special relativity and electrodynamics 611 spring 20/classnotes... · special relativity and...

96
Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 Chapter 1 of “Modern Problems in Classical Electrodynamics” by Brau Chapter 11 “Classical Electrodynamics” by Jackson, 3 rd ed. Chapter 1 - 4 “The Classical Theory of Fields” by Landau and Lifshitz , 4 th ed. Chapter 5 “Electrodynamics” by Melia Special Relativity and Electrodynamics , by Prof. Leonard Susskind, part of the Theoretical Minimum Lectures from Stanford University

Upload: others

Post on 14-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Special Relativityand

Electrodynamics

Spring 2020 Prof. Sergio B. Mendes 1

• Chapter 1 of “Modern Problems in Classical Electrodynamics” by Brau

• Chapter 11 “Classical Electrodynamics” by Jackson, 3rd ed.

• Chapter 1-4 “The Classical Theory of Fields” by Landau and Lifshitz, 4th ed.

• Chapter 5 “Electrodynamics” by Melia

• Special Relativity and Electrodynamics, by Prof. Leonard Susskind, part of the Theoretical Minimum Lectures from Stanford University

Page 2: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

2Prof. Sergio B. MendesSpring 2018

1. Laws of physics are the same (invariant) in any inertial frame of reference.

2. Light propagates in vacuum at constant speed.

Einstein’s Two Postulates of Special Relativity

Page 3: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Outcome of the Two Postulates:

Spring 2020 Prof. Sergio B. Mendes 3

𝑐 ∆𝑡 2 − ∆𝑥 2 = 𝑐 ∆𝑡′ 2 − ∆𝑥′ 2

Page 4: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Relating the Coordinates of the Two Frames of Reference

Fall 2018 Prof. Sergio B. Mendes 4

𝑥′ = 𝑥 − 𝑣𝑜 𝑡

𝑥 = 𝑥′ + 𝑣𝑜 𝑡′

𝛾

𝛾due to symmetry

linear modification

= 𝛾 𝛾 𝑥 − 𝑣𝑜 𝑡 + 𝑣𝑜 𝑡′

𝑡′ =1

𝛾 𝑣𝑜1 − 𝛾2 𝑥 + 𝛾 𝑡solving for 𝑡′:

in Galilean transformation

Page 5: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Inserting the Results into the Postulates

Fall 2018 Prof. Sergio B. Mendes 5

∆𝑥′ = 𝛾 ∆𝑥 − 𝑣𝑜 ∆𝑡∆𝑡′ =1

𝛾 𝑣𝑜1 − 𝛾2 ∆𝑥 + 𝛾 ∆𝑡

𝑐 ∆𝑡 2 − ∆𝑥 2 = 𝑐 ∆𝑡′ 2 − ∆𝑥′ 2

𝑥′ = 𝛾 𝑥 − 𝑣𝑜 𝑡𝑡′ =1

𝛾 𝑣𝑜1 − 𝛾2 𝑥 + 𝛾 𝑡

Page 6: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Finding 𝛾:

Fall 2018 Prof. Sergio B. Mendes 6

𝛾 =1

1 − 𝛽2𝛽 ≡

𝑣𝑜𝑐

∆𝑥 2: 1 = γ2 −𝑐2

𝛾2 𝑣𝑜2 1 − 𝛾2 2 1

1 − 𝛾2= −

𝑐2

𝛾2 𝑣𝑜2

1

𝛾2− 1 = −

𝑣𝑜2

𝑐2

∆𝑡 2: −𝑐2 = 𝛾2 𝑣𝑜2− 𝑐2 𝛾2

1

𝛾2= 1 −

𝑣𝑜2

𝑐2

2 ∆𝑥 ∆𝑡: 0 = −𝛾2 𝑣𝑜 − 𝑐21

𝑣𝑜1 − 𝛾2 𝛾2 𝑣𝑜 = −𝑐2

1

𝑣𝑜1 − 𝛾2 −

𝑣𝑜2

𝑐2=

1

𝛾2− 1

Page 7: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

7Prof. Sergio B. MendesSpring 2018

𝑦′ = 𝑦

𝑧′ = 𝑧

𝑥′ = 𝛾 𝑥 − 𝑣𝑜 𝑡

𝛾 =1

1 − 𝛽2

𝑡′ =1

𝛾 𝑣𝑜1 − 𝛾2 𝑥 + 𝛾 𝑡

Lorentz Transformations

= −𝛾 𝛽 𝑐 𝑡 + 𝛾 𝑥

𝛽 ≡𝑣𝑜𝑐

𝑐 𝑡′ = 𝛾 𝑐 𝑡 − 𝛾 𝛽 𝑥

Page 8: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

8Prof. Sergio B. MendesSpring 2018

In general 𝑑𝑥′ ≠ 𝑑𝑥 and 𝑑𝑡′ = 𝑑𝑡,

𝑐2 𝑑𝑡 2 − 𝑑𝑥 2 − 𝑑𝑦 2 − 𝑑𝑧 2 = 𝑐2 𝑑𝑡′ 2 − 𝑑𝑥′ 2− 𝑑𝑦′ 2 − 𝑑𝑧′ 2

≡ 𝑑𝑠 2

𝑑𝑠 ≡ space-time distance

An Invariant

≡ 𝑐2 𝑑𝜏 2

𝑑𝜏 ≡ proper time

however we always have:

Page 9: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

9Prof. Sergio B. MendesSpring 2018

Proper Time

𝑐2 𝑑𝑡 2 − 𝑑𝑥 2 − 𝑑𝑦 2 − 𝑑𝑧 2 = 𝑐2 𝑑𝜏 2

𝑐2 −𝑑𝑥

𝑑𝑡

2

−𝑑𝑦

𝑑𝑡

2

−𝑑𝑧

𝑑𝑡

2

= 𝑐2𝑑𝜏

𝑑𝑡

2

1 − 𝛽2 =𝑑𝜏

𝑑𝑡

2

𝑑𝜏 =𝑑𝑡

𝛾

÷ 𝑑𝑡 2

÷ 𝑐2

1

𝛾2=

Page 10: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

10Prof. Sergio B. MendesSpring 2018

𝑐 𝑡 ≡ 𝑥0

𝑥 ≡ 𝑥1

𝑦 ≡ 𝑥2

𝑧 ≡ 𝑥3

Let’s adopt the following notation:

