spacecraft formation control using analytical integration

25
Spacecraft Formation Control using Analytical Integration of GVE ICATT 2016 Mohamed Khalil Ben Larbi, 14.-17.03.2016

Upload: others

Post on 08-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spacecraft Formation Control using Analytical Integration

Spacecraft Formation Control usingAnalytical Integration of GVEICATT 2016

Mohamed Khalil Ben Larbi, 14.-17.03.2016

Page 2: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlook

Contents

IntroductionMotivationWhy ROE

Gauss’ variational equationsGVEControl scheme

Results and evaluationFormation reconfiguration and keeping

Conclusion and outlook

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 2Spacecraft Formation Control using Analytical Integration of GVE

Page 3: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Motivation

Idea: derive a formation geometry guaranteeingminimum collision risk (passive safety)

minimum number of correction maneuvers (passive stability).

1r

Client Satellite

Client inertial orbit

Servicer inertial orbit

RTNY

RTNZ

RTNX

r

z

yx

Servicer Satellite

relative orbit

Challenge for active debris removalUncertainties in along-track

=⇒ Separation in RN plane for safe formation

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 3Spacecraft Formation Control using Analytical Integration of GVE

Page 4: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Motivation

Idea: derive a formation geometry guaranteeingminimum collision risk (passive safety)

minimum number of correction maneuvers (passive stability).

1r

Client Satellite

Client inertial orbit

Servicer inertial orbit

RTNY

RTNZ

RTNX

r

z

yx

Servicer Satellite

relative orbit

Challenge for active debris removalUncertainties in along-track

=⇒ Separation in RN plane for safe formation

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 3Spacecraft Formation Control using Analytical Integration of GVE

Page 5: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Motivation

Idea: derive a formation geometry guaranteeingminimum collision risk (passive safety)

minimum number of correction maneuvers (passive stability).

1r

Client Satellite

Client inertial orbit

Servicer inertial orbit

RTNY

RTNZ

RTNX

r

z

yx

Servicer Satellite

relative orbit

Challenge for active debris removalUncertainties in along-track

=⇒ Separation in RN plane for safe formation

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 3Spacecraft Formation Control using Analytical Integration of GVE

Page 6: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Formation description

Relative orbital elements

δα =

δaδλ

δex

δey

δixδiy

=

(a2 − a1) a−11

(u2 − u1) + (Ω2 −Ω1) cos i1ex2 − ex1

ey2 − ey1

i2 − i1(Ω2 −Ω1) sin i1

,

with u = M +ω, ex = e cosω and ey = e sinω.

E/I polar notation

δe = δe(cosφ sinφ)T and δi = δi(cos θ sin θ)T

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 4Spacecraft Formation Control using Analytical Integration of GVE

Page 7: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Eccentricity/Inclination Separation

Relative trajectory (without Drift)

E/I separation

safe formation for δe ‖ δi

δαnom =(δanom δλnom 0 −‖δenom‖ 0 +‖δinom‖

)T14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 5Spacecraft Formation Control using Analytical Integration of GVE

Page 8: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookMotivation Why ROE

Why relative orbital elements

Insight into the formation geometry (E/I separation)

acde

acde

2acde

acda

acdl

client

servicer

acdi

eT

eR eR

eN

acda

Maintains decoupling of in-plane and out-of-plane motionMore accuracy (retaining higher order terms)Adoption of Gauss variational equations (GVE)

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 6Spacecraft Formation Control using Analytical Integration of GVE

Page 9: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Gauss variational equations

dαdt = 1

na D(αosc) · γ

The subscript γ•indicates the direction of the perturbationacceleration, originated -in this case- from a maneuver

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 7Spacecraft Formation Control using Analytical Integration of GVE

Page 10: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 11: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 12: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 13: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 14: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 15: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

GVE for s/c formation

Gauss variational equations dδαdt = f (δα,γp)

Impulsive thrust

∆v =

∫ t+M

t−M

γpdt

⇓Thrust duration∆tM ≈ m2‖∆vM‖/Fmax

Finite duration thrust

∆v =

∫ t2

t1

γpdt

Thrust duration∆tM exactly solved

AimManeuver set to reconfigure the formation into δαnom

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8Spacecraft Formation Control using Analytical Integration of GVE

