specialist maths 3/4 bound notes

Upload: asstaben

Post on 01-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    1/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    2/121

    Page2

    00.1

    Writtenby MaoYuanLiu

    Createdwith MicrosoftWord2007

    VCAAStudentNumber 86348260R

    MonashStudentNumber 21513856

    Lastupdate Version1.43,29th September2008

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    3/121

    TableofContents

    Page3

    0.2 TableofContents0.2.1

    TableofContents

    1 Algebra........................................................................................................................................................ 5

    1.1 LinearAlgebra....................................................................................................................................... 6

    1.1.1

    Systems

    and

    Matrices

    ...................................................................................................................

    6

    1.1.2 Vectors....................................................................................................................................... 18

    1.2 AlgebraofFunctions........................................................................................................................... 28

    1.2.1 CircularFunctions....................................................................................................................... 28

    1.2.2 HyperbolicFunctions.................................................................................................................. 34

    1.2.3 FunctionsandtheirGraphs........................................................................................................ 36

    1.3 ComplexNumbers............................................................................................................................... 39

    1.3.1 ArgandDiagram.......................................................................................................................... 40

    1.3.2 Operations.................................................................................................................................. 40

    1.3.3 PolarForm.................................................................................................................................. 41

    1.3.4 ComplexRoots............................................................................................................................ 45

    1.3.5 RelationshipsintheComplexPlane........................................................................................... 46

    2 Calculus..................................................................................................................................................... 49

    2.1 SingleVariableCalculus....................................................................................................................... 50

    2.1.1 Limits.......................................................................................................................................... 50

    2.1.2 MethodsofDifferentiation........................................................................................................ 54

    2.1.3 ApplicationsofDifferentialCalculus.......................................................................................... 57

    2.1.4 MethodsofAntidifferentiation.................................................................................................. 63

    2.1.5 ApplicationsofIntegralCalculus................................................................................................ 73

    2.1.6 DifferentialEquations................................................................................................................. 81

    2.1.7 PhysicalApplications.................................................................................................................. 93

    2.1.8 SequencesandSeries............................................................................................................... 107

    2.2 VectorCalculus.................................................................................................................................. 115

    2.2.1 SpaceCurveandContinuity..................................................................................................... 115

    2.2.2 Derivative................................................................................................................................. 115

    2.2.3 VectorTangent......................................................................................................................... 116

    2.2.4 Curvature.................................................................................................................................. 1162.2.5 NormalandBiNormal.............................................................................................................. 116

    2.3 MultivariableCalculus....................................................................................................................... 117

    2.3.1 Continuity................................................................................................................................. 117

    2.3.2 PartialDerivatives.....................................................................................................................117

    2.3.3 Tangentplanes......................................................................................................................... 119

    2.3.4 Chainrule................................................................................................................................. 119

    2.3.5 DirectionalDerivatives............................................................................................................. 120

    2.3.6 CriticalPointsofaSurface........................................................................................................ 121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    4/121

    Page4

    0.3

    0.3.1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    5/121

    Algebra

    Page5

    1

    1.0 Algebra1.0.1

    AlgebraLinear Algebra (Systems and Matrices, Vectors), Algebra of Functions,Complex Numbers

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    6/121

    LinearAlgebra

    SystemsandMatrices

    Page6

    1.1LinearAlgebra

    1.1.1 SystemsandMatricesA matrixisarectangulararrayofmrowsandncolumns,denotedby.Itsentriesatirowandjcolumnisdenotedas .Thematrixcanalsobeexpressedas Addition/subtractionareonlylegalwheretheorder(dimension)ofthematricesarethesame.

    Twomatricesareconsideredequaliftheirorderandalltheirentriesarethesame.

    Propertiesofaddition:

    Commutative,(A+B)=(B+A)

    Associative,A+(B+C)=(A+B)+C

    Additionofzeromatrixhasnoeffect,A+0=A

    ThereexistanegativematrixDofA,whereeachandallitsentriesarenegativethatofA,

    suchthat,D+A=A+D=0

    Scalarmultipleofamatrixisobtainedbymultiplyingeachentrybythescalar.

    Propertiesofscalarmultiplication:

    Scalar1hasnoeffect,1A=A Collective,kA+nA=(k+n)A

    Distributive,k(A+B)=kA+kB

    Associativeandcommutative,k(nA)=n(kA)=(nk)A

    Zeroscalarnullsthematrix,0A=0

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    7/121

    LinearAlgebra

    SystemsandMatrices

    Page7

    1.1.1.1 MatrixMultiplicationMatrixmultiplicationbetweenAandBisonlylegalifthenumberofcolumnsisthesameasthe

    numberofrows.TheproductinheritthenumberofrowsofA,andthenumberofcolumnsofB

    Forexample

    Wherethematriceshavetherightdimensionstomultiplyeachother,theyaresaidtobeconformable

    Matrixdivisioninvolvesthematrixinverse,whichdoesntalwaysexist.Thiswillbeexploredlateron

    inthenotes.

    Propertiesofmultiplication:

    Associative,A(BC)=(AB)C

    Distributive,A(B+C)=AB+AC

    NOTcommutative

    1.1.1.2 TransposeAtransposematrixisamatrixwithrowsandcolumnsswitched,orinvertedaboutitsprimaryaxis[a11,

    a22,a33]

    Forexample

    Propertiesoftranspose:

    Thetransposeofatransposeisitself,(AT)T=A

    Transposeofasumisthesumoftransposes,(A+B)T=A

    T+B

    T

    Transposeofascalarmultipleisthescalarmultipleofthetranspose,(kA)T=k(A

    T)

    TransposeofamatrixproductistheproductofthetransposesintheREVERSEORDER,

    (AB)T=B

    TA

    T

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    8/121

    LinearAlgebra

    SystemsandMatrices

    Page8

    1.1.1.3 SpecialTypesofMatrices

    1.1.1.3.1 Zero

    Zeromatricesarematriceswhereallentriesare0:

    0 0 0 0 01.1.1.3.2 Square

    Squarematricesarematriceswhichhasthesamehorizontalandverticaldimension,suchasOnlyasquarematrixcanhavedeterminants,inversesandpowers.

    1.1.1.3.3 Symmetrical

    Thetransposeofasymmetricalmatrixisequaltoitself.I.e.thematrixisequivalentoneithersideof

    itsprimaryaxis.

    issquare.1.1.1.3.4 Diagonal

    Adiagonalmatrixisasymmetricalmatrixwhereallentriesexceptthoseontheprimaryaxisarezero.

    0 00 00 0

    isadiagonalmatrix.

    Thenonzeroentriesoftheinverseofthediagonalmatrixarethereciprocalofthenonzeroentries

    ofthediagonalmatrix. / 0 00 / 00 0 / 1.1.1.3.5 Identity

    Anidentitymatrixisadiagonalmatrixwhereallthenonzeroentriesare1.

    1 0 0 1,

    1 0 00 1 00 0 1

    Amatrixmultipliedbyaconformableidentitymatrixisitself.IA=AI=A.

    Theinverseoftheidentitymatrixisitself.

    1.1.1.3.6 Orthogonal

    Orthogonalmatricesaresquarematriceswheretheirtransposeisequaltotheirinverse.

    One

    of

    such

    case

    is

    the

    rotational

    matrix,

    cos sin sin cos.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    9/121

    LinearAlgebra

    SystemsandMatrices

    Page9

    1.1.1.4 LinearTransformationForanndimensionalspace,thepositionvectorcanbetransformedlinearlybyan transformationmatrixT,suchthat:

    1.1.1.4.1 HomogenousLinearTransformation

    HomogenouslineartransformationaretransformationintheR2spacebya2x2matrix.

    Generally,wherex2=mx1+c(astraightline),giventhat 0 :

    , 1.1.1.4.1.1 SpecialCases

    Where 0 , , 0

    Or

    wherea22isnot0.Or

    wherebotha12anda22are0.

    1.1.1.4.2 Dilation 00 ,wherehisthedilationfactorfromtheyaxis(paralleltox),andkisthedilationfactorfromxaxis(paralleltoy)

    1.1.1.4.3 Reflection1 00 1reflectsabouttheyaxis.

    1 00 1reflectsaboutthexaxis.

    0 11 0reflectsaboutthey=xline,ortakestheinverseoftherelationship.1.1.1.4.4 Rotationcos sin sin cosrotatesbyintheanticlockwisedirection.1.1.1.4.5 Shearing

    1 1

    ,wherehistheamountofsheerinthexdirection,andkistheamountofsheerinthey

    direction.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    10/121

    LinearAlgebra

    SystemsandMatrices

    Page10

    1.1.1.5 RowOperationsTherearethreeelementaryrowoperations:

    Rowswapswapanyrowwithanotherrow

    Multiplybyascalar(nonzero)multiplyanyrowbyanumber(notzero) Addamultipleofanotherrow

    Byusingrowoperations,amatrixcanbemadeintoreforrref.

    1.1.1.5.1 RowEchelonForm

    Entriesbelowanyleadingentries(thefirstnonzeroentryinarow)arezero.Thisalsoimpliesthatall

    entriestotheleftofanyleadingentriesarezero.Leadingentriesarepreferredtobe,butnot

    necessarily,1.

    1 0 0 1 0 0 0 1.1.1.5.2 ReducedRowEchelonForm

    Entriesbelowandaboveanyleadingentries(thefirstnonzeroentryinarow)arezero.Thisalso

    impliesthatallentriestotheleftofanyleadingentriesarezero.Allleadingentriesare1.

    1 0 0 0 0 1 0 0 0 0 1 1.1.1.6 DeterminantsThedeterminantisanumericalvaluedfunctionofasquarematrixthatdetermineswhetheritis

    invertible.Thisallowsthecalculationofthematrixinverse,andhenceallowsdivision.

    Determinantsaredenotedbydet .Itisgrantedthatdet .Fora2by2matrix,wecanexpressalinearsystemas

    Bytheprocessofelimination, Forx1tohaveauniquesolution,itscoefficientmustnotbe0.Thiscoefficientisthedeterminant.

    det

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    11/121

    LinearAlgebra

    SystemsandMatrices

    Page11

    1.1.1.6.1 Minor

    Theminor(ij)ofmatrixAisthematrixwiththeith

    rowandjth

    columnstruckout:

    ,

    1.1.1.6.2 Cofactor

    Thecofactoristhedeterminantoftheminormultipliedby1tothepoweroftherowpluscolumn:

    1 Fortheabovecase, 1 The1termwillmeanthatthecofactorsofdifferententrieswillhavedifferingsigns.Theyfollowthis

    generalpattern:

    1.1.1.6.3 CofactorExpansion

    Cofactorexpansioncantakeanyrowandanycolumn.Thedeterminantisthesumoftheproductof

    eachentryanditscofactorinaparticularroworcolumn.FormatrixBycolumn:

    det 1 | | , where is a constant Byrow:

    det 1 , where is a constant

    Forexample:

    1 0 11 2 33 2 1,tofinddetA,expandingbyfirstrow:det 1 1 2 32 1 1 0 1 33 1 1 1 1 23 2 2 6 0 2 6 8

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    12/121

    LinearAlgebra

    SystemsandMatrices

    Page12

    1.1.1.6.4 PropertiesofDeterminants

    Somepropertiesofdeterminantsare:

    Det(A)=Det(AT)

    Ifthereisanyroworcolumnthatisentirelyconsistedofzeros,thedeterminantiszero

    Ifanyroworcolumnsareidentical,thedeterminantiszero

    Ifanyroworcolumnaremultiplesofanotherrow/column,thenthedeterminantiszero

    Scalarmultipleofasingleroworcolumngivesthescalarmultipleofthedeterminant,

    Decompositionofrows/columns,

    Multiplesofanotherroworcolumn,

    Rowswap,

    Det(AB)=Det(A)Det(B)

    1.1.1.7

    Inverse

    AmatrixinverseisonesuchthatA(A1

    )=(A1

    )A=I

    1.1.1.7.1 ByCofactor

    Thematrixinverseisthetransposeofthecofactormatrixdividedbyitsdeterminant.Henceamatrix

    witha0determinanthasnoinverse.

