spintronics and spin-based quantum dot quantum computingspin-based quantum dot quantum computing...

31
Spintronics and Spin-based quantum dot quantum computing Charles Tahan Physics Dept., University of Wisconsin-Madison ECE746-Quantum Electronics, Guest Lecture 2:30pm, Oct. 26, 2004

Upload: others

Post on 02-Feb-2021

14 views

Category:

Documents


1 download

TRANSCRIPT

  • Spintronics

    and

    Spin-based

    quantum dot

    quantum computing

    Charles Tahan

    Physics Dept., University of Wisconsin-Madison

    ECE746-Quantum Electronics, Guest Lecture

    2:30pm, Oct. 26, 2004

  • Ahead of the curve

    Spintronics

    Quantum dot quantum computing

    Datta/Das SPINFET paper

    Loss/Divincenzo paper

    QDQC in silicon at Wisconsin

  • Datta/Das: “Electric analog of the optoelectronic modulator”

    Schotkky gate

    AlAs

    InAs

    Ferromagnetic

    sourceFerromagnetic

    drain

    quantum

    wire

    • Ballistic electron transport through the quantum wire

    • Spin polarized injection from ferromagnetic source

    • Spin orbit coupling rotates the electron spin depending on

    the strength of the electric field and the length of the wire

    • At the drain, the electron’s transmission probability depends

    on the relative spin alignment

    • Thus control of the source-to-drain current with the top gate

    • a SPINFET?!

    B = v "E

  • Mark Eriksson (Physics)

    Robert Blick (ECE)

    Sue Coppersmith (Physics)

    Robert Joynt (Physics)

    Max Lagally (Materials Science)

    Dan van der Weide (ECE)

    Mark Friesen (Materials Science and Physics)

    Don Savage (Materials Science)

    Levente Klein (Physics)

    Shaolin Liao (Materials Science)

    Keith Slinker (Physics)

    Charles Tahan (Physics)

    Jim Truitt (ECE)

    Kristin Morgenstern (Physics)

    Srijit Goswami (Physics)

    Diu Ngeihm (Physics)

    UW-Madison Solid-State Quantum Computing

  • Quantum

    Com

    puting

    Quantum Algorithms /

    Computer Science,

    Math

    Quantum Devices /

    Physics, ECE

    Quantum Technology New paradigm for

    information science

  • Motivation

    Shor Algorithm for prime factorization: killer application

    Error correction on a QC is possible

    Peter ShorR. Feynman

    Charles

    Bennett

    David

    Deutsch

  • Quantum over classical

    • Superposition - Parallelism

    • Interference

    • Entanglement

  • Building a QC

    • Good, scalable qubit

    • Two-qubit entanglement operation

    • Fast readout/measurement of qubit

    • Fast initialization / source of new qubits

    • Quantum error correction

    • Flying qubits

  • Formalism

    !!"

    #$$%

    &=0

    10 !!

    "

    #$$%

    &=1

    01Qubit:

    “off” “on”

    !!"

    #$$%

    &

    ±=

    ±=±

    1

    1

    2

    1

    2

    10

    “off AND on”

    Quantum superposition

    Multiple qubits:

    [ ]180

    1

    0

    0

    1

    0

    0

    1

    1

    00

    1

    01

    0

    1

    1

    0

    0

    1

    010

    !=""#

    $%%&

    '(

    """""

    #

    $

    %%%%%

    &

    '

    =""#

    $%%&

    '(

    """""

    #

    $

    %%%%%

    &

    '

    ""#

    $%%&

    '

    ""#

    $%%&

    '

    =""#

    $%%&

    '(""#

    $%%&

    '(""#

    $%%&

    '

    =((

    dimensional

    Hilbert

    space

  • Formalism

    Density matrix formalism

    State vector formalism of quantum mechanics

    !! EH =

    !=i

    iiip ""#[ ]!! ,Hi

    h& "=

    !!"

    #$$%

    &=

    00

    01

    0' !!

    "

    #$$%

    &=

    10

    00

    1' !!

