sparkle code • meta-stability – comparator design

35
EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 1 EE247 Lecture 21 ADC Converters (continued) – Successive approximation ADCs (continued) – Flash ADC – Flash ADC sources of error Sparkle code • Meta-stability – Comparator design EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 2 Summary of Last Lecture ADC Converters Sampling (continued) Track & hold circuits T/H combined with summing/difference function T/H circuit incorporating gain & offset cancellation –E lectro-S tatic D ischarge (ESD) protection ADC architectures Serial- slope type Successive approximation

Upload: others

Post on 05-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 1

EE247Lecture 21

ADC Converters (continued)– Successive approximation ADCs

(continued)– Flash ADC– Flash ADC sources of error

• Sparkle code• Meta-stability

– Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 2

Summary of Last LectureADC Converters

– Sampling (continued)• Track & hold circuits• T/H combined with summing/difference function• T/H circuit incorporating gain & offset cancellation

– Electro-Static Discharge (ESD) protection

– ADC architectures • Serial- slope type• Successive approximation

Page 2: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 3

Successive Approximation ADC

• High accuracy achievable (16+ Bits) • Require N clock cycles for N-bit conversion (much faster than slope type)• Moderate speed proportional to B (MHz range)

VDAC/VREF

Time / Clock Ticks

1

1/2

3/45/8

VIN

1/2 3/4 5/8 11/16 21/32 41/64

Example: 6-bit ADC & VIN=5/8VREF

ADC 101000

DAC

VIN

ControlLogic

Clock

VREF

T/H

Test MSB

Test MSB-1

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 4

Example: SAR ADCCharge Redistribution Type

• T/H inherent in DAC• Operation starts by connecting all top plate to gnd and all bottom plates to Vin• To test the MSB all top plate are opened bottom plate of 32C connected to VREF &

rest of bottom plates connected to ground input to comparator= -Vin +VREF/2 • Comparator is strobed to determine the polarity of input signal if - MSB=1 if +

MSB=0• The process continues until all bits are determined

C2C4C8C32COut

Stop

b1b2b3b4 (msb)

-

Comparator

16C

b3

C

VinVREF

Vin ControlLogicTo

switches

b0

Page 3: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 5

Example: SAR ADCCharge Redistribution Type

• To 1st order parasitic (Cp) insensitive since top plate driven from initial 0 to final 0 by the global negative feedback

• Linearity is a function of accuracy of C ratios• Possible to add a C ratio calibration cycle (see ref.)

C2C4C8C32COut

reset

b1b2b3b4 (msb)

CP

-

Comparator

16C

b3

C

VinVREF

Vin ControlLogicTo

switches

Ref: H. Lee, D. A. Hodges, and P. R. Gray, "A self-calibrating 15 bit CMOS A/D converter," IEEE Journal of Solid-State Circuits, vol. 19, pp. 813 - 819, December 1984.

b0

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 6

Flash ADC• B-bit flash ADC:

–DAC generates all possible 2B -1 levels

–2B-1 comparators compare VIN to DAC outputs

–Comparator output:• If VDAC < VIN 0• If VDAC > VIN 1

–Comparator outputs form thermometer code

–Encoder converts thermometer to binary code

DigitalOutput

DAC

2B-1 BEncoder

VREF VIN fs

Page 4: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 7

Flash ADC ConverterExample: 3-bit Conversion

Enc

oder

fs

Thermometer code

B-bits

Time

VREF

0

0

1

1

1

1

1

1

0

1

VIN VIN VREF

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 8

Flash Converter

• Very fast: only 1 clock cycle per conversion

– Half cycle VIN & VDACcomparison

– Half cycle 2B -1 to B encoding

• High complexity: 2B-1 comparators

• Input capacitance of 2B-1 comparators connected to the input node:

High capacitance @ input node

Enc

oder

fsVIN VREF

Thermometer code

B-bits

Page 5: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 9

Flash Converter Sources of Error

• Comparator input:– Offset– Nonlinear input capacitance– Kickback noise (disturbs

reference)– Signal dependent sampling

time

• Comparator output:– Sparkle codes (… 111101000

…)– Metastability

R/2

R

R

R

R/2

R

Enc

oder Digital

Output

VINVREF fs

.....