𝑐 𝑡′ ≡ 𝑥′0

𝑥 ≡ 𝑥′1

𝑦 ≡ 𝑥′2

𝑧 ≡ 𝑥′3

Page 11: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

11Prof. Sergio B. MendesSpring 2018

𝑥′1 ≡ 𝑥′1 𝑥0, 𝑥1, 𝑥2, 𝑥3 = −𝛾 𝛽 𝑥0 + 𝛾 𝑥1

𝑥′0 ≡ 𝑥′0 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝛾 𝑥0 − 𝛾 𝛽 𝑥1

𝑥′2 ≡ 𝑥′2 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝑥2

𝑥′3 ≡ 𝑥′3 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝑥3

Lorentz Transformations

𝑥′0

𝑥′1

𝑥′2

𝑥′3

=

𝛾−𝛾𝛽00

−𝛾𝛽𝛾00

0010

0001

𝑥0

𝑥1

𝑥2

𝑥3

Page 12: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

12Prof. Sergio B. MendesSpring 2018

Lorentz Transformationsfor Differentials

𝑑𝑥′0

𝑑𝑥′1

𝑑𝑥′2

𝑑𝑥′3

=

𝜕𝑥′0

𝜕𝑥0

𝜕𝑥′1

𝜕𝑥0

𝜕𝑥′2

𝜕𝑥0

𝜕𝑥′3

𝜕𝑥0

𝜕𝑥′0

𝜕𝑥1

𝜕𝑥′1

𝜕𝑥1

𝜕𝑥′2

𝜕𝑥1

𝜕𝑥′3

𝜕𝑥1

𝜕𝑥′0

𝜕𝑥2

𝜕𝑥′1

𝜕𝑥2

𝜕𝑥′2

𝜕𝑥2

𝜕𝑥′3

𝜕𝑥2

𝜕𝑥′0

𝜕𝑥3

𝜕𝑥′1

𝜕𝑥3

𝜕𝑥′2

𝜕𝑥3

𝜕𝑥′3

𝜕𝑥3

𝑑𝑥0

𝑑𝑥1

𝑑𝑥2

𝑑𝑥3

Page 13: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

13Prof. Sergio B. MendesSpring 2018

𝑑𝑥′𝜇 =

𝛼=0

3𝜕𝑥′𝜇

𝜕𝑥𝛼𝑑𝑥𝛼 =

𝛼=0

3

𝐿𝛼𝜇𝑑𝑥𝛼 = 𝐿𝛼

𝜇𝑑𝑥𝛼

𝐿𝛼𝜇≡𝜕𝑥′𝜇

𝜕𝑥𝛼

𝐿𝛼𝜇≡𝜕𝑥′𝜇

𝜕𝑥𝛼=

𝛾−𝛾𝛽00

−𝛾𝛽𝛾00

0010

0001

Page 14: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

14Prof. Sergio B. MendesSpring 2018

𝑥1 ≡ 𝑥1 𝑥′0, 𝑥′

1, 𝑥′

2, 𝑥′

3= 𝛾 𝛽 𝑥′

0+ 𝛾 𝑥′1

𝑥0 ≡ 𝑥0 𝑥′0, 𝑥′

1, 𝑥′

2, 𝑥′

3= 𝛾 𝑥′

0+ 𝛾 𝛽 𝑥′1

𝑥2 ≡ 𝑥2 𝑥′0, 𝑥′

1, 𝑥′

2, 𝑥′

3= 𝑥′

2

𝑥3 ≡ 𝑥3 𝑥′0, 𝑥′

1, 𝑥′

2, 𝑥′

3= 𝑥′

3

Inverse Transformations

𝑥0

𝑥1

𝑥2

𝑥3

=

𝛾+𝛾𝛽00

+𝛾𝛽𝛾00

0010

0001

𝑥′0

𝑥′1

𝑥′2

𝑥′3

Page 15: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

15Prof. Sergio B. MendesSpring 2019

𝑑𝑥0

𝑑𝑥1

𝑑𝑥2

𝑑𝑥3

=

𝜕𝑥0

𝜕𝑥′0

𝜕𝑥1

𝜕𝑥′0

𝜕𝑥2

𝜕𝑥′0

𝜕𝑥3

𝜕𝑥′0

𝜕𝑥0

𝜕𝑥′1

𝜕𝑥1

𝜕𝑥′1

𝜕𝑥2

𝜕𝑥′1

𝜕𝑥3

𝜕𝑥′1

𝜕𝑥0

𝜕𝑥′2

𝜕𝑥1

𝜕𝑥′2

𝜕𝑥2

𝜕𝑥′2

𝜕𝑥3

𝜕𝑥′2

𝜕𝑥0

𝜕𝑥′3

𝜕𝑥1

𝜕𝑥′3

𝜕𝑥2

𝜕𝑥′3

𝜕𝑥3

𝜕𝑥′3

𝑑𝑥′0

𝑑𝑥′1

𝑑𝑥′2

𝑑𝑥′3

Inverse Lorentz Transformationsfor Differentials

Page 16: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

16Prof. Sergio B. MendesSpring 2018

𝐼𝐿𝜇𝛼 ≡

𝜕𝑥𝛼

𝜕𝑥′𝜇=

𝛾+𝛾𝛽00

+𝛾𝛽𝛾00

0010

0001

𝑑𝑥𝛼 =

𝛼=0

3𝜕𝑥𝛼

𝜕𝑥′𝜇𝑑𝑥′𝜇 =

𝛼=0

3

𝐼𝐿𝜇𝛼 𝑑𝑥′𝜇 = 𝐼𝐿𝜇

𝛼 𝑑𝑥′𝜇

𝐼𝐿𝜇𝛼 ≡

𝜕𝑥𝛼

𝜕𝑥′𝜇

Page 17: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

17Prof. Sergio B. MendesSpring 2019

𝑑𝑥′𝜇 =𝜕𝑥′𝜇

𝜕𝑥𝛼𝑑𝑥𝛼 𝑑𝑥𝛼 =

𝜕𝑥𝛼

𝜕𝑥′𝛽𝑑𝑥′𝛽

𝑑𝑥′𝜇 =𝜕𝑥′𝜇

𝜕𝑥𝛼𝜕𝑥𝛼

𝜕𝑥′𝛽𝑑𝑥′𝛽 =

𝜕𝑥′𝜇

𝜕𝑥′𝛽𝑑𝑥′𝛽 = 𝛿𝛽

𝜇

𝜕𝑥′𝜇

𝜕𝑥𝛼𝜕𝑥𝛼

𝜕𝑥′𝛽= 𝐿𝛼

𝜇𝐼𝐿𝛽𝛼 = 𝛿𝛽

𝜇

Yes, it’s consistent !!