    1det Thetransposeofthecofactormatrixiscalledtheadjointmatrix,denotedbyadj(A).

    adj detForexample, 1 0 11 2 33 2 1,

    4 8 42 2 22 2 2 , det 8

    18

    4 0 48 2 22 2 2

    18 4 2 28 2 24 2 2

    12 14 14

    1 14 1412 14 14

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    13/121

    LinearAlgebra

    SystemsandMatrices

    Page13

    1.1.1.7.2 ByRowOperations

    Byaugmentingthesquarematrixwiththeidentityofequaldimensionontheright,usingelementary

    rowoperationstomakethelefthandmatrixintoidentity,therighthandmatrixwillbetheinverse.

    1 0 1 1 0 01 2 3 0 1 03 2 1 0 0 1 1 0 0 12 14 140 1 0 1 14 140 0 1 12 14 14

    Whereanentireroworcolumnofthelefthandsidebecomesentirely0,theidentitymatrixcan

    neverbeobtained,i.e.nomatrixinverse.

    1.1.1.7.3 PropertiesofInverse

    Amatrixhasaninverseifandonlyifithasanonzerodeterminant.

    o

    Ifamatrixhasnoinverse,itissingular

    o Ifamatrixhasaninverse,itisnonsingularorinvertible

    det(A)det(A1

    )=1

    (AT)

    1=(A

    1)T

    (AB)1

    =B1

    A1

    1.1.1.8 ElementaryMatricesElementarymatricesaresquaretransformationmatricesthatperformasingleelementaryrow

    operation.Thesematricesareinvertible.

    An matrixisconsideredanelementarymatrixifitdiffersfromtheidentitymatrixbyasinglerowoperation.1.1.1.8.1 TypesandProperties

    TypeIInterchangetworows

    0 1 01 0 00 0 1TypeIIMultiplyarowbyanonzeronumber

    1 0 00 2 00 0 1TypeIIIaddamultipleofanotherrow

    1 0 20 1 00 0 1 IfweletEbean

    elementarymatrix,andAbean

    .ThematrixproductEAwouldbethe

    sameasapplyingthatrowoperationtoA.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    14/121

    LinearAlgebra

    SystemsandMatrices

    Page14

    1.1.1.8.2 InverseElementaryMatrices

    TypeIInterchangetworows

    0 1 01 0 00 0 1

    0 1 01 0 00 0 1

    (Thistypeofelementarymatrixisitsselfinverse.)

    TypeIIMultiplybythereciprocal

    1 0 00 2 00 0 1 1 0 00 1/2 00 0 1

    TypeIIISubtractmultipleofanotherrow

    1 0 20 1 00 0 1 1 0 20 1 00 0 1Elementarymatricesfundamentallycharacterisesmatrixinverses:

    IfAistheproductofelementarymatricesEkE3E2E1,then:

    Amatrixhasaninverseifandonlyifitistheproductofelementarymatrices.

    1.1.1.9 SystemsofLinearEquationsAsystemoflinearequationcanbegeneralisedtobe:

    Fornvariablenequationssystem,itcanbeexpressedasthematrixequation:

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    15/121

    LinearAlgebra

    SystemsandMatrices

    Page15

    1.1.1.9.1 Solving

    1.1.1.9.1.1 UsingInverses

    InthecasethatAisanonsingularmatrix,

    1.1.1.9.1.2 CramersRule

    Cramersruleisconsideredtobeeasierthanusingmatrixinverses.

    Since

    ,thesolutionofthesystemcanbeexpressedas:

    1det

    1det

    Itisevidentthattherightmostmatrixentriesisacofactorexpansionofacolumn,wheretheentry forthejthcolumn,andtherestoftheentriesareidenticaltothatofA.A

    (j)isusedtodenotethematrixobtainedfromAbyreplacingthej

    thcolumnofAbythecolumn

    vectorB.

    Forexample, Ingeneral,

    1

    detdetdet

    det

    Inparticular,

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    16/121

    LinearAlgebra

    SystemsandMatrices

    Page16

    1.1.1.9.1.3 GaussianElimination

    Gaussianeliminationuseselementaryrowoperationsoftheaugmentedmatrix[A|B],carryingitto

    itsrowechelonorreducedrowechelonform.

    Forexample:

    1 0 11 2 33 2 1 111

    Augmentedmatrix

    1 0 1 11 2 3 13 2 1 1Usingrowechelonforms

    1 0 1 11 2 3 13 2 1 1 1 2/3 1/3 1/30 1 2 1 / 20 0 1 1 / 2 ; 2 ; Usingreducedrowechelonforms

    1 0 1 11 2 3 13 2 1 1

    1 0 0 1/20 1 0 1/20 0 1 1/2

    12 , 12 , 12Gaussianeliminationcanbeusedtosolvenotonlynbynsystems,butanysystemoflinearequations.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    17/121

    LinearAlgebra

    SystemsandMatrices

    Page17

    1.1.1.9.2 Consistency

    Inasystemoflinearequations,exactlyoneofthefollowingoccurs.

    1.1.1.9.2.1 NoSolutions

    Asystemoflinearequationsissaidtobeinconsistentiftherearenosolutions.

    Whentherearenosolutions,thedeterminantofthecoefficientmatrixAiszero,andthematrix

    inversedoesnotexist(Theconverseisnotnecessarilytrue).UsingmatrixinverseorCramersruleto

    solveasystemwouldyieldanindeterminateresult(dividebyzero).

    UsingGaussianeliminations,therearenosolutionswhentherearerowofthetype0 0 0 | ,where*isanonzeronumber.1.1.1.9.2.2 UniqueSolution

    Forasystemwithasetofuniquesolutions,

    Thenumberofequationsmustbeequalormorethanthenumberofvariables.

    Thedeterminantofthecoefficientmatrixmustnotbe0

    Thecoefficientmatrixmustbeinvertible

    Thereducedrowechelonformofthecoefficientmatrixmustresembletheidentitymatrix.

    Thereducedrowechelonformofthecoefficientmatrixmustnothaveacolumnentirely

    consistedofzeros.

    unique solution

    exists

    det 0

    1.1.1.9.2.3 InfiniteSolutions

    Asystemmayhaveinfinitesolutions,suchastwoplanesintersectingonalineortwoequations

    coincide.Generally,iftherearemorevariablesthanequations,thereareinfinitesolutionstothe

    system.

    Ifthecoefficientmatrixofasystemwithinfinitesolutionsisasquarematrix,itsdeterminantwillbe

    zero(theconverseisnotnecessarilytrue).UsingmatrixinverseandCramersrulewillyieldan

    indeterminateresult(dividebyzero).

    UsingGaussianelimination,inreforrref,thecolumnsofthecoefficientwhichdonotcontainany

    leadingentriesareunbound,anditscorrespondingcoefficientbecomesaparameter.

    Forexample,1 3 12 6 31 3 0

    141Theaugmentedmatrixwillhencebe1 3 1 12 6 3 41 3 0 1,anditsrrefis

    1 3 0 10 0 1 20 0 0 0 Ignoringtherowofzeroentries,wecanseethat

    , ,andyisunbound.

    Let , , .ThisdescribesalineinR3space.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    18/121

    LinearAlgebra

    Vectors

    Page18

    1.1.2 Vectors

    1.1.2.1 DefinitionAvectorisaquantitywithbothmagnitudeanddirection.Itisalsopossibletodefinethesenseofa

    vector,i.e.oneofthetwowaysthevectorcanbepointingtowards.

    Avectorisrepresentedbyastraightlinesegmentwithanarrow.

    1.1.2.1.1 EqualityofVectors

    Twovectorsareequalifandonlyiftheyhavethesamemagnitude,samedirectionandsamesense.

    Vectorsarefree,wherethestartingpointofavectorisirrelevant.Thesamelinesegments

    pointinginthesamedirectionalwaysrepresentthesamevector,regardlessoftheirstartingpoint.

    Displacementvectorsarefreevectorswithoutaboundstartingpoint.Positionvectorsarefree

    vectorswiththestartingpointboundatorigin.

    1.1.2.1.2 SpecialVectors

    1.1.2.1.2.1 UnitVectors

    Unitvectorshaveamagnitudeof1.

    1.1.2.1.2.2 SpatialDimensions

    Thedefineddimensionsareawaytocoordinatendimensionalspace.

    Inparticular,thesedimensionalvectorsareunitvectors,andareperpendiculartoeachother.iisthe

    firstdimension,jistheseconddimensionperpendiculartoi,andkisthethirddimension

    perpendiculartobothiandj.

    Avectorisoftenresolvedintocomponentsinthedirectionofspatialdimensions.

    1.1.2.1.2.3 ZeroVectors

    Zerovectorisa0dimensionalvector,withzeromagnitude,unspecifieddirectionandsense.Itisa

    singlepoint.

    1.1.2.1.3 Magnitude

    ThemagnitudeofavectorcanbecalculatedbyPythagorastheoremwhenitisexpressedasperpendicularcomponents.

    ||

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    19/121

    LinearAlgebra

    Vectors

    Page19

    1.1.2.1.4 AnglewithAxis

    Thecosineoftheangleavectormakeswithanaxisisitscomponentinthatdirectiondividedbyits

    magnitude(ratioofcosine).

    If

    istheangleavectormakeswiththexaxis(idirection),then

    cos | |Foravectoru,whereistheanglebetweenitandthexaxis,totheyaxisandtothezaxis,cos || , cos || , cos ||

    And,since|| wouldbeaunitvector ||,itfollowsthat

    cos cos cos 1For

    example,

    40 60 49 ,find

    the

    acute

    angle

    this

    vector

    makes

    with

    the

    horizontal.

    Letbetheanglemakeswiththezaxis.cos 4940 60 49 0.562 2.168 124.2

    Hencetheacuteangleitmakeswiththehorizontalis

    124.2 90 34.2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    20/121

    LinearAlgebra

    Vectors

    Page20

    1.1.2.1.5 Sums,DifferencesandScalarMultiples(ParallelVectors)

    Sumofvectorsarecalculatedbyjoiningeachvectorheadtotail.Theresultantvectoristhevector

    whichjoinsthetailofthefirstvectortotheheadofthelastvector.

    Whenvectorsareexpressedintheircomponents,thesumofthevectorsinaparticulardirectionis

    thesumofthecomponentsinthatdirection.Thecomponentsoftheresultantvectorarethesumof

    thecomponents.

    Vectorsubtractionareadditionofnegativevectors(i.e.reversedvector).

