stage harmonic for acoustics orchestra phd 2010 dammerud j

Upload: rafaele-maria-andrade

Post on 04-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    1/210

    STAGEACOUSTICSFORSYMPHONY

    ORCHESTRASINCONCERTHALLS

    SubmittedbyJensJrgenDammerud

    forthedegreeof

    DoctorofPhilosophy

    oftheUniversityofBath

    September2009

    COPYRIGHT

    Attentionisdrawntothefactthatcopyrightofthisthesisrestswithitsauthor.Thiscopyofthe

    thesishasbeensuppliedonconditionthatanyonewhoconsultsitisunderstoodtorecognise

    thatitscopyrightrestswithitsauthorandnoinformationderivedfromitmaybepublished

    withoutthepriorwrittenconsentoftheauthor.

    ThisthesismaybemadeavailableforconsultationwithintheUniversitylibraryandmaybe

    photocopiedorlenttootherlibrariesforthepurposesofconsultation.

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    2/210

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    3/210

    Acknowledgments

    Iwouldliketothankeveryonewhohasgenerouslycontributedtotheworkformingthisthesis:

    First of all the musicians of professional symphony orchestras who have taken part in

    discussions(inalphabeticalorder):DavidDaly,ChrisGale,GunnarIhlen,KevinMorgan,Finn

    Orestad,TorbjrnOttersen,MikeSmith,GeirSolumandBengtArstad. Iwouldalsoliketothankall themusicianswhorespondedtoquestionnaires,thecontactpersonswithinallthe

    symphonyorchestraswhokindlycollaboratedinthisprojectandmywifeSiljeMarieSkeiefor

    allusefulinputasamusician.

    Peoplefromwithinthedisciplinesofacoustics,audioandsciencewhohavesharedtheirown

    resultsandgivenvaluableinputtothisresearch(inalphabeticalorder):NielsWernerAdelman-

    Larsen,JohanAndersson,PeterDAntonio,SteveBarbar,AlfBerntson,BertievandenBraak,

    AndersBuen,EddyBghBrixen,StephenChiles,Bengt-IngeDalenback,AndersChristian

    Gade, MariaGiovannini, David Griesinger, Tor Halmrast, Masahiro Ikeda, EckhardKahle,

    JohnOKeefe,AsbjrnKrokstad,RussellMason,BobMcCarthy,J urgenMeyer,GeoffMiles,

    EckardMommertz,LarsHenrikMorset,FrancisRumsey,AnssiRuusuvuori,MagneSkalevik,

    OlavSkutlaberg,AudunStrype,PeterSvensson,KanakoUeno,IanWalkerandmembersof

    theSyn-Aud-ConforumandtheAUDITORYlist.

    Allfellowplayerswhohavetoleratedthesqueaksfrommyclarinetsandsaxophones,allowing

    metogetvaluableexperienceonhowitistoplaywithinacousticensemblesoverthelastfive

    years:NordreAkerJanitsjar(Oslo),WindBandandUniversityOrchestra(UniversityofBath)

    andBathAllComersOrchestra. Alsoabigthankyoutoall fellowpostgraduates,academic

    andsupportstaffattheUniversityofBathandthepeopleatBrekke&Strandakustikk.

    IamalsoverythankfultoEckhardKahle,AndyShea,Bengt-IngeDalenback,GunnarIhlen

    andMagneSkalevikforprovidingvaluablecommentsonpreliminaryversionsofthethesis.

    Lastbutnotleast,IammostgratefultomysupervisorMikeBarronforinvitingmetotakepart

    inthisprojectandforgenerouslysharinghisknowledgeandguidingmetowardscompletion

    ofthisthesisandmywifeandsonforallsupportandinspiration.

    TheresearchprojectonwhichthisthesisisbasedwasfundedbytheEngineeringandPhysical

    SciencesResearchCouncil(EPSRC),UK.