Page 18: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

18Prof. Sergio B. MendesSpring 2018

Lorentz Transformations

contravarianttensor of rank 1

𝐿𝛼𝜇=𝜕𝑥′𝜇

𝜕𝑥𝛼

and Contravariant Four-Vectors

𝑑𝑥′𝜇 =

𝛼=0

3𝜕𝑥′𝜇

𝜕𝑥𝛼𝑑𝑥𝛼 =

𝛼=0

3

𝐿𝛼𝜇𝑑𝑥𝛼 = 𝐿𝛼

𝜇𝑑𝑥𝛼

𝑉′𝜇 =

𝛼=0

3𝜕𝑥′𝜇

𝜕𝑥𝛼𝑉𝛼 =

𝛼=0

3

𝐿𝛼𝜇𝑉𝛼 = 𝐿𝛼

𝜇𝑉𝛼

Page 19: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

19Prof. Sergio B. MendesSpring 2019

Examples of Contravariant Four-Vectors

Page 20: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

20Prof. Sergio B. MendesSpring 2018

𝑑𝑥𝜇 ≡

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

Four-Vector Distance

𝑑𝑥′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝑑𝑥𝛼

contravariant tensor of rank 1

𝑑𝑥1 ≡ 𝑑𝑥

𝑑𝑥0 ≡ 𝑐 𝑑𝑡

𝑑𝑥2 ≡ 𝑑𝑦

𝑑𝑥3 ≡ 𝑑𝑧

Page 21: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

21Prof. Sergio B. MendesSpring 2018

=1

𝑑𝜏

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

Four-Vector Velocity

𝑣′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝑣𝛼

contravariant tensor of rank 1

=𝛾

𝑑𝑡

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

=

𝛾 𝑐

𝛾 ൗ𝑑𝑥𝑑𝑡

𝛾 ൗ𝑑𝑦𝑑𝑡

𝛾 ൗ𝑑𝑧𝑑𝑡

𝑣𝜇 ≡𝑑𝑥𝜇

𝑑𝜏

𝑣1 ≡ 𝛾𝑑𝑥

𝑑𝑡≡ 𝛾 𝑣𝑥

𝑣0 ≡ 𝛾 𝑐

=

𝛾 𝑐𝛾 𝑣𝑥𝛾 𝑣𝑦𝛾 𝑣𝑧

𝑣2 ≡ 𝛾𝑑𝑦

𝑑𝑡≡ 𝛾 𝑣𝑦

𝑣3 ≡ 𝛾𝑑𝑧

𝑑𝑡≡ 𝛾 𝑣𝑧

Page 22: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

22Prof. Sergio B. MendesSpring 2018

Four-Vector Linear Momentum

𝑝′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝑝𝛼

= 𝑚𝛾

𝑑𝑡

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

=

𝛾 𝑚 𝑐

𝛾 𝑚 ൗ𝑑𝑥𝑑𝑡

𝛾 𝑚 ൗ𝑑𝑦𝑑𝑡

𝛾 𝑚 ൗ𝑑𝑧𝑑𝑡

𝑝𝜇 ≡ 𝑚𝑑𝑥𝜇

𝑑𝜏=

𝛾 𝑚 𝑐𝑝𝑥𝑝𝑦𝑝𝑧

𝑝1 ≡ 𝑝𝑥 ≡ 𝛾 𝑚𝑑𝑥

𝑑𝑡= 𝛾 𝑚 𝑣𝑥

𝑝0 ≡ 𝛾 𝑚 𝑐

contravariant tensor of rank 1

𝑝2 ≡ 𝑝𝑦 ≡ 𝛾 𝑚𝑑𝑦

𝑑𝑡= 𝛾 𝑚 𝑣𝑦

𝑝1 ≡ 𝑝𝑧 ≡ 𝛾 𝑚𝑑𝑧

𝑑𝑡= 𝛾 𝑚 𝑣𝑧

Page 23: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

23Prof. Sergio B. MendesSpring 2018

Four-Vector Force

= 𝛾𝑑

𝑑𝑡

𝛾 𝑚 𝑐

𝛾 𝑚 ൗ𝑑𝑥𝑑𝑡

𝛾 𝑚 ൗ𝑑𝑦𝑑𝑡

𝛾 𝑚 ൗ𝑑𝑧𝑑𝑡

𝐹𝜇 ≡𝑑𝑝𝜇

𝑑𝜏=

𝛾𝑑

𝑑𝑡𝛾 𝑚 𝑐

𝛾 𝑚𝑑

𝑑𝑡𝛾𝑑𝑥

𝑑𝑡

𝛾 𝑚𝑑

𝑑𝑡𝛾𝑑𝑦

𝑑𝑡

𝛾 𝑚𝑑

𝑑𝑡𝛾𝑑𝑧

𝑑𝑡

contravariant tensor of rank 1

𝐹𝑖 ≡ 𝛾 𝑚𝑑

𝑑𝑡𝛾𝑑𝑥𝑖

𝑑𝑡

𝐹0 ≡ 𝛾𝑑

𝑑𝑡𝛾 𝑚 𝑐

𝐹′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝐹𝛼

Page 24: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

24Prof. Sergio B. MendesSpring 2019

A Different Kind of Four-Vector:

the Four-Vector Gradient, which transforms through the Inverse Lorentz Transformations

Page 25: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

25Prof. Sergio B. MendesSpring 2018

Four-Vector Gradient, Inverse Lorentz Transformations,

covarianttensor of rank 1

and Covariant Four-Vectors

𝑊′𝜇 =

𝛼=0

3𝜕𝑥𝛼

𝜕𝑥′𝜇𝑊𝛼 =

𝛼=0

3

𝐼𝐿𝜇𝛼 𝑊𝛼 = 𝐼𝐿𝜇

𝛼 𝑊𝛼

𝜕

𝜕𝑥′𝜇=

𝜈=0

3𝜕𝑥𝛼

𝜕𝑥′𝜇𝜕

𝜕𝑥𝛼=

𝛼=0

3

𝐼𝐿𝜇𝛼

𝜕

𝜕𝑥𝛼= 𝐼𝐿𝜇

𝛼𝜕

𝜕𝑥𝛼

𝐼𝐿𝜇𝛼 ≡

𝜕𝑥𝛼

𝜕𝑥′𝜇

Page 26: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

26Prof. Sergio B. MendesSpring 2018

Inner Product of Contravariant and Covariant Tensors of Rank 1

𝑉′𝜇 =

𝜈=0

3𝜕𝑥′𝜇

𝜕𝑥𝜈𝑉𝜈 𝑊′𝜇 =

𝛼=0

3𝜕𝑥𝛼

𝜕𝑥′𝜇𝑊𝛼

𝜇=0

3

𝑉′𝜇 𝑊′𝜇

=

𝜇=0

3

𝜈=0

3

𝛼=0

3𝜕𝑥′𝜇

𝜕𝑥𝜈𝜕𝑥𝛼

𝜕𝑥′𝜇𝑉𝜈 𝑊𝛼 =

𝜈=0

3

𝛼=0

3

𝛿𝜈𝛼 𝑉𝜈 𝑊𝛼 =

𝜈=0

3

𝑉𝜈 𝑊𝜈

=

𝜇=0

3

𝜈=0

3𝜕𝑥′𝜇

𝜕𝑥𝜈𝑉𝜈

𝛼=0

3𝜕𝑥𝛼

𝜕𝑥′𝜇𝑊𝛼

invariant !!

Page 27: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

27Prof. Sergio B. MendesSpring 2018

𝜇=0

3

𝑉′𝜇 𝑊′𝜇 =

𝜈=0

3

𝑉𝜈 𝑊𝜈

Inner Product and Invariants

Page 28: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

28Prof. Sergio B. MendesSpring 2018

Relation between Contravariant and Covariant Tensors

𝑐2 𝑑𝜏 2 = 𝑐2 𝑑𝑡 2 − 𝑑𝑥 2 − 𝑑𝑦 2 − 𝑑𝑧 2

= 𝑑𝑥0 2 − 𝑑𝑥1 2 − 𝑑𝑥2 2 − 𝑑𝑥3 2 =

𝜈=0

3

𝑑𝑥𝜇 𝑑𝑥𝜇

𝑑𝑥0 ≡ 𝑑𝑥0

𝑑𝑥1 ≡ − 𝑑𝑥1𝑑𝑥𝜇 ≡

𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3

=

𝑑𝑥0

−𝑑𝑥1

−𝑑𝑥2

−𝑑𝑥3𝑑𝑥2 ≡ − 𝑑𝑥2

𝑑𝑥3 ≡ − 𝑑𝑥3

Page 29: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

29Prof. Sergio B. MendesSpring 2019

The Metric Tensor

𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈 = 𝑔𝜇𝜈 𝑑𝑥

𝜈

𝑔𝜇𝜈 =

1000

0−100

00−10

000−1

𝑑𝑥𝜇 =

𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3

=

𝑑𝑥0

−𝑑𝑥1

−𝑑𝑥2

−𝑑𝑥3

=

1000

0−100

00−10

000−1

𝑑𝑥0

𝑑𝑥1

𝑑𝑥2

𝑑𝑥3

Page 30: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

30Prof. Sergio B. MendesSpring 2019

𝑔𝜇𝜈 = 𝑔𝜇𝜈

𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈𝑑𝑥𝜈

𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈

Page 31: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

31Prof. Sergio B. MendesSpring 2018

𝑐 𝑑𝜏 2 =

𝜇=0

3

𝑑𝑥𝜇 𝑑𝑥𝜇

=

𝜇=0

3

𝑑𝑥𝜇

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈

=

𝜇=0

3

𝜈=0

3

𝑔𝜇𝜈𝑑𝑥𝜈 𝑑𝑥𝜇

𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈 𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈𝑑𝑥𝜈

=

𝜇=0

3

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈 𝑑𝑥𝜇

Proof:

Page 32: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

32Prof. Sergio B. MendesSpring 2018

𝜇=0

3

𝑑𝑥𝜇 𝑑𝑥𝜇 = 𝑐 𝑑𝑡 2 − 𝑑𝑥 2 − 𝑑𝑦 2 − 𝑑𝑧 2 = 𝑐2 𝑑𝜏2

𝑑𝑥𝜇 =

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

𝑑𝑥𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑑𝑥𝜈 =

𝑐 𝑑𝑡−𝑑𝑥−𝑑𝑦−𝑑𝑧

Four-Vector Distance Invariant

Page 33: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

33Prof. Sergio B. MendesSpring 2018

𝜇=0

3

𝑣𝜇 𝑣𝜇 = 𝛾 𝑐 2 − 𝛾 𝑣𝑥2 − 𝛾 𝑣𝑦

2− 𝛾 𝑣𝑧

2

𝑣𝜇 =

𝛾 𝑐𝛾 𝑣𝑥𝛾 𝑣𝑦𝛾 𝑣𝑧

𝑣𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑣𝜈 =

𝛾 𝑐−𝛾 𝑣𝑥−𝛾 𝑣𝑦−𝛾 𝑣𝑧

= 𝛾 𝑐 2 1 −1

𝑐2𝑣𝑥

2 + 𝑣𝑦2 + 𝑣𝑧

2

= 𝑐2

Four-Vector Velocity Invariant

Page 34: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

34Prof. Sergio B. MendesSpring 2018

𝜇=0

3

𝑝𝜇 𝑝𝜇 = 𝛾 𝑚 𝑐 2 − 𝛾 𝑚 𝑣𝑥2 − 𝛾 𝑚 𝑣𝑦

2− 𝛾 𝑚 𝑣𝑧

2

𝑝𝜇 =

𝛾 𝑚 𝑐𝛾 𝑚 𝑣𝑥𝛾 𝑚 𝑣𝑦𝛾 𝑚 𝑣𝑧

𝑝𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑝𝜈 =

𝛾 𝑚 𝑐−𝛾 𝑚 𝑣𝑥−𝛾 𝑚 𝑣𝑦−𝛾 𝑚 𝑣𝑧

= 𝛾 𝑚 𝑐 2 1 −1

𝑐2𝑣𝑥

2 + 𝑣𝑦2+ 𝑣𝑧

2

Four-Vector Linear Momentum Invariant

= 𝑚2 𝑐2

Page 35: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

35Prof. Sergio B. MendesSpring 2019

Inner Products and Invariants

𝑑𝑥𝜈 𝑑𝑥𝜈 = 𝑐2 𝑑𝜏2

𝑣𝜈 𝑣𝜈 = 𝑐2

𝑝𝜈 𝑝𝜈 = 𝑚2 𝑐2

Page 36: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

36Prof. Sergio B. MendesSpring 2018

Example 1: Charge Conservation

0 = 𝛁. 𝑱 +𝜕𝜌

𝜕𝑡= 𝛁. 𝑱 +

𝜕 𝑐 𝜌

𝜕 𝑐 𝑡

=𝜕 𝑐 𝜌

𝜕 𝑐 𝑡+𝜕𝐽𝑥𝜕𝑥

+𝜕𝐽𝑦𝜕𝑦

+𝜕𝐽𝑧𝜕𝑧

=𝜕 𝑐 𝜌

𝜕𝑥0+𝜕𝐽𝑥𝜕𝑥1

+𝜕𝐽𝑦𝜕𝑥2

+𝜕𝐽𝑧𝜕𝑥3

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

=

𝜇=0

3𝜕

𝜕𝑥𝜇𝐽𝜇

contravariant

covariant

Page 37: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

37Prof. Sergio B. MendesSpring 2018

Four-Vector Current Density “J”

𝐽′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝐽𝛼

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

contravariant tensor of rank 1

Page 38: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

38Prof. Sergio B. MendesSpring 2018

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

𝐽𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝐽𝜈 =

𝑐 𝜌−𝐽𝑥−𝐽𝑦−𝐽𝑧

𝜇=0

3

𝐽𝜇 𝐽𝜇 = 𝑐 𝜌 2 − 𝐽𝑥2 − 𝐽𝑦

2− 𝐽𝑧

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Page 39: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Contravariant Transformations

Covariant Transformations

𝑉′𝜇 =

𝜈=0

3𝜕𝑥′𝜇

𝜕𝑥𝜈𝑉𝜈 𝑊′𝜇 =

𝜈=0

3𝜕𝑥𝜈

𝜕𝑥′𝜇𝑊𝜈

𝑥′0

𝑥′1

𝑥′2

𝑥′3

=

𝛾−𝛾𝛽00

−𝛾𝛽𝛾00

0010

0001

𝑥0

𝑥1

𝑥2

𝑥3

𝑥0

𝑥1

𝑥2

𝑥3

=

𝛾𝛾𝛽00

𝛾𝛽𝛾00

0010

0001

𝑥′0

𝑥′1

𝑥′2

𝑥′3

𝜕𝑥′𝜇

𝜕𝑥𝜈= =

𝛾−𝛾𝛽00

−𝛾𝛽𝛾00

0010

0001

𝜕𝑥𝜈

𝜕𝑥′𝜇=

𝛾𝛾𝛽00

𝛾𝛽𝛾00

0010

0001

𝑑𝑥′𝜇 =

𝜈=0

3𝜕𝑥′𝜇

𝜕𝑥𝜈𝑑𝑥𝜈

𝜕

𝜕𝑥′𝜇=

𝜈=0

3𝜕𝑥𝜈

𝜕𝑥′𝜇𝜕

𝜕𝑥𝜈39Prof. Sergio B. MendesSpring 2018

Page 40: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

Contravariant Four Vectors Covariant Four Vector

40Prof. Sergio B. MendesSpring 2018

𝑘𝜇 =

Τ𝜔 𝑐𝑘𝑥𝑘𝑦𝑘𝑧

𝑑𝑥𝜇 =

𝑐 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

𝑝𝜇 ≡ 𝑚0 𝑣𝜇𝑣𝜇 ≡

𝑑𝑥𝜇

𝑑𝜏𝐹𝜇 ≡

𝑑𝑝𝜇

𝑑𝜏

𝜕

𝜕𝑥𝜇=

𝜕

𝑐 𝜕𝑡𝜕

𝜕𝑥𝜕

𝜕𝑦𝜕

𝜕𝑧

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

Page 41: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

41Prof. Sergio B. MendesSpring 2018

What are the charge density and current density for a frame of

reference moving along x-axis at a constant speed 𝑣0 = 𝛽 𝑐 ?

Consider a charge 𝑞 at rest at a particular point 𝒓𝟎 in space.

Page 42: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

42Prof. Sergio B. MendesSpring 2018

𝑱𝜇 𝒓, 𝑡 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

𝑱 𝒓, 𝑡 = (0,0,0)𝜌 𝒓, 𝑡 = 𝑞 𝛿3 𝒓 − 𝒓𝟎

𝐽′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝐽𝛼 =

𝛾−𝛾𝛽00

−𝛾𝛽𝛾00

0010

0001

𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎000

=

𝛾 𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎− 𝛾 𝛽 𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎

00

=

𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎000

&

Page 43: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

43Prof. Sergio B. MendesSpring 2018

𝛿3 𝒓 − 𝒓𝟎

𝑐 𝑡 − 𝑡0𝑥 − 𝑥0𝑦 − 𝑦0𝑧 − 𝑧0

=

𝛼=0

3

𝐼𝐿𝛼𝜇

𝑥′𝛼 − 𝑥0′𝛼 =

𝛾𝛾𝛽00

𝛾𝛽𝛾00

0010

0001

𝑐 𝑡′ − 𝑡′0𝑥′ − 𝑥′0𝑦′ − 𝑦′0𝑧′ − 𝑧′0

=

𝛾 𝑐 𝑡′ − 𝑡′0 + 𝛾 𝛽 𝑥′ − 𝑥′0𝛾 𝑥′ − 𝑥′0 + 𝛾 𝛽 𝑐 𝑡′ − 𝑡′0

𝑦′ − 𝑦′0𝑧′ − 𝑧′0

= 𝛿 𝛾 𝑥′ − 𝑥′0 + 𝛾 𝛽 𝑐 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

𝛿3 𝒓 − 𝒓𝟎 = 𝛿 𝑥 − 𝑥0 𝛿 𝑦 − 𝑦0 𝛿 𝑧 − 𝑧0

=1

𝛾𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

Page 44: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

44Prof. Sergio B. MendesSpring 2018

𝐽′𝜇 =

𝛾 𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎− 𝛾 𝛽 𝑐 𝑞 𝛿3 𝒓 − 𝒓𝟎

00

𝛿3 𝒓 − 𝒓𝟎 =1

𝛾𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

𝐽′𝜇 =

𝑐 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0− 𝛽 𝑐 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

00

𝜌′ = 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

𝐽′𝑥 = −𝑣0 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

Page 45: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

45Prof. Sergio B. MendesSpring 2018

𝜌′ 𝒓′, 𝑡′ = 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

𝐽′𝑥 𝒓′, 𝑡′

𝐽′𝑦 𝒓′, 𝑡′

𝐽′𝑧 𝒓′, 𝑡′

=−𝑣0 𝑞 𝛿 𝑥′ − 𝑥′0 + 𝑣0 𝑡′ − 𝑡′0 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

00

𝑡′0 = 0 𝑥′0 = 0

= 𝑞 𝛿3 𝒓′ − 𝒓′𝟎 𝑡′

𝑱′ 𝒓′, 𝑡′ =−𝑣0 𝑞 𝛿 𝑥′ + 𝑣0 𝑡

′ 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′000

=−𝑣0 𝑞 𝛿

3 𝒓′ − 𝒓′𝟎 𝑡′

00

𝒓′𝟎 𝑡′ =

−𝑣0 𝑡′

𝑦′0𝑧′0

𝜌′ 𝒓′, 𝑡′ = 𝑞 𝛿 𝑥′ + 𝑣0 𝑡′ 𝛿 𝑦′ − 𝑦′0 𝛿 𝑧′ − 𝑧′0

Page 46: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

46Prof. Sergio B. MendesSpring 2018

Example 2: Lorenz Gauge

0 = 𝛻.𝑨 + 𝜇𝑜 𝜖0𝜕

𝜕𝑡Φ = 𝛁. 𝑨 +

𝜕 Φ/𝑐

𝜕 𝑐 𝑡

=𝜕 Φ/𝑐

𝜕 𝑐 𝑡+𝜕𝐴𝑥𝜕𝑥

+𝜕𝐴𝑦𝜕𝑦

+𝜕𝐴

𝜕𝑧

=𝜕 Φ/𝑐

𝜕𝑥0+𝜕𝐴𝑥𝜕𝑥1

+𝜕𝐴𝑦𝜕𝑥2

+𝜕𝐴𝑧𝜕𝑥3

=

𝜇=0

3𝜕

𝜕𝑥𝜇𝐴𝜇

covariant

contravariant𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

Page 47: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

47Prof. Sergio B. MendesSpring 2018

Four-Vector Potential “A”

𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

𝐴′𝜇 =

𝛼=0

3

𝐿𝛼𝜇𝐴𝛼

contravariant tensor of rank 1

Page 48: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

48Prof. Sergio B. MendesSpring 2018

𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

𝐴𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝐴𝜈 =

Φ/𝑐−𝐴𝑥−𝐴𝑦−𝐴𝑧

𝜇=0

3

𝐴𝜇 𝐴𝜇 = ൗΦ 𝑐2− 𝐴𝑥

2 − 𝐴𝑦2− 𝐴𝑧

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Page 49: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

49Prof. Sergio B. MendesSpring 2018

Consider a charge 𝑞 moving at a constant speed 𝑣0 = 𝛽 𝑐 along a straight

line parallel to the x-axis.