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 10

Flash ConverterExample: 8-bits ADC

• 8-bits 255 comparators

• VREF=1V 1LSB=4mV

• DNL<1/2LSB Comparator input referred offset < 2mV

• 2mV =6σoffsetσoffset < 0.33mV

R/2

R

R

R

R/2

R

Enc

oder Digital

Output

VINVREF fs

.....

Page 6: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 11

Flash ADC ConverterExample: 8-bits ADC (continued)

1σOffset < 0.33mV• Let us assume in the technology used:

– Voffset-per-unit-sqrt(WxL)=3 [mVx μ]

– Issues:• Si area quite large• Large input capacitance• Since depending on input voltage different number of comparator input

transistors would be on/off- total input capacitance varies as input variesNonlinear input capacitance could give rise to signal distortion particularly at

high frequencies

20

2

3[ ] 0.33 83

2Assuming: 9 / 4963

Total input capacitance: 255 0.496 126.5 !

ffset

ox GS ox

mVV mV W LW L

C fF C C W L fF

pF

μ μ

μ

= = → × =×

= → = × =

→ × =

Ref: M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433 - 1439, October 1989.

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 12

Flash ADC ConverterExample (continued)

Trade-offs:– Allowing larger DNL e.g. 1LSB instead of 0.5LSB:

• Increases the maximum allowable input-referred offset voltage by a factor of 2

• Decreases the required device WxL by a factor of 4• Reduces the input device area by a factor of 4• Reduces the input capacitance by a factor of 4!

– Reducing the ADC resolution by 1-bit• Increases the maximum allowable input-referred offset voltage by a factor

of 2• Decreases the required device WxL by a factor of 4• Reduces the input device area by a factor of 4• Reduce the input capacitance by a factor of 4

– Add offset cancellation to the comparator and thus decrease the input device area– could reduce the conversion rate

Page 7: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 13

Flash ConverterMaximum Tolerable Comparator Offset versus ADC Resolution

10-1

1

10

102

4 6 8 10

VREF=1V

VREF=2V

Assumption: DNL=0.5LSB

Note:Graph shows offset, note that depending on min acceptable yield, the derived offset numbers are associated with 2σ to 6σ offset voltage

ADC Resolution

Max

imum

Com

para

tor V

offs

et[m

V]

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 14

Typical Flash Output Encoder

0

0

1

1

1

0

1

0

0

Binary Output (negative)

Thermometer to Binary encoder ROM

VDD

• Thermometer code 1-of-n decoding

• Final encoding NOR ROM

• Ideally, for each code, only one ROM row is activated

b3b2b1

b0

b3 b2 b1 b0Output 0 0 1 1

Page 8: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 15

Sparkle Codes

Correct Output:0111

Problem: Two rows are on

Erroneous Output:1111

1/2FS error!

0

1

0

1

1

1

0

1

0

Erroneous 0 (comparator offset?)

VDD

b3b2b1

b0

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 16

Sparkle Tolerant Encoder

Protects against a single sparkle.

Ref: C. Mangelsdorf et al, “A 400-MHz Flash Converter with Error Correction,” JSSC February 1990, pp. 997-1002

0

0

1

0

1

0

1

0

0

0

Page 9: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 17

Meta-StabilityDifferent gates interpret meta-stable output X differently

Correct output: 0111

Erroneous output: 1111

Solutions:–Extra latches following

comparator (high power)–Gray encoding

Ref: C. Portmann and T. Meng, “Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters,” JSSC August 1996, pp. 1132-40

0

0

X

1

1

0

1

1

0

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 18

Gray Encoding

• Each Ti affects only one GiAvoids disagreement of interpretation by multiple gates

• Protects also against sparkles• Follow Gray encoder by (latch and) binary encoder

