specific acentric-mode displacement analysis of … second-harmonic generating properties of...

15
1 Supporting Information for: Specific Acentric-Mode Displacement Analysis of RbPbCO 3 F and CsPbCO 3 F: Synthesis, Structure, and Second-Harmonic Generating Properties of Alkali-Metal Lead Fluoro-Carbonates T. Thao Tran 1 , P. Shiv Halasyamani 1,* , and James M. Rondinelli 2,* 1 Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX 77204- 5003 2 Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States CORRESPONDING AUTHOR EMAIL ADDRESS: [email protected], [email protected].

Upload: hacong

Post on 23-May-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

1

Supporting Information for:

Specific Acentric-Mode Displacement Analysis of

RbPbCO3F and CsPbCO3F: Synthesis, Structure,

and Second-Harmonic Generating Properties of

Alkali-Metal Lead Fluoro-Carbonates

T. Thao Tran1, P. Shiv Halasyamani

1,*, and James M. Rondinelli

2,*

1Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX 77204-

5003

2Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania

19104, United States

CORRESPONDING AUTHOR EMAIL ADDRESS: [email protected], [email protected].

2

Figure S1. Experimental and calculated powder X-ray diffraction patterns of RbPbCO3F and

CsPbCO3F

Figure S2. IR spectrum of RbPbCO3F

Figure S3. UV-Vis diffuse reflectance spectrum of RbPbCO3F

Figure S4. Thermogravimetric analysis and differential thermal analysis diagram of RbPbCO3F

under N2

Figure S5. Powder X-ray diffraction of final residuals after TGA/DTA analysis

Figure S6. Electron localization function (ELF) and isosurfaces for RbPbCO3F and CsPbCO3F

Table S1. Selected bond distances (Å) and angles (deg)

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for

RbPbCO3F.

Table S3. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for

CsPbCO3F

Table S4. Bond valence analysis for RbPbCO3F

Table S5. Bond valence analysis for CsPbCO3F

Table S6. Born effective charges for CsPbCO3F and RbPbCO3F.

Table S7. Ideal P-6m2 structure used in the mode-polarization vector analyses of RbPbCO3F and

CsPbCO3F.

3

Figure S1. Experimental and calculated powder X-ray diffraction patterns of RbPbCO3F and

CsPbCO3F

4

Figure S2. IR spectrum of RbPbCO3F

ν(C−O) δ( OCO) ν(Pb−F)

RbPbCO3F 1410, 1038 836, 687 400

5

Figure S3. UV-Vis diffuse reflectance spectrum of RbPbCO3F

6

Figure S4. Thermogravimetric analysis and differential thermal analysis diagram of RbPbCO3F

under N2

7

Figure S5. Powder X-ray diffraction of final residuals after TGA/DTA analysis

8

Figure S6. Electron localization function (ELF) and isosurfaces for CsPbCO3F (left) and

RbPbCO3F (right) viewed along [001] and projected onto the (001) plane at a distance of 0 Å

from the origin, respectively, illustrating a nearly symmetric charge distribution about the Pb

sites. Maroon: Pb; Red, O; Brown, C.

CsPbCO3F RbPbCO

3F

9

Table S1. Selected bond distances (Å) and angles (deg)

RbPbCO3F CsPbCO3F

Pb – O × 6 2.6865(8) Pb – O × 6 2.7086(17)

Pb – F × 2 2.421(7) Pb– F Pb– F

2.23(3) 2.88(3)

C – O × 3 1.290(6) C – O × 3 1.300(11) O – Pb – O O – Pb – O F – Pb – O F – Pb – O

49.1(2) 70.9(2) 85.8(18) 93.8(16)

O – Pb – O O – Pb – O F – Pb – O

49.1(5) 70.9(5) 90.0

Pb – F – Pb 175.4(19) Pb – F – Pb 180.0

10

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for

RbPbCO3F.

Atom x y z Ueqa

Rb Pb C O F

0.6667 1.0000 0.3333 0.4726(6) 0.9580(17)

0.3333 1.0000 0.6667 0.9451(12) 0.9790(9)

0.0000 0.5000 0.5000 0.5000 0.0000

0.011(3) 0.007(2) 0.011(3) 0.020(2) 0.020(14)

a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor

11

Table S3. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for

CsPbCO3F

Atom x y z Ueqa

Cs Pb C O F

0.3333 0.0000 0.6667 0.5275(12) 0.0000

0.6667 0.0000 0.3333 0.4725(12) 0.0000

0.5000 0.0000 0.0000 0.0000 0.4360(4)

0.014(4) 0.010(4) 0.006(5) 0.020(3) 0.023(6)

a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor

12

Table S4. Bond valence analysis for RbPbCO3Fa

Atom O F ΣΣΣΣcations

Rb Pb C

0.133 [×6] 0.212 [×6]

1.31 [×3]

0.103 [×3] 0.348 [×2]

1.11

1.97

3.93

ΣΣΣΣanions 2.00 1.01

a Bond valence sums calculated with the formula: Si = exp[(R0-Ri)/B], where Si=valence of bond “i” and B=0.37.

13

Table S5. Bond valence analysis for CsPbCO3F a

Atom O F ΣΣΣΣcations

Cs Pb C

0.143 [×6] 0.199 [×6]

1.28 [×3]

0.115[×3] 0.582 0.101

1.20

1.89

3.84

ΣΣΣΣanions 1.96 1.03

a Bond valence sums calculated with the formula: Si = exp[(R0-Ri)/B], where Si=valence of bond “i” and B=0.37.

14

Table S6. Born effective charges of RbPbCO3F and CsPbCO3F in units of electrons.

RbPbCO3F CsPbCO3F

ATOM Ionic Z*11 Z

*33 Z

*11 Z

*33

Pb +2 3.6 3.2 3.7 3.00 Cs, Rb +1 1.2 1.4 1.3 1.5 C +4 2.7 0.1 2.8 0.04 O(1) -2 -2.3 -0.5 -2.3 -0.6 O(2) -2 -2.3 -0.5 -2.3 -0.6 O(3) -2 -2.3 -0.5 -2.3 -0.6 F -1 -0.7 -3.3 -0.9 -2.9

15

Table S7. Ideal P-6m2 structure used in the mode-polarization vector analyses of RbPbCO3F and

CsPbCO3F. The lattice experimental lattice constants are used for each pseudosymmetric phase.

Setting: a=b≠c, α=90°, β=90°, and γ=120°. Atom positions given in reduced units.

ATOM x y z WYCKOFF SITE SYMMETRY

A1+ 2/3 1/3 1/2 1f -6m2

M2+ 0 0 0 1a -6m2

C 1/3 2/3 0 1c -6m2

O 1/2 1/2 0 3j mm2

F 0 0 1/2 2g 3m.