Page 16: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Maneuver sequence

Maneuver sequence 4T2N

u (rad)uT1 uN1 uN2uT2 uT3 uT4

u0

Δu

π

π

πnT

solve GVE for ∆vM =⇒ ∆vM = f (∆δα, u0,∆u)

Major challenge

Compute the intermediate alteration ∆δaI = f (∆δα, u0,∆u)

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 9Spacecraft Formation Control using Analytical Integration of GVE

Page 17: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Maneuver sequence

Maneuver sequence 4T2N

u (rad)uT1 uN1 uN2uT2 uT3 uT4

u0

Δu

π

π

πnT

solve GVE for ∆vM =⇒ ∆vM = f (∆δα, u0,∆u)

Major challenge

Compute the intermediate alteration ∆δaI = f (∆δα, u0,∆u)

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 9Spacecraft Formation Control using Analytical Integration of GVE

Page 18: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Impulsive & finite-duration planning

Impulsive thrust (IT)

solve GVE for ∆vM

IT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallyresolvable

Finite-duration thrust (FDT)

solve integrated GVE for ∆tM

FDT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallynot resolvable

Approximation

∆δaI solutionfrom IT

Computation

∆δaI numericaliteration

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 10Spacecraft Formation Control using Analytical Integration of GVE

Page 19: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Impulsive & finite-duration planning

Impulsive thrust (IT)

solve GVE for ∆vM

IT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallyresolvable

Finite-duration thrust (FDT)

solve integrated GVE for ∆tM

FDT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallynot resolvable

Approximation

∆δaI solutionfrom IT

Computation

∆δaI numericaliteration

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 10Spacecraft Formation Control using Analytical Integration of GVE

Page 20: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookGVE Control scheme

Impulsive & finite-duration planning

Impulsive thrust (IT)

solve GVE for ∆vM

IT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallyresolvable

Finite-duration thrust (FDT)

solve integrated GVE for ∆tM

FDT major challenge

∆δaI = f (∆δα, u0,∆u) analyticallynot resolvable

Approximation

∆δaI solutionfrom IT

Computation

∆δaI numericaliteration

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 10Spacecraft Formation Control using Analytical Integration of GVE

Page 21: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookFormation reconfiguration and keeping

Formation reconfiguration and keeping

Tabelle 1: Initial and final configurations

aδa aδλ aδex δey aδix aδiyInitial(m) 29 −10000 0 0 0 0Final (m) 0 −2000 0 −900 0 −500

-1000 -500 0 500 1000-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Cross-Track (m)

Rad

ial (

m)

TrajectoryStartpointEndpointClient

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 11Spacecraft Formation Control using Analytical Integration of GVE

Page 22: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlookFormation reconfiguration and keeping

Error assessment

Inserting ∆tM from IT into integrated GVE

⇒ analytical assessment of formation error induced through impulsiveplanning

0 100 200 300 400 500 600 700 800 900 1000

Target a/ ey/a/ e

y (m)

0

1

2

3

4

5

6

7

8

9 E

xecu

tion

Err

or (

%)

Error in a/ ey

Error in a/ ey @900m

Error in a/ iy

Error in a/ iy @500m

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 12Spacecraft Formation Control using Analytical Integration of GVE

Page 23: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlook

Conclusion

SummaryGVE for finite duration maneuver derived with several possibleapplications

FDT and IT control scheme using 4T2N maneuvers

OutlookVerification via high fidelity simulation with high risk debris objects

Inclusion of perturbations and estimation uncertainties.

Assessment of required computational power and suitability ason-board solution

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 13Spacecraft Formation Control using Analytical Integration of GVE

Page 24: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlook

Conclusion

SummaryGVE for finite duration maneuver derived with several possibleapplications

FDT and IT control scheme using 4T2N maneuvers

OutlookVerification via high fidelity simulation with high risk debris objects

Inclusion of perturbations and estimation uncertainties.

Assessment of required computational power and suitability ason-board solution

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 13Spacecraft Formation Control using Analytical Integration of GVE

Page 25: Spacecraft Formation Control using Analytical Integration

Introduction Gauss’ variational equations results Conclusion and outlook

Conclusion

SummaryGVE for finite duration maneuver derived with several possibleapplications

FDT and IT control scheme using 4T2N maneuvers

OutlookVerification via high fidelity simulation with high risk debris objects

Inclusion of perturbations and estimation uncertainties.

Assessment of required computational power and suitability ason-board solution

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 13Spacecraft Formation Control using Analytical Integration of GVE