BinaryGrayThermometer Code

1110011111111

0111011111110

1011111111100

0010111111000

1100101110000

0101101100000

1001001000000

0000000000000

B1B2B3G1G2G3T1T2T3T4T5T6T7

43

622

75311

TGTTG

TTTTG

==

+=

Page 10: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 19

Voltage Comparators

Play an important role in majority of ADCsFunction: Compare the instantaneous value of two analog signals &

generate a digital output voltage based on the sign of the difference:

+

-Vout (Digital Output)

VDD

If Vi+ -Vi- > 0 Vout=“1”If Vi+ -Vi- < 0 Vout=“0”

Vi+

Vi--

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 20

Voltage ComparatorArchitectures

Comparator architectures• High gain amplifier with differential analog input & single-ended large

swing output– Output swing compatible with driving digital logic circuits– Open-loop amplification no frequency compensation required– Precise gain not required

• Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe

– Two options for implementation :• Latch-only comparator• Low-gain amplifier + high-sensitivity latch

• Sample-data comparators– T/H input– Offset cancellation

Page 11: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 21

Comparators w/ High-Gain Amplification

Amplify Vin(min) to VDD Vin(min) determined by ADC

resolution

Example: 12-bit ADC with:- VFS= 1.5V 1LSB=0.36mV- VDD=1.8V

For 1.8V output & 0.5LSB precision:

Minv

1.8VA 10,000

0.18mV= ≈

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 22

Comparators 1-Single-Stage Amplification

Too slow!Try cascade of lower gain stages to broadband response

fu=0.1-10GHz

f0 fufrequency

Gain

Av

u o

uo

Vu V

o

set t l ingo

Max.Clock

set t l ing

f uni ty-gain frequency, f =-3dB frequency

f f =

AExample: f =1GHz & A 10,000

1GHz f 100kHz

10,0001

1.6 sec2 f

Al low a few for output to set t le 1

f 126kHz5

τ μπ

τ

τ

=

=

= ≈

= =

→ ≈

Assumption: Single pole amplifier

Page 12: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 23

Comparators2- Cascade of Open Loop Amplifiers

The stages identical small-signal model for the cascades:

One stage:

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 24

Open Loop Cascade of Amplifiers

Page 13: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 25

Open Loop Cascade of AmplifiersFor |AT(DC)|=10,000

( )

u T

1/ 3 1o N 1/ 3

s e t t l i n go

M a x .C l o c k

s e t t l i n g

E x a m p l e :

N = 3 , f = 1 G H z & A ( 0 ) 1 0 0 0 0

1 G H zf 2 2 3 .7M H z1 0,0 0 0

1 7n s e c2 f

A l l o w a f e w f o r o u t p u t t o s e t t l e

1f 2 9M H z5

τπ

τ

τ

=

= ≈

= =

→ ≈

fmax improved from 126kHz to 29MHz x225

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 26

Open Loop Cascade of AmplifiersOffset Voltage

• From offset point of view high gain/stage is preferred

• Choice of # of stage

bandwidth vs offset tradeoff

Page 14: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 27

Open Loop Cascade of AmplifiersStep Response

•Assuming linear behavior

t

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 28

Open Loop Cascade of AmplifiersStep Response

•Assuming linear behavior

Page 15: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 29

Open Loop Cascade of AmplifiersDelay/(C/gm)

• Minimum total delay broad function of N

• Relationship between # of stages that minimize delay (Nop) and gain (Vout/Vin) approximately:

Delay/(C/gm)

Ref: J.T. Wu, et al., “A 100-MHz pipelined CMOS comparator ” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1379 - 1385, December 1988.

