spring pendulum investigation

23
Spring Pendulum Dynamic System Investigation K. Craig 1 Spring Pendulum Dynamic System Investigation Dr. Kevin Craig Professor of Mechanical Engineering Rensselaer Polytechnic Institute

Upload: rollo

Post on 29-Sep-2015

38 views

Category:

Documents


7 download

DESCRIPTION

differential equations of spring pendulum system

TRANSCRIPT

  • Spring Pendulum Dynamic System Investigation K. Craig 1

    Spring PendulumDynamic System Investigation

    Dr. Kevin CraigProfessor of Mechanical Engineering

    Rensselaer Polytechnic Institute

  • Spring Pendulum Dynamic System Investigation K. Craig 2

    Spring-PendulumPhysical System

  • Spring Pendulum Dynamic System Investigation K. Craig 3

    EngineeringSystem

    InvestigationProcess

    Spring-Pendulum

    Dynamic SystemInvestigation

    Engineering System Investigation Process

    PhysicalSystem

    SystemMeasurement

    MeasurementAnalysis

    PhysicalModel

    MathematicalModel

    ParameterIdentification

    MathematicalAnalysis

    Comparison:Predicted vs.

    Measured

    DesignChanges

    Is The ComparisonAdequate ?

    NO

    YES

    START HERE

  • Spring Pendulum Dynamic System Investigation K. Craig 4

    Physical ModelSimplifying Assumptions

    pure spring, i.e., negligible inertia and damping ideal (linear) spring frictionless pivot neglect all material damping and air damping point mass, i.e., neglect rotational inertia of mass two degrees of freedom, i.e., r and are the generalized

    coordinates (this assumes no out-of-plane motion and no bending of the spring)

    support structure is rigid

  • Spring Pendulum Dynamic System Investigation K. Craig 5

    Physical Modelwith

    Parameter Identification

    m = pendulum mass = 1.815 kgmspring = spring mass = 0.1445 kg = unstretched spring length = 0.333 mk = spring constant = 172.8 N/mg = acceleration due to gravity = 9.81 m/s2Ft = 5.71 N = pre-tension of springrs = static spring stretch, i.e., rs = (mg-Ft)/k = 0.070 m rd = dynamic spring stretchr = total spring stretch = rs + rd

  • Spring Pendulum Dynamic System Investigation K. Craig 6

    Spring Parameter Identification

    spring

    t

  • Spring Pendulum Dynamic System Investigation K. Craig 7

    magnitude changedirection changemagnitude change

    direction change2

    r

    r

    r r

    r

    +

    ( ) ( )

    r

    r r r

    2r

    r r

    r redr v re r e v e v edtdv a r r e r 2r edt

    a e a e

    == = + = +

    = = + + = +

    GGG GG

    rv

    v

    r

    r

    de edde e

    d

    ==

    ree

    Polar Coordinates:Position, Velocity, Acceleration

  • Spring Pendulum Dynamic System Investigation K. Craig 8

    Rigid Body KinematicsXY: R reference frame (ground)xy: R1 reference frame (pendulum)

    x cos sin 0 Xy sin cos 0 Yz 0 0 1 Z i Icos sin 0 j sin cos 0 J 0 0 1 Kk

    = =

    ( )1 1 1 1 1 1R R R R R RR P R O R R OP R OP P R Pa a r r a 2 v = + + + + G G G G G G G G G G

    m + r

    k

    X

    Y

    xy

    P

    O

  • Spring Pendulum Dynamic System Investigation K. Craig 9

    Rigid Body Kinematics

    After substitution and evaluation:

    ( ) ( )1

    1

    1

    1

    R O

    RR

    OP

    RR

    R P

    R P

    a 0 k K

    r r j r sin I cos J

    k K v rj r sin I cos J

    a rj r sin I cos J

    = = =

    = + = + + = =

    = = + = = +

    GG G A AG G G

    ( ) ( )R P 2 a i r 2r j r r = + + + + + G A A

  • Spring Pendulum Dynamic System Investigation K. Craig 10

    Mathematical Model

    Free Body Diagram

    Nonlinear Equationsof Motion

    ( )( )

    2r rF ma m r r

    F ma m r 2r

    = = + = = + +

    A A

    ( )( )

    2tmr m r kr F mgcos 0

    r 2r gsin 0

    + + + =+ + + =

    A A

    ( )( )

    2tkr F mg cos m r r

    mgsin m r 2r

    + = + = + +

    A A

    t

  • Spring Pendulum Dynamic System Investigation K. Craig 11

    Mathematical Model:Lagranges Equations Lagranges Equations

    Generalized Coordinates

    Kinetic Energy

    Potential Energy

    GeneralizedForces

    Nonlinear Equationsof Motion

    ( )( )

    2tmr m r kr F mgcos 0

    r 2r gsin 0

    + + + =+ + + =

    A A

    ( )21V kr mg r cos2

    = + A A

    ( )22 21T m r r2

    = + + A

    1

    2

    q rq==

    r tQ FQ 0

    = =

    ii i i

    d T T V Qdt q q q + =

  • Spring Pendulum Dynamic System Investigation K. Craig 12

    LabVIEW Simulation Diagram

  • Spring Pendulum Dynamic System Investigation K. Craig 13

    Spring PendulumDynamic System

    ttime

    thetatheta position

    u^2

    square

    0.333

    spring lengthunstretched

    (meters)

    sin(u)

    sin

    rr position

    95.21

    k/mk=172.8 N/mm=1.815 kg

    u (^-1)

    inverse

    9.81

    gravity (m/s^2)

    cos(u)

    cos

    Sum2

    Sum

    Sum

    Product

    Product

    Product

    Product

    Product

    1/s

    Integrate r acc

    1/s

    Integratetheta vel

    1/s

    Integratetheta acc

    1/s

    Integrater vel

    2

    Gain

    5.710/1.815

    Ft=5.71 Nm=1.815 kg

    Clock

    MatLab Simulink Diagram

  • Spring Pendulum Dynamic System Investigation K. Craig 14

    Simulation Results

    0 10 20 30 40 50 60-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Simulation Results with Initial Conditions: theta = -0.274 rad, r = 0.046 m