    3

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    4/210

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    5/210

    Abstract

    The main goals for this studywereto better understand whatare the acousticconditions

    physicallywithinasymphonyorchestraonconcerthallstages,howthesephysicalconditions

    affecttheplayersandultimatelyhowtodesignvenuessuitableforsymphonyorchestras.This

    wasinvestigatedbyuseofseveraldifferentapproaches,includingquestionnairesurveysand

    dialoguewithmusicians,scaleandcomputermodellingandmeasurementsofexistingstages.

    Theresultsfromtheorchestracollaborationsindicatethatthefollowingareofmostconcern

    forplayersregardingacousticconditions: hearingallotherplayers in theorchestraclearly

    andhavingsoundfromotherswellbalancedwiththesoundoftheirowninstrumentandthe

    acousticresponse fromthemainauditorium. Thesesubjectiveaspectsappearto relate to

    complexperceptualeffectsliketheprecedenceeffect,maskingeffectsandthecocktail-party

    effect.Whenrelatingtheseeffectstophysicalconditions,anarrowandhighstageenclosure

    withthestagehighlyexposedtothemainauditoriumappearsmostbeneficial.

    Regarding musicians impressions of actual stages and objective measurement results,

    existingmethodsforassessingthestageacousticallybyuseofomnidirectionaltransducers

    withouttheorchestrapresentwerefoundtohaveonlylimitedrelevance. Thereliabilityand

    validityofthemostcommonacousticmeasures(includingST )werestudiedindetail.

    Fortheassessmentanddesignofstageenclosures,newmethodsandobjectivearchitectural

    measureshavebeenproposed. Acombinationofacousticandarchitecturalmeasuresare

    found to successfully discriminate the most preferred from the least preferred stages of

    purpose-builtconcerthalls.Theresultsfromjudgementsofexistingstagessupportthefinding

    ofanarrowandhighstageenclosurewithahighlyexposedstagebeingmostbeneficial.Theobjectivemeasuresstudiedaresimplifiedrepresentationsofrealacousticconditions.Howto

    improvetheassessmentofacousticconditionsonstageisalsodiscussed.

    5

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    6/210

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    7/210

    Preface

    Thisthesisissplitintoninemainchapters:

    Chapter1:Introduction.

    Chapter2:Backgroundofthestudy.Theliteraturereview.

    Chapter3:Musiciansimpressionsofacousticconditions. Studiesofimpressionsofacous

    ticconditionsonstageingeneralterms.

    Chapter4:Soundpropagationwithinasymphonyorchestra. Studies of how the sym

    phonyorchestraitselfaffectsoundpropagationbetweenplayers.

    Chapter5:Theeffectofreflectedsoundbacktowardsasymphonyorchestra. Studiesof

    howreflectedsoundmayaffectperceivedconditionsamongtheplayers.

    Chapter6:Computermodellingofstageenclosuresincludingafullsymphonyorchestra.

    Studiesofhowtorepresentasymphonyorchestraincomputermodels.Thedeveloped

    representation of an orchestra is used to study resulting acoustic responses under

    differentstageenclosuredesigns,withasymphonyorchestrapresentonstage.

    Chapter7:Acousticmeasuresforassessingacousticconditionsonstage. Studiesofthe

    validityandreliability ofacousticresponsesandmeasures,assessedwithouta sym

    phonyorchestrapresentonstage.Valuesoftheacousticmeasuresarecomparedwith

    subjectiveimpressionsforasetofexistingstages.

    Chapter8:Impressionsofeightperformancespacesvisitedregularly. Studiesofoneor

    chestras impressions of acoustic conditions in eight performance spaces they visit

    regularly.

    Chapter9:Overalldiscussionandconclusions.

    Preliminaryresultsfromtheresearchprojectformingthisthesiswerepresentedatinterna

    tionalconferencesonacoustics(Barron&Dammerud (2006), Dammerud&Barron(2007)

    andDammerud&Barron(2008)).Copiesofthesepapersarenotincludedinthisthesis.

    ThisthesiswaspreparedinLATEX(setfordouble-sidedprinting)usingMiKTeXandLEd.

