spectroscopy of fermionic operators in ads/cft with flavor ingo kirsch workshop „qcd and string...

23
Spectroscopy of fermionic Spectroscopy of fermionic operators operators in AdS/CFT with flavor in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K., hep-th/0607xxx D. Vaman, I.K. , hep- th/0505164 (Harvard University)

Upload: jadyn-gange

Post on 14-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Spectroscopy of fermionic operatorsSpectroscopy of fermionic operators

in AdS/CFT with flavor in AdS/CFT with flavor

Ingo Kirsch

Workshop „QCD and String Theory“

Ringberg Castle, Tegernsee, July 2-8, 2006

I. K., hep-th/0607xxx

D. Vaman, I.K. , hep-th/0505164

(Harvard University)

Page 2: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Outline

1. Holographic meson spectroscopy - review on AdS/CFT with flavor (fundamentals) in the probe approximation (neglect backreaction of probe brane) - D3/D7 intersection, meson spectroscopy

2. Spectroscopy of spin-1/2 fluctuations in the D3/D7 system - fermionic action for the D7-brane - Dirac-like equations for spin-1/2 fluctuations

3. Beyond the probe approximation: - construction of the fully localized D3/D7 supergravity solution (including the backreaction of the D7-brane)

Page 3: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

The D3/D7 brane intersection

Set-up:

• preserves: 8 supersymmetries • SO(4) x SO(2) isometry

Field theory:

N=4 SU(Nc) super Yang-Mills (3-3 strings) coupled to Nf N=2 hypermultiplets (3-7 strings)

SU(2)R x U(1)R R-symmetry + SU(2) global sym.

quark mass: separate branes in 89 by a distance L ~ m

Page 4: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

More on the N=2 field theory

perturbative beta function:

running gauge coupling:

UV Landau pole:

probe approximation: conformal limitNf const:;Nc ! 1 ) ¯ ¸

N =2 ! 0

Page 5: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

D3/D7 in the probe approximation

`t Hooft limit:

Karch & Katz (2002)

4d N=4SU(N) type IIB SUGRA onSuper Yang-Mills theory AdS5 £ S5 +

coupled to D7-braneaction on4d N = 2hypermultiplets AdS5 £ S3

Page 6: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Spectroscopy of meson operators

Spin-0/spin-1 open string fluctuations on the D7-brane aredescribed by the bosonic part of the D7-brane action (DBI):

e.o.m.:

plane-wave ansatz:

eqn. for fluctuation:

SbD7 = ¡ T7

Zd8»

q¡ det(gP B

ab +Fab)

x8 = 0; x9 = L +f `(½)eik¢xY `(S3)

@2½f `(½) +

3½@½f `(½) +

µM 2

(½2 +L2)2¡

(`+2)½2

¶f `(½) = 0

@a

µ½3"3

½2 +L2gab@bx8;9

= 0

Kruczenski et al. (2003)

Page 7: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Meson spectroscopy (part 2)

solution:

quantization condition:

mass spectrum:

dual scalar meson operator:

f `(½) =½

(½2 +L2)n+`+1F (¡ (n+`+1);¡ n;`+2;¡ ½2=L2)

M 2s =

4L2

R4(n+`+1)(n+`+2) (n;`> 0)

M A`s = ¹Ãi¾A

i j X`Ãj + ¹qmX A

V X `qm (i;m= 1;2)

¢ = 3+`

¡ n = 32 +`¡ 1

2

p1+M 2R4=L2 ! ¹f (½) » ½3+` = ½¢

Page 8: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

U(1) chiral symmetry breaking

U(1)A chiral symmetry breaking:

- U(1) chiral sym. , , SO(2) isometry in x8, x9

- broken by quark condensate:

D3NONSUSY/D7:

screening effect: D7-branes repel from spont. U(1) breaking: m! 0 , c 0 singularity

X9

Babington, Erdmenger, Evans, Guralnik, I.K. (2003)

à ! e¡ i "à ~à ! e¡ i " ~Ã

c= hÃ~Ãi 6= 0

Page 9: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Meson spectrum and large Nc Goldstone boson (')

Consider fluctuations x8=f(r) sin(k¢x) , x9 =h(r) sin(k¢x) of the plane

wave type (M2=-k2) around the embedding solution x8=0, x9 = x9(r) ) meson spectrum M(m)

mexican hat for small m

(GMOR)

X9

X8

Page 10: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Spectroscopy of fermionic operators

Spin-1/2 open string fluctuations on the D7-brane are described by

the fermionic part of the D7-brane action:

Martucci et al., hep-th/0504041

where»A world-volumecoordinates (A = 0;¢¢¢;7)

¡ A pullback of 10d gamma matrices;¡ A = ¡ M @AX M

ª 10d pos. chirality Majorana-Weyl spinor

FN P Q R S self-dual type IIB 5-form

DA covariant derivative

SfD 7 =

¿D 7

2

Zd8»

p¡ g¹ª P ¡ ¡ A (DA +

18

i2¢5!