    Scalarmultipleofavectorchangesthemagnitudebythefactorofthescalar,directionandsenseare

    notchanged.

    Vectorsadditionandscalarmultiplicationare

    Commutative:u+v=v+u

    Associative:u+(v+w)=(u+v)+w

    Additionofzerovectorhasnoeffect:u+0=0+u=u

    Scalarmultiplicationisassociative:n(ku)=(nk)u

    Collective:nu+ku=(n+k)u

    Distributiveoveraddition:n(u+v)=nu+nv

    Multiplicationby1:1u=u

    Multiplicationby0:0u=0

    Twovectorsareconsideredparalleliftheyarescalarmultiplesofeachother.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    21/121

    LinearAlgebra

    Vectors

    Page21

    1.1.2.1.6 LinearDependence

    Vectorsarelinearlydependantifthesumofmultiplesofvectorsisthezerovector.

    Ifthisrelationshipistrueforasetofcoefficientsthatarenotallzero.

    Thisimpliesthatanysetofvectorsareautomaticallylinearlydependantifoneofthemisazero

    vector.

    Linearindependencycanbedescribedaswhenaquantitycannotbedescribedintermsofmultiples

    ofotherquantitiesinaset.Thisappliesnotonlytovectors,butalgebraicexpressionsalso.

    1.1.2.2 ScalarDotProduct

    1.1.2.2.1 DefinitionandInterpretation

    Thescalardotproductisdefinedasfollowed:

    | | | | cos Whereistheanglebetweenthevectors.Theimplicationofthisisthatunitvectorswhichpointinthesamedirectionhaveadotproductof1,

    andperpendicularvectorshaveadotproductof0.

    Inthreedimensionalspace(intermsofi,j,andk),thedotproductoftwovectorsis

    cos || | | Anglebetweenvectorsisnevermorethan180

    o().

    Propertiesofthedotproduct:

    Commutative,a.b=b.a

    Distributiveoveraddition,a.(b+c)=a.b+a.c

    Distributiveoverscalarmultiplication,a.(kb)=k(a.b)=(ka).b Thedotproductofanyvectorwithazerovectoris0.

    Thedotproductofanyvectorwithitselfisitsmagnitudesquared,a.a=|a|2

    Twononzerovectorsareorthogonalifandonlyiftheirdotproductiszero.

    1.1.2.2.2 OrthogonalVectors

    Orthogonalvectorsarevectorswhichpointinperpendiculardirections.

    Fornonzeroorthogonalvectors,theirdotproductisalways0.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    22/121

    LinearAlgebra

    Vectors

    Page22

    1.1.2.2.3 Resolute

    Thevectorresoluteofavectorinthedirectionofanothervector:

    Thescalarresoluteofavectorinthedirectionofanothervectoris ,simplythemagnitudeofthevectorresolute.

    Theperpendicularresoluteis .1.1.2.3 VectorCrossProduct

    1.1.2.3.1 DefinitionandInterpretation

    Thevectorcrossproductisdefinedas

    | | | | sin

    Whereuisaunitvectorperpendiculartobothaandb.

    Thecrossproductoftwovectorsinthethreedimensionalspacecanbecomputedbyadeterminant:

    Themagnitudeofthevectorcrossproductcanbeinterpretedastheareaofparallelogramformed

    bythetwovectors.

    Propertiesofvectorproduct:

    Distributiveoverscalarmultiples,ax(kb)=k(axb)=(ka)xb

    NOTcommutative.Bythepropertyofdeterminants,reversingtheorderswapstworows,

    makingthedeterminantnegativeofwhatitwas.bxa=(axb)

    Distributiveoveraddition,ax(b+c)=axb+axc

    Vectorproductwithitselfisthezerovector

    Vectorproductwithazerovectoristhezerovector

    1.1.2.3.2 ScalarTripleProductandCo-Planarity

    Thescalar

    triple

    product,

    or

    box

    product

    [a,b,c],

    is

    defined

    as

    Bythepropertiesofdeterminants,

    Arowswapmakesthedeterminantnegative,hence, [a,b,c]=[b,a,c]=[a,c,b]=[c,b,a]

    Swappingtworowsmakesthedeterminantpositivehence,[a,b,c]=[c,a,b]=[b,c,a]

    Aninterpretationofthevalueoftheboxproduct(scalartripleproduct)isthevolumeofthe

    parallelepipedofthethreevectors.

    Ifthescalartripleproductiszero,thevectorsarecoplanar(theyexistonthesameplane).

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    23/121

    LinearAlgebra

    Vectors

    Page23

    1.1.2.4 VectorGeometry

    1.1.2.4.1 Line

    1.1.2.4.2 Plane

    Foraplanein3D,anormalvectornisperpendiculartotheplaneatallpoints.

    1.1.2.4.2.1

    EquationforaPlane 0 Wheren=

    , , , , 1.1.2.4.2.2 PerpendicularDistanceFromOrigin

    (x0,y0,z0)denotesthepointwheretheplaneisclosesttotheorigin,i.e.itsperpendiculardistance

    fromorigin.

    Atthatpoint,thepositionvectorisamultipleofthenormalvector, ,,Alsothat

    ||

    || | |||

    1.1.2.4.2.3 AnglesBetweenPlanes

    Theanglebetweenplanesaresimplytheanglebetweenthenormalvectors.

    cos || | |

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    24/121

    LinearAlgebra

    Vectors

    Page24

    1.1.2.4.3 ParameterisationandCartesianEquivalence

    1.1.2.4.3.1Ellipses

    cos , sin

    or sin , cos 1 Ellipses with going to +/ a in the x direction and +/ b in the y direction, centred at (h,k)

    1.1.2.4.3.2Hyperbola

    Hyperbolaontheleftandright.

    sec , tan 1 Hyperbolaonthetopandbottom.

    tan , sec

    1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    25/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    26/121

    LinearAlgebra

    Vectors

    Page26

    Forexample

    Provethecosineruleforanyangle.

    Let be a triangle

    2

    BC 2 2 QED

    Provethemidpointofthehypotenuseofarightangledtriangleisequidistantfromallvertices.

    Let be a right angled triangle

    Let be the midpoint of 12

    12||

    ||

    12 Since 12|| | | Point is equidistant from , and

    QED

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    27/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    28/121

    AlgebraofFunctions

    CircularFunctions

    Page28

    1.2AlgebraofFunctions

    1.2.1 CircularFunctions

    1.2.1.1 SymmetricalIdentities

    2 2 2 2 sin cos cos sin sin sin cos cos sin sin

    cos sin sin cos cos cos sin sin cos cos

    tan cot cot tan tan tan cot cot tan tan

    sec cosec cosec sec sec Sec cosec cosec sec sec

    cosec sec sec cosec cosec cosec sec sec cosec cosec

    cot tan tan cot cot cot tan tan cot cot

    1.2.1.2

    CartesianIdentitiessin cos 1tan 1 sec 1 cot csc 1.2.1.3 CompoundAngleFormulaesin sin cos sin cos cos cos cos sin sin

    tan tan tan1 tan tan

    sin2 2 sin cos cos2 cos sin 2cos 1 1 2 sin tan2 2 tan 1 tan Forexample,

    1 cos sin tan 2

    LHS 1 2cos 2 12sin 2 cos 22 1 cos 22sin 2 cos 2

    sin 2cos 2 tan 2 RHS

    tan8 1 cos 4sin 4

    2 22 2 1

    sec8 1 tan

    8 4 2 2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    29/121

    AlgebraofFunctions

    CircularFunctions

    Page29

    sec 8 4 221.2.1.3.1 MultipleAngleFormulae

    sin cos 12 sin sin sin sin 12 cos cos cos cos 12 cos cos 1.2.1.4

    SineandCosineRuleInatrianglewithsidesa,bandcandtheangleoppositethemA,BandC,

    sin

    sin

    sin

    2 cos

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    30/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    31/121

    AlgebraofFunctions

    CircularFunctions

    Page31

    1.2.1.6 RestrictedFunctionsandInversesSin is deined for

    Sin

    is deined for 1 1

    Range: 2 2

    Cos is deined for 0

    Cos is deined for 1 1Range: 0

    Tan is deined for 2 2 Tan is deined for

    Range: 2 2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    32/121

    AlgebraofFunctions

    CircularFunctions

    Page32

    1.2.1.6.1FurtherIdentitiessec cos 1

    csc sin 1

    cot tan 1sin cos 2

    sincos 1

    sintan

    1 cossin 1

    costan 11 tansin 1

    tancos

    1

    1.2.1.7 CircularArcsandChords

    a) Ifwebisecttheangle,thebisectorraywouldperpendicularlybisectthestraightline,cutting

    itinhalfto135m.

    sin 135 135sinAlso,thearclengthwouldbehalvedto150m

    1502

    2

    150

    Equating,

    135150 sin910 sinConvertingtodegrees

    910

    180 sin

    sin 200 , as required.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    33/121

    AlgebraofFunctions

    CircularFunctions

    Page33

    a)

    Thenewlengthcanbebrokenintotwosections,arcAPandthelinesegmentPB.

    || 2 2 2 10 2 || tan 10 tan || || 20

    2 tan 2, as required

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    34/121

    AlgebraofFunctions

    HyperbolicFunctions

    Page

    34

    1.2.2

    Hyperbolic

    Functions

    1.2.2.1 DefinitionsandInterpretationsThehyperbolicfunctionsareoddandevenpartsofthenaturalexponential.

    2

    2

    cosh sinh

    sinh

    2

    Domain: Range:

    cosh 2

    Domain:

    Range: 1

    tanh sinhcosh

    Domain:

    Range: 1 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    35/121

    AlgebraofFunctions

    HyperbolicFunctions

    Page

    35

    csch 1sinh

    Domain: \0

    Range: \0

    sech 1cosh

    Domain:

    Range:0 1

    coth coshsinh 1tanh

    Domain: \0

    Range: 1 1

    Thehyperbolicfunctionsareverysimilartothe

    circularfunctions.Wherethecircularfunctions

    arefunctionsoftheareaofthesector,hyperbolic

    functionsarefunctionsoftheareaenclosedby

    theunithyperbolax2y

    2=1,astraightlinefromthe

    originto

    the

    hyperbola

    and

    its

    vertical

    reflection.

    1.2.2.2 Identitiessinh sinh cosh cosh

    cosh

    sinh

    1

    1 tanh sech Compoundangleidentities:

    sinh sinh cosh sinh coshsinh2 2 sinh cosh

    cosh cosh cosh sinh sinhcosh2 cosh sinh 1 2sinh 2cosh 1

    tanh tanh tanh

    1 tanh tanh

    tanh2 2tanh 1 tanh

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    36/121

    AlgebraofFunctions

    Page36

    1.2.2.3 InverseHyperbolicFunctionssinh ln 1,

    cosh ln 1 , 1

    tanh 12 ln 1 1 ,1 1sech cosh 1csch sinh 1

    coth tanh 1

    sinhcosh 1

    sinhtanh 1 coshsinh 1coshtanh 11 tanhsinh 1

    tanhcosh

    1

    1.2.3 RelationshipsandtheirGraphs

    1.2.3.1 EllipsesFollowsthegeneralequation

    1

    Whichisanellipsecentredat(h,k)spanningaunitstotheleftandright,andbunitstothetopandbottom.

