st lucias energy transition

44
R O C K Y M O U N T A I N I N S T I T U T E W A R R O O M C A R B O N Saint Lucia National Energy Transition Strategy: Results October 17 th 2016 Caribbean Renewable Energy Forum Miami FURTHER, FASTER, TOGETHER R O C K Y M O U N T A I N I N S T I T U T E W A R R O O M C A R B O N

Upload: japan-caribbean-climate-change-partnership

Post on 15-Apr-2017

29 views

Category:

Environment


0 download

TRANSCRIPT

Page 1: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Saint Lucia National Energy Transition Strategy: Results October 17th 2016 Caribbean Renewable Energy Forum Miami

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Page 2: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Presenters Roy  Torbert,    Principal  –  Planning  Rocky  Mountain  Ins9tute  –  Carbon  War  Room                          

               

 

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Sylvester  Clauzel  Permanent  Secretary  –  Sustainable  Development                Victor  Emmanuel  Business  Development  Manager,    St.  Lucia  Electricity  Services                                  Limited  (LUCELEC)                      

 

Page 3: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Agenda •  Context  •  Process    •  NETS  Results  

o  Energy  o  Economic    

•  Lessons  Learned    

•  Q&A      

3  

Page 4: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Context 1

4  

Page 5: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Project Stakeholders and Supervisors LUCELEC  is  a  ver9cally  integrated  public  u9lity  which  currently  has  the  sole  responsibility  for  the  genera9on,  transmission,  distribu9on  and  sale  of  electricity  in  Saint  Lucia.          In  2010,  the  Government  of  Saint  Lucia  approved  the  Na9onal  Energy  Policy,  emphasizing  RE  deployment  with  the  intent  to  lower  the  cost  and  price  vola9lity  of  electricity  and  to  reduce  dependence  on  imported  oil.      In  2012,  refined  goals  were  announced  which  proposed  a  renewable  energy  penetra9on  target  of  35%  by  2020  and  a  20%  reduc9on  in  energy  consump9on  for  the  public  sector.      In  January  of  2016,  the  Government  passed  a  law  crea9ng  a  new  independent  regulator,  the  Na9onal  U9li9es  Regulatory  Commission.      

Page 6: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Independent Technical Partners Rocky  Mountain   Ins<tute-­‐Carbon  War   Room  &   Clinton   Climate   Ini<a<ve,  similar-­‐minded  nonprofits  joined  forces  in  2015  to  accelerate  the  transi9on  of  small   island   economies   toward   reliable,   cost-­‐effec9ve,   and   clean   energy  systems  and  to  create  a  blueprint  for  other  isolated  economies  

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

DNV  GL  is  the  largest  independent  technical  advisor  on  renewable  energy  with  more  than  1000  staff  in  renewable  energy  in  50  loca9ons,  across  27  countries  

Page 7: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Saint Lucia Energy Landscape •  59  MW  peak  served  by  87  MW  diesel  genera9on  

•  Government  target  of  35%  renewable  energy  penetra9on  by  2020  

•  Planned/Announced  Projects:  –  3  MW  Solar  PV  

–  12  MW  Wind  

–  30  MW  Geothermal  

–  Government  Energy  Efficiency  Projects  •  Changing  energy  landscape  driven  by  economics  and  RE  energy  

targets  and  commitments  to  climate  change  mi9ga9on  

•  Requires  careful  technical  analysis  to  make  informed  policy  and  investment  decisions,  along  with  alignment  of  key  stakeholders  

Page 8: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

National Energy Transition Strategy •  Na<onal  Energy  Transi<on  Strategy  (NETS)  

signed  jointly  by  Government  of  Saint  Lucia  and  LUCELEC  in  January  2016  

•  At  its  core,  the  NETS  is  an  Integrated  Resource  Plan  (IRP),  with  unique  factors  in  Saint  Lucia:  –  Inclusive  process  involving  both  key  partners  at  

each  stage  of  results  and  decision  making  –  Independent  facilita9on  and  analysis  provided  in-­‐

kind  by  third-­‐par9es  –  Public  input  gathered  through  a  stakeholder  

consulta9on  session  

•  Both  par9es  will  jointly  submit  the  NETS/IRP  to  the  Na9onal  U9li9es  Regulatory  Commission  (NURC).      