    7

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    8/210

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    9/210

    Contents

    1 Introduction 15

    2 Backgroundofthestudy 19

    2.1 Physicalobjectivesoundbehaviourwithinsymphonyorchestras . . . . . . . . 19

    2.2 The impressions of acoustic conditions on stage . . . . . . . . . . . . . . . . . 22

    2.2.1 Studies of general impressions . . . . . . . . . . . . . . . . . . . . . . . 23

    2.2.2 Studies of impressions of specific stages . . . . . . . . . . . . . . . . . 24

    2.2.3 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    2.3 Proposed acoustic measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    2.4 Effectofstageenclosureforconductorandaudience. . . . . . . . . . . . . . . 31

    2.5 Approaches used for this study . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3 Musiciansimpressionsofacousticconditions 35

    3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    3.2 Questionnaire method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    3.3 Questionnaire results in general . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    3.4 Open questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.4.1 Non-acoustic issues important on stage . . . . . . . . . . . . . . . . . . 37

    3.4.2 Favourite halls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.4.3 Preference for risers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.4.4 Hearing others and oneself . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3.4.5 Statementsongoodacousticsforperformers . . . . . . . . . . . . . . . 39

    3.4.6 Informationcontainedin,anddirectionofreverberantsound. . . . . . . 40

    3.4.7 Bloom and projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    9

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    10/210

    3.4.8 Discussionandconclusionsofresultsforopenquestions . . . . . . . . 41

    3.5 Preference rating questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    3.5.1 Comments on loud instruments . . . . . . . . . . . . . . . . . . . . . . . 45

    3.5.2 Commentsonproblemswithfocusingonparticularinstruments. . . . . 45

    3.5.3 Commentsonawarenessofreflectingsurfaces . . . . . . . . . . . . . . 45

    3.5.4 Correlation of the rating responses . . . . . . . . . . . . . . . . . . . . . 46

    3.5.5 Discussionandconclusionsofpreferenceratingresults . . . . . . . . . 46

    3.6 Specific halls rated by the players. . . . . . . . . . . . . . . . . . . . . . . . . . 48

    3.6.1 Theeffectofwhichorchestrasjudgingacousticconditions . . . . . . . . 49

    3.6.2 Objectivemeasuresassociatedwiththepurpose-builtconcerthalls . . 50

    3.6.3 Relationshipsbetweenaverageoverallacousticimpressionand objective measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    3.6.4 Comparisonofhighandmediumscoringhalls . . . . . . . . . . . . . . 54

    3.6.5 Discussionandconclusionsofresultsforspecifichalls . . . . . . . . . . 55

    3.7 Overall conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    4 Soundpropagationwithinasymphonyorchestra 59

    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.2 Analyticalinvestigationsofsoundlevelsonstagewithoutorchestrapresent . . 60

    4.3 Experimentalinvestigationsofsoundlevelsonstagewithorchestrapresent . . 62

    4.3.1 Scalemodellingsystemandconfiguration . . . . . . . . . . . . . . . . . 63

    4.3.2 Measurement analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    4.3.3 Measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.3.4 Resultsanddiscussionfororchestraonflatstagefloor. . . . . . . . . . 67

    4.3.4.1 Along path A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.3.4.2 Along paths B and C . . . . . . . . . . . . . . . . . . . . . . . 68

    4.3.4.3 Theeffectofreflectionswithintheorchestra . . . . . . . . . . 69

    4.3.4.4 The influence of source directivity . . . . . . . . . . . . . . . . 70

    4.3.5 Resultsanddiscussionfororchestraonrisers. . . . . . . . . . . . . . . 71

    4.3.5.1 Along path B and C . . . . . . . . . . . . . . . . . . . . . . . . 71

    4.3.6 Linearmodelsoftheorchestraattenuation . . . . . . . . . . . . . . . . 72

    10

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    11/210

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    12/210

    6.3 Validation of within-orchestra sound levels . . . . . . . . . . . . . . . . . . . . . 106

    6.3.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    6.4 Validation of early part impulse responses . . . . . . . . . . . . . . . . . . . . . 108

