spe 021513 (mccray) decl curve an for var pressure drop var flowrate
Embed Size (px)
TRANSCRIPT
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
1/17
cop~hhl t 99\, S&et y of Pe rdeum Engi neers, Inc.
Th is f mp er WA 8 pr ep et i Ps vp ms en lat im a? d m SPE Qat Ted mb gy Sy mp os iu m h el d i n H ws to n, Tex as , J an uar y 23-24,1691.
TM p ap rx w as $el em ed f or p res en lal ic m b y m SPE Pr og ram Com mi tr to e f ol lo wi ng m ti ew o f i nl or met km c on lei ned In an Mr nc 4 w bm ir ted b y t he au th or (s ), C%n mn ,s o f Um p ap er , ac
p mw nt ed , h am n ot b ean r ev kw ed
gmesoc*vol Pl rk e o urn I%qi neem t nd are sub ject 10 C&mot ion by t ie eul hor(t ). The mat eri el ,
: p resen ted , does not necosaan ly r el lec r any
p os lr im _I of rh o S od al y o f Pet deu m n gl neem , 11so lf io er c, m m em ber s, Pap er a p res en ted at SPE m eet in gs ar e w bj ac t t o p ub li do n r av bw b y Ed it or ki l c om mi tt ees o f t he So dar y o f
Perml wm &@neers, Perml mbn t o copy i s res tdcl ed 10 a n ab$t ract o not m ore t hnn 303 words . Il [ut l ari ons may no be copi ed. The abs tract shou ld c onl ai n .%ns pl cw ous
~~t~ *m @ @ f im me paper i s Pmmmt ad. wri te puMi c.at as hkwer, SPE, P.O Sex S3S9SS. Ri durd$on, TX T5C8S-21S6, Tel ex, 730369 SPEOAL
The motivationfortheworkdescribedin this paperarosefrom
formed intoan cquivslcmconstantrateca.wfor bothgas and liquid
a need to analyze production dcclinc data where the flowing
flow data. Camacho9indcpndcntly vcnficd that this equivalent
bottomhole pressure varies significantly, The varirtncc of the
constant rate formulation is exact for the constant pressure
bottomhole [email protected] theexponential
J
ecline m c1for conventional dcclinc curve analysis (scmilog
production of a sli htly comprtssiblc liquid during boundary
ominri:ti flowcon mons,
plots arid type curves). Using pressure nonmalizcd flow rate
rather than flow rate usuallydoes not remedy this problem. The
McCrayto sought to develop a method to transformvariablc-
rncthmi wc present uscs a rigorous superposition function to
rate/vanablc pressure drop data into an equivalent constant
account for the varianceof rstc and pressure during production.
pressure
case. In doing this, McC raydcvclopcd a recursion
This furwdon is the constant rate analog for vanablc.rate flow
formula to compute an cquivdcnt time for constant wellbore
during post-tmnsicnt conditions and can bc used to develop a
pressure production, tcp,that could bc used with pressure drop
normalizedflowrate to performdcclincCUTVCnalysisusing type
WC b
61%J1U
[email protected]@xan EnLmms
Decline Curve Analysis for Variable Pressu, J Drop/Variable Flowrate Systems
by T.A. Blaslngame, T,L. McCray, and W,J. Lee, Texas A&M U.
This is a preprint -- subject to correction.
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
2/17
constant pressure analog for the dcclinc curve analysis of field
2
DeclineCurveAnalysisfor VariablePressureDrop/VariableFlowrateSystcn?s
SpE 21513
Thecomputationalformulaearc givenin AppcndiccsBandC
and wc will verify each. Thcsc include the fcilowing rccuraion
formulae; the integralmethodproposedby McC ray10nd the 2-
and 3-pointbrickwarddtifcmncomethodsdcvclopcdin thiswork
The recursion relations for this part of the verification arc
dcvclopcdinAppendixB andsummarizedinAppendixC,
We willalsouse theboundarydominatedflowrelationswhich
result from
7
tsating the constant rate and constant pressure
anal tics SOIUor..,This dcvclopmcntand thepertinentrelations
ior t is psxtof theverificationamgiveninAppendixB.