    Ellipsehavethedomain , andtherange , .Anellipsecanalsobedescribedbytheequation

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    37/121

    AlgebraofFunctions

    RelationshipsandtheirGraphs

    Page37

    1.2.3.2 HyperbolasAhyperbolacantaketwoforms:

    1 Isaleftrighthyperbola,centredat(h,k).Thetwobranchesare

    centredat(ha,k)and(h+a,k).

    Thedomainis\ , ,andtherangeis.Thistypeofhyperbolacanalsobedescribedbytheequation

    1Isanupdownhyperbola,centredat(h,k).Thetwobranches

    arecentredat(h,kb)and(h,k+b).

    Thedomainis

    ,andtherangeis

    \ , .

    Thistypeofhyperbolacanalsobedescribedbytheequation

    Inbothcases,theequationsofthetangentscanbeobtainedasfollowed:

    1,asxandygetlarge,the1canbeignored.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    38/121

    AlgebraofFunctions

    RelationshipsandtheirGraphs

    Page38

    Forexample,considertherelationship 9 8 18 41 4 9 8 18 41 4 2 1 4 9 2 1 9 41 4 1 9 1 36

    19 14 1 Thisisanupdownhyperbola,hencetherangeis,4 2,

    Theequationoftheasymptotes

    1 32 1 32 52 , 32 12

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    39/121

    AlgebraofFunctions

    Transformation

    Page39

    1.2.4 TransformationTransformation Rule

    Dilation

    Byafactorofafromtheyaxis(paralleltoxaxis)

    1 Byafactorof1/afromtheyaxis(paralleltoxaxis) Byafactorofaaboutx=h Ingeneral,dilationinthehorizontaldirectionfromcanberepresentedbysubstitutingwith .Byafactorofafromthexaxis(paralleltoyaxis) 1 Byafactorof1/afromthexaxis(paralleltoyaxis) 2Byafactorofaabouty=k

    Ingeneral,dilationintheverticaldirectionfromcanberepresentedbysubstitutingwith Reflection

    Reflectionineitheraxiscanberepresentedbydilatingbyafactorof1fromtheaxis.

    Forexample,considertherelationship 9 8 18 41 ,whataretheequationsoftheasymptotesafteradilationbyafactoroffromtheyaxisthenatranslationof 1unitsparallelto

    thexaxis?

    Beforetransformation,

    32 52 , 32 12Dilationbyfactoroffromy, 2

    3 52 , 3 12Translationof 1unitsparalleltox, 1

    3 12 , 3 52

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    40/121

    ComplexNumbers

    ArgandDiagram

    Page40

    1.3ComplexNumbersAcomplexnumberhastwoparts:

    Arealpart,consistingofanyrealnumber,

    Andanimaginarypart,consistingofanyrealmultiplesoftheimaginarynumberi,where 1.Somepropertiesoftheimaginarynumber:

    1, , 1, , 1 1.3.1 ArgandDiagramThearganddiagramcanbeusedtographicallyrepresentcomplexnumbers.

    Itsxaxisistherealpart,Re(z).Itsyaxisistheimaginarypart,Im(z).

    TheCartesianform(rectangularcoordinates)ofacomplexnumberis

    1.3.2 Operations

    1.3.2.1 Addition

    1.3.2.2 Multiplication 1.3.2.3 ConjugatesTheconjugateofacomplexnumberisdenotedbyabar,

    If , then Characteristically,

    1.3.2.4

    DivisionEvaluationofacomplexfractionisachievedwhenthefractionismultipliedbytheconjugateofthe

    denominatorontopandbottom.

    Morespecifically,thedenominatorofthefinalexpressionisthesquareofthemagnitudeofthe

    complexnumber,orthesquareofitsmodulus.Also,thereciprocalofanimaginarynumber:

    1 ||

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    41/121

    ComplexNumbers

    PolarForm

    Page41

    1.3.3 PolarFormAcomplexnumbercanalsobeexpressedinpolarform,i.e.directionandmagnitude.

    1.3.3.1 ModulusThemodulusisthemagnitudeofacomplexnumber,i.e.itsdistancefromtheorigin.

    UsingPythagorastheoremwiththerectangularcoordinates,

    || 1.3.3.2 ArgumentTheArgumentistheanglethecomplexnumbermakeswiththepositiverealaxis.Thisgivesusthree

    relationshipsusingtherectangularcoordinates,

    sin ||cos ||tan

    TheArgumentisrestrictedto,.ItispossibletofindtheArgumentwithanyoftheabovethreerelationshipsinconjunctionwiththeknowledgeofquadrants.

    Acomplexnumbercanhencebeexpressedas: | | || ||

    | |cos sinThecos sincomponentisabbreviatedtocis,butitismoreformallyknownas

    Exp

    | | cis | | Exp | | Notethatforcis,sinceitisthesumofcosandi*sin,cis cis ,cis cis Theonlysymmetricalpropertiesithasarecis cis , and cos 2 cos , where .Moreconventionally,cisisusuallyexpressedas:

    cis

    Whereistheargumentofz.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    42/121

    ComplexNumbers

    PolarForm

    Page42

    Somespecialnumbers:

    0+0icannotbeexpressedinthepolarform,itsargumentisundefined.

    Allpositiverealnumbers,a+0i,haveanArgumentof0.

    Allnegativerealnumbers, a+0i,haveanArgumentof

    .

    Allpositiveimaginarynumbers,0+ai,haveanArgumentof/2.

    Allnegativeimaginarynumbers,0ai,haveanArgumentof /2.Acomplexnumbercanhaveitsargumentexpressedintermsofthearctangent:

    1stquadrant,a+bi

    o

    tan 2

    ndquadrant, a+bi

    o

    tan

    3rdquadrant, abi

    o tan

    4th

    quadrant,abi

    o

    tan Acomplexnumbersconjugatecanbederivedasfollowed:

    | |cossin

    | |cossin

    | | cis

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    43/121

    ComplexNumbers

    PolarForm

    Page43

    Forexample,solveforzsuchthat| 3| 3 and arg 3 3 9, 1

    3 tan 34 1, 2 3

    2 3 9

    322 3 3 22

    || 92 9 92 92 32 2

    Sincezistheintersectionof[1]and[2],itisthepointofintersectionof

    therayandthecircle.Itiseasytoconstructatriangletofindcosineof

    cos 8322 23 2 22

    8

    2 5

    8

    Hence,thepolarformofzis

    6cos 8 cis 58

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    44/121

    ComplexNumbers

    PolarForm

    Page44

    1.3.3.3 MultiplicationandDivisionMultiplicationanddivisionusingpolarformsisaloteasierthanusingtheCartesianform.

    Fortwocomplexnumbers,

    | | cisand

    | | cis

    | ||| cis | ||| cis Thereciprocalcanalsobeworkedoutfairlyeasily:

    1 | 1||| cis0 1|| cis ||Withpolarcoordinates,theideaofrotationisintroduced.Whenacomplexnumberz1ismultiplied

    byanothercomplexnumberz2suchthat|z2|=1,thenz1isrotatedanticlockwisebytheanglez2

    makeswiththepositiverealaxis:

    | ||| cis | | cis Inparticular,multiplyingbythecomplexnumberirotatesthecomplexnumber90

    oanticlockwise.

    1.3.3.4 DeMoivresTheorem | | cisForexample, 3 , 1 ,find 14 2 2

    tan 17 2 tan13 tan 1

    tan17 2 tan

    13 4

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    45/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    46/121

    ComplexNumbers

    RelationshipsintheComplexPlane

    Page46

    1.3.5 RelationshipsintheComplexPlaneAlocusinthecomplexplaneisasetofpointsontheArganddiagram.

    Forexample,

    : || 1,

    1.3.5.1 Line : | | | |, ThisdescribesastraightlineontheArganddiagram.Itistheperpendicularbisectorofthelinez1z2.

    Particularcasesinclude:

    : , : 2,where is a constant Thisdescribesaverticalline,x=c

    : , : 2,where is a constant Thisdescribesahorizontalline,y=c

    : , Thisdescribesthesetofpointsthatmakesanangleof90

    owiththeirreflectioninthehorizontalaxis,

    i.e.theliney=x

    : |1 | | 1|

    Thisdescribesalinealso:|1 | | | | | | | Inequalitiesinvolvingalinecanbefoundusingasimplepointsubstitution,usuallytheorigin.1.3.5.2 Ray : , ,where is a constantThisdescribesarayfrom(butnotincluding)z0atanangleoffromthehorizontal.Inequalitiescanbefoundusingasimplepointsubstitution.Itshouldalsobenotedthat

    For: , or : , ,thehorizontaltotheleft: , istheendoftheregion,andisincluded. For: , or : , ,thehorizontaltotheleft: , istheendoftheregion,andisnotincluded. z0isnotincluded.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    47/121

    ComplexNumbers

    RelationshipsintheComplexPlane

    Page47

    1.3.5.3 HyperbolaBythegeometricdefinitionofhyperbola,

    : | | | | ,

    Thisdescribesahyperbolaonthesideofz1.Thecentreisat .Thecentreofthebranchislocated

    unitsawayfromthecentreinthedirectionofz1. 2 2 | |1.3.5.4 Circles : | | , , where is a constant Thisdescribesacirclecentredatz0witharadiusofc.

    Ifwelet , then ,| | : , , where is a constantThisalsodescribesacirclecentredatz0witharadiusofc.

    1.3.5.4.1 Ellipses

    Bythegeometricdefinitionofanellipses,

    : | | | | , , where is a constant

    Thisdescribestheellipseswithitstwofociatz0andz1.

    Axisalongthetwofoci: Axisperpendiculartothefoci:

    2 | |2 12 | |

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    48/121

    ComplexNumbers

    RelationshipsintheComplexPlane

    Page48

    1.3.5.4.2 Arcs

    Bythegeometrictheorem thatanglessubtendedbyachord/arcatallpointsonthecircumference

    areequal:

    arg arg

    Thisdescribesanarcsuchthattheanglemadebetweentwosegments, and isalways,i.e.thisexistsasanarc.Notethatthisisonlyonesideofthearc,theothersideofthearcisdescribedbyarg arg .ItiseasiertoconvertthistoCartesianformtryingtodrawit.

    Forexample,arg arg

    tan 1 tan

    1 4 , 0 1 11 1 1 1 1 1 1 1 2, 0

    Axisintercepts: 1, 2+1

    tan 1 tan 1 4 , 0, 1

    1 2, 0, 1, FALSE tan 1 tan 1 4 , 0, 1 1 2, 0, 1, FALSE

    For 0,1 1, isinthesecondquadrant,anditsargumentliesin , . isinthethirdquadrant,anditsargumentliesin

    ,

    .Hence,

    arg arg hasthe

    maximum2,andtheminimum.Therefore,arg arg nottruefor 0, 1 1.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    49/121

    Calculus

    Page49

    2

    2.0 Calculus2.0.1

    CalculusSingle Variable Calculus, Vector Calculus, Multivariable Calculus

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    50/121

    SingleVariableCalculus

    Limits

    Page50

    2.1SingleVariableCalculus

    2.1.1 LimitsAlimitofafunctionataisthefunctionsvalueasthevariableapproachesa.

    2.1.1.1 DefinitionandInterpretationThelimithastwoparts,thelefthandlimitlim ,whichapproachesthevaluefromthelefthandnegativeside,andtherighthandlimitlim ,whichapproachesthevaluefromtherighthandpositiveside.

