space weather effects of the solar wind on different regions of the magnetosphere viviane pierrard...

31
Space weather effects of the solar wind on different regions of the magnetosphere Viviane PIERRARD ELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte- Aeronomie (BIRA) IAP Charm

Upload: gervais-may

Post on 19-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Space weather effects of the solar wind on different

regions of the magnetosphere

Viviane PIERRARD

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO

Belgian Institute for Space Aeronomy (BIRA-IASB)

Institut d’Aéronomie Spatiale de Belgique (IASB)

Belgisch Instituut voor Ruimte-Aeronomie (BIRA)

IAP Charm

Kinetic models based on the solution of the evolution equationSolar wind

]1)[(2

1WPIfD

vfA

vv

fa

r

fv

t

f

Exosphere: Kn>>1 Vlasov equation

Exobase: Kn=1 Solar wind escape: 1.1-5 Rs

Barosphere: Kn<<1 Fokker-Planck

1. Vlasov (analytic) Pierrard et al., Sol. Phys., 20142. Fokker-Planck Pierrard et al., JGR, 20013. WPI kinetic Alfven waves Pierrard & Voitenko, Sol. Phys.20134. WPI Whistler turbulence Pierrard et al., Sol. Phys. 2011

Pierrard V., “Exploring the solar wind”, 221-240, Intech, ISBN 978-953-51-0339-4, 2012

Knudsen = mean free path/H

Friction Diffusion

Velocity distribution functions observed in situ in the solar wind

Electrons 1 AU WIND Protons 0.5 AU Helios Ions He O Ne 1 AU WIND

halo

corestrahl

B

Ulysses electron distributions fitted with Kappa functions

Results:

<> = 3.8 +/- 0.4 for v > 500 km/s (4878 observ.) <> = 4.5 +/- 0.6 for v < 500 km/s (11479 observ.)

Ions WIND:

=2.5

General in space plasmas

Kappa functions

Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010

)1(22/3

2/3 21

22

kT

mvA

kT

mnf ekappa k

Solar wind kinetic model: profiles of the moments

Maxwellian

Kappa=2

Pierrard, Space Sci. Rev., 172, 315, 2012

Not classical heat flux

Pierrard et al., Solar Phys., 2014

Solar wind minor ions

Pierrard, Space Sci. Rev., 172, 315, 2012

Kappa=5 for all species

T=10000 K at the top of chromosphere

Heating of the corona by velocity filtration

Acceleration of the ions

Solar wind model

SDO observations29 May 2013 coronal holes directed to the Earth.

Pierrard & Pieters, ASP,167-172, 2014

ACE observations of velocity at 1 AU

Model with collisions and whistler turbulence

Bottom (collision-dominated):

f(2 Rs,>0,v) = maxwellian

Top (collisionless conditions):

f(14 Rs,<0,v<ve) = f(14 Rs,>0,v<ve)

f(14 Rs,<0,v>ve) = 0

Pierrard, Lazar & Schlickeiser, Sol. Phys. 287, 421, 2011

Electron velocity distribution function

Kp [0-9] 1939 13 stations (11N, 2S 44-60°) Dst 1964 4 stations (eq) AE 1966 12 stations N (aur)PC 1991 1 station (pol)

Geomagnetic activity indices (based on B at the surface of the Earth)

Storms and substorms

CR2075

Corotating Interaction RegionsCR2075

CR2076

u

B

Dst Depends on u, B, n

Auroral regions

Pierrard et al., J. Atmosph. Sol. Terr. Phys., 69 doi: 10.1016/j.jastp.2007.08.005, 2007

Current-voltage relationship FUV IMAGE

Terrestrial magnetosphere

Electron flux in the 0.5-0.6 MeV at 820 km measured by EPT on PROBA-V

Van Allen Radiation beltsEnergetic protons and electrons

Pierrard et al., Space Sci. Rev., doi: 10.1007/s11214-014-0097-8, 2014

AP8 Max J(E>10 MeV) AE8 Max J(E >1 MeV)

L (Re) L (Re)

internal: p+ (100 keV-500 MeV) external: p+ (<10 MeV) e- (10 keV-10 MeV) e- (10 keV-5 MeV) 4 Rt 10 Rt