Fi . I
shows the log-log
behaviorof the
qo
functionsvcraus
t
Dan tcp~function for tic cssc of a wellccntcrcd in abounded
cimulaxreservoir(r~=NP), Duc to thenumberof mcthcdsbeing
cansidcm wewill discussthe transientand boundarydominated
flow behavior separately, First wc note that, during early times
(transient flow), all of the tcpp methods yield a good
approximation to tic
q~(t~)
sohmon, cxccpt at very early times
([email protected]). This
impliesthat allof thesemethodsyielda reasonable
approximation to the analytical solution during transient flow,
Obviously,theanalyticalsolutionfor tmundarydominatedflow is
not valid during transient flow as shown by the deviation of this
solutionand the transientflow sohstion.
Now if wc consider the late time (boundarydominated flow)
portion of Fi&.1 (rD>3x105),wc find that virtuallyall of the
to D
mcthds agrc.cwry closdy
with the
qD(lD)
Solution.Athough
&ls
scale
prccludcsveryCIOSCnspection,it dots appearthat t D2 for
thedcnvativcmcth(xl1dots showsigni lcantdeviation,
f%iswill
bc invcstigsttcdmore closely when these dara arc rcplottcd on a
scmilog
q~
gmphin Fig. 2.
Fig. 2 is
a
rcplot of Fig. 1 using a scmilogscale for the
qD
fLSnctiOnSnd a cancsian scsdcfor the tDfunctions. Wc nOtChat
the
scsulta
fordcnvativc method1 do beginto diverge from those
r f the Othermcthtsds,which cIwly ovcr]ay thecorrect solution,
Fig, 2 sug~sta that dtivativc rrscthod1 should not be used in
L
racticc,but that theintegraltncthw dcnvativcmcthcx 2, andthe
undarydominatd flowmethodshouldgiveaccuratewsults.
Of these, the boundarydominatti flowmethod is the easiest
to apply since it dots not rcqtlirc recursion calculations, but
functions. Wc will demonstrate the ap~licationof the boundary
dominatedflowmcthcxion a simulatedhquidproductioIIaqucncc
anda fic dcaacfor a gasWCIIhathasbeenanalyzedpreviouslyin
the literature.ZM
In this sectionwcwill applythe tcP-tcrransformdescribediri
theprevioussectionto a simulatedproductionsqucrtcc in anOil
WCI1.Themscrvoirdataand flowhistoryarcgivenin Table 1.
TABLE 1
WellimdReservdr Parameters
(Well Centered in alloundedCircular Resemoir)
B,
RB/STB
1,00
cl,psia-l
15.0X 1o-I5
h,
ft
4
0.::
\i, Cp
rW,
ft
02:
re, ft
745 (40
acre)
k,
md
1,0
s
pi, psia 48~
CA
31.62
Usingthe WC] ndrcscswoirparametersgivenaboveandEqs.A-3
toA-5,wccomputethem
and b
paramctwsandwcobtain
m=
2,3&/[email protected]~/D/D
b
=
32.8948
pSi&~@
Flom History
flowscqucncc
;
r, days q,STBfD
180
50
180
const~t
p~
p~,
psia
constantrate
2000
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
3/17
SPE21513
T.A.B usingamc,T.L. McCrayandW,J,La
3
I
correctconstant pressure solution. It can be seen in Fig. 4 that
prcs: xc drop normalization does not yickl a constant nrcssure
I analogsolution,
Clearly, wc must usc other techniques which are more
rigorousthan psessumdrop normalizationfor field applica{{,onsf
decline curve analysis,
The methodof choice will be the onc
proposed by Blasmgamc and Lec7 whit: converts variablc-
ratchriablc rcssure tip data to the equiwdcm constant rare
case. From t is anal sis wc will obtain them andb parameters
quired by Eq. B-1 or transformationto an equivalent constant
pressure system,
Fig, 5 showsthe cartesianplot of alp/q vs. tcr(=Q/q) rquircd
to determine them and b parameters. m is the slope of this plot
and
b
is the intcrcc t. Although thcte is somedata scatter, it is
1kar that them an
b
psramctcrado rcprmcnt a best fit trend of
the dam. Therefore, the step of determining the m and b
parametersis illustrtttcdas a simple and straightforwardprocess.