    6.4.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    6.5 Comparison of overhead and side reflections . . . . . . . . . . . . . . . . . . . 110

    6.5.1 Results for sound level across the stage . . . . . . . . . . . . . . . . . . 113

    6.5.2 Results for impulse responses . . . . . . . . . . . . . . . . . . . . . . . 114

    6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    6.6 Comparisonofsixdifferentstageenclosuredesigns . . . . . . . . . . . . . . . 116

    6.6.1 Resultingimpulseresponses,violintodoublebass . . . . . . . . . . . . 119

    6.6.2 Resultingimpulseresponses,trumpettodoublebass . . . . . . . . . . 120

    6.6.3 Resultingimpulseresponseswithoutorchestra,violintodoublebass. . 122

    6.6.4 Results for acoustic measures . . . . . . . . . . . . . . . . . . . . . . . 123

    6.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    7 Acousticmeasuresforassessingacousticconditionsonstage 127

    7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    7.2 Effects of an orchestra on stage measurements . . . . . . . . . . . . . . . . . . 128

    7.2.1 Changes of impulse responses . . . . . . . . . . . . . . . . . . . . . . . 128

    7.2.2 Resultsanddiscussionformeasuredimpulseresponses . . . . . . . . 129

    7.2.3 Changes of acoustic measures . . . . . . . . . . . . . . . . . . . . . . . 130

    7.2.4 Resultsanddiscussionforacousticmeasures . . . . . . . . . . . . . . 131

    7.2.5 The effect of chairs on stage . . . . . . . . . . . . . . . . . . . . . . . . 134

    7.3 Acoustic measures collected from eight stages . . . . . . . . . . . . . . . . . . 134

    7.4 Spatialaveragevalueofacousticmeasuresassessedwithoutorchestra . . . . 136

    7.4.1 Variationsoftheveryearlypartoftheimpulseresponse . . . . . . . . . 137

    7.4.2 Variations of acoustic measures . . . . . . . . . . . . . . . . . . . . . . 138

    7.4.3 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 138

    7.5 Results for objective acoustic measures . . . . . . . . . . . . . . . . . . . . . . 139

    7.5.1 Stage measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    12

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    13/210

    7.5.2 Correlationbetweentheacousticmeasuresassessedonstage . . . . . 140

    7.5.3 Audience area measurements . . . . . . . . . . . . . . . . . . . . . . . 141

    7.6 Relationshipsbetweenstageandaudienceaveragevalues . . . . . . . . . . . 142

    7.7 Reliability of the Support measures. . . . . . . . . . . . . . . . . . . . . . . . . 143

    7.8 Monophonicomnidirectionalmeasuresforassessingacousticconditionswithout orchestra present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    7.9 Directionallydependentassessmentofstageacousticresponse . . . . . . . . 147

    7.10 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    8 Impressionsofeightperformancespacesvisitedregularly 151

    8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    8.2 Method for subjective investigations . . . . . . . . . . . . . . . . . . . . . . . . 153

    8.3 Methods for objective investigations . . . . . . . . . . . . . . . . . . . . . . . . 154

    8.3.1 Acoustic measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    8.3.2 Architectural measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    8.4 Questionnaire results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    8.4.1 Commentsfromtheplayersandmeetingwithplayers . . . . . . . . . . 157

    8.5 Relationshipsbetweensubjectivecharacteristics . . . . . . . . . . . . . . . . . 158

    8.5.1 Subjectivecharacteristicsrelatedtooverallacousticimpression. . . . . 158

    8.5.2 Differencesofsubjectivecharacteristicsbetweentheeightvenuesand instrument groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    8.6 Results for objective acoustic measures . . . . . . . . . . . . . . . . . . . . . . 160