Page 9: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Process

9  

2

Page 10: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

The NETS Core: An Integrated Resource Plan

The  Integrated  Resource  Plan  (IRP)  considers  forecasted  loads  over  a  20-­‐year  period  and  

assesses  the  least-­‐cost  supply  and  demand  side  op9ons  to  reliably  meet  that  load.  

Page 11: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Questions the NETS Seeks to Answer •  How  will  all  our  planned  resource  investments  including  solar,  wind,  and  

geothermal  interact  with  exis<ng  diesel  infrastructure?  

•  Will  large-­‐scale  renewable  energy  integra9on  affect  grid  reliability?  

•  How  do  different  energy  mix  scenarios  affect  u<lity  economics  and  rates?  

•  Is  there  an  op<mal  geothermal  generator  size  for  the  grid?  

•  Should  we  consider  other  resources  in  the  energy  transi9on  such  as  baSery  storage  or  energy  efficiency?  

•  What  are  the  costs  and  benefits  of  u<lity-­‐owned  assets  versus  distributed  genera<on,  both  for  renewables  and  conven9onal  genera9on?  

Page 12: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Balancing Needs of All Stakeholders

Goal  

Objec<ve  

• Overarching  priori9es  for  electrical  system  (e.g.  reliability,  cost  stability)  

• Targets  set  by  both  par9es  to  achieve  the  overall  goal  

Measurement  • Specific  metrics  (e.g.  ‘Return  on  Equity’  or  ‘SAIDI’),  measured  across  all  examined  scenarios    

At  the  kickoff,  partners  agreed  to  a  broad  set  of  goals,  and  objec9ves  and  measurements  were  refined  throughout  the  process:  

Page 13: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Explored Resources 13  

Page 14: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Saint Lucia: Developing Scenarios Stakeholders  agreed  to  develop  scenarios  which  explore  the  following  variables:  

•  Carbon-­‐Intensity:  conven9onal  to  renewable  genera9on  

•  Ownership  Modality:  highly  centralized  to  highly  decentralized  system  

 

                                                                               Hybrid  

   

                       U<lity-­‐Owned    

Distributed    

Centralized  Ownership  

Decentralized  Ownership  

Conven5onal   Renewable  

Diesel  Fuel  Only  

Natural  Gas  IPP   Geothermal  

Solar  PV  

Wind  

Storage  

Page 15: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Results 3

15  

Page 16: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Resource Assessments Solar  Resource  Assessment:    •  Applied  GIS-­‐Based  Methodological  Approach:  

16

Page 17: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Island-Wide Solar Resource Assessment •  RESULTS:  

! GIS-­‐generated  .kmz  and  .shp  files  showing  poten9al  project  sites  for  each  technology  (ground-­‐mount,  roolop,  carport)  •  Example  (carport):    

17

Page 18: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Explored Scenarios 18  

Page 19: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

2017 Dispatch Visualization Peak  at  2PM  Min  at  4AM      

*SOC  means  ‘state  of  charge’  for  the  ba?eries  

Modeled  peak  day:  June  23rd    2017  Es9mated  Peak:  61.7  MW                      Storage:  0  MWh    

0  

20  

40  

60  

80  

100  

0  

20  

40  

60  

80  

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24  

BaSery  State  of  Cha

rge  (%

)  

Power  (M

W)  

Solar  /  High  DG,  Peak  Load  

Diesel   U9lity  PV     Distributed  PV   Load  

Page 20: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

2019 Dispatch Visualization Peak  at  2PM  Min  at  4AM      

*SOC  means  ‘state  of  charge’  for  the  ba?eries  

Modeled  peak  day:  June  23rd    2019  Es9mated  Peak:  61.25  MW                      Storage:  7  MWh    

0  

20  

40  

60  

80  

100  

0  

20  

40  

60  

80  

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24  

BaSery  State  of  Cha

rge  (%

)  

Power  (M

W)  

Solar  /  High  DG,  Peak  Load  

Diesel   U9lity  PV     Distributed  PV   Load   Net  Load   SOC  

Page 21: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

2024 Dispatch Visualization Peak  at  2PM  Min  at  4AM      

*SOC  means  ‘state  of  charge’  for  the  ba?eries  

Modeled  peak  day:  June  23rd    2024  Es9mated  Peak:  63.4MW                      Storage:  20  MWh    

0  

20  

40  

60  

80  

100  

0  

20  

40  

60  

80  

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24  

BaSery  State  of  Cha

rge  (%

)  