    Alimitexistsifandonlyif:

    Thelefthandlimit

    lim

    exists

    Therighthandlimitlim exists lim lim Thefunctionmustbedefinedonsomeopenintervalthatcontains(withthepossibleexceptionof)a.

    Underformaldefinition,

    lim ifforeverynumber 0thereisanumber 0suchthat| | whenever 0 | |

    Thetwosidelimitscanbesimilarlydefinedwiththeboundsonx:

    0forlefthand

    limits,and0 forrighthandlimits.Somelimitsmayevaluatetoinfinite.Thatis,lim foreverypositivenumberM,thereisapositivesuchthat

    whenever 0 | |

    Similarly,forlimitsthatevaluatetothenegativeinfinity:lim foreverynegativenumberNnumber,thereisapositivesuchthat

    whenever 0 | |

    Forlimitsattheinfinity,alimitcanbeeitherdivergent,divergenttoinfinity,orconvergent.

    Alimitthatconvergestoanumberatthepositiveinfinity,underformaldefinition,

    lim ifforeverynumber 0thereisapositivenumbersuchthat| | whenever

    Asimilardefinitionmaybeformedforconvergencyatthenegativeinfinity.Convergencyateither

    infinityindicatesahorizontalasymptote.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    51/121

    SingleVariableCalculus

    Limits

    Page51

    Alimitthatdivergestoinfinitygetsinfinitelylarge,(orsmall),underformaldefinition,

    lim ifforeverypositivenumberthereisapositivenumbersuchthat

    whenever

    Asimilardefinitionmaybeformedfortheotherthreepossibilities(negativeinfinitytotheright,and

    positive/negativeinfinitytotheleft).

    Alimitcanalsodivergewithoutgettingtoinfinity.Thistypeoffunctionsusuallyoscillates.An

    exampleisthesineratio.

    2.1.1.2 LimitLawsEvaluationofalimitcanbeassimpleassubstitutingthenumber.However,theseareoftennot

    enough.

    Somelimitlawsinclude:

    lim lim lim lim limlim lim lim

    lim

    limlim limlim

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    52/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    53/121

    SingleVariableCalculus

    Limits

    Page53

    2.1.1.5 ContinuityAfunctioniscontinuousataif

    lim

    Ifapointiscontinuous,then

    lim exists lim exists lim lim

    Theleftorrighthandlimitcanbeusedtodefinecontinuityononeside,whereaistheendpointof

    anopeninterval.

    2.1.1.6 DifferentiabilityAfunctionisdifferentiableataif

    exists iscontinuousata Thereisnoabruptchangeofdirectionata(i.e.thederivativeiscontinuousata)

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    54/121

    SingleVariableCalculus

    MethodsofDifferentiation

    Page54

    2.1.2 MethodsofDifferentiationFirstprinciple

    lim

    2.1.2.1 DifferentiationRulesAdditionrule:

    Chainrule:

    Productrule:

    Andhence,theconstantrule:

    ,where is a real constantQuotientrule:

    Someparticularcases:

    2.1.2.2 ImplicitDifferentiation

    Bythechainrule,ifyisafunctionofx: Or,

    ,

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    55/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    56/121

    2.1.2.6 ExponentialandLogarithms ln

    ln 1 log 1ln ln 1

    2.1.2.7 LogarithmicDifferentiationIf ln ln

    ln ln

    1 ln ln 2.1.2.8 SecondDerivatives 2.1.2.8.1

    Concavity

    Forat ,ifis Positive,theconcavityisupwards

    o

    Ifitisalsoastationarypoint,itisalocalminimum

    Negative,theconcavityisdownwards

    o Ifitisalsoastationarypoint,itisalocalmaximum

    Zero,

    o

    Ifthethirdderivativeisalsozero,concavitytestisinconclusive

    o

    Otherwiseitisapointofinflection

    Ifthethirdderivativeispositive(signchangefromnegativetopositive),itis

    theminimumgradient

    Ifthethirdderivativeisnegative(signchangefrompositivetonegative),itis

    themaximumgradient

    Ifitisalsoastationarypoint,itisastationarypointofinflection

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    57/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page57

    2.1.3 ApplicationsofDifferentialCalculus

    2.1.3.1 GraphingADomain

    BFindxandyintercepts

    CLookforsymmetry:iff(x)=f(x),itisevenlysymmetrical;iff(x)=f(x),itisoddlysymmetrical

    DAsymptotes,vertical,horizontal,slant

    EIntervalswhichthegraphisincreasing/decreasing

    FStationarypoints

    G

    Points

    of

    inflection

    2.1.3.2 AdditionofOrdinatesWhengraphingahybridfunction,themethodofadditionofordinatesmaybeused.

    Thenfor at ,

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    58/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page

    58

    2.1.3.2.1 SomeRationalFunctions

    Vertical asymptote at x=0 Slant asymptote y=ax

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    59/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page

    59

    Vertical asymptote at x=0

    Slant asymptote y=ax

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    60/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page

    60

    Vertical asymptote at x=0

    Parabolic asymptote y=ax2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    61/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page61

    Vertical asymptote at x=0

    Parabolic asymptote y=ax2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    62/121

    SingleVariableCalculus

    ApplicationsofDifferentialCalculus

    Page62

    2.1.3.3 ReciprocalFunctionsAreciprocalfunctioncanbegraphedbytakingthereciprocalofthefunctionsvalue.

    Whenthefunction

    Crossesthexaxisfrompositivetonegative

    o Thereciprocalfunctiongoestopositiveinfinityontheleft,andtonegativeinfinity

    ontheright(asymmetricverticalasymptote)

    Crossesthexaxisfromnegativetopositive

    o

    Thereciprocalfunctiongoestonegativeinfinityontheleft,andtopositiveinfinity

    ontheright(asymmetricverticalasymptote)

    Touchesthexaxis

    o Dependingonwhetherthefunctiontouchestheaxisonthepositivesideorthe

    negativeside,thereciprocalfunctiongoestopositive/negativeinfinityonbothsides

    (symmetricverticalasymptote) Hasalocalminimum

    o

    Thereciprocalfunctionhasalocalmaximum

    Hasalocalmaximum

    o

    Thereciprocalfunctionhasalocalminimum

    Hasastationarypointofinflection(notwheny=0)

    o

    Thereciprocalfunctionhasastationarypointofinflection

    Hasapointofinflection(notwheny=0)

    o

    Thereciprocalfunctionhasapointofinflection

    1 1 1 1 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    63/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page63

    2.1.4 MethodsofAntidifferentiationIndefiniteintegrals:

    Somerulesoftheintegral:

    , where is a real constant ,where C is a real constant

    Andfordefiniteintegrals:

    Fundamentaltheoremofcalculus

    Fundamentaltheoremofcalculus(II)

    If is the antiderivative of

    Somerules:

    0

    Themostobviousmethodofantidifferentiationisviarecognition.

    ln || 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    64/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    65/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page65

    2.1.4.3 IntegrationbyRecognitionByfindingthedifferentiatingafunction,whichderivativecontainsallorpartoftheintegrand,can

    allowintegrationbyrecognition.

    Generally,ifg(x)

    has

    an

    antiderivative

    G(x),

    and

    Then

    Somealgebraandidentitiesmaybeusedinthisprocess.

    Forexample,differentiate sin ,henceantidifferentiate cos sin sin 1 cos sin 2 sin 2 cos 1

    2 cos 1 sin

    2 cos 1 2 cos cos cos 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    66/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page66

    2.1.4.4 IntegrationbyPartsReverseproductrule.

    Or

    Generally,f(x)ispreferredinthefollowingorder:

    Logarithm

    Inversetrig

    Algebraic

    Trigonometric

    Exponential

    sometimesmaynotbeapparent,butcanbeassimpleas1.

    Forexample,

    log log log 1 log 2

    2 2 2 2 2 2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    67/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page67

    2.1.4.5 TrigonometricIntegrationsin cos

    cos sin sec tan

    csc cot

    sec tan sec csc cot csc Forothers,theconnectionmaynotbesoapparent.Theuseofthedoubleangleidentitiesandthe

    Pythagoreanidentityandthesubstitutionmethodisextensive.

    Ingeneral,

    For

    sincos

    o

    Ifnisodd,usethePythagoreanidentitytofactoroutallcosinebutone.Thenmakethesubstitutionu=sinxsin cos sin cos cos

    sin 1 sin cos 1

    o

    Ifmisodd,usethePythagoreanidentitytofactoroutallsinebutone,thenmake

    thesubstitutionu=cosx

    sin cos sin cos sin cos 1 cos sin 1

    o Ifbothmandnareeven

    sin 1 cos 2 cos 1 cos2

    sin cos sin2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    68/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    69/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page69

    sec sec sec tansec tan , let sec tan

    ln| | Oralternatively,

    sec cos cos cos1 sin , let sin

    1

    tanh , since 1 sin 112 ln 1 sin1 sin

    sec Usingintegrationbyparts, sec , sec tan , sec , tan

    sec sec tan tan sec sec tan sec 1 sec sec tan sec sec

    2 sec sec tan ln|sec tan | sec 12 sec tan ln|sec tan |

    Forintegralsinvolvingmultipleangles:

    sincosor sinsinor coscos,sin cos 12 sin sin sin sin 12 cos cos

    cos cos 12 cos cos

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    70/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page70

    2.1.4.6 TrigonometricSubstitutionAtypeofinversesubstitution,theindependentvariableissubstitutedwithaonetoonefunction.

    Ingeneral,welet

    ,andsubstitute

    Fortheradical

    ,let sin , ,let tan , ,let sec , 0 or

    Forexample,

    9

    Let 3 sin , 3cos 9 3 cos 3sin 3 cos cot

    csc 1

    cot

    1tan 3 sin 3 9 sin 3 2.1.4.7 HyperbolicSubstitutionHyperbolicsubstitutionisalmostidenticaltotrigonometricsubstitution,andissometimespreferred

    overusingthesubstitution tan or sec .Fortheradical

    ,let sinh , ,let cosh , 0 or 0

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    71/121

    SingleVariableCalculus

    MethodsofAntidifferentiation

    Page71

    2.1.4.8 PartialFractionsPartialfractionscanbeusedtosimplifyarationalfunctionsothatitcanbeintegrated.

    Arationalfunction

    ,whereallofthesefunctionsarepolynomials,andthe

    degreeofRislessthanthedegreeofQ.

    PartI

    Thedenominatoristheproductofdistinctlinearfactors.

    PartII

    Thedenominator

    isaproduct

    of

    linear

    factors,

    some

    of

    which

    are

    repeated

    PartIII

    Thedenominatorcontainsdistinctirreduciblequadraticfactors

    PartIV

    Thedenominatorcontainsirreduciblequadraticfactors,someofwhicharerepeated

    2.1.4.8.1 Quartics

    Forquarticsorhigherdegreepolynomialswithoutrealroots,itispossibletofactorisetheseusing

    completethesquaretoirreduciblequadratics.

    1 2 1 2 1 2 2 1 2 1 1 1 1 1 2 1 3 1 3 1 3 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    72/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    73/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page73

    2.1.5 ApplicationsofIntegralCalculus

    2.1.5.1 Area

    2.1.5.1.1

    Approximation

    Areaapproximationworksusesvariousshapeswithdefinedareaformulaetoapproximatethearea

    underagraph.

