________________________c |b ______________________________b________ time, s

    The assigned input data are: burning times for each flight segment, tb1= 25s e tb2= 5s; thrust under optimum expansion, T1(z0= 2.5104 m) = 5, 000 + 100Ckg; combustion chamber pressure, pc1= 30 + N atm; For sake of simplicity, consider a unique "cigarette" cylindrical grain consisting of

    two different unmetallized composite propellants featuring, under the reference conditionsofTref= 300K and pref= 68 atm, the following steady-state ballistic properties:

    PROPELLANT 1

    densityp1 = 1.60g/cm3

    thermal sensitivity p1 = 0.0041/C

    p, atm 10 50 68

    rb(p), cm/s 1.213 2.030 2.240

    Tf(p), K 2536 2623 2640

    PROPELLANT 2

    density p2= 1.70g/cm3

    thermal sensitivityp2= 0.0001/C

    p, atm 1 30 68

    rb(p), cm/s 0.831 3.026 4.130

    Tf(p), K 2562 2886 2970

    1. Please perform a preliminary sizing of the whole motor (gasdynamic thrust nozzle,combustion chamber, and propellant grain), at the optimum expansion altitude ofz0,forcing the nozzle to always work under optimum expansion by using a divergent withconstant aperture d = 15

    but variable length. In particular, please deduce the di-ameter of the "cigarette" cylindrical grain required to achieve the wanted propulsivemission.

    2. Please evaluate how the main ballistic parameters, in particular the nozzle exit areaAt, change during the two flight segments.

    3. How would the whole propulsive mission be affected by an increase of the initial tem-perature from T0= Tref toT0= 350K ?

    Consider a monophase gaseous mixture expanding under chemically frozen conditions.When necessary, with due justifications assume typical values for missing properties andmake reasonable assumptions for undefined processes. Assigned data depend on the digitsC and N, that identify the alphabet position of the first letter of respectively the candidate

    family name andfirst name.

  • 7/25/2019 space propulsion lab

    18/48

    18 Space Propulsion - DeLuca 2004

    2.1 Introduction

    Let us assume as typical values:

    =

    M= 25g/gmole or kg/kmole; k = 1.25; g0= 9.807m/s2;

  • 7/25/2019 space propulsion lab

    19/48

    Chapter 11 - Solid Rocket Engines - AppEx 19

    2.2 Properties of Combustion Chamber

    At the nominal combustion chamber pressure ofpc1= 30atm, we can evaluate at once: Tc1= Tf1(pc1= 30) = 2970

    (30/68)0.035 = 2886 K;

    rb1(pc1= 30atm) = 0.581 300.32 = 1.7253 cm/sorrb1(pc1= 30 101325 Pa) = 0.581

    1

    (101325)0.32 (30 101325)0.32 = 1.7253cm/s;

    ac1(pc1 = 30) =

    sk