Power  (M

W)  

Solar  +  Wind  /  High  DG,  Peak  Load  

Diesel   Wind   U9lity  PV     Distributed  PV   Load   Net  Load   SOC  

Page 22: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

2024 Dispatch Visualization Peak  at  2PM  Min  at  4AM      

*SOC  means  ‘state  of  charge’  for  the  ba?eries  

0  

20  

40  

60  

80  

100  

0  

20  

40  

60  

80  

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24  

BaSery  State  of  Cha

rge  (%

)  

MW  

Solar  +  Wind  +  Geo  /  High  DG,  Peak  Load  

Geothermal   Diesel   Wind   U9lity  PV  

Distributed  PV   Load   Net  Load   SOC  

Modeled  peak  day:  June  23rd    2024  Es9mated  Peak:  63.4MW                      Storage:  20  MWh    

Page 23: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Grid Integration Study - Methodology 23  

Defini<on  of  grid  

regula<on  

Result  of  viola<on  

Mi<ga<on  

Thermal  Loading    

Grid  regula<ons  define  a  maximum  (100%)  thermal  load  on  lines,  conductors,  wires  and  other  equipment  

Loading  above  100%  could  cause  equipment  damage  

or  fires  

Equipment  upgrades  can  be  required  to  avoid  thermal  overloading  

Reverse  Power  Flow  Current  equipment  meters  do  not  typically  sense  the  flow  of  power  from  the  genera<on  area  to  the  

line.    

Reverse  flow  from  distributed  genera<on  such  as  solar  PV  could  cause  voltage  problems    

Equipment  upgrades  could  be  required  to  sense  power  flow  from  both  

direc<ons  

Over  and  under  voltage  

Regula<ons  require  voltage  at  all  points  on  the  distribu<on  system  to  be  between  95%  and  105%  of  

nominal  

Over  or  under  voltage  results  in  customer’s  equipment  issues  or  

damage,  and  service  may  be  lost  

Installa<on  of  line  regulators,  smart  

inverters,  and  capacitor  banks  could  be  required  

Tes<ng  select  scenarios  in  future  years  for  grid  stability  

Page 24: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Distribution Study: Methodology Data  inputs  provided  by  LUCELEC  •  Conductor  data  •  Historical  load  data  by  feeder  •  Distribu9on  maps  in  AutoCAD    Methodology  •  Distribu9on  maps  converted  to  Synergi  

analy9cal  model  •  Grid  regula9on  compliance  review  •  Verify  results  with  substa9on  

measurements  •  Tests  a  variety  of  load  and  DG  scenarios  •  Feeder  peak  day9me  load  and  feeder  

minimum    day9me  load  •  For  each  load  and  DG  scenario,  sta9c  and  

quasi-­‐sta9c  load  flow  analyses  were  performed  to  iden9fy  technical  viola9ons  on  the  distribu9on  system.    

 24

Page 25: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Transmission Study: Methodology •  Inves9gates  the  impact  of  new  genera9on  

resources  (solar,  wind  and  geothermal)  •  Analyses  done  at  minimum  day9me  load  and  

peak  day9me  load,  as  well  as  during  normal  condi9on  and  N-­‐1  condi9on.    

•  Dynamic  simulates  the  outage  of  the  largest  generator  and  the  ability  of  the  system  to  recover  with  various  RE  penetra9ons  and  technologies.  

•  Tests  the  impact  of  voltage  and  frequency  ride  through.    

•  Examines  spinning  reserve  based  on  diesel  opera9ons,  and  presumes  spinning  reserve  when  determining  system  changes  and  recovery.    

25  

Transmission  map  provided  by  LUCELEC,  and  modeled  in  PowerWorld  and  GE  tools  

Page 26: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Capital and Operating Cost Projections 26  

Page 27: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Total Cost and Renewable Target Implications 27  

Reducing  total  costs  while  mee9ng  renewable  energy  goals  is  possible  

Page 28: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

LUCELEC Participation is Key •  A  few  situa9ons  make  Independent  Power  Producers  (IPPs)  

the  right  choice  for  genera9on:  –  Large  projects  requiring  capital  infusion  the  u9lity  normally  does  not  

have  access  to  –  Technological  complexity  that  exceeds  the  capability  of  the  u9lity  –  U9lity  is  insolvent  or  poorly  managed  and  cannot  access  capital  at  a  

decent  rate  

•  LUCELEC  is  a  viable,  well-­‐managed,  u9lity  with  access  to  low-­‐cost  capital  

