spin-wave nanograting coupler haiming yu 1,2, georg dürr 1, rupert huber 1, michael bahr 1, thomas...

31
Spin-wave nanograting coupler Haiming Yu 1,2 , Georg Dürr 1 , Rupert Huber 1 , Michael Bahr 1 , Thomas Schwarze 1 , Florian Brandl 1 , and Dirk Grundler 1 1 Physik-Department, Technische Universität München 2 Spintronics Interdisciplinary Center, Beihang University [email protected]

Upload: janice-julia-ball

Post on 05-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Spin-wave nanograting coupler

Haiming Yu1,2, Georg Dürr1, Rupert Huber1, Michael Bahr1, Thomas Schwarze1, Florian Brandl1, and Dirk Grundler1

1 Physik-Department, Technische Universität München

2 Spintronics Interdisciplinary Center, Beihang University

[email protected]

Page 2: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Outline

1. Fundamentals on Spin Waves

2. Spin Waves nano-grating coupler

3. Sample Preparation

4. Further Analysis and conclusion

Page 3: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

1.Fundamentals on Spin Waves

Page 4: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

4

What is a spin wave?

- Aligned spins- Starts to precess- Couple to their neighbours

© S

aito

h gr

oup

Page 5: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

5

Dipolar spin waves

Dipolar spin waves dispersion

Page 6: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

6

Landau-Lifshitz equation: effHMt

M

M∇M

A2+rd)r,r(G

~+H=)r(H 2

2s

3

Vappleff ∫

、、

...+

...+

Spin waves - dipolar-exchange

dipolar interaction exchange interaction

Page 7: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

2. Spin Waves nano-grating coupler

Page 8: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Grating Coupler Effect in Plasmonics and Photonics

Ekmel Ozbay, Plasmonics: Merging Photonics and Electronics at NanoscaleScience 311, 189 (2006);X. Chen et al. Opt. Lett. 36, 796 (2011).

a

a a

Page 9: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Magnonic Grating Coupler

λ ~ 1 μm

λ ~ 10 mm

Page 10: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Key Results

Page 11: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

3. Sample Preparation

Page 12: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Dot Structure

1. E-beam lithography

2. Ion beam milling

3. Evaporation of Py or Co

(without taking it from the vacuum chamber!)

4. Lift-off process Py (25 nm)

48 nm

15 nm

CoFeB

300 nm

Page 13: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Integrate Spin Wave AntennaeCoplanar Waveguide (CPW)

1. Al2O3 (5 nm) using Atomic Layer Deposition

2. E-beam Lithography for 4 Integrated Gold CPWs

CPW1CPW2CPW3CPW4

CPW1

CPW2

CPW3

CPW4

Page 14: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

3. Spin-wave Measurements

Page 15: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

VNA Setup

The microwave current supplied by the VNA excites the spins through the oscillating magnetic field which surrounds the inner conductor

Page 16: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Angle Dependence @ 40mT

Page 17: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Spin-wave Modes Simulation

Daemon-Eshbach mode dispersion

Backward Volume mode dispersion

d = 48 nm

μ0Ms = 1.8 Tμ0H = 40 mT

Page 18: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

“Crossing” modes

Page 19: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Omnidirectional Spin Wave Modes

Page 20: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

4. Further Analysis

Page 21: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Lattice Constant Dependence

Page 22: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Material Dependence

Page 23: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

5. Conclusion

Page 24: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Advantages and perspectives

1. Omnidirectional spin wave emission

2. Wave vector tuned by lattice constant

3. Engineered BMC by changing two materials

for even larger spin wave enhancement

4. Interlock the phase of neighboring

spin transfer torque nanooscillators

Page 25: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Thank you for your attention!

Page 26: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Magnonic Crystals (MCs)

1D MC Anti-Dot Lattices (ADLs)

2D Bicomponent MCs (BMCs)

Page 27: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Magnonic Grating Coupler in MCs

Page 28: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Material Dependence

Page 29: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Transmission

BMC S34 Plane film S12

Page 30: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Out-of-plane Field @1.8T

Page 31: Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1

Proposed Magnonic Device

Pufall, M. R. Rippard, W. H. Russek, S. E. Kaka, S. & Katine, J. A. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).