    "

    #$$%

    &=

    +11

    11

    2

    1'

    L!!!=321""""QC

  • Good qubit: Spin• Electronic or nuclear spin !

    • Natural 2 level system

    • Long coherence times

    • Scalable (?) in semiconductor structures

    B

    !!"

    #$$%

    &=

    00

    01

    0' !!

    "

    #$$%

    &=

    10

    00

    1' !!

    "

    #$$%

    &=

    +11

    11

    2

    1'

    Example:

    !!"

    #$$%

    &=

    11

    11

    2

    1' !!

    "

    #$$%

    &=

    10

    01

    2

    1' !!

    "

    #$$%

    &=

    00

    01'

    0=t 21 TtT >> 1Tt >21 TT >>

    ?

  • Quantum Dot Architectures

    GaAs/

    AlGaAs

    Si/SiGe

    Carbon Nanotubes

    Ge Huts

  • Wisconsin QDQC design

    1. Gated Quantum Dot QC (Loss & DiVincenzo)

    • 1 electron spin = 1 qubit

    • Self aligning to gates (no need to align to donors)

    • Fast operations through Heisenberg exchange

    • Scalable (hopefully)

    2. Silicon

    • Long decoherence times (T2 ~ milliseconds for P:28Si)

    • Low spin-orbit coupling

    • Spin-zero nuclei 28Si

    3. Back-gate

    • Size-independent loading and well-screened

    manipulation of dots[Freisen, et.al., APL]

    [Freisen, et.al., PRB]

  • A quantum well quantum dot

    Si substrate

    Step graded

    Silicon-Germanium

    Si0.75Ge0.25

    Si0.75Ge0.25

    Strained SiQuantum

    Well

    (6-12 nm)

    Step graded SiGe

    Si cap layer

    Phosphorous donor atoms130 meV

    z

    - -- - - -- - - -- - - -

    - - -

    - - -

    -

    - - -

    -

    Metal

    gates

    -V (volts)

    single electron

    wave function

    Goal: a single electron tunably confined vertically and

    horizontally in a semiconductor nanostructure

    20-100 nm

  • Details…

    kx

    ky

    kz

    strain

    conduction band

    ~ 0.1 - 1 meV

    > 1 meV

    z (1

    5 n

    m Q

    W)

    Bloch functions

    !

    " = Envelope #Bloch

  • Si substrate

    Graded

    SiGe

    Si0.75Ge0.25

    Si0.75Ge0.25

    Strained 28Si

    Graded SiGe

    Si cap layer

    Phosphorous donor atoms

    Metal

    gates

    V (volts)

    single electron

    wave function

    1/f noise

    Nuclear 29Si

    spectral

    diffusion

    .N29

    Donor

    free (danger)

    zone

    Ge

    impurities

    in w.f. tail

    Rashba

    Spin-Orbit

    Coupling

    qubit-qubit

    magnetic

    dipole

    coupling

    Quantum

    Well

    (6-12 nm)

    phonons

    Decoherence

  • Universal QCQuantum Algorithms /

    Computer Science,

    MathA universal set of gates can compute an arbitrary

    function (e.g. NAND for classical computation)

    Single qubit gates and CNOT are a universal set of gates for

    quantum computation.

    !!!!!

    "

    #

    $$$$$

    %

    &

    =

    0100

    1000

    0010

    0001

    CNOTU

    CN

    OT!

    !

  • Entanglement

    A quantum state of N qubits that cannot be written as a N-tensor

    product is said to be entangled.

    21??

    2

    1100!"

    +=#

  • Exchange and CNOT

    J ! 0

    Uncoupled

    J > 0

    Swap

    H2 quantum dots " Heff = J s1!s2

    SWAP: Int[J(t) dt] = #!

    SWAP doesn’t entangle but

    Sqrt[SWAP] does.