•  LUCELEC  ownership  of  certain  renewable  energy  assets  (such  as  solar  and  storage)  play  a  role  for  least-­‐cost  genera9on  

Page 29: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Best Practices & Lessons Learned 4

29  

Page 30: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Positive Outcome – Holistic Approach •  In  the  past,  LUCELEC  commissioned  individual  

studies,  e.g.,  biomass,  heat  recovery  and  alterna9ve  fuels  

•  Government  sets  targets,  e.g.  renewable  energy,  climate  commitments  and  energy  efficiency.    

•  Individual  projects  are  then  typically  assessed  in  silos  

 •  The  NETS  assesses  all  technology  op9ons  

simultaneously,  and  analyzes  their  interac9ons  between  each  other  and  the  impact  on  economics  

•  Allows  u9lity  to  develop  investment  strategy  and  Government  to  make  long-­‐term  policy  decisions,  at  the  same  9me  and  on  the  same  basis  

•  Integra9ng  with  ongoing  projects  helps  prove  the  assump9ons  of  the  IRP.    

Page 31: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Challenges Data  Collec<on:    •  Data  does  not  always  exist  or  is  not  in  

the  right  format  –  RMI-­‐CWR  interviewed  key  personnel  to  

gather  data    –  RMI-­‐CWR  hired  temporary  worker  to  

transcribe  handwripen  generator  data    •  Limited  access  to  proprietary  data  

–  For  each  resource,  it  is  cri9cal  to  have  both  energy  &  economic  inputs  

–  Extrapola9ng  from  one  data  source,  or  from  outdated  data,  has  limita9ons    

Government  Turnover:  •  Complex  and  new  discussions  require  

con9nuity  of  staff  engagement.  This  was  well  managed  by  GoSL.      

Page 32: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Questions? 32  

Support  Provided  By:    

Partners:    

Page 33: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Appendix

33  

Page 34: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Load Forecast – Inputs & Methodology •  Annual  and  Monthly  historical  sales  by  customer  category  provided  by  LUCELEC  for  

the  last  10  years  •  DNV  GL  conducted  a  site  visit  week  of  27th  January  to  interview  LUCELEC,  Invest  

Saint  Lucia,  and  future  Hotels  &  Commercial  Customers  for  special  projects  •  Macro-­‐socioeconomic  data  from  Eastern  Caribbean  Central  Bank  and  World  Bank  •  Modeled  this  out  to  2025.  Preliminary  data  shows  that  load  growth  can  achieve  a  

30MW  base-­‐load.    

(Number  of  Customers)  x    (Average  Consump5on  per  Customer)  =  Total  Consump9on  

Page 35: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Least Cost Generation Options Methodology •  Build  upon  the  HOMER  model  developed  by  John  Glassmire,  Director  of  Energy  

Engineering  at  HOMER  Energy  for  the  work  funded  through  World  Bank  –  What  mix  of  energy  sources  (whether  renewable  and/or  fossil  fuel)  is  the  most  economical  to  

provide  power  for  Saint  Lucia  (looking  only  at  genera9on)?    

•  Use  input  projec9ons  to  run  HOMER  for  various  years  in  the  future  and  determine  op9mal  supply  mix  for  each  year  –  In  what  years  should  new  supply  resources  be  added  to  the  system?  –  How  will  the  mix  of  supply  resources  operate  in  each  year  (hourly  dispatch)?    

•  Use  HOMER  outputs  (supply  mix,  opera9on  of  supply  resources,  fuel  used,  etc.)  as  inputs  to  next  models:  grid  integra9on,  u9lity  business  model,    &  rate  impact  

•  Have  contracted  HOMER  Energy  for  addi9onal  support  and  QC    

35  

Page 36: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Utility Business Model - Methodology Approach:  •  Assess  LUCELEC’s  current  governing  

regula9ons  for  rate  determina9on  (allowable  rate  of  return)    

•  Use  current  regula9ons  and  financial  statements  to  assess  how  different  renewable  assets  will  influence  LUCELEC  financial  status  and  tariffs  in  coming  years  

•  Specifically  consider  debt  and  equity  op9ons  for  renewable  and  thermal  investments,  as  well  as  the  implica9ons  of  energy  efficiency,  distributed  genera9on,  and  storage.    

