stacked hierarchical labeling

71
Stacked Hierarchical Labeling Dan Munoz Drew Bagnell Martial Hebert

Upload: early

Post on 22-Feb-2016

93 views

Category:

Documents


0 download

DESCRIPTION

Stacked Hierarchical Labeling. Dan Munoz Drew BagnellMartial Hebert. The Labeling Problem. Sky. Bldg. Tree. Fgnd. Road. Input. Our Predicted Labels. The Labeling Problem. The Labeling Problem. Needed: better representation & interactions Ohta ‘78. Using Regions. Input. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Stacked Hierarchical Labeling

Stacked Hierarchical Labeling

Dan Munoz Drew Bagnell Martial Hebert

Page 2: Stacked Hierarchical Labeling

2

The Labeling Problem

Input Our Predicted Labels

Road

Tree

Fgnd

BldgSky

Page 3: Stacked Hierarchical Labeling

3

The Labeling Problem

Page 4: Stacked Hierarchical Labeling

4

The Labeling Problem

• Needed: better representation & interactions– Ohta ‘78

Page 5: Stacked Hierarchical Labeling

5

Using Regions

Input Ideal Regions

Slide from T. Malisiewicz

Page 6: Stacked Hierarchical Labeling

6

Using Regions

Input Actual Regions

Slide from T. Malisiewicz

Page 7: Stacked Hierarchical Labeling

7

Using Regions + Interactions

Image Representation Ideal Prob. Graphical Model• High-order• Expressive interactions

small regions

big regions

Page 8: Stacked Hierarchical Labeling

8

Using Regions + Interactions

Actual PGM• Restrictive interactions• Still NP-hard

Image Representationsmall regions

big regions

Page 9: Stacked Hierarchical Labeling

9

Learning with Approximate Inference• PGM learning requires exact inference– Otherwise, may diverge Kulesza and Pereira ’08

Simple Random Field

Learning Path

Page 10: Stacked Hierarchical Labeling

10

PGM Approach

Input PGM Inference Output

Page 11: Stacked Hierarchical Labeling

11

Our Approach

Input f1 OutputfN

Sequence of simple problems

Cohen ’05, Daume III ’06

Page 12: Stacked Hierarchical Labeling

12

A Sequence of Simple Problems

• Training simple modules to net desired output– No searching in exponential space

• Not optimizing any joint distribution/energy– Not necessarily doing it before! Kulesza & Pereira ‘08

Input f1 fN Output…Stacked Hierarchical Labeling

Page 13: Stacked Hierarchical Labeling

13

Our Contribution• An effective PGM alternative for labeling– Training a hierarchical procedure of simple problems

• Naturally analyzes multiple scales– Robust to imperfect segmentations

• Enables more expressive interactions– Beyond pair-wise smoothing

Page 14: Stacked Hierarchical Labeling

14

Related Work

small regions

big regions

• Learning with multi-scale configurations– Joint probability distribution

Bouman ‘94, Feng ‘02, He ’04Borenstein ‘04, Kumar ’05

– Joint score/energyTu ‘03, S.C. Zhu ‘06, L. Zhu ‘08Munoz ‘09, Gould ’09, Ladicky ’09

• Mitigating the intractable joint optimization– Cohen ’05, Daume III ’06, Kou ‘07, Tu ’08, Ross ‘10

Page 15: Stacked Hierarchical Labeling

15

. . . . . .

1

2

3

Page 16: Stacked Hierarchical Labeling

16

. . . . . .

