specialist maths calculus week 2. bezier curves these are graphic curves to enable us to draw curves...

32
Specialist Maths Calculus Week 2

Upload: cathleen-cummings

Post on 03-Jan-2016

225 views

Category:

Documents


2 download

TRANSCRIPT

Specialist Maths

Calculus

Week 2

Bezier Curves

• These are graphic curves to enable us to draw curves on computers.

• They were designed by Pierre Bezier in 1962 so he could create computer designs for creating new car designs for Renault.

Constructing Bezier Curves• Start the curve at point S and end it at point E.

• Introduce two control points C1 and C2, and a parameter t where 0≤ t ≤ 1.

SE

C1C2

Constructing Bezier Curves• Points F, G and H are located on SC1, C1C2 and

C2E respectively, such that SF:FC1 = t:1-t, C1G:GC2 = t:1-t and C2H:HE = t:1-t

SE

C1C2

t

1-t

t 1-t

t

1-t

F

G

H

Constructing Bezier Curves• Points I and J are located on FG, and GH

respectively, such that FI:IG = t:1-t, GJ:JH = t:1-t.

SE

C1C2

t

1-t

t 1-t

t

1-t

I

Jt

1-t t

1-t

F

G

H

Constructing Bezier Curves• Finally P(x(t),y(t)) are the points that describe the

Bezier curve such that IP:PJ = t:1-t

SE

C1C2

t

1-t

t 1-t

t

1-t

I

Jt

1-t t

1-t

F

G

Ht1-tP

Finding the coordinates of P

yyyy

xxxx

dtctbtaty

dtctbtatx

tytxyx

yxyxyx

23

23

33

22211100

)(

)(

bygiven is )(),(P then ),,(Epoint end

),,(C and )(C points control ),,(Spoint start Given the

0

01

012

0123

33

363

33

Where

xd

xxc

xxxb

xxxxa

x

x

x

x

0

01

012

0123

33

363

33

and

yd

yyc

yyyb

yyyya

y

y

y

y

Using Matricis

0

1

2

3

1000

3300

3630

1331

x

x

x

x

d

c

b

a

x

x

x

x

0

1

2

3

1000

3300

3630

1331

y

y

y

y

d

c

b

a

y

y

y

y

yyyy

xxxx

dtctbtaty

dtctbtatx

tytxyx

yxyxyx

23

23

33

22211100

)(

)(

bygiven is )(),(P then ),,(Epoint end

),,(C and )(C points control ),,(Spoint start Given the

Note: P is at S when t = 0, and at E when t = 1.

Example 4 (Ex 6C2)

yyyy

xxxx

dtctbtaty

dtctbtatx

23

23

21

)(

)(

),4,2(C and )3,1(C

points control with B(3,2) toA(0,1) from curveBezier theFind

0

1

2

3

1000

3300

3630

1331

x

x

x

x

d

c

b

a

x

x

x

x

0

1

2

3

1000

3300

3630

1331

y

y

y

y

d

c

b

a

y

y

y

y

Solution 4

yyyy

xxxx

dtctbtaty

dtctbtatx

23

23

21

)(

)(

),4,2(C and )3,1(C

points control with B(3,2) toA(0,1) from curveBezier theFind

0

1

2

3

1000

3300

3630

1331

x

x

x

x

d

c

b

a

x

x

x

x

0

1

2

3

1000

3300

3630

1331

y

y

y

y

d

c

b

a

y

y

y

y

Example 5 (Ex 6C2)

point. end andpoint starting theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttx

Solution 5

point. end andpoint starting theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttx

Example 6 (Ex 6C2)

points.lowest andhighest theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttxS(-3,5)

E(-2,4)

Solution 6

points.lowest andhighest theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttxS(-3,5)

E(-2,4)

Example 7 (Ex 6C2)

points.right andleft most theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttxS(-3,5)

E(-2,4)

Solution 7

points.right andleft most theof scoordinate theFind

542)(

3254)(

by defined curvesBezier For the

23

23

tttty

ttttxS(-3,5)

E(-2,4)

Example 8 (Ex 6C2)

.3.0when animation theof speed theandvector velocity theFind

542)(

3254)(

by defined curvesBezier For the

23

23

t

tttty

ttttx

Solution 8

.3.0when animation theof speed theandvector velocity theFind

542)(

3254)(

by defined curvesBezier For the

23

23

t

tttty

ttttx

Parametric Equations of Tangents to Curves

(a)y'(a),x' is

,at ))(,( curve o tangent t theofvector direction The attyx(t)

))(),(( ayax

))),y((x( 00

sayaysy

saxaxsx

)(')()(

)(')()(

bygiven is tangent theofequation The

Example 9 (Ex 6C3)

2 epoint wher at the

56)(

32)(

curve theo tangent t theofequation parametric theFind

2

23

-t

ttty

ttttx

Solution 9

2 epoint wher at the

56)(

32)(

curve theo tangent t theofequation parametric theFind

2

23

-t

ttty

ttttx

Using Parametric Forms

• Parametric representation enables us to express the coordinates of any point in terms of one variable “t”.

• Example P(t2-2,2t+1).

• We need however to be able to convert from parametric form back to Cartesian form.

Example 11 (Ex 6E1)Find the Cartesian equations of the curve with

parametric equations

tty

tttx

48)(

25)( 2

Solution 11Find the Cartesian equations of the curve with

parametric equations

tty

tttx

48)(

25)( 2

Example 12 (Ex 6E1)Find the Cartesian equations of the curve with

parametric equations

tt

ty

tt

tx

1)(

1)(

Solution 12Find the Cartesian

equations of the

curve with parametric

equations

tt

ty

tt

tx

1)(

1)(

Tangents and Normals

• If P has coordinates (x(t),y(t)), then

• The slope of the tangent at t=a is given by:

)('

)('

tx

ty

dx

dy

)('

)('

ax

aym

Example 13 (Ex 6E2)• Find the equation to the tangent and the normal to

the curve with paramedic equations when t = -1:

54)(

4)( 2

tty

ttx

Solution 13

Example 14 (Ex 6E2)• Find the equation of the tangent to the curve

with parametric equations x = 3t +7 and y = 8 – 2t2, having slope –4.

Solution 14

This Week

• Text pages 216 to 220, 223 to 226

• Exercise 6C2 Q 1 - 5

• Exercise 6C3 Q1, 2

• Exercise 6E1 Q 1, 2

• Exercise 6E2 Q 1-5