Fig. 6 showsthe log-logplot of Ap/q vetmssrc,that could be used
for typecurve matchingon constantrate typecurves. Fig. 6 also
shows that the concept of using Aplq and fcr appears to also be
validfor transientflow, giventhe agreementbetweenthe constant
rate and constant pressure base case (pW~3000 psia) during
transientflow (rcrc50days).
The nextstep is tousc them and b parameters in Eq. B-1 to
convert from tcr (constant rate analog time) to
tcp
(constant
pressure analog time), This is also a simpleand straightforward
procedure. Once tc is computed,a log-log plot of q/@ vs. Gp is
iade. Fig.7 is suc a plot andwcimmcxiiatclynote that all cases
overlay the same trend during both transient and boundary
dominatedflow. obviously, the analyticalsolution for boundary
dominatedflow(exponentialdecline)will not agreewith transient
flowsolution.
Fig, 7 represents the endpoint of our effort to determine art
quivalent anstant pressuretransformationfor variablc-rate/vari-
~blcpressuredrop flowdata, Wc aresatisfiedthatthis is a logical
and consistentprocedurethat shouldyield accurate rcsuhs when
applied to field data, The verification of this method is that all
cases overlay the base case @~-30fXt ]sia), where ~IAPand t
were used as the plotting functions for I$Cbase case. At this
TABLE 2
Well~Reservoir par~ters
(Assumed Geometry: Well Centered in
a Bounded Circular Reservoir)
B, R13/MSCF
0.70942
et, psia-l
1.870
X 104
h, ft
0.;:
Cp
0,02167
Fw,ft
0,354
-5,30 *
~, md
0,0786S *
p.~ psia 710
pi, psia
4175
C*
31,62
G, Bscf ( ef,2)
3.360
G, Bscf (rcf,3)
3.035
*Averageof valuesobtainedfromref. 2 and3.
Fromthe resultsof ref. 8 wchave
ma =
b. =
1.3094psi/MscF/D
G= 2.6281 Bscf
Fig. 8, which is a log-log plot of
@a/q
versus tc~,a,is taken
directly fromrcf, 8 and shownhere for complctcmess.Wc htwc
includedthe computedresponseduting boundarydominatedflow
as prescribedby Eq. A-1, T hc A pa /4 and tcr,a variables arc the
pseudotimc and pseudopressureas defined and computed in ref.
8, This nomenclature may seem awkward, but defining these
variablesin thismannerallowsus to usc liquidflowquations for
analysis, Therefore, anyequationswcpreaemarevalid for either
liquid or gas flow as long as the correct time and pressure
variablesarc used.
Wc note that the boundarydominated flow sohstiondoss not
model the transient flowbehaviorof the data in Fig. 8. This is
cxpectcdandwc onlystatethisobservationforcompletcncss,Wc
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
4/17
4
DcclincCur-wAnalysisfor VariablePressureDrop/VaririblcFlowrateSystetm
SPE21513
And finally,for gasweil test analysisEq. B-1hxomes
(5),
We haveusedEq. 5 toeomjwtcthe tc~ functionsusedin Fig.
f
. Note that Fig,9 is a log-log lotot
q AP~
versus tcp,~and that
h
he the boundary dominated ow sOIWiOn(Computccfq14Pa
function) agrees very wcli with the data during boundary
dominated flow but not during transient flow. This is expected
andwe shouldnot be conccrncdaboutthisdifference.
OncewehavecreatedFig, 9 using the
q/Apa
versus rCPadata,
wc will want omate} this data upon the Fetkovichl typecurve,
Fig. 10reprc%ms this typecurvematch. Note that thedata agree
with the t
r
curve during the transition from transient to
boundary ominated flow and throu hou; boundary dominated
h
low , The sc am it y
of data fortc ~
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
5/17
SPE21513
T,A. Blnsirsgime,T,L. McCrayandW.J.Lee
5
The fourth method developed was a rigorous identity which
equates the kxtndary dominated solutions for constant rate and
constant pressure production. The resulting two-parameter
relation @q. B-1) may bc used for dimensionless solutions or
field data applications. When the m and b parameters are
determined using the methods developed in ref, 7, data scatter
shouldhaveIittlceffecton theVSIUCSf theparametersbecausea
best fit trend is established. These characteristics make the
boundarydominated flow method the most usefulproduct of this
work.