    8.6.1 Relationshipsbetweentheacousticandarchitecturalmeasures. . . . . 161

    8.6.2 The importance of hall reverberation . . . . . . . . . . . . . . . . . . . . 161

    8.7 Relationshipsbetweensubjectiveandobjectivemeasures . . . . . . . . . . . . 163

    8.7.1 Results of correlation analysis . . . . . . . . . . . . . . . . . . . . . . . 164

    8.7.2 The relevance of acoustic measures . . . . . . . . . . . . . . . . . . . . 164

    8.7.3 The relevance of architectural measures. . . . . . . . . . . . . . . . . . 166

    8.8 Architecturaldetailsrelatingtoacousticimpressions . . . . . . . . . . . . . . . 167

    8.9 Combinedstudyincludingresultsfromcomparablestudies . . . . . . . . . . . 167

    8.10 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    13

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    14/210

    9 Overalldiscussionandconclusions 173

    9.1 Themusiciansimpressionsofacousticconditions . . . . . . . . . . . . . . . . 174

    9.2 Acousticconditionsimposedbythearrangementofasymphonyorchestra. . . 175

    9.3 Requirementsofauditoriaforsuitablestageconditions

    for symphony orchestras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    9.4 Stageenclosuredesignssuitableforsymphonyorchestras . . . . . . . . . . . 177

    9.5 Relevanceofmeasuredomnidirectionalacousticresponsesforassessingthe stage enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    9.6 Overall outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    9.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    References 181

    A Thesymphonyorchestra 189

    A.1 Orchestra arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    A.2 Directionalcharacteristicsoforchestrainstruments . . . . . . . . . . . . . . . . 190

    A.3 Stage floor area per musician . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    A.4 Stage risers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    B Questionnaires 193

    C Frequencyresponseofpanelreflections 199

    D Combfiltering 203

    E Thelateralfractionmeasureappliedtotwostageenclosures 205

    F Strypesreversedorchestraarrangement 207

    G ImprovedacousticconditionsontwoNorwegianstages 209

    G.1 Oslo Concert Hall, Oslo (OCH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    G.2 Olavshallen, Trondheim (TOH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    14

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    15/210

    Chapter1

    Introduction

    This study and studies by others (Gade (1989b), Meyer (2009), Naylor (1988), Ueno &Tachibana(2003))revealthatacousticconditionsonstageareveryimportantforsymphony

    orchestramusicians. Forsymphonyorchestras,theacousticconditionswithin theensemble

    itselfaredifferentfromsmallerensembleslikechamberensembles. Thesizeofasymphony

    orchestra leads to the sound from most distant fellow players being significantly delayed

    andattenuated. Concerthallshavehistoricallybeenpurpose-builtforsymphonyorchestras,

    withthesizeofthestageandauditoriumtoaccommodatetheorchestraandtheorchestral

    repertoire. Butevenamongsuchpurpose-builthalls, therearestageswhicharelikedand

    thosethataredislikedbyperformers. Theoverallgoalsforthisprojectwereto learnmore

    abouthowacousticconditionsaffecttheplayers,andhowthedesignofthestageenclosure

    and auditorium affects the acousticconditions for the players. These investigations were

    carriedout independentofanyhypotheses. Morespecificallytheoverallgoalscanbesplit

    up into three: gaining understandingof themusicians impressions ofacousticconditions,

    recognisetypesofvenueandthirdlyestablishingwhichstageenclosure(stageshell)designs

    provide good acousticconditions for the players. Objective measures, both acousticand

    architectural,havebeenstudiedtosearchforhowgoodacousticconditionsmaybedescribed

    ordetectedphysically.Thesegoalsareatatoplevelofrelationsbetweenacousticconditions

    and the performers. This means that the focus for this workhasbeen to find the major

    relations. The underlying mechanisms for the major relations are only partly studied in

    detail. Amajoroutcomeof thisstudywould be tobetter understandhow todesign halls

    andstageenclosuresthatwillprovidegoodacousticconditionsforsymphonyorchestras,who

    consequentlywillperformbetter.