    2.1.5.1.1.1Methods

    Leftandrightendpointrectangles

    Left:

    Right:

    MidpointRectangles

    2

    Trapeziums

    2 2 2

    2.1.5.1.1.2Bounds

    Foranincreasingfunction

    o Theleftrectanglesmethodgivesanunderestimation

    o

    Therightrectanglesmethodgivesanoverestimation Foradecreasingfunction

    o

    Theleftrectanglesmethodgivesanoverestimation

    o

    Therightrectanglesmethodgivesanunderestimation

    Foraconcaveupfunction

    o Themidpointrectanglesmethodgivesanunderestimation

    o Thetrapeziummethodgivesanoverestimation

    Foraconcavedownfunction

    o Themidpointrectanglesmethodgivesanoverestimation

    o

    Thetrapeziummethodgivesanunderestimation

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    74/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page74

    2.1.5.1.1.3Error

    Forafunctionf(x)onaclosedinterval[a,b]:thereisanumberKsuchthat|| ,thentheerrorboundforthetrapezoidalandmidpointrulesare

    || 12 || 24 Hence,themidpointruleisabouttwiceasaccurateasthetrapezoidalmethod.

    2.1.5.1.1.4TheIntegralasASum

    Takingthemidpointmethod,asthenumberofrectanglesisincreased,theapproximationgets

    moreandmoreaccurate.

    lim Asngoestoinfinity, ,

    lim

    2.1.5.1.2 SignedArea

    Yvaluesunderthexaxisarenegative,hencetheareacalculatedbyanintegralwouldalsobe

    negative.

    Iffisnegativebetweenintheinterval(a,b)[usuallyaandbwouldbetwoxintercepts],then

    | | Whenfindingareaofafunctionthatcrossesthexaxisseveraltimes,thesignedareamustbetaken

    intoaccount.

    2.1.5.1.3 BetweenCurves

    Iff(x)>g(x)foraninterval(a,b)[usuallyaandbarepointsofintersection],then

    Whenfindingtheareabetweentwocurvesthatcrosseachotherseveraltimes,thesigned

    differencemustbetakenintoaccount.

    Ifg(x)>f(x)foranotherinterval(b,c),then

    | |

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    75/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page

    75

    2.1.5.1.4 AlongtheYAxis

    Whenintegratinginversefunctions(whichareratherdifficult),itisofteneasiertofindthearea

    alongtheyaxis,andthensubtractthatfromarectangle.

    Forexample

    sin

    Whenx=0,y=0.Whenx=1,y=/2. sin sin

    sin

    1 2 sin

    2 cos

    / 2 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    76/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page76

    2.1.5.2 SolidsofRevolutionWhenanareaisspunaroundanaxis,asolidofrevolutionisformed.

    2.1.5.2.1 SlabMethod

    Theslab

    method

    takes

    the

    solid

    of

    revolution

    as

    infinitely

    thin

    circular

    disks

    (cylinders).

    The

    slab

    methodisapplicableonlywhentheareabeingspunisboundbytheaxiswhichitisbeingspun

    around.

    Ingeneral,

    Aboutthexaxis:

    Abouttheyaxis:

    2.1.5.2.1.1 WasherMethod

    Thewashermethod,akathedonutmethod,iswhenanareanotboundbytheaxisofrotationis

    spun.Thecrosssectionofsuchavolumeresemblesawasher.

    Thistypeofareaistheareabetweencurves,i.e. The

    volume

    is

    calculated

    by

    the

    summation

    of

    infinitely

    thin

    washers.

    Ingeneral,asolidofrevolutionaboutthexaxis:

    Abouttheyaxis:

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    77/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    78/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page78

    2.1.5.4 Work Whenaforceisappliedonanobjectfromatob,andtheforceontheobjectatpointxisf(x),then

    Examples

    Aforceof40Nisrequiredtoholdaspringthathasbeenstretchedfromitsnaturallengthof10cmto

    alengthof15cm.Howmuchworkisdoneinstretchingthespringfrom15cmto18cm?

    ByHookeslaw, , 40 0.05 800 kg s 800 ... 1.56J

    A20kgcableof10mlongishangeddownfromthetopofabuilding.Howmuchworkisrequiredto

    liftthecabletothetopofthebuilding?

    Letthetopofthebuildingbe0.Thedensityofthecableis2kgm1.

    Eachsmallsectionsofcable,dx,musttraveluptothetopofthebuilding(xmetresabove)

    Therefore,theworkoneachsmallsectionofcable:2*dx*g*x=2gx*dx

    2 100J Aninvertedconicaltankwithheightof10mandbaseradiusof4isfilledwithwatertoaheightof

    8m.Findtheworkrequiredtoemptythetankbypumpingallofthewatertothetopofthetank.

    Letthetopofthetankbe0.Atsomexmetresbelowthetop,thereisalayerofwaterwithradiusof

    randthicknessofdx. 10 Themassofthatlayerofwaterishence 10 Theworkonthatlayerofwaterishence 10

    425 10 400025 10 3.4 10 J

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    79/121

    SingleVariableCalculus

    ApplicationsofIntegralCalculus

    Page79

    2.1.5.5 MomentsandCentreofMassMoment ,wherexnisdistancefromtheorigin.Thecentreofmassiswherethesumofmomentsfromitequaltozero:

    0

    IfMisthetotalmassofthesystem,thenthecentreofmasswouldbe:

    1

    Inatwodimensionalplane,thecentreofmassofaboutthexandtheyaxis(i.e.distancefromthe

    axis)arethen:

    1 1 Forashapewithuniformdensityandthickness,representedbyanarea,themomentoftheshape

    canbeconsideredtobethesumofmomentsofeachinfinitesimalrectangleinthexdirection:

    Foreachoftheseinfinitesimalrectangle,theyhaveathicknessofdx,aheightof

    ,theircentre

    ofmassisthecentreoftherectangle,, ,andtheirmassis ,wherepisthedensity.Hence,themomentabouttheyaxis: ,thesumofmomentishence Themomentaboutthexaxis: ,thesumofmomentishence ThemassMofthesystemis

    Hence,thecentreofmassinthexandydirection(thecentroid)are,

    , 12

    Forashapedefinedby

    ,

    12

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    80/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    81/121

    SingleVariableCalculus

    DifferentialEquations

    Page81

    2.1.6 DifferentialEquations

    2.1.6.1 SeparableEquations

    Ingeneral

    Forsecondcase,itshouldbenotedthattheantiderivativewouldmostprobablybealogarithmic

    functionofanabsolutefunction,whichcanbepositiveornegative.

    Problemsgivinganinitialstatearecalledinitialvalueproblems,andtheinitialvaluedetermines

    thepositionatwhichtherelationshipwouldmapto,aswellaswhichbranchthefunctionwilltake.

    Forexample,

    2 1, 0 1

    12 ln|2 1| 12 ln|1| 0 | 2 1|2 1

    Since

    0 1,thelefthandsideisevaluatestoanegativenumber,implyingtherighthandside

    mustbenegative. 2 1 12 1

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    82/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    83/121

    SingleVariableCalculus

    DifferentialEquations

    Page83

    2.1.6.2.2 NewtonsLawofCooling

    Abodycools/heatsatarateproportionaltothedifferencebetweenitstemperatureandits

    surroundings.

    Thistranslatestothedifferentialequation

    ,where is the temperature of the surroundings 1 ln| |

    Ifatt=0,T=T0, ln| |

    Sincethetemperaturefunctionismonotonic(itdoesnotovershoot),thenumeratorexpressionis

    alwaysthesamesignwiththedenominatorexpression,andthemodulusisnotrequired.

    Sincetherearethreeconstantsinthisexpression,thequestionwouldneedtogiveatleastthree

    conditionstoworkouttheseconstants.

    Inthisform,solvingforconstantswillbeverydifficult.Thefollowing[nonexplicit]formwouldbe

    moreappropriate:

    1 ln Forexample,athermometeristakenfromahouseat21degreestotheoutside.Oneminutelaterit

    reads27degrees,anotherminutelateritreads30degrees.Findtemperatureoutsidehouse.

    1 ln

    21

    1 1 ln 21 27 12 1 ln 21 30 22 1 2 21 27 21 30 30 21 2751 620 54 729

    3 99

    33

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    84/121

    SingleVariableCalculus

    DifferentialEquations

    Page84

    2.1.6.2.3 DifferenceofRates

    Foravolumeofsolution,withaninflow,andwhilstitiskeptevenlymixed,anoutflow,adifferential

    equationforthissituationcanbemodelledby:

    WhereQistheamountofsolute,

    istherateofinflow,istheconcentrationofinflow,and istherateofoutflow.Thedifferentialequationcanbethoughtofas:

    inlow outlow inlow concentration of inlow outlow

    AmountVolume

    Forsystemswheretherateofinflowisequaltotherateofoutflow:

    Hence,

    ln

    Solvingthedifferentialequationwheretherateofinflowdoesnotequaltotherateofoutflow

    involvesthemethodofintegratingfactor,whichisnotintheSpecialistMathematicscourse.An

    exampleofthiswillbecoveredintherelevantsection.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    85/121

    SingleVariableCalculus

    DifferentialEquations

    Page85

    2.1.6.2.4 FiniteIntegral

    Differentialequationscantranslateintoafiniteintegral,whichcanbesolvednumericallyusing

    principlesofapproximation(ormachineapproximations).Thiscanbeusefulforfunctionswithoutan

    antiderivative,orarathercomplexantiderivative.

    LettherebeafunctionfsuchthatitsantiderivativeisF

    Giventheinitialconditionwhenx=x0,y=y0,

    BytheFundamentalTheoremofCalculus(II)

    Hence,giventheinitialvalue,thedifferentialequationcanbesolvedforanyxwithinacontinuous

    closedsetinitsdomain.

    For

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    86/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    87/121

    SingleVariableCalculus

    DifferentialEquations

    Page87

    2.1.6.2.6 SlopeField

    Aslopefieldofadifferentialequationassignsthevalueofthegradienttoeachpointonaplane

    P(x,y).

    Thegradientisusuallygivenbyashortstraightlineinthedirectionoftheslopeatregularintervals

    inthexandydirections.

    Withaslopefield,anydifferentialequationcanbesolvedfornumericallygivenaninitialconditionat

    anypointonP(x,y)

    4 1 InitialCondition:x=0,y=02.1.6.2.7 OrthogonalTrajectories

    Orthogonaltrajectoriesarecurvesthatarealwaysperpendiculartoeachotheratthepointof

    intersection.Thesesatisfythedifferentialequation

    1 Ingeneral,apairofrelationshipsthatareorthogonal:

    , , \0 , , \0 Inparticular,whenn=1, , ,

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    88/121

    SingleVariableCalculus

    DifferentialEquations

    Page88

    2.1.6.3 FirstOrderLinearDifferentialEquations(Integrating

    Factors)Theordinarydifferentialequation

    Isanonseparablefirstorderlineardifferentialequation,andcanbesolvedbymultiplyingbothsidesbyanintegratingfactor.