1. What are the scalar potential and vector potential created by this moving charge ?

2. What are the electric field and magnetic field created by this moving charge?

Page 50: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

50Prof. Sergio B. MendesSpring 2018

−𝛻𝟐𝑨 𝒓, 𝑡 + 𝜇𝑜 𝜖0𝜕2𝑨 𝒓, 𝑡

𝜕𝑡2= 𝜇𝑜 𝑱 𝒓, 𝑡

−𝛻2Φ 𝒓, 𝑡 + 𝜇𝑜 𝜖0𝜕2Φ 𝒓, 𝑡

𝜕𝑡2=𝜌 𝒓, 𝑡

𝜖0

𝜌 𝒓, 𝑡 = 𝑞 𝛿 𝑥 − 𝑣0 𝑡 𝛿 𝑦 − 𝑦0 𝛿 𝑧 − 𝑧0 = 𝑞 𝛿3 𝒓 − 𝒓𝟎 𝑡

𝑱 𝒓, 𝑡 =𝑣0 𝑞 𝛿 𝑥 − 𝑣0 𝑡 𝛿 𝑦 − 𝑦0 𝛿 𝑧 − 𝑧0

00

=𝑣0 𝑞 𝛿

3 𝒓 − 𝒓𝟎 𝑡

00

Hard Way

Page 51: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

51Prof. Sergio B. MendesSpring 2018

Easier Way:

Start with an inertial frame of reference K’ moving the same way as the charge

=1

4 𝜋 𝜖0

𝑞

𝒓′ − 𝒓′0

𝜌′ 𝒓′ = 𝑞 𝛿3 𝒓′ − 𝒓′𝟎

Φ′ 𝒓′ =1

4 𝜋 𝜖0ම

−∞

+∞𝜌′ 𝒓′′

𝒓′ − 𝒓′′𝑑𝑉′′

electrostatic problem

Page 52: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

52Prof. Sergio B. MendesSpring 2018

𝑱′ 𝒓′ =000

𝑨′ 𝒓′ =𝜇𝑜4 𝜋

−∞

+∞𝑱′ 𝒓′′

𝒓 − 𝒓′′𝑑𝑉′′

=000

magnetostaticproblem

Page 53: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

53Prof. Sergio B. MendesSpring 2018

𝐴𝜇 =

𝛼=0

3

𝐼𝐿𝛼𝜇𝐴′𝛼

𝐴′𝛼 =

Φ′/𝑐

𝐴′𝑥𝐴′𝑦𝐴′𝑧

𝐼𝐿𝛼𝜇=

𝛾

+ 𝛾 𝛽00

+ 𝛾 𝛽𝛾00

0010

0001

=

Φ′/𝑐000

𝐴𝜇 =

𝛾 Φ′/𝑐

𝛾 𝛽 Φ′/𝑐00

𝑨 𝒓, 𝑡 =𝛾 𝛽 Φ′/𝑐

00

Φ 𝒓, 𝑡 = 𝛾 Φ′ =𝛾 𝑞

4 𝜋 𝜖0 𝒓′ − 𝒓′0

=

𝛾 𝑞 𝑣04 𝜋 𝜖0 𝑐

2 𝒓′ − 𝒓′000

Page 54: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

54Prof. Sergio B. MendesSpring 2018

𝒓′ − 𝒓′0

𝑐 𝑡′ − 𝑡′0𝑥′ − 𝑥′0𝑦′ − 𝑦′0𝑧′ − 𝑧′0

=

𝛼=0

3

𝐿𝛼𝜇

𝑥𝛼 − 𝑥0𝛼 =

𝛾

− 𝛾 𝛽00

− 𝛾 𝛽𝛾00

0010

0001

𝑐 𝑡 − 𝑡0𝑥 − 𝑥0𝑦 − 𝑦0𝑧 − 𝑧0

=

𝛾 𝑐 𝑡 − 𝑡0 − 𝛾 𝛽 𝑥 − 𝑥0𝛾 𝑥 − 𝑥0 − 𝛾 𝛽 𝑐 𝑡 − 𝑡0

𝑦 − 𝑦0𝑧 − 𝑧0

𝒓′ − 𝒓′0 = 𝑥′ − 𝑥′02 + 𝑦′ − 𝑦′0

2 + 𝑧′ − 𝑧′02

= 𝛾 𝑥 − 𝑥0 − 𝛾 𝛽 𝑐 𝑡 − 𝑡02 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

Page 55: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

55Prof. Sergio B. MendesSpring 2018

𝑡0 = 0 𝑥0 = 0

Φ 𝒓, 𝑡 =𝛾 𝑞

4 𝜋 𝜖0 𝒓′ − 𝒓′0

=𝛾 𝑞

4 𝜋 𝜖0 𝛾2 𝑥 − 𝑣0 𝑡2 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

𝑨 𝒓, 𝑡 =

𝛾 𝑞 𝑣04 𝜋 𝜖0 𝑐

2 𝒓′ − 𝒓′000

=

𝛾 𝑞 𝑣0

4 𝜋 𝜖0 𝑐2 𝛾2 𝑥 − 𝑣0 𝑡

2 + 𝑦 − 𝑦02 + 𝑧 − 𝑧0

2

00

Page 56: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

56Prof. Sergio B. MendesSpring 2018

𝑘𝜇 =

Τ𝜔 𝑐𝑘𝑥𝑘𝑦𝑘𝑧

𝑘𝜇 =

𝜈=0

3

𝑔𝜇𝜈 𝑘𝜈 =

Τ𝜔 𝑐−𝑘𝑥−𝑘𝑦−𝑘𝑧

𝜇=0

3

𝑘𝜇 𝑘𝜇 = Τ𝜔 𝑐

2 − 𝑘𝑥2 − 𝑘𝑦

2− 𝑘𝑧

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Page 57: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