    Historically the focus inauditorium acoustics has been on the acousticconditions for the

    audience.Eventhoughacousticconditionsfortheperformerscertainlyhavebeendiscussed

    vividlyamongtheperformersthemselvesforcenturies,theseaspectsofconcerthallacoustics

    donotappeartohavebeengivenpriorityamongacousticians(investigatingthescienceof

    acoustics). Theremightbeseveralreasonsforsuchaweaklinkbetweenphysicalacoustic

    conditionsandperceivedconditions,butoneofthemainreasonscouldberelatedtotherole

    physicalconditionshaveforageneralperformer.Musicianshavelearntoveryearsoftraining

    andexperiencehowtocopewithdifferentacousticconditions. Theyappeartorelateto the

    15

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    16/210

    acousticconditionsonamoresub-consciouslevelofperception.Iftheyconsidertheacoustic

    conditionsindetailwhileplaying,they risklosingfocuson themusicalperformance. Such

    mechanismsbehind musicalperformancehavebeendescribedby for instanceKlaveness

    (2008). Whenacousticiansask themusiciansaboutacousticconditionsandpreferencefor

    certainstageconditions,themusiciansare(forgoodreasons)likelytonothavemanyanswers

    whichwillbeinformativefortheacousticians.

    The aboveobservations suggest that itwillbeverychallenging for the musicians tohave

    wellfoundedobservationsofhowforinstancethearchitecturaldesignsofthevenueaffect

    them. Someplayersmayhaveideasofhowdifferentacousticconditionsaffectthem,butas

    discussedbyBarron(1993)wecannotexpectanobserver(musician)tounravelacomplex

    situationjustfromsimpleexperience. Theprioritiesofattentionandeducationalbackground

    asaperformercanalsocontributetochallengesbeingabletocommunicatesuchdiscoveries

    clearly/efficiently to for instance acousticians. The musicians are not trained within any

    physicalsciencedisciplines,andacousticiansoftenhavenoformaleducationorexperience

    inmusicandperformance.Thereisahighriskofanydiscoveredrelationscanbelost,simplybecause the two groups have a different vocabulary, or the reason mightbe that the two

    partsrarelycommunicateatallwithregardtoperceivedacousticconditions. Gade(1981)

    interviewedmusiciansabouttheirimpressionsandrelationstoacousticconditionsonstages.

    One ofhis findingswas that the musicians very rarely discussed acousticconditionswith

    acousticians. Unfortunately, this workhas neverbeen published inany scientific journal.

    Blauert (2007)hasraisedconcernaboutthemismatchoffocusbetweenacousticiansand

    usersofacousticspaces,andthatthismismatchcanleadtoproblemswhenthesetwogroups

    trytocommunicate(exchangeideas/views).

    Howcouldstudiesaiming to raise theunderstandingofacousticconditionsforperformers

    overcome these problems sufficiently? In other disciplines like audio technology and

    psychoacoustics,itiscommontosimulatedifferentacousticenvironments/conditionswhereit

    ispossibletoquicklyswitchbetweendifferentconfigurations. Systemshavepreviouslybeen

    implementedtosimulateacousticconditionsforsoloisticplayingandfortwomusiciansplaying

    together,withandwithoutvisualcommunication(Naylor&Craik(1988),Gade(1989b),Ueno

    &Tachibana(2003)andGuthrie(2008)). Inrealconditions,thecommunicationbetweentwo

    playersisaffectedbythesoundfromtherestoftheorchestraplaying.Withoutincludingthe

    completeorchestrathevalidityofsuchlaboratoryexperimentsislikelytobelimited, though

    certainaspectsofacousticconditionsmaybe studied. Hallswithflexiblestageenclosuresofferexcitingpossibilities forresearch,butsuchhallsareunfortunatelyrare. Mostexisting

    concerthallshavefixedarchitecturaldesigns,whereonlyminorchangesarepossible(only

    afewhallsexistgloballywherethestageenclosureishighlyconfigurable). Withfixedstage

    enclosuredesigns,differenthallsneedtobestudied. Thenumberoforchestrasinvolvedand

    howmanytimestheorchestra(s)haveplayedineachhallarefactorslikelytoaffectthevalidity

    ofsuchstudies.Therewillthereforebesignificantshortcomingsforbothapproacheseither

    reducednaturalnessandnotincludingafullorchestrainlaboratoryexperiment,orareduced

    controlandflexibilityoftheacousticconditionsinstudiesofrealhalls.