N 1 log A for A 1000opt 2 T

N 1.2ln A for A 1000opt T

≈ + <

≈ ≥

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 30

Offset Cancellation• In sampled-data cascade of amplifiers Vos can be cancelled

Store on ac-coupling caps in series with amp stages

• Offset associated with a specific amp can be cancelled by storing it in series with either the input or the output of that stage

• Offset can be cancelled by adding a pair of auxiliary inputs to the amplifier and storing the offset on capacitors connected to the aux. inputs during offset cancellation phase

Ref: J.T. Wu, et al., “A 100-MHz pipelined CMOS comparator ” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1379 - 1385, December 1988.

Page 16: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 31

Offset CancellationOutput Series Cancellation

• Amp modeled as ideal + Vos (input referred)

• Store offset:•S1, S4 open•S2, S3 closed

VC=AxVOS

Ref: J.T. Wu, et al., “A 100-MHz pipelined CMOS comparator ” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1379 - 1385, December 1988.

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 32

Offset CancellationOutput Series Cancellation

Amplify:• S1, S4 closed• S2, S3 open

VC=AxVOS

Circuit requirements:• Amp not saturate during offset

storage• High-impedance (C) load Cc not

discharged• Cc >> CL to avoid attenuation• Cc >> Cswitch offset due to charge

injection

Page 17: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 33

Offset CancellationCascaded Output Series Cancellation

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 34

Offset CancellationCascaded Output Series Cancellation

1- S1 open, S2,3,4,5 closed

VC1=A1xVos1

VC2=A2xVos2

VC3=A1xVos3

Page 18: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 35

Offset CancellationCascaded Output Series Cancellation

2- S3 open• Feedthrough from S3 offset on X• Switch offset , ε2 induced on node X• Since S4 remains closed, offset associated with ε2 stored on C2

VX= ε2

VC1=A1xVos1- ε2

VC2=A2x(Vos2+ ε2)

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 36

Offset CancellationCascaded Output Series Cancellation

3- S4 open•Feedthrough from S4 offset on Y•Switch offset , ε3 induces error on node Y•Since S5 remains closed, offset associated with ε3 stored on C3

VY= ε3

VC2=A2x(Vos2+ ε2) - ε3

VC3=A3x(Vos3+ ε3)

Page 19: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 37

Offset CancellationCascaded Output Series Cancellation

4- S2 open, S1 closed, S5 open• S1 closed & S2 open since input connected to low impedance source

charge injection not of major concern• Switch offset , ε4 introduced due to S5 opening

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 38

Offset CancellationCascaded Output Series Cancellation

Page 20: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 39

Offset CancellationCascaded Output Series Cancellation

Example: 3-stage open-loop differential amplifier with offset cancellation + output amplifier (see ref.)

ATotal(DC) = 2x106 = 120dBInput-referred offset < 5μV

Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," IEEE Journal of Solid-State Circuits, vol. 13, pp. 499 - 503, August 1978.

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 40

Offset CancellationOutput Series Cancellation

• Advantages:– Compete cancellation – Closed-loop stability not required

• Disadvantages:– Gain per stage must be small – Offset storage C in the signal path- could slow

down overall performance

Page 21: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 41

Offset CancellationInput Series Cancellation

Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," IEEE Journal of Solid-State Circuits, vol. 13, pp. 499 - 503, August 1978.

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 42

Offset CancellationInput Series Cancellation

Ref: :R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," IEEE Journal of Solid-State Circuits, vol. 13, pp. 499 - 503, August 1978.

Store offset

Note: Mandates closed-loop stability

Page 22: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 43

Offset CancellationInput Series Cancellation

Amplify

S2, S3 openS1 closed

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 44

Offset CancellationCascaded Input Series Cancellation

ε2 charge injection associated with opening of S4

Page 23: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 45

Offset CancellationInput Series Cancellation

• Advantages:– In applications such as C-array successive

approximation ADCs can use C-array to store offset

• Disadvantages:– Cancellation not complete– Requires closed loop stability– Offset storage C in the signal path- could slow

down overall performance

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 46

CMOS ComparatorsCascade of Gain Stages

Fully differential gain stages 1st order cancellation of switch feedthrough offset