1

2

3

In this work, the segmentation tree is given

We use the technique from Arbelaez ’09

Page 17: Stacked Hierarchical Labeling

17

1 2 3 4

Segmentation Tree(Arbelaez ’09)

Page 18: Stacked Hierarchical Labeling

18

• Parent sees big picture• Naturally handles scales

Label Coarse To Fine1 2 3 4

Segmentation Tree(Arbelaez ’09)

Page 19: Stacked Hierarchical Labeling

19

• Parent sees big picture• Naturally handles scales

• Break into simple tasks• Predict label mixtures

f1 f2 f3 f4

1 2 3 4

Segmentation Tree(Arbelaez ’09)

Page 20: Stacked Hierarchical Labeling

20

Handling Real Segmentation• fi predicts mixture of labels for each region

Input Segmentation Map

Page 21: Stacked Hierarchical Labeling

21

Actual Predicted Mixtures

P(Tree)P(Building)P(Fgnd)(brighter higher probability)

Page 22: Stacked Hierarchical Labeling

22

Training Overview• How to train each module fi ?• How to use previous predictions?• How to train the hierarchical sequence?

f1

f2

Page 23: Stacked Hierarchical Labeling

23

Training Overview• How to train each module fi ?• How to use previous predictions?• How to train the hierarchical sequence?

f1

f2

Page 24: Stacked Hierarchical Labeling

24

Modeling Heterogeneous Regions

• Count true labels Pr present in each region r

• Train a model Q to match each Pr

– Logistic Regression

• minQ H(P,Q) Weighted Logistic Regression– Image features: texture, color, etc. (Gould ’08)

Page 25: Stacked Hierarchical Labeling

25

Training Overview• How to train each module fi ?

• How to use previous predictions?• How to train the hierarchical sequence?

f1

f2

Page 26: Stacked Hierarchical Labeling

26

Using Parent Predictions• Use broader context in the finer regions

– Allow finer regions access to all parent predictions• Create & append 3 types of context features– Kumar ’05, Sofman ’06, Shotton ’06, Tu ‘08

Parent regions Child regions

Page 27: Stacked Hierarchical Labeling

27

Parent Context• Refining the parent

Parent

Child

Page 28: Stacked Hierarchical Labeling

28

Detailed In Paper• Image-wise (co-occurrence)

• Spatial Neighborhood (center-surround)

Σregions

Page 29: Stacked Hierarchical Labeling

29

Training Overview• How to train each module fi ?• How to use previous predictions?• How to train the hierarchical sequence?

f1

f2

Page 30: Stacked Hierarchical Labeling

30

Approach #1• Train each module independently– Use ground truth context features

• Problem: Cascades of Errors– Modules depend on perfect context features– Observe no mistakes during training Propagate mistakes during testing

f1 f2 f3 f4

Page 31: Stacked Hierarchical Labeling

31

Approach #2• Solution: Train in feed-forward manner– Viola-Jones ‘01, Kumar ‘05, Wainwright ’06, Ross ‘10

f1 f2 f3 f4

Page 32: Stacked Hierarchical Labeling

32

Training Feed-Forward

fl(Parameters)

LogReg

A

B

C

Page 33: Stacked Hierarchical Labeling

33

Training Feed-Forward

A

B

Cfl

fl

fl

Page 34: Stacked Hierarchical Labeling

34

Cascades of Overfitting

• Solution: Stacking– Wolpert ’92, Cohen ’05– Similar to x-validation– Don’t predict on data

used for training

F.F. Train Confusions F.F. Test Confusions

Stacking Test Confusions

Page 35: Stacked Hierarchical Labeling

35

Stacking

flLogReg

A

B

C

A

Page 36: Stacked Hierarchical Labeling

36

Stacking

AflA

Page 37: Stacked Hierarchical Labeling

37

Stacking

flLogReg

A

B

C

B

Page 38: Stacked Hierarchical Labeling

38

Stacking

A

Bfl

flA

B

Page 39: Stacked Hierarchical Labeling

39

Stacking

A

B

Cfl

fl

flA

B

C

Page 40: Stacked Hierarchical Labeling

Learning to Fix Mistakes

Segments

Level 5 Level 6 Level 7

CurrentOutput

Person part of incorrect segmentPerson segmented, but relies on parentPerson fixes previous mistake