FN P Q R S ¡N P Q R S ¡ A )ª

Page 11: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Equation of motion (part 1)

Dirac equation on :

decomposition:

D=ª +18

i2¢5!

¡ AFN P Q R S ¡N P QR S ¡ A ª = 0

AdS5 £ S3

ª =" ­ Â|{z}S5

­ ª|{z}AdS5

; Â = Âjj|{z}S3

­ Â?

{¡ M

5-form: FN P QRS =1R

"N P QRS ; Fnpqrs =1R

"npqrs

¡ M = ¾y ­ 14 ­ °M (M = 0;1;2;3;4)

¡ m = ¾x ­ °m ­ 14 (m= 5;6;7;8;9)

¡ M = ¾y ­ 14 ­ °M (M = 0;1;2;3;4)

¡ m = ¾x ­ °m ­ 14 (m= 5;6;7;8;9)

Page 12: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Equation of motion (part 2)

spinorial harmonics on n-sphere:

(for n=3) transform in the

result:

masses:

(S3 : n = 3)

m+` = 5

2 +`; m¡` = ¡ (1

2 + )

D=Sn §` = ¨ i¸`§

` = ¨ iR (`+ n

2 )§` (` > 0)D=Sn §

` = ¨ i¸`§` = ¨ i

R (`+ n2 )Â

§` (` > 0)

(D=AdS5 ¨ 1R (`+ 3

2) +1R|{z}

5¡ f orm

)ª §` =

((D=AdS5 ¡ 1

R (`+ 52))ª

+`

(D=AdS5 + 1R (`+ 1

2))ª¡`

)

= 0(D=AdS5 ¨ 1R (`+ 3

2) +1R|{z}

5¡ f orm

)ª §` =

((D=AdS5 ¡ 1

R (`+ 52))ª

+`

(D=AdS5 + 1R (`+ 1

2))ª¡`

)

= 0¡

( `+12 ; `

2) and ( `2;

`+12 ) of SO(4)

Page 13: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Dual operators?

The dual operators must have the following properties:

- spin ½

- mass-dimension relation:

-

Spin-½ operators:

SU(2)R £ SU(2)©: ( `+12 ; `

2) and ( `2;

`+12 )

F `® » ¹qX ` ~Ãy

®+ ~îX `q;

G® » ¹Ãi¾Bi j ¸®C X `Ãj + ¹qmX B

V ¸®C X `qm (B;C = 1;2)

Ãi = (Ã; ~Ãy) [(0;0)];qm = (q; ¹~q) [(0; 12)] fundamentals

¸®A [(12;0)];X

` = X f i1 ¢¢¢X i l g [( `2;

`2)] adjoint ¯elds

¢ = jm§` j +2=

(92 +`52 +`

¢ = jm§` j +2=

(92 +`52 +`

Page 14: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Spectrum of spin-½ fluctuations (part 1)

Dirac equation on

Mück &Viswanathan (1998)

second order equation:

plane-wave ansatz:

e.o.m. for fluctuations:

ª `(x;r) = eiP ¹ x¹f `(r) ; M 2 = ¡ P ¹ P¹

(z = R2=r)

(z2@2z ¡ dz@z ¡ m2R2 +6+mR°z)ª (x¹ ;z) = 0

AdS5:

(D=AdS5 ¡ m§` )ª §

` = 0(D=AdS5 ¡ m§` )ª §

` = 0

³@2r + 6

r @r + 1r 2 (¡ jm`j2R2 +6+ jm`jR°r ) + M 2R 4

(r2+L 2)2

´f `(r) = 0

³@2r + 6

r @r + 1r 2 (¡ jm`j2R2 +6+ jm`jR°r ) + M 2R 4

(r2+L 2)2

´f `(r) = 0

Page 15: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Spectrum of spin-½ fluctuations (part 2)

solution:

where

spectrum:

¡ n+ = jm`j ¡ 12

p1+M 2=L2 ; ¡ n¡ = ¡ n+ +1

¡m+

` = 52 +`; m¡

` = ¡ (12 + )

¢

M 2G =

4L2

R4(n+ +`+2)(n+ +`+3) (n+ > 0;`> 0)