1-Output series offset cancellation

2- Input series offset cancellation

Page 24: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 47

CMOS ComparatorsCascade of Gain Stages

3-Combined input & output series offset cancellation

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 48

Offset Cancellation

• Cancel offset by additional pair of inputs (Lecture 20 slide 16 &17)

Page 25: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 49

Latched Comparators

Vi+

Vi--

Vout (Digital Output)

+

-

Latch

Vout

Vi+ - Vi-

t

Latch

t

t

“1”

“0”

Compares two input voltages at time tx & generates a digital output:

If Vi+ -Vi- > 0 Vout=“1”If Vi+ -Vi- < 0 Vout=“0”

tx

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 50

CMOS Latched Comparators

Comparator amplification need not be linearcan use a latch regeneration

Latch Amplification + positive feedback

Page 26: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 51

CMOS Latched ComparatorsSmall Signal Model

Latch can be modeled as a:Single-pole amp + positive feedback

Small signal ac half circuit

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 52

CMOS Latched ComparatorLatch Delay

2 2

1 1

2D 2 1

1

1 11 1

1 1 1Integrating both sides: 1 ln ln ln ln

Latch Delay:1 ln11

mL

m m

m L m L

t V a amb

t V bm L

m

m L

V dVg V CR dt

g dV g dVV dtC g R dt C g R V

g adt dV dx x a bC g R V x b

C Vt t tg V

g R

= +

⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− = = = − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= − = ⎜ ⎟ ⎜⎝−⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫ ∫

2D

1

For 1

ln

m L

m

g R

C Vtg V

⎟⎠

>>

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

Page 27: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 53

CMOS Latched Comparators

2D

1

2

1

D

ln

ln

m

L

Lm

C Vtg V

V Latch Gain AV

Ct Ag

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

→ =

→ ≈Compared to a 3-stage open-loop cascade of amps for equal overall gain of 1000

Latch faster by about x3

Normalized Latch Delay

D

m

tC

g

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 54

Latch-Only Comparator

• Main problem associated with latch-only comparator topology:

– High input-referred offset voltage (as high as 100mV!)• Solution:

–Use preamplifier to amplify the signal and reduce overall input-referred offset

Page 28: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 55

Pre-Amplifier + LatchOverall Input-Referred Offset

LatchVi+

Vi-

Do+

Do-

fs

Preamp

Av

VosLatchVos

Preamp

2 2Re _ _ Pr _2

Pr

_ Pr _ Pr

2 2Re _ 2

1

: 4 & 50 & 10

14 50 6.410

Input ferred Offset Vos eamp Vos Latcheamp

Vos eamp Vos Latch eamp

Input ferred Offset

A

Example mV mV A

mV

σ σ σ

σ σ

σ

= +

= = =

= + =

Latch offset attenuated by preamp gain when referred to preamp inputAssuming the two offset sources are uncorrelated:

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 56

Pre-Amplifier Tradeoffs

• Example:– Latch offset 50 to 100mV– Preamp DC gain 10X– Preamp input-referred latch offset 5 to 10mV– Input-referred preamplifier offset 2 to 10mV– Overall input-referred offset 5.5 to 14mV

Addition of preamp reduces the latch input-referred offset reduced by ~7 to 9X ~extra 3-bit resolution!

LatchVi+

Vi-

Do+

Do-

fs

Preamp

Av

Page 29: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 57

Comparator Preamplifier Gain-Speed Tradeoffs

• Amplifier maximum Gain-Bandwidth product (fu)for a given technology, typically a function of maximum device ft

Tradeoff:• To reduce the effect of latch offset high preamp gain desirable• Fast comparator low preamp gain

0 0

0

preamp

0

preamp

0 0

=unity gain frequency, 3 frequency & settling time

For example assuming preamp has a gain of 10:1 100

10

1 1.6 sec2

u

u

u

f f dBff

A

f GHzf MHzA

nf

τ

τπ

= − =

= =

= = =

= =

fu=0.1-10GHz

f0 fuFrequency

Magnitude

Av

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 58

Latched Comparator

Av LatchVi+

Vi-

Do+

Do-

fs

Preamp

Important features:– Maximum clock rate fs settling time, slew rate, small signal bandwidth– Resolution gain, offset– Overdrive recovery– Input capacitance (and linearity of input capacitance!)– Power dissipation– Input common-mode range and CMR – Kickback noise– …