    Usingtheintegratingfactorrecognisesthat:

    Hence,multiplyingbothsidesoftheDEbytheintegratingfactorI(x)

    Itcanbeseenthat

    Forexample:

    A20Ltankofsaltsolutioninitiallyhas2kgofdissolvedsalt.Saltispouredintothesolutionat

    0.1kg/min,andthesolutionisflowingoutataconstantrateof1L/minwhilstthesolutioniskept

    evenlymixed.

    0.1 20 120 0.1 || | 20|

    Theimplieddomainist

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    89/121

    SingleVariableCalculus

    DifferentialEquations

    Page89

    2.1.6.4 SecondorderDifferentialEquationsAnordinarysecondorderlinearequationisintheformof:

    2.1.6.4.1 Homogenous

    AhomogenoussecondorderDEisintheformof

    0Then,ify1andy2aresolutionstothisdifferentialequation,

    Wherey(x)isthegeneralsolutiontothedifferentialequation,andc1andc2arearbitraryconstants.Thisimpliesthatiftwosolutionsareknown,thenallsolutionsareknown.Thisalsoimpliesthaty1

    andy2arelinearlyindependent.

    Notalldifferentialequationsaresolvable,butitisalwayspossibletosolveitwhenP,QandRare

    constantfunctions.

    0 Tosolvethislineardifferentialequation,lety=e

    rx.

    0 0 Theaboveequationiscalledtheauxiliaryequation(orcharacteristicequation).

    Solvingforrcanhavethreedifferentoutcomes:

    Twosolutions

    o Onesolution

    o Norealsolutiono , o

    cos sino

    Wherec1andc2canbecomplexnumbers.Thisgivessolutionintherealand

    complexplane.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    90/121

    SingleVariableCalculus

    DifferentialEquations

    Page90

    2.1.6.4.2 Non-Homogenous

    Forsecondordernonhomogenouslineardifferentialequationswithconstantcoefficients:

    Thenthegeneralsolutiontakestheform Whereypisaparticularsolution,andycisthegeneralsolutiontothecomplementaryequation:

    0 Whilstyccanbefoundwithreasonableease,findingypismoreinvolved,andtwoofthemethodsare

    explainedbelow.

    2.1.6.4.2.1

    Method

    of

    Undetermined

    Coefficients

    2.1.6.4.2.1.1 PolynomialFunction

    WhereG(x)isapolynomial.

    TheparticularsolutionwillbeofthesamedegreeofG(x),andwilltaketheform:

    Substitutingthisanditsderivativesintothedifferentialequationwillgiveasystemoflinear

    equationsbyequatingthecoefficients.

    2.1.6.4.2.1.2 ExponentialFunction

    If then,

    Substitutingthisanditsderivativesintothedifferentialequationwillgiveasystemoflinear

    equationsbyequatingthecoefficientsoftheexponentialterms.

    2.1.6.4.2.1.3 TrigonometricFunctions

    If

    cos or sinthen,

    cos sin Substitutingthisanditsderivativesintothedifferentialequationwillgiveasystemoflinear

    equationsbyequatingthecoefficientsofthetrigonometricterms.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    91/121

    SingleVariableCalculus

    DifferentialEquations

    Page91

    2.1.6.4.2.1.4 ProductofFunctions

    Ifisaproductoftheprevioustypesoffunctions,thenatrialsolutionwouldbeaproductoftheparticularsolutions.

    If

    ,then

    If sin or cos ,then cos sin If sin or cos ,then cos sin 2.1.6.4.2.1.5 SumofFunctions

    If ,thentheparticularsolutionswillbethesumofparticularsolutionsto and .2.1.6.4.2.2

    Methodof

    Variation

    of

    Parameters

    Ifthecomplementaryequationhasalreadybeensolvedandisexpressedwitharbitraryconstants,

    themethodofvariationofparametersthenletthearbitraryconstantsbearbitraryfunctionsand

    triestofindaparticularsolution.

    Hence,differentiatinggives:

    Sinceu1andu2arearbitraryfunctions,conditionsmaybeimposedonthem,suchthat 0 . Hence,

    Sincey1andy2areparticularsolutionstothecomplementaryequation,thissimplifiesto

    Alsosince 0 ,solvingthesesimultaneouslycangiveexpressionsfor and ,whichcanbeantidifferentiatedandhencetheparticularsolutionisfound.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    92/121

    SingleVariableCalculus

    DifferentialEquations

    Page92

    Forexample,solve tan , 0 /2 Thecomplementaryequationis 0 ,whichgivesanauxiliaryequation

    1 0

    cos sin cos sin cos sinHence, 0 cos sin 0 Also, sin cos tan sin

    cos cos sin

    cos

    sin cos sin cos sin cos

    sin cos sin ln sec tan

    sin lnsec tan cos cos sin cos ln sec tan

    2.1.6.4.3 InitialValueProblemsandBoundaryValueProblems

    Initialvalueproblemsforsecondorderdifferentialequationswillprovideinitialyvalueaswellasthe

    initialgradient.Solvethesejustasinitialvalueproblemsinfirstorderdifferentialequations.

    Aboundaryvalueproblemgivestwoyvaluesfortwoxvalues,andmaynotalwayshaveasolution.

    Substitutethexandyvaluesintothegeneralsolutionandsolvesimultaneouslyforthearbitrary

    constants.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    93/121

    SingleVariableCalculus

    PhysicalApplications

    Page93

    2.1.7 PhysicalApplications

    2.1.7.1 Kinematics

    2.1.7.1.1

    SUVATand

    V

    -tGraphs

    Formotionwithconstantacceleration,thefollowingformulaecanbeused,whereuistheinitial

    velocity,visthefinalvelocity,aistheacceleration,tisthetime,andsisthedistancetravelled.

    2

    12 2For a v-tgraph, the gradient is the acceleration, and the area under the graph is thedisplacement.For particular problems where an object has a maximum rate of acceleration a, a maximum rateof deceleration ntimes a, a maximum velocity vat which it reaches and travels at during thejourney, and a set distance to travel

    s

    , the timet

    can be solved by the following:2 2 32

    2.1.7.1.2 Acceleration 12 Forexample,findxintermsoftif 4 8andwhen 0, , 33 4 8 4 8 2 2 8 , 33

    272 24 4

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    94/121

    SingleVariableCalculus

    PhysicalApplications

    Page94

    10 4 4 5 2 5

    4 4 4 since is negative

    123 2 12 cos 23 0,

    12 cos 12 3

    cos 2 3 23 3 cos 2 3 2

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    95/121

    SingleVariableCalculus

    PhysicalApplications

    Page95

    2.1.7.2 StaticsandDynamics

    2.1.7.2.1 Force

    Forceisavectorquantity,withadirectionandmagnitude.Itcanberesolvedintocomponents(in2D

    or3D).

    2.1.7.2.1.1 Equilibrium

    Inequilibrium,theresultantoftheforcesisazero.Thesumofcomponentsofforcesinanydirection

    isalsozero.

    Forthreeforcesactingonaparticleatequilibrium:

    Ifthemagnitudesofthethreeforcesareknown,thenthecosinerulecanbeapplied.

    LetthevectoroppositeAbea,oppositeBbeb,andoppositeCbec.

    || | | || 2 |||| cos2.1.7.2.1.1.1 LamisTheorem

    Whenanangleisknown,thesinerulecanbeappliedtofindthemagnitude/angleoftheother

    forces.

    ||sin | |sin | |sin

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    96/121

    SingleVariableCalculus

    PhysicalApplications

    Page96

    2.1.7.2.1.1.2 HangingMass

    Sincethehangingmassisinequilibrium,wecanmake

    thefollowinggeneralisations:

    sin sin

    cos cos Alternatively,wherethecomplementoftheanglesandareknown:

    cos cos sin sin Solvingthesesimultaneouslywhentheangleisgivenwouldgivethemagnitudeofthetensionforces

    alongthestrings.Alternatively,LamisTheoremcanbeapplied.

    Generally,thelengthsofthestringsaregiven,andtheanglecanbeworkedouthenceforth.

    Wheretheangleisrequiredandtheforcesareknown,thecosinerule(picturedasbefore)canbe

    applied.

    2.1.7.2.1.2 NewtonsLawsofMotion

    Newtonsfirstlawofmotion

    Aparticleatrestorinconstantmotionwillremainatrestorconstantmotionunlessactedonbyan

    unbalancedforce.

    Foraparticle/systeminequilibrium,theforcesactingonitmustbalance.

    Newtonssecondlawofmotion

    Theforceisproportionatetotherateofchangeoftheobjectsmomentum.

    ThevalueofoneNewtonischosensuchthatkis1whenaisinms

    2andmisinkg.

    Newtonsthird

    law

    of

    motion

    Everyforcehasanequalandoppositeforce

    Weight

    Theweightisspecifictoparticulargravitationalfields.Onekilograminaparticularfieldweighs1kg

    wt.Inotherwords,1kgwt=1gN.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    97/121

    SingleVariableCalculus

    PhysicalApplications

    Page97

    2.1.7.2.1.3 Friction

    Thefrictionforcealwaysopposesthedirectionofmotion.

    Themaximumfrictionforcebetweentwoparticularsurfacesisproportionaltothenormalforce

    (opposingtheweightforce).

    Whereisthecoefficientoffriction.Thecoefficientsoffrictionfortwostaticsurfacesandtwosurfacesslidingrelativelytoeachotheraredifferent.

    2.1.7.2.1.3.1 Static Ifanexternalforceactsonastaticobjectonasurface,frictionopposesthisforceparalleltothe

    planeofthesurface.Thefrictionforceopposestheexternalforceasmuchaspossibleuptoits

    maximumlimit.Untiltheexternalforceisgreaterthanthemagnitudeofmaximumforce,thereisno

    motion,andtheobject/systemissaidtobeinequilibrium.

    Foranobject/systeminequilibrium,theminimumcoefficientoffrictionpossibleiswhenthe

    object/systemisonthepointofsliding.I.e.thefrictionalforceisatmaximum.(Ifthefrictionalforce

    isnotatmaximum,thenthecoefficientoffrictionwouldneedtobegreater.)

    2.1.7.2.1.3.2 Sliding

    Slidingfrictionopposesthedirectionofmotion,andhasthemagnitude

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    98/121

    SingleVariableCalculus

    PhysicalApplications

    Page98

    2.1.7.2.2 SingleObject

    2.1.7.2.2.1InclinedPlane

    Forexample

    AnobjectisprojectedwithspeedUuparoughplanewithcoefficientoffriction

    andinclinationof

    degreestothehorizontal.Thedistanceittravelsuptheplane(downtheplaneisnegative):

    sin cos sin cos sin cos sin cos 1sin cos 2 2sin cos

    Thespeedwhichitreturnstoground:

    sin cos 2sin cos 2sin cos

    2sin cos

    2sin cos

    sin cos sin cos

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    99/121

    SingleVariableCalculus

    PhysicalApplications

    Page99

    Anotherexample

    Anobjectofmass24kgisonthepointofslidingdownarough

    inclinedplanewhenpulledbyaforceof10kgwtatanangleof

    30ototheinclinedplane.Whenthesizeoftheforceis

    increasedto12kgwt,theobjectisonthepointofslidingup.