57Prof. Sergio B. MendesSpring 2018

Tensors of Rank 1

𝑑𝑥𝜈𝑑𝑥𝜇

𝜕

𝜕𝑥𝜈≡ 𝜕𝜈

𝜕

𝜕𝑥𝜇≡ 𝜕𝜇

covariantcontravariant

𝜕𝜇 = 𝑔𝜇𝜈 𝜕𝜈

𝜕𝜈 = 𝑔𝜈𝜇 𝜕𝜇

𝑑𝑥𝜇 = 𝑔𝜇𝜈 𝑑𝑥𝜈

𝑑𝑥𝜈 = 𝑔𝜈𝜇 𝑑𝑥𝜇

Page 58: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

58Prof. Sergio B. MendesSpring 2018

Contravariant Tensor of Rank 2

𝑉′𝛼 =

𝜇=0

3𝜕𝑥′𝛼

𝜕𝑥𝜇𝑉𝜇 =

𝜇=0

3

𝐿𝜇𝛼 𝑉𝜇 𝑊′𝛽 =

𝜈=0

3𝜕𝑥′𝛽

𝜕𝑥𝜈𝑊𝜈 =

𝜈=0

3

𝐿𝜈𝛽𝑊𝜈

𝑇𝛼𝛽 ≡ 𝑉𝛼 𝑊𝛽

𝑇′𝛼𝛽 = 𝑉′𝛼 𝑊′𝛽 =

𝜇=0

3𝜕𝑥′𝛼

𝜕𝑥𝜇𝑉𝜇

𝜈=0

3𝜕𝑥′𝛽

𝜕𝑥𝜈𝑊𝜈 =

𝜇=0

3

𝐿𝜇𝛼 𝑉𝜇

𝜈=0

3

𝐿𝜈𝛽𝑊𝜈

=

𝜇=0

3

𝐿𝜇𝛼

𝜈=0

3

𝐿𝜈𝛽𝑇𝜇𝜈 = 𝐿 𝑇 𝐿𝑡 𝛼𝛽

Page 59: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

59Prof. Sergio B. MendesSpring 2018

𝐴𝛽 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

𝜕

𝜕𝑥𝛼= 𝜕𝛼

𝐹𝛼𝛽 ≡ 𝜕𝛼 𝐴𝛽 − 𝜕𝛽 𝐴𝛼

𝐹𝛼𝛽 = −𝐹𝛽𝛼

𝐹𝛼𝛼 = 0

Electromagnetic Field Tensor

Page 60: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

60Prof. Sergio B. MendesSpring 2018

Electric Field as a component of the electromagnetic field tensor

𝑬 𝒓, 𝑡 = −𝛻Φ 𝒓, 𝑡 −𝜕𝑨 𝒓, 𝑡

𝜕𝑡𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

𝐸𝑖 = −𝜕Φ

𝜕𝑥𝑖−𝜕𝐴𝑖

𝜕𝑡= −

𝜕 𝑐 𝐴0

𝜕𝑥𝑖− 𝑐

𝜕𝐴𝑖

𝜕𝑥0= 𝑐 −

𝜕𝐴0

𝜕𝑥𝑖−𝜕𝐴𝑖

𝜕𝑥0

𝐸𝑖

𝑐= −

𝜕𝐴0

𝜕𝑥𝑖−𝜕𝐴𝑖

𝜕𝑥0

𝑖 ≡ 1, 2, 3

= 𝜕𝑖𝐴0 − 𝜕0𝐴𝑖 = 𝐹𝑖0

Page 61: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

61Prof. Sergio B. MendesSpring 2018

𝑩 𝒓, 𝑡 = 𝛁 × 𝑨 𝒓, 𝑡𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

𝐵𝑖 =

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘𝜕𝐴𝑘

𝜕𝑥𝑗

𝑖, 𝑗, 𝑘 ≡ 1, 2, 3

= −

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐴𝑘

𝐵1 = − 𝜕2𝐴3 − 𝜕3𝐴2 = −𝐹23

𝐵2 = − 𝜕3𝐴1 − 𝜕1𝐴3 = −𝐹31

𝐵3 = − 𝜕1𝐴2 − 𝜕2𝐴1 = −𝐹12

Magnetic Field as a component of the electromagnetic field tensor

Page 62: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

62Prof. Sergio B. MendesSpring 2018

𝐹𝛼𝛽 ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 =1

𝑐

0 −𝐸1

𝐸1 0−𝐸2 −𝐸3

−𝑐𝐵3 𝑐𝐵2

𝐸2 𝑐𝐵3

𝐸3 −𝑐𝐵20 −𝑐𝐵1

𝑐𝐵1 0

𝐸𝑖

𝑐= 𝐹𝑖0

𝐵1 = − 𝜕2𝐴3 − 𝜕3𝐴2 = −𝐹23

𝐵2 = − 𝜕3𝐴1 − 𝜕1𝐴3 = −𝐹31

𝐵3 = − 𝜕1𝐴2 − 𝜕2𝐴3 = −𝐹12

Components of the Electromagnetic Field Tensor

Page 63: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

63Prof. Sergio B. MendesSpring 2018

𝐹′𝛼𝛽 = 𝐿 𝐹 𝐿𝑡 𝛼𝛽

How the Electromagnetic Field Tensor changes under a Lorentz

transformation:

𝐹 =1

𝑐

0 −𝐸1

𝐸1 0−𝐸2 −𝐸3

−𝑐𝐵3 𝑐𝐵2

𝐸2 𝑐𝐵3

𝐸3 −𝑐𝐵20 −𝑐𝐵1

𝑐𝐵1 0

𝐿 =

𝛾

− 𝛾 𝛽00

− 𝛾 𝛽𝛾00

0010

0001

For a frame of reference K’ moving along x-axis at a

constant speed 𝑣0 = 𝛽 𝑐

Page 64: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

64Prof. Sergio B. MendesSpring 2018

𝐹′ =1

𝑐

0 −𝐸′1

𝐸′1

0

−𝐸′2

−𝐸′3

−𝑐𝐵′3

𝑐𝐵′2

𝐸′2

𝑐𝐵′3

𝐸′3

−𝑐𝐵′2

0 −𝑐𝐵′1

𝑐𝐵′1

0

= 𝐿 𝐹 𝐿𝑡

𝐸′1 = 𝐸1

𝐸′2 = 𝛾 𝐸2 − 𝛽 𝑐 𝐵3

𝐸′3 = 𝛾 𝐸3 + 𝛽 𝑐 𝐵2

𝐵′1 = 𝐵1

𝐵′2 = 𝛾 𝐵2 +𝛽

𝑐𝐸3

𝐵′3 = 𝛾 𝐵3 −𝛽

𝑐𝐸2

Page 65: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

65Prof. Sergio B. MendesSpring 2018

Note: Galilean Transformations lead to different (and incorrect) relations:

𝒗′: particle velocity with respect to K’

𝑭′ = 𝑞′ 𝑬′ + 𝑞′ 𝒗′ × 𝑩′

𝑩 = 𝑩′𝑬 = 𝑬′ − 𝒗𝑜 × 𝑩′

= 𝑞 𝑬′ + 𝑞 𝒗 − 𝒗𝑜 × 𝑩′

= 𝑞 𝑬′ − 𝒗𝑜 × 𝑩′ + 𝑞 𝒗 × 𝑩′

= 𝑞 𝑬 + 𝑞 𝒗 × 𝑩 = 𝑭

𝒗 = 𝒗′ + 𝒗0𝑣: particle velocity with respect to K

according to (incorrect) Galilean Transformations

Page 66: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

66Prof. Sergio B. MendesSpring 2018

Electric and Magnetic Fields of a Moving Charge

Page 67: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

67Prof. Sergio B. MendesSpring 2018

Consider a charge 𝑞 moving at a constant speed 𝑣0 = 𝛽 𝑐 along a straight

line parallel to the x-axis.

What are the electric and magnetic fields created by this moving charge?

Page 68: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

68Prof. Sergio B. MendesSpring 2018

𝐸′1 =𝑞

4 𝜋 𝜖0

𝑥′ − 𝑥′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸′2 =𝑞

4 𝜋 𝜖0

𝑦′ − 𝑦′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸′3 =𝑞

4 𝜋 𝜖0

𝑧′ − 𝑧′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐵′1 = 0

𝐵′2 = 0

𝐵′3 = 0

Consider that the charge is at rest in the reference frame K’