M 2F =

4L2

R4(n¡ +`+1)(n¡ +`+2) (n¡ > 0;`> 0)

f `(r) = r jm` j¡ 3(L2 +r2)12 ¡ jm` j¡ n+

2F 1

³12 ¡ jm`j ¡ n+;¡ n+; jm`j + 1

2;¡r 2

L 2

´a+

+r jm` j¡ 2(L2 +r2)¡12 ¡ jm` j¡ n ¡

2F 1

³¡ 1

2 ¡ jm`j ¡ n¡ ;¡ n¡ ; jm`j + 32;¡

r 2

L 2

´a¡

f `(r) = r jm` j¡ 3(L2 +r2)12 ¡ jm` j¡ n+

2F 1

³12 ¡ jm`j ¡ n+;¡ n+; jm`j + 1

2;¡r 2

L 2

´a+

+r jm` j¡ 2(L2 +r2)¡12 ¡ jm` j¡ n ¡

2F 1

³¡ 1

2 ¡ jm`j ¡ n¡ ;¡ n¡ ; jm`j + 32;¡

r 2

L 2

´a¡

Page 16: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Supermultiplets in the D3/D7 theory

Masses of supermultiplets: Kruczenski et al. (2003)

Field content:

M 2 =4L2

R4(n+`+1)(n+`+2) (n;`> 0)

8(`+1) bosons+ fermions

°uctuation (j 1; j 2)q spectrum op. ¢bos. 1 scalar ( `

2,`2 +1)0 M I ;¡ (n;`+1) (` ¸ 0) CI ` 2

2 scalars ( `2,

`2)2 Ms(n; ) (` ¸ 0) M A`

s 31 scalar ( `

2,`2)0 M I I I (n; ) (` ¸ 1) J ¹ `

B 31 vector ( `

2,`2)0 M I I (n; ) (` ¸ 0)

1 scalar ( `2,

`2 ¡ 1)0 M I ;+(n;` ¡ 1) (` ¸ 2) { 4

ferm. 1Dirac ( `2,

`+12 )1 MF (n; ) (` ¸ 0) F `

®52

1Dirac ( `2,

`¡ 12 )1 MG(n;` ¡ 1) (` ¸ 1) G`

®92

fluctuation

Page 17: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Baryons in a phenomenological model

Consider a large N baryon:

Dirac equation on

baryon spectrum:

at large N as expected from FT, Witten (1979)

B0 =1

pN!

"i1 i2:::iN Ãi1 :::ÃiN (¢ = 32N)

AdS5:

(D=AdS5¡ m)ª = 0; m= ¢ ¡ 2= 3

2N ¡ 2

) MB » N

M 2B = 4L 2

R 4 (n+ 32N ¡ 3

2)(n+ 32N ¡ 5

2)

as in

Teramond & Brodsky (2004/05)

Page 18: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Leaving the quenched approximation…

Quenched approximation: lattice QCD: fermion determinant: , 10-20% error ) quark-loops in QCD correlation functions are ignored AdS/CFT: quenched = probe approximation: no backreaction of the “flavor'' (D7-)brane on the geometry

Beyond the quenched approximation:

lattice QCD: logarithm of the fermion determinant is nonlocal ) dramatic slow-down of the Monte Carlo algorithms Grassmann variables difficult to handle on computers ) difficult to go beyond the quenched approximation! AdS/CFT: Easier! Take into account the backreaction of the “flavor“ brane, ie. construct fully localized brane intersections

Page 19: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

The D3/D7 sugra background

Susy-preserving ansatz by Polchinski and Grana (2001):

metric:

axion-dilaton:

singularities: - curvature singularity at =0

- dilaton divergence at =L (! Landau pole L)

Page 20: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

The warp factor h(r,,)

Poison equation: D. Vaman, I.K. (2005)

Fourier expansion:

Schrödinger-like equation with log-potential (for 0):

,

or, ,

Page 21: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

The warp factor h(r,,) -- solution

Solution for

For Nf 0 series expansion ansatz: Gesztesy and Pittner (1978)

solution:

recursion relation for pn(x): (n=0,1,2,...)

Page 22: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Logarithmic tadpoles and one-loop vacuum amplitudes

Open string one-loop amplitude (to quadr. order in F): Di Vecchia et al. (e.g. hep-th/0503156)

gauge coupling and -angle:

­Results: nonconformal theories lead to (harmless) logarithmic tadpoles in the SUGRA background which reproduce the correct perturbative gauge theory parameters

Page 23: Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,

Summary and Outlook

Two extensions of holography with flavor

1) Spectra of fermionic operators: - computed the mass spectrum of spin-½ operators in the D3/D7 theory from the fermionic part of the D7-brane action

2) Beyond the probe approximation - fully localized D3/D7 solution - completed the solution by providing an analytic expression for the warp factor h(r, ) in terms of a convergent series - related the pathology of the D3/D7 background (dilaton divergence) to the Landau pole in the gauge theory

Outlook: - The techniques discussed in this talk should be useful for the holographic computation of baryon spectra including Witten‘s string theory realization of a baryon vertex