Applications:
Wc recommendusingthe methodsprcscntcdin this work thr
the type curve analysis of variable-rate/variable pressure drop
productiondata, The methcd is relatively simpleand should be
applicable to a wide range of WCI1est problems, including the
analysisof gas welltestdatademonstratedin thiswork.
Conclusions:
1,
2.
3.
The recursion fonnulae discussed in this work should not be
appliedin practicedue to problemsassociatedwith the erratic
natureof fielddata,whichcouldcausepoor results.
The boundarydominatedflowmethodis themethodof ckaicc
to transform the constant rate analog time function ir,to a
constant pressure analog time function, This
mcthid
is
consistent,easy to apply,and shouldgive accuratercsuitsfor
a widerangeof problcmtypes.
The boundary dominated transform method can be used co
model constit wellborepressureproductionbehaviorcxaciy
during boundary dominated flow and should give accurate
resultsduring transientflow.
NO a
Dimensionless Variables
bD
= dimensionlessconstantdefinedby Eq,B-4
CA = dirrmsionless shapefactor
= dimensionlessconstantdefinedbyFA.B-3
Cp =
constantpressureor constantpressureanalog
D=
dirncnsionlcssvariable
mp = matchpointona typecurve
Wc gratefully acknowledge the assistance of Elizatwth
BarbozattndJemniferJohnstonfor their hcIpin thepreparationof
dds manuscript.
1.
2.
3.
4.
5.
6.
7.
Fetkovich, M.J.: Dcclinc Curve Analysis Using Type
Curves,JPT (June 1980) 1065-77,
Fetkovich,M.J., et ULDecline-CurveAnalysisUsingType
Curves.-CaseHistories,SPEFE (Dec. 1987) 637-56.
Frairn, M.L. and Wattcnbmgcr, R,A.: Gas Reservoir
Decline-CusvcAnalysisUsingTypeCurvesWithRealGas
PseudopressureandNormalizedTime,WEFE (&c, 1987)
671-82,
Ehlig-Economides, C.A. and Ramcy,H,J., Jr.: Transient
Rate Dcclinc Analysis for Wells Produced at Constant
prCSSUR,
:PEJ
(Fcbo1981)98-104,
Ehlig-Economides, C.A. and Ramey, H,J,, Jr,: pressure
Buildup for Wells produced at a Constantpressure,PEJ
(FcIJ. 1981)105-114.
Blasingamc, T,A. and Lee, W. J.: Properties of
HomogeneousRcscrvoi.m,NaturallyFracturedReservoirs,
andHydraulicallyFracturedReservoirs fromDeclineCurve
Analysis, paper SPE 15018 presented at the 1986 SPE
PcrrnianBasinOil andGas RecoveryConfcrencc,Midland,
TX, March 13-14, 1986.
INasingamc,T.A. and Lee,W.J.: Variable-RateReservoir
Limits Testing, paper SPE 1.5028presented at the 1986
SW? Permian Basin Oil and Gas Recovery Conference,
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
6/17
6
DeclineCurveAnalysisfor VariablepressureI)rop/VaricblcF mvratesystems
SPE21513
4(0
=mtcr+b
N)
where
(t) (time in Days)
--1- q(t)dr =
Cr f?(r) *
q(t)
(A-1)
(A-2)
@hcfi
(A-3)
()
=70.6 n~
eTCAr~2
(A-4)
and
,
rw = rw e-s
(A-5)
We will also need the general solutionfor a well producing at a
constantpressureduringboundarydominatedflow. Thk solution
is given by Ehlig-Economides and Ramey~,Sand later by
BlasingameandLec.c This so utionis
&)cprow)
(A-6)
Ourobjecciveis to develop a general time function that allowsus
to use Eq. A-6 to model a variable-rate/vanable-pressur~ drop
process,
Thisgeneralrelationis
(A-7)
where tcp is the
time
at which the constant pressure solution is
valid for a general variable-rate/variable-pressuredrop response.
In this sense,ICPs an unknownwhichmustlx dctcrmincri.