Page 69: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

69Prof. Sergio B. MendesSpring 2018

𝐸′1 = 𝐸1

𝐸′2 = 𝛾 𝐸2 − 𝛽 𝑐 𝐵3

𝐸′3 = 𝛾 𝐸3 + 𝛽 𝑐 𝐵2

𝐵′1 = 𝐵1

𝐵′2 = 𝛾 𝐵2 +𝛽

𝑐𝐸3

𝐵′3 = 𝛾 𝐵3 −𝛽

𝑐𝐸2

𝐸1 = 𝐸′1

𝐸2 = 𝛾 𝐸′2 + 𝛽 𝑐 𝐵′3

𝐸3 = 𝛾 𝐸′3 − 𝛽 𝑐 𝐵′2

𝐵1 = 𝐵′1

𝐵2 = 𝛾 𝐵′2 −𝛽

𝑐𝐸′3

𝐵3 = 𝛾 𝐵′3 +𝛽

𝑐𝐸′2

Page 70: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

70Prof. Sergio B. MendesSpring 2018

𝐸1 = 𝐸′1

𝐸2 = 𝛾 𝐸′2

𝐸3 = 𝛾 𝐸′3

𝐵1 = 0

𝐵2 = −𝛾 𝛽

𝑐𝐸′3

𝐵3 =𝛾 𝛽

𝑐𝐸′2

= −𝛽

𝑐𝐸3

=𝛽

𝑐𝐸2

𝐸1 = 𝐸′1

𝐸2 = 𝛾 𝐸′2 + 𝛽 𝑐 𝐵′3

𝐸3 = 𝛾 𝐸′3 − 𝛽 𝑐 𝐵′2

𝐵1 = 𝐵′1

𝐵2 = 𝛾 𝐵′2 −𝛽

𝑐𝐸′3

𝐵3 = 𝛾 𝐵′3 +𝛽

𝑐𝐸′2

Page 71: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

71Prof. Sergio B. MendesSpring 2018

𝐸1 = 𝐸′1 =𝑞

4 𝜋 𝜖0

𝑥′ − 𝑥′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸2 = 𝛾 𝐸′2 =𝑞

4 𝜋 𝜖0

𝛾 𝑦′ − 𝑦′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸3 = 𝛾 𝐸′3 =𝑞

4 𝜋 𝜖0

𝛾 𝑧′ − 𝑧′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

Page 72: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

72Prof. Sergio B. MendesSpring 2018

𝐵1 = 0

𝐵2 = −𝛾 𝛽

𝑐𝐸′

3= −

𝛽

𝑐

𝑞

4 𝜋 𝜖0

𝛾 𝑧′ − 𝑧′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐵3 =𝛾 𝛽

𝑐𝐸′2 =

𝛽

𝑐

𝑞

4 𝜋 𝜖0

𝛾 𝑦′ − 𝑦′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

Page 73: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

73Prof. Sergio B. MendesSpring 2018

𝑐 𝑡′ − 𝑡′0𝑥′ − 𝑥′0𝑦′ − 𝑦′0𝑧′ − 𝑧′0

=

𝛾

− 𝛾 𝛽00

− 𝛾 𝛽𝛾00

0010

0001

𝑐 𝑡 − 𝑡0𝑥 − 𝑥0𝑦 − 𝑦0𝑧 − 𝑧0

𝑡0 = 𝑡′0 = 0 𝑥0 = 𝑥′0 = 0

𝑐 𝑡′ − 𝑡′0𝑥′ − 𝑥′0𝑦′ − 𝑦′0𝑧′ − 𝑧′0

=

𝛾 𝑐 𝑡 − 𝛽 𝑥

𝛾 𝑥 − 𝑣0 𝑡𝑦 − 𝑦0𝑧 − 𝑧0

Page 74: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

74Prof. Sergio B. MendesSpring 2018

=𝑞

4 𝜋 𝜖0

𝛾 𝑥 − 𝑣0 𝑡

𝛾2 𝑥 − 𝑣0 𝑡2 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧02 3/2

=𝑞

4 𝜋 𝜖0

𝛾 𝑦 − 𝑦0𝛾2 𝑥 − 𝑣0 𝑡

2 + 𝑦 − 𝑦02 + 𝑧 − 𝑧0

2 3/2

=𝑞

4 𝜋 𝜖0

𝛾 𝑧 − 𝑧0𝛾2 𝑥 − 𝑣0 𝑡

2 + 𝑦 − 𝑦02 + 𝑧 − 𝑧0

2 3/2

𝐸1 = 𝐸′1 =𝑞

4 𝜋 𝜖0

𝑥′ − 𝑥′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸2 = 𝛾 𝐸′2 =𝑞

4 𝜋 𝜖0

𝛾 𝑦′ − 𝑦′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

𝐸3 = 𝛾 𝐸′3 =𝑞

4 𝜋 𝜖0

𝛾 𝑧′ − 𝑧′0𝑥′ − 𝑥′0

2 + 𝑦′ − 𝑦′02 + 𝑧′ − 𝑧′0

2 3/2

Page 75: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

75Prof. Sergio B. MendesSpring 2018

𝛾2 𝑥 − 𝑣0 𝑡2 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

𝑥, 𝑦, 𝑧

𝑣0 𝑡, 𝑦0, 𝑧0

= 𝛾2 𝑑2 1 − 𝛽2 𝑠𝑖𝑛2 𝜃

𝜃 𝑥

𝑠𝑖𝑛2 𝜃 ≡𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

𝑑2

𝒗𝟎

𝒅

𝒅 ≡ 𝑥 − 𝑣0 𝑡 , 𝑦 − 𝑦0 , 𝑧 − 𝑧0

particle position at

time 𝑡

point to determine the field at time 𝑡

=𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

𝑥 − 𝑣0 𝑡2 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧02

Page 76: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

76Prof. Sergio B. MendesSpring 2018

𝑬 𝒓, 𝑡 =𝑞

4 𝜋 𝜖0

𝒅

𝑑31 − 𝛽2

1 − 𝛽2 𝑠𝑖𝑛2 𝜃 3/2

classical Coulomb term

relativistic correction

𝛽 = 0.00 & 0.20

𝛽 = 0.70

𝛽 = 0.90

𝛽 = 0.99

𝒗𝟎

• The electric field 𝑬 points away from the position of the charge at the time of observation (t).

• The amplitude shows higher strength for directions perpendicular to the direction of propagation.

• However, 𝑬 is not isotropic.

• The electric field amplitude 𝑬depends on the direction away from the charge. 1 − 𝛽2

