stability chapter iv figures

Upload: interferonsrini

Post on 30-May-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Stability Chapter IV Figures

    1/14

    Figure 5.1: Differential scanning calorimetric (DSC) profiles of -crystallinvariants. Thermal unfolding endotherms of -crystallin variants scanned from 10-100oC at a scan rate of 60oC /h. Continuous line represents experimental curve and

    dashed line is the best fit of the experimental data to a two-state transition model using

    Microcal Origin software. Arrows indicate the temperature at which the B and 1:3 gotprecipitated.

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    A

    Cp(kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    10

    12

    B

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    L

    Cp

    (kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    3:1

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    A

    Cp(kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    10

    12

    B

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    A

    Cp(kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    10

    12

    B

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    L

    Cp

    (kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    3:1

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    L

    Cp

    (kcal/mole/oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    3:1

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    10

    12

    1:3

    Cp(kcal/m

    ole/oC)

    Temperature (oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    1:1

    Temperature (oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    10

    12

    1:3

    Cp(kcal/m

    ole/oC)

    Temperature (oC)

    10 20 30 40 50 60 70 80 90

    0

    2

    4

    6

    8

    1:1

    Temperature (oC)

  • 8/14/2019 Stability Chapter IV Figures

    2/14

    Table 5.1: Thermodynamic data from DSC profiles derived using the MicroCal

    Origin software. Data are meanSE (n=3).

    L A B 1:1 3:1 1:3

    Scan rate at 30/hr

    TmoC 58.950.12

    55.170.24

    62.100.12

    59.720.34

    58.310.12

    62.070.41

    H

    (kcal.mol-1)45.080.18

    62.950.40

    44.200.59

    80.700.63

    72.100.20

    70.311.24

    Scan rate at 60/hr

    TmoC 58.99

    0.22

    56.12

    0.21

    62.98

    0.12

    61.01

    0.12

    59.84

    0.17

    62.20

    0.12

    H

    (kcal.mol-1)

    49.48

    0.23

    64.25

    0.18

    61.59

    1.30

    64.58

    0.30

    60.56

    0.27

    94.33

    1.98

    Scan rate at 90/hr

    TmoC 60.18

    0.14

    56.86

    0.11

    62.90

    0.21

    61.21

    0.03

    59.16

    0.03

    62.51

    0.31

    H

    (kcal.mol-1)

    45.22

    0.30

    67.37

    0.13

    62.70

    0.13

    73.75

    0.42

    51.78

    0.37

    69.29

    1.67

  • 8/14/2019 Stability Chapter IV Figures

    3/14

    Figure 5.2:Size-exclusion chromatography (SEC) of -crystallin variants. Elutionprofiles of normal (continuous line) and preheated (dashed line) -crystallin variants

    on a TSKG4000SWXL gel filtration HPLC column. Elution positions of standardmolecular weight markers, thyroglobulin (650 kDa; position-1), ovalbumin (150 kDa;

    position-2) and BSA (67 kDa; position-3) are indicated on the top.

    Time(min)

    0 5 10 15 20

    A280nm

    normal

    preheated

    1 2 3

    A

    L

    3 :1

    1 :3

    1 :1

  • 8/14/2019 Stability Chapter IV Figures

    4/14

    Figure 5.3: Representative DLS profile of A-crystallin.

    Table 5.2: Hydrodynamic radii assessed by DLS analysis on OmniSize 3.0 software

    provided by the DLS instrument (Viscotek 810). Data are meanSD (n=3)

    Sample Hydrodynamic Radii Rh (nm)

    unheated at 25oC preheated at 45oC preheated at 60oC

    A 10.05 1.68 7.3 0.27 8.9 1.44 B 8.55 1.05 8.3 0.89 precipitated L 9.02 1.84 9.4 1.75 9.8 1.343:1 9.12 1.31 7.7 1.08 9.2 0.6

    1:3 6.5 0.45 7.9 0.50 precipitated

    1:1 8.23 1.80 9.9 1.00 10.7 1.2

  • 8/14/2019 Stability Chapter IV Figures

    5/14

    Figure 5.4: Representative tryptophan fluorescence profiles ofpanel A: A andpanel

    B: 3:1 ( A: B), as a function of GdmCl.