McCray10proposed [he following rcl.~tionas a defining refwion
fortcp
tp
We
need
to prove theright-h~.,ld-side(RHS) of ~., A-8. This is
done by integratingEq. A-7 so it is the sameformas the RHSof
W,.A-8. This gives
or
CombiningEqns.A-7andA-11gives
(A-11)
(A-12)
Notice that the right-hand-sides of Eqs. A-10 and A-12 arc
identical, This result proves that Eq. A-8 is exact for boundary
dominatedflow,
AppendixB: J% @Jl
rv
130ml~
Theobjectiveof thisswion is todevelopa methodtocomputethe
rcpfunction. A relatively simplerelation is obtainedby quating
Eqs.A-1and A-7 and solvingfortcp.Thisgives
~ Exp(~@), *
or
%/2=$ql
+f pcr )
(B-1)
or in termsof dimcnsimlessvariables
(
mq. .d
c/)D=mD
)
(R-2)
where
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
7/17
SPE21513
T,A.31asingamc,T,L,McCrayandW,J, lee
7
I
And combiningEqns. B-8,B-9, and B-11, and solving for AtCP,i
Integral hiethod
gives
McCmylo proposed to computethetc functionby approximation
i
[
.~ @(ti) Q(ti.$ 4Q(ti-1)+~
of the integral in Eq. A-8 using t c trapezoidal rule, This
repl %(ti) Ap(ri.2) @(ti-1) AP(ti)
1
(B-13)
essentiallyresults in a recursionformulawherethe tcpfunciion
is
computeda:
Cp= f
At.p,i
Appendix C:
~~
i= 1
The AtCP,iermsare computedusingindividualtrapumidpanelsof
In the calculations, the constant pressure dimensionless rate
*C q(1)
solutionis definedas
function. For an individualtrapezoidwchave
APO)
qcpD = ~
(c-1)
[
Theequivalentdimensionlesstimeis
Ii .% ?L * + ~ti-l)
2 @(ti) &(ti. 1)
1
tcpD = i~l AtcpD,i
(c-2)
also
where theZMCpDjregiven for theintegralmethodas
[
/i - Q(tJ Q(ti.])
.. .
AP(ri) Wi-1)
1
2[%%+1
AtcPD,i~ ~ ~-
for a givenpane .
[
PD,i FD,i-l
1
(c-3)
Combiningand solvingfor AtcP,igives andfol dxivative method1 astD,i pfi,i
AtcPD,i = tD,i -
[
J
@2iL. aLIL
PD,i-1
(c-4)
t~p,i =
~(ti) A~ti-
and forderivativemethod2 as
[
&,. 4U.L
1
[
,- pll,i tD,i-2 . 4tD,i- 1&
AlcpD,I
@(ti) AP(~i.] )
2 PD,i-2 PD,i-1 PE,;
(B-7)
1
(c-5)
Derivative
Metlwds
Othermethods,which are basedon thedcnvativc of Eq.A.7, can
bedevelopedtocompute the tcpfunctionusingEq.B-6.Differen-
tiationof Eq.A-7 withrespectto rCPyields
q(t)
()
- d Q(O
dtcp Ap(i)
I
(B-8)
We can alsou~eihcImund.uydominatedflowmethodto compute
the tcpDfunct]on, In this case, tcp is obtained using E+ R-2,
B-3 and B-4.
[
I
I
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
8/17
o
0
o
Y
u
11,,,
j
1
... . . . . . . . . .. , , . . . .. ,, ,. .. . . . . . . .
//
..............
..,,,..,,. . . . . . . .
o
-
.,,,,.,,.
...,,,,,,
z
v
,,,,
2
o ~ ............
E
.
Lf i t l l
I 1 1
1,,,,,
I
1
1,,1,,
I t
9
,......-.=
--
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
9/17
m
,,,,,,,,.,,,,,,..,,,,.
.W-)
cd
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
10/17
o
o
%
a
d
cu~
-
n /
~twl
p>
-i+
c l
.
CO
a~a;
(
.........
.$J ~ ,............... . . .d. . , d, ,
..............
Wo
yc&
k
-/
:
/If
%
\
(Q
..-
5?
8g
(
,, ,-i
G
1~ u
2
.... ,. , ,, , ,, , , . , .. . . . . . . . . . . . .. , , . ., ,, ,
m
,,.,,
...,,
,.,,,,,,,,,.,,..,...,..,.,,,
r:
Q
,.1
,, ..,,.,,,,..,,, ,,, ,,, ,,, ,,, ,,, .,,,,
%., ~a
CQ
.
w
g :-
Lg
-z T.