    Downtheplaneisnegative.Atpointofslidingdown,the

    frictionalforceopposesgravityandpointsuptheplane.At

    pointofslidingup,thefrictionalforceopposesthepullingforce

    andpointsdowntheplane.Inbothinstances,thefrictional

    forceismaximum,i.e. Pointofslidingdown:

    Perpendiculartotheplane:10sin30 24cos 24 cos 5 Paralleltotheplane:10cos30 24 sin 5 3 24cos 5 24 sin Pointofslidingup:

    Perpendiculartotheplane:12sin30 24cos 24cos 6 Paralleltotheplane:12cos30 24 sin 6 3 24 sin 24 cos 6

    113 24 cos 5 48sin 24 cos 6

    48sin 11353 48 sin 11324cos 5 24 sin 53 48 sin 11324cos 5 24sin , |0 2 2327or 7641

    0.05243 27.6552

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    100/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    101/121

    SingleVariableCalculus

    PhysicalApplications

    Page101

    MoveableWedge

    Foramoveablewedgeonasurfaceandablock

    sittingontop,theblockexertsaforce

    perpendiculartotheslantface,causingthe

    wedgetomoveaway.Theblockhasanet

    accelerationtowardstheslantfaceaswellas

    paralleltoit.

    Inthediagramontheright,blueforcesactson

    theblock,andredforcesactsonthewedge,and

    thegreenforcesarecomponentsofR1,which

    areparticularlyimportant.

    Theblockisacceleratingdownwardsperpendiculartotheslantface(downwardsdirectionis

    negative). cos Theblockexertsaforceonthewedge,R1,whichisequalandoppositetoR1.

    cos Hence,theaccelerationofthewedgetotheleftwouldbe(leftisnegative)

    sin

    sin Also,astheblockacceleratesperpendicularlytotheslantface,itdoesso

    thatitkeepsupwiththewedgewhichismovingaway.i.e.the

    accelerationoftheblockisthecomponentofthenetaccelerationofthe

    wedgeperpendiculartotheslantface.

    sin Thenormalreactionforceexertedbythegroundonthewedge,R2,is

    cos

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    102/121

    SingleVariableCalculus

    PhysicalApplications

    Page102

    Forexample,a2kgsmoothwedgeisplacedonasmoothtable,andasmooth1kgblockisplacedon

    theslantface.

    cos cos cos 2 sin sin cos 2 sin sin 2 cossin2 2 sin 2 sin2

    52 sin 12 2 sin2

    52 12 cos2 2 sin2 sin 25 cos 2Nowthefrictionlesstableisreplacedbyaroughsurface.Theminimumcoefficientoffrictionwould

    beifthesystemisnowonthepointofsliding.

    2 cosSincethewedgeisnotmoving,theblockhasnonetaccelerationperpendiculartotheslantface.

    cos sin 2 cos cos sin 12 sin21

    2cos 2 5

    2

    sin2cos 2 5

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    103/121

    SingleVariableCalculus

    PhysicalApplications

    Page

    103

    2.1.7.2.3.2 ConnectedParticles

    Inconnectedparticles,therope(inextensible)exertsanequaltensionforceonbothobjects

    connectedtoit.

    Horizontalplane

    Pulley

    Thepulleysystemmovestowardstheheavierside.

    Ontheheavierside:

    Onthelighterside:

    Ifanobjecthastwostringsattached:

    or

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    104/121

    SingleVariableCalculus

    PhysicalApplications

    Page104

    2.1.7.2.4 VectorForce

    Ifaforceisgivenasavector,theforceactsinthedirectionofthevector,andthemagnitudeofthe

    forceisthemagnitudeofthevector.

    Ifseveralforcesareinvolved,theresultantvectorcanbefound.

    2.1.7.2.5 VariableForce

    Ifforceisvariable,thenaccelerationisnotconstant.

    If , 1 Forexample,anobjectmass3kgisprojectedverticallyupwardswithinitialspeedUm/s,andreturns

    toitsstartingpointwithspeedVm/s.Assumethatairresistanceis,wherevisthespeedofthe

    object.

    Upwardsmotionispositive.

    Maximumheight:

    20 60 20 60 60

    60 60 6060 6060 30 260 30 ln|60 | 30ln 60 60

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    105/121

    SingleVariableCalculus

    PhysicalApplications

    Page105

    Thetimetakenfortheobjecttoreturntostartingpointfrommaximumheight(frictionisupwards

    [positive]thistime)

    20

    60 20

    60 60 60 60 60 60

    15 2 60 60 60

    15 1 60 1 60 15ln 60 60

    Givenwhent=0(maximumheight),v=0

    15 ln1 0 15ln 60 60Whenv=V(whenitreachestheground)

    15ln 60 60 15ln 60 60

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    106/121

    SingleVariableCalculus

    PhysicalApplications

    Page106

    Also,

    60 60 60 60 60 60 30 2 60 30 ln| 60 | 30ln 6060

    30ln 60 60 Notethatthemagnitudeofthedistancetravelledis

    ln ,asthedistancetravelledisinthedownwardsdirection,i.e.negative.

    Sincethedistancetravelledontheupwardsjourneyisthesameasthedistancetravelledonthe

    downwardsjourney,

    30ln 60 60 30ln 60 60 60 60 60 60

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    107/121

    SingleVariableCalculus

    SequencesandSeries

    Page107

    2.1.8 SequencesandSeries

    2.1.8.1 SequenceAsequenceisalistofnumberswritteninadefiniteorder,usuallyobeyingaparticularrule.

    , , , Foralternatingsequences,1isusuallyincorporatedinitsrule.2.1.8.1.1LimitsofSequences

    Asequencemaybedefinedasafunctionofnaturalnumbers,andthisfunctionisasubsetofthe

    functionoverR.

    Thelimitlawsappliesforlimitsofsequences,whichmaybeevaluatedsimply.

    Severalkeynotesare:

    Forasequencethatdoesnotconvergeatinfinity,itiscalleddivergent(usuallyanoscillating

    function).Forasequencethatgetsinfinitelylargeorsmall,itiscalleddivergenttoinfinity.

    Aparticularusefulidentity,

    lim || 0, then lim 0 Whereanindeterminateformisencounteredwhenevaluatingalimit,LHopitalsrulecannotbe

    applieddirectly,butachangeofvariablesmay:

    If where is an integer, and lim for ,then lim also.LHopitalsrulecanbeappliedforthelimitoverreals,butnotoverintegers.

    Also,fortheseries ,lim 0, 1 11, 1divergent, elsewhere

    Asequencecanbesaidtobeincreasingordecreasing.Ifasequenceisalwaysincreasingor

    decreasing,itiscalledmonotonic.

    Forasequencethathaveanupperboundorlowerbound,itissaidtobeboundedaboveor

    boundedbelow,andinthecaseofboth,bounded.

    Everyboundedmonotonicsequenceisconvergent.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    108/121

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    109/121

    SingleVariableCalculus

    SequencesandSeries

    Page109

    2.1.8.2.1TestsofConvergence

    2.1.8.2.1.1IntegralTest

    Iffisacontinuous,positiveanddecreasingfunctionon ,

    ,and

    ,then

    If isdivergent,then isalsodivergent.

    If isconvergent,then isalsoconvergent.Bothofthesecanbeshowngraphicallybyconstructingleft/rightrectangles(overestimationtoshow

    itisdivergent,underestimationtoshowitisconvergent).

    Notethatthelowerboundisnotnecessarily1,iftheseriesisdefinedfromn=k,thentheintegral

    wouldbecomputedfromk.

    Whenthefirstntermsareusedtoestimatetheseries(i.e.usingapartialsum),theerrormade

    (calledtheremainder, )isboundedsuchthat Also, .Thisgivesabetterestimationthanpartialsumsdo.Inthiscase,theerrorishalfwaybetweentheupperandlowerbounds.

    2.1.8.2.1.1.1 p-Series

    Thepseries

    isconvergentif

    1andisdivergentotherwise.

    2.1.8.2.1.2ComparisonTest

    Thecomparisontestcomparesagivenserieswithaseriesthatisknowntobeconvergentor

    divergent.

    FortwoseriesandIf foralln,andisdivergent,thenisalsodivergent.If foralln,andisconvergent,thenisalsoconvergent.If

    both

    sequences

    are

    positive

    terms

    and

    / ,theneitherbothseriesconvergesorbothdiverges.ThisrestonthefactthatthereexiststwonumbersmandMsuchthat ,hence .Ifwasconvergent,theupperboundisfinitehenceisalsoconvergent.Ifwasdivergent,thelowerboundisinfiniteandhenceisalsodivergent.Ifwasfoundtobedivergentbycomparisonwith,thencanbeestimatedbypartialseriesandtheerrorcouldbefoundbycomparingremainders.Notethatthisonlyworksif ,andtheremainderof

    islessthantheremainderof

    .

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    110/121

    SingleVariableCalculus

    SequencesandSeries

    Page110

    2.1.8.2.1.3AlternatingSeries

    Foranalternatingseries or ,wherebnisamonotonicdecreasingsequencethatconvergestozero,converges.Orinotherwords,if

    foralln,and

    lim 0,then

    converges.

    Also,wheretheaboveconditionsaremet,theerror(remainder)isboundedsuchthat|| .2.1.8.2.1.4AbsoluteConvergenceandRatioTest

    Foraseries,itsabsoluteseriesis||.If||isconvergent,thenisabsolutelyconvergent.

    Allabsolutelyconvergentseriesareconvergent.Aconvergentserieswhichisnotabsolutely

    convergentiscalledconditionallyconvergent.

    The

    ratio

    test

    uses

    the

    limit

    IfL1,thentheseriesisdivergent IfL=1,thentheratiotestisinconclusive

    However,itshouldbenotedthatthislimitevaluatesto1forallpseries,andhenceall

    rational/algebraicfunctionsofn.

    Similarly,thereisalsoaroottestforexponentialseries,using

    |

    |

    IfL1,thentheseriesisdivergent IfL=1,thentheratiotestisinconclusive

    2.1.8.2.1.5Mixed

    Evaluatethelimitofthesequencefirst,itisnotzero,itisdivergent.

    pseriesandgeometricseriesareeasilyidentifiable.

    Forseriessimilartothepseriesorgeometricseries,usethecomparisontest.

    Foralternatingseries,usethealternatingseriestest.

    Iftheseriesinvolvesfactorialsorotherproducts(orexponentials),trytheratiotestorthe

    roottest.

    Iftheintegralcanbeeasilycomputed,thentheintegraltestiseffective.

  • 8/9/2019 Specialist Maths 3/4 Bound Notes

    111/121

    SingleVariableCalculus

    SequencesandSeries

    Page111

    2.1.8.2.2PowerSeries

    Apowerseriesisdefinedas:

    Wherecnisacoefficient.Thepowerseriesissimilartoapolynomial,exceptthatithasinfinite

    numberofterms.Wherea=0andcnisaconstant,thepowerseriesbecomesageometricserieswith

    x=r.

    Thepowerseriescanbeconvergent/divergentdependingonthevalue(s)ofx.Ingeneral,thethree

    possibilitiesare:

    Theseriesconvergeswhenx=a

    Theseriesconvergesforallx

    Theseriesconvergesforarangeofvaluesuchthat| | Forthelastcase,Riscalledtheradiusofconvergence,andisequaltozero/infinityfortheother

    twocases.Theintervalofconvergenceistheintervalonxatwhichthepowerseriesconverges.

    Normally,theratiotestisusedtofind| | ,andothermethodsareusedto