    => CNOT

  • Simulation: Coupled Qubits in Silicon

    on

    off

    screened

    potential

    unscreened

    potential

    (Friesen, Rugheimer, Savage, et al., ’03)

    on

    off

    screened

    potential

    probability

    density

    J =20 µeV

    J ! 0

  • Exchange and CNOT

    Heff = J(t) s1!s2

    SWAP

    Zi

    SWAP

    ZiZi

    CNOTUeUeeU 121

    )2/()2/()2/( !!! "=

    !

    U(t)" = ei

    hS1 #S2 J (t )$ dt

    21

    2

    2

    2

    1

    22 SSSSS !++=

    !==" h/)( JTdttJ

    SWAP

    iiUeieU4/

    1000

    0120

    0210

    0001

    exp21 !! ! =

    """""

    #

    $

    %%%%%

    &

    '

    (((((

    )

    *

    +++++

    ,

    -

    .

    .==

    /SS

  • One qubit operations

    • Single qubit rotations on the Bloch sphere

    !!"

    #$$%

    &=

    01

    10X

    !!"

    #$$%

    & '=

    0

    0

    i

    iY

    !!"

    #$$%

    &

    '=

    10

    01Z

    !!"

    #$$%

    &

    '=

    11

    11H

    !!"

    #$$%

    &=

    )4/exp(0

    01

    'iT

    X

    Y

    Z

    H

    T

    !! h/iHteU "=

    2/XieU

    !"=10 =X

    2

    100

    +=H

    Physical

    realization?

    • ESR-AC Magnetic

    • On-chip Magnetic

    • Neighbor

    ferromagnetic dot

    • encoded qubits

  • Encoded qubits

    Logical qubit

    L0

    L1

    01

    10

    Physical qubits

    Doing a swap operation is the same

    as an X operation on the encoded

    space.

    0110)2,1( == XUSWAP

    Exchange is the same as rotation

    about X axis.

  • Initialization Schemes

    • B-field

    • Neighbor reference spin

    • Optical pumping

  • Readout Schemes

    • Magnetic STM tip

    • Spin-charge transduction

    – Spin-blockade transport measurement

    – Spin-orbital transduction

  • Device design for QD readout

    • Spin-dependent

    charge motion

    • SET detection

    • Microwave pumping

    y2DEG

    SET island

    Quantum DotSchottky

    gates

    Fast readout and initialization is

    important for error correction

    [Friesen, Tahan, Joynt, Eriksson, condmat]

    History…spin-charge

    transduction

    Loss/Divincenzo,

    Kane, …

  • Charge movement in asymmetric well

    relaxation

    !

    "

    !

    "microwave

    induced

    oscillations

    • spin info to charge info via spin-

    dependent excitation

    B

    Gate potentials define quantum well

    y

  • QEC - Active

    No cloning theorem: it is NOT possible to make a copy of an

    unknown quantum state

    The Shor code: 9 qubits

    !

    0

    H

    0

    CN

    OT

    CN

    OT

    0

    H

    0

    CN

    OT

    CN

    OT

    0

    H

    0

    CN

    OT

    CN

    OT

    0

    0

    CN

    OT

    CN

    OT

    !!!="

    +++="

    L

    L

    11

    00

    11111

    00000

    =!

    =!

    L

    L

    phase flip code

    bit flip code

    Threshold theorem

  • QEC - Passive

    • Decoherence Free Subspaces

    • Encoded qubits

    • Uses a symmetry of the problem

    Example: Collective dephasing

    Error:

    11

    00

    !ie"

    "

    Encoding: ( )

    ( )10012

    11

    10012

    10

    i

    iL

    +!

    "!

    Relative phases

    do not change

    under collective

    dephasing

  • K.Slinker/L.Klein

    Experimental Progress

    Si substrate

    Si.95Ge.05

    Si.90Ge.10

    Pure Si

    Quantum

    Well

    Si.80Ge.20

    Si.80Ge.20

    Si.85Ge.15

  • The end

    • Quantum dot quantum computing in silicon

    • http://qc.physics.wisc.edu/ for more

    information on this and all Wisconsin QC

    Charles Tahan

    University of Wisconsin-Madison

    [email protected]