Page 30: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 59

Comparators Overdrive Recovery

U amplification after time ta

During reset amplifier settles exponentially to its zero input condition with τ0=RC

Assume Vm maximum input normalized to 1/2lsb (=1)

Linear model for a single-pole amplifier:

Example: Worst case input/output waveforms

Previous input max. possible e.g. VFSCurrent input min. input-referred signal

(0.5LSB)

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 60

Comparators Overdrive Recovery

Example: Worst case input/output waveforms

If trecovery is not high enough to allow output to discharge (recover) from previous state- then it may not be able to resolve the current input errorTo minimize this effect:

1. Passive clamp2. Active restore3. Low gain/stage

Page 31: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 61

Comparators Overdrive RecoveryLimiting Output

ClampAdds parasitic capacitance

Active RestoreAfter outputs are latched Activate φR &

equalize output nodes

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 62

CMOS Latched Comparator DelayIncluding Preamplifier

2D

1

0D

Latch delay found previously:

ln

Assuming gain of for the preamplifier:

ln

m

v

vm in

VCg V

A

VC Ag V

τ

τ

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

Page 32: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 63

Latched Comparator Including PreamplifierExample

oV

inV

-+

+

-

M1 M2CLK

M3 M4

VDD

( )( )

3 31

3 1 1

0D

Preamplifier gain:

Comparator delay:

ln

M MMGS thm

v M M Mm GS th

vm

V VgAg V V

VC Ag Vin

τ

−= =

⎛ ⎞≈ ⎜ ⎟⎝ ⎠

M7 M8bias

M5 M6

M9

Preamp Latch

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 64

Comparator Dynamic Behavior

vOUT

CLK

TCLK

τdelay

Comparator Reset Comparator Decision

Page 33: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 65

Comparator Resolution

VIN =10mV 1mV

0.1mV10μVvOUT

CLK

Δt = (gm/C).ln(Vin1/Vin2)

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 66

Comparator Voltage Transfer FunctionNon-Idealities

Vout

Vin

VOffset

ε

-0.5LSB 0.5LSB

VOffset Comparator offset voltage

ε Meta-Stable region (output ambiguous)

Page 34: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 67

CMOS Comparator Example

Ref: A. Yukawa, “A CMOS 8-Bit High-Speed A/D Converter IC,” JSSC June 1985, pp. 775-9

• Flash ADC: 8bits, +-1/2LSB INL @ fs=15MHz (Vref=3.8V, LSB~15mV)• No offset cancellation

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 68

Comparator with Auto-Zero

Ref: I. Mehr and L. Singer, “A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications,” JSSC July 1999, pp. 912-20.

Page 35: Sparkle code • Meta-stability – Comparator design

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 69

Ref: I. Mehr and D. Dalton, “A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications,” JSSC July 1999, pp. 912-20.

Voffset

( )C C

Re f Re f Offset

V VV V V

+ −

+ −

− =− −

Flash ADCComparator with Auto-Zero

EECS 247 Lecture 21: Data Converters © 2006 H.K. Page 70

Ref: I. Mehr and D. Dalton, “A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications,” JSSC July 1999, pp. 912-20.

Voffset

Vo

( ) ( )[ ]( )

( ) ( )

Offseto P1 P2 In In C C

C C

Re f Re fo P1 P2 In In

VV A A V V V V

Substi tut ing for from prev ious cyc le:V V

V VV A A V V

Note: Offse t is cancelled & dif ference be tweeninput & re ference established

+ − + −

+ −

+ −+ −

− − −= ∗ − −

−= ∗ −⎡ − ⎤⎣ ⎦

Flash ADCComparator with Auto-Zero