3
=$&
~
\; - -
IIUQ
CA
..,.,,,.,,,,., .,.,,,.,.,,..,,,,4,,,,,,,
%
m
.,-
% -
%g
u
IL w
J
d
,,................., .....................
-o
TY
.-
%
.-
-
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
11/17
m
1
.........................
, ,, , , ,4
t-a
.
::/
W-io
y~
~
c1.
/
.,
,, .,,. . . . . . . . . . . . .,. ...., . ,,,..
r:
,
LA
0?
8g
m ~
IL w
&
... .......,,,,,.
m
L-9
0
;:
~-%
/
>
........
. ...4.... . ... ,,
A)/
. ..... , ,., ,,, ,, ,,, ,,, ,,, ,,,
(u
.?-
VI
cb@
.
8$
%g
II w
Y
CA
., ,.,,,,,,, ,,,,.,,.,..,,,,,.,,,,,,
1-
t-
/
H :
,.,,
/,:
...,,,,.,,, ,,, ,,, ,, ,,, ,,, .,
\
~-
; g~
I fiq
2
J
C&
.,,,,
. . . . .. . . . . .. . . .. .,, , , ,,.,,
Z
~ ~~
8
m
, -
K.
;i$ g
J
V*
....,,,.,,,,,,,
2,,.,,,,,,
.n.
%
d)
G
c)
r-l
%
-3
E
I-.4
WJ
T1
.-
.ij-
-
&
8
.-
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
12/17
.
0
~(jo
1000
1500
2000 2500
120
I
3000
1
1
I
I
~ 120
~p=+() ltl psia ~
j)o-.
.. ..-..---.--.-_______...........
......... ............... ..................... .................. .........
.................. .. .....
........
...._.-...-.__
~
80-
. - - - .+.._-. _-. . _ ..... ... . . -. -+...................................+............................
~
~
2 40
............. ... . -- _. ______
q=50 S?B/l) ~?.~z~ p~a pWf=15U0 psia ~
@W;] ; (ficw 2) ~ (fl~v~ @ ;
i
\
o
i
500
1
1000
i
1500
2000
2500
3000
L (=Q/q),days
\
[email protected] 5- ~afi~sja~
plot of Ap/q versus ta for the liquid simulation cases.
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
13/17
i
,,,,,,,,.,..,,,,,,,
.,
,,,,,,,,,,,,
u
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
14/17
to
--23
%
.,,,,.,,,,,,,,,,,
C2
(J
.
%
c l .
. .,, ,.,,,,,,,,,,,,,.
. .
- r-
-t)
F*
,0--
{
II
,,,.,,.........................,,,.
cd
.
K
/
............ ,,,,,,.,
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
15/17
$5
.-
-&)
c
10
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
16/17
sPE 21513
.
10
101
102
103
104
d---
*
1
n
1 1
1
1
q7J01
6
4
1
2
{
--------------------------------s,
----
--- - -*.-.----------------------------------------------------------------------------------------00
-
6
/
\
~ f
4
4
Bmmdaiiy Dominated Flow Solution
@APa=(l/ba) El:p[-(rnJbJtcP,.l
-). \:
or
2
@Pa=[% 1.,,, + baJ-l
............ .................................+........................................ ................................................... ...... ...... ...... ..................
10-]
6
Results of Gas
~aterial J3alance Iterative
4-
solution ( 131asinmrne and Lee8~
ma =2.05536x10-3 Psi/MSCF~~
2-
ba =1.3094 @./lvlSCF/D
2
G=2.6281 Bscf [tW,.= (bJmJ ~[1 + ([email protected]&J I
~o-2
i
1
I1
I J
10-2
10 101 102 103
4
10
t
.P,a,days
Figure 9- Plot of q/Apa versus tCP,aor d~.taof Fetkovich, et aL2
t
~P,afunction computed using IC,, and the equation shown.
.
-
8/11/2019 SPE 021513 (MCcray) Decl Curve an for Var Pressure Drop Var Flowrate
17/17
102
101
10
10-]
~o-2
r
=k=
.-
1
.........................