36  

Volumetric  Rate  Structure  (charged  per  kWh    

 $0.499    

 $0.474    

-­‐$0.196    

-­‐$0.400    

-­‐$0.200    

 $-­‐        

 $0.200    

 $0.400    

 $0.600    

 $0.800    

 $1.000    

 $1.200    

Fuel  Adjustment  

Fuel  Passthrough  

Base  Rate  

2016  Commercial  Low  Tension:  ECD  $.777  

*The  base  rate  is  set  in  the  2006  ESA  Amendment  

Page 37: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Load Forecasting - Results

37

•  Energy  Sales:  

Page 38: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Load Forecasting - Results

38

•  Peak  Demand:  

Page 39: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Demand Side Management & Energy Efficiency

!  DNV  GL  developed  satura9on  and  energy  consump9on  es9mates  for  specific  end  use  components  for  each  Class  (domes9c,  commercial,  hotels):    

•  Example:  

39

Refrigeration27.3%

Water Heating20.5%

TV12.7%

Lighting7.2%

Space Cooling6.2%

Freezer5.7%

PC5.6%

Miscellaneous4.4%

Pool Pump3.5%

Clothes Washer

3.3% Cooking1.6%

Clothes Dryer1.6%

Dishwashers0.3%

Page 40: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Island-Wide Solar Resource Assessment •  Developed  constructability  parameters  for  each  solar  PV  technology  (ground-­‐mount,  

roolop,  carport)  •  Example  (roolop):  

40

Page 41: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Rate reduction is maximized with LUCELEC ownership 41  

$0.89

$0.91

$0.84

$0.80

$0.85

$0.84

$0.74

$0.76

$0.78

$0.80

$0.82

$0.84

$0.86

$0.88

$0.90

$0.92

1. Fossil Fuel Only 2. Solar High DG 3. Solar Mid DG 7. Solar Wind Low DG

13. Solar Geo Wind Low DG

14. Thermal IPP

$ E

CD

/ k

Wh

Customer Rate (after 20 years)

Page 42: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

LUCELEC debt burden over time

2016   2021   2026   2031  

tota

l d

eb

t b

urd

en

Debt  Burden  (Total  Long  Term  Debt  Divided  by  Tangible  Net  Worth)  

Fossil Fuel Only

Solar, High DG, Debt Constrained

Solar, Mid DG

Solar + Wind, Low DG

Solar + Wind + Geo, Low DG

Thermal IPP

1

2

0

* long term debt divided by tangible net worth

No  scenarios  exceed  current  LUCELEC  targets  

Natural  gas  debt  can  be  reduced  if  supplier  finances  all  Saint  Lucia  infrastructure  (storage,  receiving  terminal,  generator  retrofits)  

Page 43: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

Sensitivity Analysis: Fuel Price Forecast Four  alterna<ve  scenarios  were  inves<gated,  with  varying  pathways  for  fuel  price.    

43  

$0.0  

$0.2  

$0.4  

$0.6  

$0.8  

$1.0  

$1.2  

$1.4  

$1.6  

$1.8  

$2.0  

2006   2011   2016   2021   2026   2031  

Diesel  Pric

e  (USD

 /  liter)  

Examined  Fuel  Sensi<vi<es  

Reference  Case  (pre-­‐hedging)  

Fuel  Returns  to  2012  Level  in  Five  Years  

Vola9le  Future  (based  on  historical  vola9lity)  

Globally  Depressed  Fuel  Prices  

Results  forthcoming  

Page 44: St lucias energy transition

FURTHER, FASTER, TOGETHER

RO

CKY MOUNTAIN

INSTIT UTE

WA R R O O M

CARBON

A renewable transition reduces exposure to volatile fuel futures

44  

 $-­‐          $2,000      $4,000      $6,000      $8,000    

Reference  Case  

Fuel  Returns  to  2012  Level  in  Five  Years  

Vola9le  Future  (based  on  historical  vola9lity)  

Globally  Depressed  Fuel  Prices  

Millions  of  ECD  

20-­‐Year  Expenditure  to  Operate  Electricity  System  

Solar,  Wind,  and  Low  DG  Scenario   Fossil  Fuel  Only  (Reference  Case)  

In  a  vola9le  and  high  fuel  future,  total  costs  increase  38%  when  opera9ng  diesel,  versus  28%  for  a  renewable  mix