    InitialConditions

    0

    0

    0.274 radr 0.046 m =

    =

  • Spring Pendulum Dynamic System Investigation K. Craig 15

    0 10 20 30 40 50 60-0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Simulation Results with Initial Conditions: theta = 0.021 rad, r = 0.115 m

    Simulation Results

    0

    0

    0.021 radr 0.115 m =

    =

    InitialConditions

  • Spring Pendulum Dynamic System Investigation K. Craig 16

    Actual Measured Dynamic Behavior

    0 10 20 30 40 50 60-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Experimental Results with Initial Conditions: theta = -0.274 rad, r = 0.046 m

    InitialConditions

    0

    0

    0.274 radr 0.046 m =

    =

  • Spring Pendulum Dynamic System Investigation K. Craig 17

    Actual Measured Dynamic Behavior

    0 10 20 30 40 50 60-0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Experimental Results with Initial Conditions: theta = 0.021 rad, r = 0.115 m

    InitialConditions

    0

    0

    0.021 radr 0.115 m =

    =

  • Spring Pendulum Dynamic System Investigation K. Craig 18

    Comparison

    0 10 20 30 40 50 60-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Simulation Results with Initial Conditions: theta = -0.274 rad, r = 0.046 m

    0 10 20 30 40 50 60-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    time (sec)r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Experimental Results with Initial Conditions: theta = -0.274 rad, r = 0.046 m

    Initial Conditions: 00

    0.274 radr 0.046 m =

    =

  • Spring Pendulum Dynamic System Investigation K. Craig 19

    Comparison

    0 10 20 30 40 50 60-0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Simulation Results with Initial Conditions: theta = 0.021 rad, r = 0.115 m

    0 10 20 30 40 50 60-0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    time (sec)

    r

    a

    d

    i

    a

    l

    a

    n

    d

    a

    n

    g

    u

    l

    a

    r

    p

    o

    s

    i

    t

    i

    o

    n

    (

    r

    a

    d

    o

    r

    m

    )

    Experimental Results with Initial Conditions: theta = 0.021 rad, r = 0.115 m

    Initial Conditions: 00

    0.021 radr 0.115 m =

    =

  • Spring Pendulum Dynamic System Investigation K. Craig 20

    Nonlinear Resonancemr m r kr F mg

    r r gt cos

    sin + + + =+ + + =

    AAa f

    a f

    2 0

    2 0Nonlinear Equations

    of Motion

    mr kr m r F mg

    r g r

    t !

    !

    + = + + FHGIKJ

    + + FHGIKJ =

    A

    A

    a f

    a f

    22

    3

    12

    32

    sin!

    cos!

    +

    +

    3

    23

    12

    "

    "

    !

    !

    r km

    r r Fm

    g g

    r g r g

    t+ = + +

    + + = +

    A

    A

    a f

    a f

    22

    32

    23

  • Spring Pendulum Dynamic System Investigation K. Craig 21

    r r r

    r mg Fk

    t

    = += +==

    0

    !

    !

    r km

    r r r r Fm

    g g

    r r g r g

    t+ + = + + +

    + + + = +

    a f a f

    a f

    A

    A

    22

    3

    2

    23

    !

    !

    r km

    r r r g

    gr

    rr

    gr

    rr

    + = + +

    + + =+ + + +

    A

    A A A A

    a f

    22

    3

    22

    3

    rkm

    gr

    2

    2

    =

    = +A

    !

    !

    r r r r g

    rr

    rr

    r+ = + +

    + = + + +

    2 22

    2 23

    22

    3

    A

    A A

    a f

  • Spring Pendulum Dynamic System Investigation K. Craig 22

    A A A+ + = + + = +r r r x r r x a f a fa f a f1A A A+ + + = + +

    + = +

    r x r x r x g

    x x

    ra f a f a fa f

    !

    !

    2 22

    2 23

    12

    23

    Define:

    !

    !

    x x x

    x x

    r+ = +

    + + = +

    2 2 22

    2 23

    12

    1 23

    a f

    a f

    !

    !

    x x x

    xxx x

    r+ = +

    + + =+ + +

    2 2 22

    2

    2 2 3

    2

    12

    1 1 3

    11

    1 2 3+ + x x x x "

  • Spring Pendulum Dynamic System Investigation K. Craig 23

    !

    !

    x x x

    x x x x

    r+ = +

    + = +

    2 2 22

    2

    2 23

    2

    1 2 1 13

    a f a f a f

    !

    !

    x x x

    x x x x

    r+ = +

    + = + +

    2 2 22

    2

    2 2 23

    2

    2 1 13

    a f a f

    x x

    x x

    r+ = ++ = + +

    2 2 22

    2 2

    22

    "

    "Neglecting nonlinear terms

    third order and higher

    Spring PendulumDynamic System InvestigationSpring-Pendulum Physical SystemSlide Number 3Physical ModelSimplifying AssumptionsPhysical ModelwithParameter IdentificationSpring Parameter IdentificationPolar Coordinates:Position, Velocity, AccelerationRigid Body KinematicsRigid Body KinematicsMathematical ModelMathematical Model: Lagranges EquationsSlide Number 12Slide Number 13Simulation ResultsSimulation ResultsActual Measured Dynamic BehaviorActual Measured Dynamic BehaviorComparisonComparisonNonlinear ResonanceSlide Number 21Slide Number 22Slide Number 23