Van Allen Radiation belts

High flux variations

Benck et al., SWSC, 3, doi: 10.1051/SWSC/2013024 , 2013

Dynamic model of the radiation belts

Dynamic model of the electron radiation belts based on CLUSTER/RAPID observations (2001-2012)

www.spaceweather.eu

Pierrard & Borremans, subm. SWSC, 2014

Links Plasmasphere/radiation belts

Plasmasphere: 1 eV Radiation belts: > 200 keV

Pierrard and Benck, AIP, 1500, 216, 2012 (SAC-C)Darrouzet et al., JGR, 118, 4176-4188, 2013 (Cluster)

9-6-2001/ 10-6-2001

Terrestrial plasmasphere and plasmapauseposition

Pierrard and Voiculescu, GRL 38, L12104, 2011

on www.spaceweather.eu http://ccmc.gsfc.nasa.govIonosphere, GPS

Web-based forecasting and nowcasting model

Before substorm9 June 20018h00

After substorm10 June 20017h00

Comparison with observations

IMAGE (2000-2006):RPI and EUV He+ ions at 30.4 nm

Terrestrial polar windInput: n and T at 2000 km+++ e- p+ … O+

Pierrard and Borremans, ASP 459, 2012

Pierrard V., Planet. Space Sci., doi : 10.1016/j.pss.2009.04.011, 2009

Electron density in the exosphere of Jupiter

Auroral oval and footprints on Jupiter

Saturn and Jupiter

- CMEs and solar wind high speed streams cause geomagnetic storms and substorms

- Variations measured by geomagnetic activity indices (Kp, Dst) - Auroral oval larger and wider - High flux variations in the outer electron Van Allen belt - High variability of the plasmapause position - Comparison with the magnetosphere of other planets - Kinetic models developed for space plasmas - Models provided on www.spaceweather.eu

IASB-BIRA/STCE / IUAP CHARM

Conclusions

BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO

Conclusions

• CMEs and solar wind high speed streams cause geomagnetic substorms and storms• Variations measured by geomagnetic activity indices at the ground (Kp, Dst)• Auroral oval larger and wider• High flux variations in the outer electron Van Allen belt• High variability of the plasmapause position• Comparison with the magnetosphere of other planets • Kinetic models developed for space plasmas• Models provided on www.spaceweather.eu

IASB-BIRA/STCE / IUAP CHARM

The moments of f

vdvrfrn

),()(

)(

)()(

rn

rFru

vdvvrfrF

),()(

Number density [m-3]

Particle flux [m-2 s-1]

Bulk velocity [m s-1]

Energy flux [Jm-2 s-1]

Pressure [Pa]

Temperature [K]

vduvuvvrfmrP

))()(,()(

vduvvrfrnk

mrT

2),(

)(3)(

vduvuvvrfm

rE

)(),(2

)(2

Kappa distributions: theory and applications in space plasmas

• Generation of Kappa in space plasmas: • turbulence and long-range properties of particle interactions in a plasma

- plasma immersed in suprathermal radiation (Hasegawa et al., 1985)- random walk with power law (Collier, 1993)- turbulent thermodynamic equilibrium (Treumann, 1999)- entropy generalization in nonextensive Tsallis statistics (Leubner, 2002)- resonant interactions with whistler waves (Vocks and Mann, 2003)

• Dispersion properties and stability of Kappa distributions

– Vlasov-Maxwell kinetics. Dielectric tensor– The modified plasma dispersion function– Isotropic /Anisotropic Kappa distributions

Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010

Consequence 3. Solar wind accelerated to high bulk velocity due to the presence of suprathermal electrons (Vlasov model)

=2Maxwell

Pierrard and Lemaire, JGR 101, 7923-7934, 1996Pierrard, Space Sci. Rev., 172, 315-324, 2012

Consequence: Non classical heat flux

Temperature inversion around 2 Rs- Peak in electron temperature at 2 Rs - Corresponds to coronal brightness measurements obtained during solar eclipses

Heat flux-not given by the Spitzer-Harm expression-Spitzer-Harm heat flux assumed in fluid models-No need of additional heating source to heat the corona or to accelerate the wind

Pierrard V., K. Borremans, K. Stegen and J. Lemaire, Solar Phys., doi: 10.1007/S11207-013-0320-x, 2014

Te model

Te obs. polar

Te obs. equator

Qe model

Qp model

Classical heat flux

Introduction

Solar wind

Kinetic models

Magnetosphere

Geomagnetic activity indices

Aurora

Van Allen belts

Plasmasphere-ionosphere

Conclusions