    Wavelength (nm)

    300 320 340 360 380 400

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 - 6.0M GdmCl

    Wavelength (nm)

    300 320 340 360 380 400

    0

    20

    40

    60

    80

    100

    0 - 6.0M GdmCl

    A

    B

    Wavelength (nm)

    300 320 340 360 380 400

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 - 6.0M GdmCl

    Wavelength (nm)

    300 320 340 360 380 400

    0

    20

    40

    60

    80

    100

    0 - 6.0M GdmCl

    A

    B

  • 8/14/2019 Stability Chapter IV Figures

    6/14

    Figure 5.5:Tryptophan fluorescence. Panel A: Tryptophan fluorescence intensity of

    -crystallin variants at 335nm plotted as function of GdmCl. Fraction of foldedmolecules was calculated by taking the ratio of intensity at 335 nm in absence and

    presence of respective GdmCl concentration. Panel B: wavelength maxima ( max) of

    -crystallin variants as a function of GdmCl. Data are average of four experiments.

    GdmCl [M]

    0 1 2 3 4

    Fractionfolded

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    ABL3:1

    1:3

    1:1

    lamda max

    GdmCl [M]

    0 1 2 3 4

    max

    335

    340

    345

    350

    355

    L3: 11: 31: 1

    GdmCl [M]

    0 1 2 3 4

    Fractionfolded

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    ABL3:1

    1:3

    1:1

    GdmCl [M]

    0 1 2 3 4

    Fractionfolded

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    ABL3:1

    1:3

    1:1

    lamda max

    GdmCl [M]

    0 1 2 3 4

    max

    335

    340

    345

    350

    355

    L3: 11: 31: 1

    lamda max

    GdmCl [M]

    0 1 2 3 4

    max

    335

    340

    345

    350

    355

    L3: 11: 31: 1

  • 8/14/2019 Stability Chapter IV Figures

    7/14

    Figure 5.6: Representative ANS-fluorescence profile ofpanel A: B andpanel B: 3:1

    ( A: B), as a function of Gdmcl. Concentration of GdmCl is indicated in numbers.

    Wavelength (nm)

    400 420 440 460 480 500 520 540

    0

    100

    200

    300

    400

    500

    1

    2

    3

    4,5,6

    1 : 0 M

    2 : 0.5M

    3 : 1.0M

    4 : 1.5M

    5 : 2.0M6 : 3.0M

    Wavelength (nm)

    400 420 440 460 480 500 520 540

    0

    100

    200

    300

    400

    500

    2

    3

    1

    4

    5

    6

    1 : 0 M

    2 : 0.5M

    3 : 1.0M

    4 : 1.5M

    5 : 2.0M

    6 : 3.0M

    A

    B

    Wavelength (nm)

    400 420 440 460 480 500 520 540

    0

    100

    200

    300

    400

    500

    1

    2

    3

    4,5,6

    1 : 0 M

    2 : 0.5M

    3 : 1.0M

    4 : 1.5M

    5 : 2.0M6 : 3.0M

    Wavelength (nm)

    400 420 440 460 480 500 520 540

    0

    100

    200

    300

    400

    500

    2

    3

    1

    4

    5

    6

    1 : 0 M

    2 : 0.5M

    3 : 1.0M

    4 : 1.5M

    5 : 2.0M

    6 : 3.0M

    A

    B

  • 8/14/2019 Stability Chapter IV Figures

    8/14

    Figure 5.7: ANS Fluorescence. ANS fluorescence intensity of -crystallin variants as

    a function of GdmCl. Fraction of folded molecules was calculated by taking the ratio ofintensity at 475 nm in absence and presence of respective GdmCl concentration. Data

    are average of four experiments.

    GdmCl [M]

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Fra

    ctionfolded

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0L3:11:31:1

  • 8/14/2019 Stability Chapter IV Figures

    9/14

    Figure 5.8:Secondary structure of -crystallin variants.Far-UV CD spectrum of -crystallin variants as a function of GdmCl. Each spectrum

    is an average of five accumulations.