𝜃 ≅ 0

𝜃 ≅ 90°1

1 − 𝛽2

Page 77: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

77Prof. Sergio B. MendesSpring 2018

Page 78: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

78Prof. Sergio B. MendesSpring 2018

𝐵1 = 0

𝐵2 = −𝛽

𝑐𝐸3

𝐵3 =𝛽

𝑐𝐸2

𝑩 = 𝜷 ×𝑬

𝑐

𝑩 𝒓, 𝑡 =𝜇04 𝜋

𝑞 𝒗𝟎 ×𝒅

𝑑31 − 𝛽2

1 − 𝛽2 𝑠𝑖𝑛2 𝜃 3/2

classical Biot-Savart

term

relativistic correction

Page 79: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

79Prof. Sergio B. MendesSpring 2018

Maxwell’s Equations in terms of the Electromagnetic Field Tensor

𝐹𝛼𝛽 ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 =1

𝑐

0 −𝐸1

𝐸1 0−𝐸2 −𝐸3

−𝑐𝐵3 𝑐𝐵2

𝐸2 𝑐𝐵3

𝐸3 −𝑐𝐵20 −𝑐𝐵1

𝑐𝐵1 0

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

sources

fields

Page 80: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

80Prof. Sergio B. MendesSpring 2018

The Four Inhomogeneous Maxwell’s Equations

Gauss’s Law

Ampere’s Law

𝛁. 𝑬 𝒓, 𝑡 =𝜌 𝒓, 𝑡

𝜖0

𝛁 × 𝑩 𝒓, 𝑡 − 𝜇𝑜 𝜖0𝜕𝑬 𝒓, 𝑡

𝜕𝑡= 𝜇𝑜 𝑱 𝒓, 𝑡

Page 81: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

81Prof. Sergio B. MendesSpring 2018

𝛁. 𝑬 𝒓, 𝑡 =𝜌 𝒓, 𝑡

𝜖0𝐸𝑖 = 𝑐 𝐹𝑖0

𝜌 𝒓, 𝑡 =𝐽0

𝑐

𝑖=1

3𝜕

𝜕𝑥𝑖𝐸𝑖 =

𝑖=1

3𝜕

𝜕𝑥𝑖𝑐 𝐹𝑖0 = 𝑐

𝑖=1

3

𝜕𝑖 𝐹𝑖0

= 𝑐

𝛼=0

3

𝜕𝛼 𝐹𝛼0

=𝜌 𝒓, 𝑡

𝜖0=

𝐽0

𝜖0 𝑐

𝛼=0

3

𝜕𝛼 𝐹𝛼0 = 𝜇0 𝐽

0

+ 𝑐 𝜕0𝐹00

Page 82: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

82Prof. Sergio B. MendesSpring 2018

𝛁 × 𝑩 𝒓, 𝑡 − 𝜇𝑜 𝜖0𝜕𝑬 𝒓, 𝑡

𝜕𝑡= 𝜇𝑜 𝑱 𝒓, 𝑡

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘𝜕𝐵𝑘

𝜕𝑥𝑗− 𝜇𝑜 𝜖0

𝜕𝐸𝑖

𝜕𝑡

=

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐵𝑘 −

𝜕 ൗ𝐸𝑖𝑐

𝜕 𝑐 𝑡

=

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐵𝑘 + 𝜕0 ൗ−𝐸𝑖

𝑐

= 𝜇𝑜 𝐽𝑖

Page 83: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

83Prof. Sergio B. MendesSpring 2018

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐵𝑘 + 𝜕0

−𝐸𝑖

𝑐= 𝜇𝑜 𝐽

𝑖

−𝐸𝑖

𝑐= 𝐹0𝑖

𝑖 = 1 𝜕2𝐵3 − 𝜕3𝐵

2 + 𝜕0𝐹01

= 𝜕2𝐹21 + 𝜕3𝐹

31 + 𝜕0𝐹01

=

𝛼=0

3

𝜕𝛼𝐹𝛼1 = 𝜇𝑜 𝐽

1

𝛼=0

3

𝜕𝛼 𝐹𝛼1 = 𝜇0 𝐽

1

+ 𝜕1𝐹11

Page 84: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

84Prof. Sergio B. MendesSpring 2018

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐵𝑘 + 𝜕0

−𝐸𝑖

𝑐= 𝜇𝑜 𝐽

𝑖

𝑖 = 2 𝜕3𝐵1 − 𝜕1𝐵

3 + 𝜕0𝐹02

= 𝜕3𝐹32 + 𝜕1𝐹

12 + 𝜕0𝐹02 + 𝜕2𝐹

22

=

𝛼=0

3

𝜕𝛼𝐹𝛼2 = 𝜇𝑜 𝐽

2

𝛼=0

3

𝜕𝛼 𝐹𝛼2 = 𝜇0 𝐽

2

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12−𝐸𝑖

𝑐= 𝐹0𝑖

Page 85: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

85Prof. Sergio B. MendesSpring 2018

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐵𝑘 + 𝜕0

−𝐸𝑖

𝑐= 𝜇𝑜 𝐽

𝑖

𝑖 = 3 𝜕1𝐵2 − 𝜕2𝐵

1 + 𝜕0𝐹03

= 𝜕1𝐹13 + 𝜕2𝐹

23 + 𝜕0𝐹03 + 𝜕3𝐹

33

=

𝛼=0

3

𝜕𝛼𝐹𝛼3 = 𝜇𝑜 𝐽

3

𝛼=0

3

𝜕𝛼 𝐹𝛼3 = 𝜇0 𝐽

3

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12−𝐸𝑖

𝑐= 𝐹0𝑖

Page 86: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

86Prof. Sergio B. MendesSpring 2018

The Four Inhomogeneous Maxwell’s Equations

(Gauss’s and Ampere’s Laws) can be written as:

𝛼=0

3

𝜕𝛼𝐹𝛼𝛽 = 𝜇0 𝐽

𝛽

sourcesfields

Page 87: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

87Prof. Sergio B. MendesSpring 2018

𝜕𝛼𝐹𝛼𝛽 = 𝜇0 𝐽

𝛽 𝐹𝛼𝛽 ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼

= 𝜕𝛼 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼

= 𝜇0 𝐽𝛽

= 𝜕𝛼𝜕𝛼𝐴𝛽 − 𝜕𝛽 𝜕𝛼𝐴

𝛼𝜕𝛼 𝐹𝛼𝛽 = 𝜕𝛼𝜕𝛼𝐴𝛽

0

𝜕𝛼𝜕𝛼𝐴𝛽 = 𝜇0 𝐽

𝛽

Lorenz gauge

𝜕𝛼𝜕𝛼 ≡ □2

d’Alembertian, which is an invariant

Page 88: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

88Prof. Sergio B. MendesSpring 2018

The Four Homogeneous Maxwell’s Equations

Gauss’s Law of Magnetism

Faraday’s Law

𝛁.𝑩 𝒓, 𝑡 = 0

𝛁 × 𝑬 𝒓, 𝑡 +𝜕𝑩 𝒓, 𝑡

𝜕𝑡= 0

Page 89: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

89Prof. Sergio B. MendesSpring 2018

𝛁.𝑩 𝒓, 𝑡 = 0

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12

𝑖=1

3𝜕

𝜕𝑥𝑖𝐵𝑖 =

𝜕𝐵1

𝜕𝑥1+𝜕𝐵2

𝜕𝑥2+𝜕𝐵3

𝜕𝑥3

= −𝜕𝐹23

𝜕𝑥1−𝜕𝐹31

𝜕𝑥2−𝜕𝐹12

𝜕𝑥3

= 𝜕1𝐹23 + 𝜕2𝐹31 + 𝜕3𝐹12 = 0

𝜕1𝐹23 + 𝜕2𝐹31 + 𝜕3𝐹12 = 0

Page 90: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

90Prof. Sergio B. MendesSpring 2018

𝛁 × 𝑬 𝒓, 𝑡 +𝜕𝑩 𝒓, 𝑡

𝜕𝑡= 0

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘𝜕 𝐸𝑘

𝑐 𝜕𝑥𝑗+𝜕𝐵𝑖

𝑐 𝜕𝑡= 0

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗𝐸𝑘

𝑐+ 𝜕0𝐵𝑖 = 0

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗 𝐸𝑘/𝑐 + 𝜕0𝐵𝑖 = 0

Page 91: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

91Prof. Sergio B. MendesSpring 2018

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗 𝐸𝑘/𝑐 − 𝜕0𝐵𝑖 = 0

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12𝐸𝑖

𝑐= 𝐹𝑖0

𝑖 = 1

𝜕2 𝐸3/𝑐 − 𝜕3 𝐸2/𝑐 − 𝜕0𝐵1 = 0

𝜕2𝐹30 + 𝜕3𝐹02 + 𝜕0𝐹23 = 0

Page 92: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

92Prof. Sergio B. MendesSpring 2018

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12𝐸𝑖

𝑐= 𝐹𝑖0

𝑖 = 2

𝜕3 𝐸1/𝑐 − 𝜕1 𝐸3/𝑐 − 𝜕0𝐵2 = 0

𝜕3𝐹10 + 𝜕1𝐹03 + 𝜕0𝐹31 = 0

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗 𝐸𝑘/𝑐 − 𝜕0𝐵𝑖 = 0

Page 93: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

93Prof. Sergio B. MendesSpring 2018

𝑖 = 3

𝜕1 𝐸2/𝑐 − 𝜕2 𝐸1/𝑐 − 𝜕0𝐵3 = 0

𝜕1𝐹20 + 𝜕2𝐹01 + 𝜕0𝐹12 = 0

𝑗=1

3

𝑘=1

3

𝜖𝑖𝑗𝑘 𝜕𝑗 𝐸𝑘/𝑐 − 𝜕0𝐵𝑖 = 0

𝐵1 = −𝐹23 𝐵2 = −𝐹31 𝐵3 = −𝐹12𝐸𝑖

𝑐= 𝐹𝑖0

Page 94: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

94Prof. Sergio B. MendesSpring 2018

𝜕1𝐹23 + 𝜕2𝐹31 + 𝜕3𝐹12 = 0

𝜕3𝐹01 + 𝜕0𝐹13 + 𝜕1𝐹30 = 0

𝜕0𝐹12 + 𝜕1𝐹20 + 𝜕2𝐹01 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 00

23

0 1

23

0 1

23

1

𝜕2𝐹30 + 𝜕3𝐹02 + 𝜕0𝐹23 = 0

0 1

23

Page 95: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

95Prof. Sergio B. MendesSpring 2018

The Four Homogeneous Maxwell’s Equations

(Gauss’s Law of Magnetism and Faraday’s Law)

can be written as:

0 1

23

휀𝛿𝛼𝛽𝛾 𝜕𝛼𝐹𝛽𝛾 = 0 휀𝛿𝛼𝛽𝛾

Page 96: Special Relativity and Electrodynamics 611 spring 20/classnotes... · Special Relativity and Electrodynamics Spring 2020 Prof. Sergio B. Mendes 1 • Chapter 1 of “Modern Problems

96Prof. Sergio B. MendesSpring 2018

𝜕𝛼𝐹𝛼𝛽 = 𝜇0 𝐽

𝛽

𝐹𝛼𝛽 ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 =1

𝑐

0 −𝐸1

𝐸1 0−𝐸2 −𝐸3

−𝑐𝐵3 𝑐𝐵2

𝐸2 𝑐𝐵3

𝐸3 −𝑐𝐵20 −𝑐𝐵1

𝑐𝐵1 0

𝐽𝜇 =

𝑐 𝜌𝐽𝑥𝐽𝑦𝐽𝑧

𝐴𝜇 =

Φ/𝑐𝐴𝑥𝐴𝑦𝐴𝑧

Electromagnetic Theory

휀𝛿𝛼𝛽𝛾 𝜕𝛼𝐹𝛽𝛾 = 0