Page 41: Stacked Hierarchical Labeling

Level 1/8 PredictionsSegmentation

Page 42: Stacked Hierarchical Labeling

15%

Level 1/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Segmentation

18% 12% 31%

Page 43: Stacked Hierarchical Labeling

15%

Level 1/8 Predictions

Road

P(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

18% 12% 31%

Page 44: Stacked Hierarchical Labeling

P(Foreground)

P(Tree) P(Building) P(Road)

Level 2/8 PredictionsSegmentation

Page 45: Stacked Hierarchical Labeling

P(Foreground)

P(Tree) P(Road)

Level 2/8 PredictionsCurrent Output Segmentation

P(Building)

Page 46: Stacked Hierarchical Labeling

Level 3/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 47: Stacked Hierarchical Labeling

Level 4/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 48: Stacked Hierarchical Labeling

Level 5/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 49: Stacked Hierarchical Labeling

Level 6/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 50: Stacked Hierarchical Labeling

Level 7/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 51: Stacked Hierarchical Labeling

Level 8/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 52: Stacked Hierarchical Labeling

Level 1/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 53: Stacked Hierarchical Labeling

Level 2/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 54: Stacked Hierarchical Labeling

Level 3/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 55: Stacked Hierarchical Labeling

Level 4/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 56: Stacked Hierarchical Labeling

Level 5/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 57: Stacked Hierarchical Labeling

Level 6/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 58: Stacked Hierarchical Labeling

Level 7/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 59: Stacked Hierarchical Labeling

Level 8/8 PredictionsP(Foreground)

P(Tree) P(Building) P(Road)

Current Output Segmentation

Page 60: Stacked Hierarchical Labeling

60

Stanford Background Dataset• 8 Classes• 715 Images

• Inference time– Segmentation & image features held constant

Method sec/imageGould ICCV ‘09 30 - 600SHL (Proposed) 10 - 12

Method Avg Class AccuracyGould ICCV ‘09 65.5LogReg (Baseline) 58.0SHL (Proposed) 66.2

Page 61: Stacked Hierarchical Labeling

61

MSRC-21• 21 Classes• 591 Images

Method Avg Class AccuracyGould IJCV ‘08 64LogReg (Baseline) 60SHL (Proposed) 71

Ladicky ICCV ‘09 75

Lim ICCV’09 67Tu PAMI’09 69Zhu NIPS’08 74

Page 62: Stacked Hierarchical Labeling

62

MSRC-21• 21 Classes• 591 Images

Method Avg Class AccuracyGould IJCV ‘08 64LogReg (Baseline) 60SHL (Proposed) 71

Ladicky ICCV ‘09 75LogReg (Baseline) 69SHL (Proposed) 75

Lim ICCV’09 67Tu PAMI’09 69Zhu NIPS’08 74

Page 63: Stacked Hierarchical Labeling

63

Ongoing Work

Labeling 3-D Point Cloudswith Xuehan Xiong

Building

CarGround

Veg

Tree Trunk

Pole

Page 64: Stacked Hierarchical Labeling

64

Conclusion• An effective structured prediction alternative– High performance with no graphical model

• Beyond site-wise representations– Robust to imperfect segmentations & multiple scales

• Prediction is a series of simple problems– Stacked to avoid cascading errors and overfitting

Input f1 fN Output…

Page 65: Stacked Hierarchical Labeling

65

Thank You• Acknowledgements– QinetiQ North America Robotics Fellowship– ONR MURI: Reasoning in Reduced Information Spaces– Reviewers, S. Ross, A. Grubb, B. Becker, J.-F. Lalonde

• Questions?

Page 66: Stacked Hierarchical Labeling

66

Page 67: Stacked Hierarchical Labeling

67

Image-wise

Σregions

Page 68: Stacked Hierarchical Labeling

68

Spatial neighborhood

Page 69: Stacked Hierarchical Labeling

69

Interactions• Described in this talk

• Described in the paper

Page 70: Stacked Hierarchical Labeling

70

SHL vs. M3N

Page 71: Stacked Hierarchical Labeling

71

SHL vs. M3N