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    B

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    aL far uv Aug2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    L

    3,1 far uv unfold Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M4.0 M

    6.0 M

    3:1

    1,1 far uv Aug2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    1:1

    1,3 far uv unfold Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    1:3

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    mdeg

    mdeg

    mdeg

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    B

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    aL far uv Aug2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    L

    3,1 far uv unfold Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M4.0 M

    6.0 M

    3:1

    1,1 far uv Aug2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    1:1

    1,3 far uv unfold Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    1:3

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    Far UV aA profile Jul2008

    Wavelength (nm)

    210 220 230 240 250

    Mdeg

    -15

    -10

    -5

    0

    0 M

    2.0 M

    4.0 M

    6.0 M

    A

    mdeg

    mdeg

    mdeg

  • 8/14/2019 Stability Chapter IV Figures

    10/14

    Figure 5.9: Tertiary structure of -crystallin variants.Near-UV CD spectrum of -crystallin variants as a function of GdmCl. Each spectrum is the average of fiveaccumulations

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    A

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    2D Graph 3

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    L

    2D Graph 4

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    3:1

    2D Graph 5

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    1:3

    2D Graph 6

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    1:1

    mdeg

    mdeg

    mdeg

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    A

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    2D Graph 3

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    L

    2D Graph 4

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    3:1

    2D Graph 5

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    1:3

    2D Graph 6

    Wavelength (nm)

    240 260 280 300 320 340 360

    Mdeg

    -3

    -2

    -1

    0

    1

    2

    0 M

    0.5 M

    1.0 M

    1.5 M

    1:1

    mdeg

    mdeg

    mdeg

  • 8/14/2019 Stability Chapter IV Figures

    11/14

    Figure 5.10: Light scattering of -crystallin variants at 85oC

    Time (sec)

    0 500 1000 1500 2000 2500 3000

    Lig

    htscattering,

    360nm

    0.08

    0.09

    0.10

    0.11

    0.12

    0.13

    0.14

    L

    A3:1

    1:1

    1:3

    B

  • 8/14/2019 Stability Chapter IV Figures

    12/14

    Figure 5.11: HPLC profile of goat TSP and TSP-alpha

    HPLC profile of TSP and TSP-alpha on TSKG3000SWXL column depicts the depletion of -

    crystallin from TSP upon ultracentrifugation.

    Volume (ml)0 5 10 15 20 25 30

    A280nm

    -2

    0

    2

    46

    8

    10

    12

    14

    16

    18

    20

    Goat TSP

    Goat TSP-alpha

  • 8/14/2019 Stability Chapter IV Figures

    13/14

    Figure 5.12: Light scattering of goat lens TSP at 85oC

    Panel A: Light scattering of goat TSPalpha in the absence (trace 1) and presence of A-

    homopolymer(trace 2), heteropolymer with 3:1 A to B ratio (w/w) ratio (trace 3)

    and TSP control (trace 4).Panel B: Aggregation pattern of goat TSPalpha in the absence

    (trace 4) and presence of 0.05 (trace 3), 0.1 (trace 2) and0.15 mg/ml (trace 1) B-crystallin.

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(36

    0nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    1

    2

    3

    4

    B

    Time (sec)

    0 200 400 600 800 1000

    Lihtscatterin

    ,360nm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    2

    1

    3,4

    A

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(360nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    Time vs TSP-

    Time vs TSP- with aB 50

    Time vs TSP- with aB 100Time vs TSP- with aB150

    1

    2

    3

    4

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(36

    0nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    1

    2

    3

    4

    B

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(36

    0nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    1

    2

    3

    4

    B

    Time (sec)

    0 200 400 600 800 1000

    Lihtscatterin

    ,360nm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    2

    1

    3,4

    A

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(360nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    Time vs TSP-

    Time vs TSP- with aB 50

    Time vs TSP- with aB 100Time vs TSP- with aB150

    1

    2

    3

    4

    Time (sec)

    0 200 400 600 800 1000

    Lihtscatterin

    ,360nm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    2

    1

    3,4

    A

    Time (sec)

    0 200 400 600 800 1000

    Lihtscatterin

    ,360nm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    2

    1

    3,4

    A

    Time (sec)

    0 200 400 600 800 1000

    LightScattering(360nm)

    0.0

    0.5

    1.0

    1.5

    2.0

    Time vs TSP-

    Time vs TSP- with aB 50

    Time vs TSP- with aB 100Time vs TSP- with aB150

    1

    2

    3

    4

  • 8/14/2019 Stability Chapter IV Figures

    14/14