    Giventhesechallenges,acombinationofdifferentapproacheshasbeenusedforthisstudy.

    Thetwomajortypesofapproachesmaybedescribedassubjectiveandobjectiveapproaches.

    16

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    17/210

    Thesubjectiveapproachincludesinvestigationsofimpressionsofacousticconditionsamong

    orchestralplayersingeneralandrelatingtospecificexistingstages. Theobjectiveapproach

    includesstudiesofphysicalconditionsinthevenuesthatwerejudgedbytheplayers,butalso

    howthearrangementofasymphonyorchestraimposescertainacousticconditionsforthe

    players(throughscalemodelling)andinwhatwayconditionsmaybeimprovedbyastage

    enclosure. Theresultsfromthesetwodifferentapproacheswerecomparedtoeachotherto

    guidethefocusfortheinvestigationsthrough-outtheproject,andtosearchforvalidrelations

    betweenphysicalacousticconditionsandsubjectiveimpressions.Hypotheseswithregardto

    howacousticconditionsareperceivedamongplayershavealsobeendevelopedthroughthe

    authorsownexperienceasanamateurmusicianwithin largerensembles. Thiswouldbeon

    alessscientificlevel(sinceamateurandprofessionalsmayjudgeacousticconditionsvery

    differently),buthasbeenveryusefulforanacoustician(theauthor)tobetterunderstandthe

    playerspointofview.

    Thestudyofgeneralimpressionsamongtheplayersincludewhatperceptualaspectsthey

    findimportantforgoodstageacousticconditions,problemstheymostfrequentlyface,theirfavouritehallvisitedthrough-outtheircareeretc. Suchimpressionswillbebasedonseveral

    years of experience. Eight different professional orchestras within England and Norway

    participatedinaquestionnairesurveycoveringsuchgeneralimpressions. Forthesubjective

    studiesofexistingstages,therehasbeenaimedforhighnumbersofstages/hallsandplayers

    participating in the study. Focus has been on impressions among players visiting a set

    ofhalls frequently (excludinghome venues), for reducing the influenceof factors varying

    betweenperformances(likerepertoire)andallowingtheplayerstohaveestablishedthemost

    valid impressions. Impressionofexistingstageswere investigatedintwodifferentstudies:

    impressions of overall acoustic impression for the halls visited regularly by seven of the

    eightorchestrasmentionedabove,aswellasadetailedstudywithoneoftheprofessional

    Englishorchestras. Forthehallsvisitedby theeightorchestrasbasicobjectivedatawere

    collected, both acousticand physical dimensions related to the stageenclosure. For the

    detailedstudy,theorchestraplaysregularlyinasetofeighthalls,aboutwhichmostofthe

    playershavedevelopedtheirviewsoverseveralyears. Theirimpressionswereinvestigated

    throughquestionnairesdistributed to the playersand through interviews with someof the

    players. Objectivedatawerecollectedalsoin thisstudy,buttheacousticconditionsinthe

    eighthallswereinvestigatedindetailbymeasuringmonophonicroomimpulseresponseson

    thestagesandwithintheaudiencearea. Asasummary,thisstudyincludesjudgementsof

    totally20purpose-builtconcerthallswhichtheplayersvisitregularly.

    The objective studies included theoretical/analytical investigations, scale modelling and

    computermodelling. Scalemodelswereusedtostudytheacousticconditionssetupbythe

    orchestraitself,inparticularhowthescreeningeffectscausedbyplayersandobjectsonstage

    affectsoundpropagationbetweenplayers. Scalemodelswerealsousedto investigatethe

    possibleconsequencesofmeasuringacousticconditionsonstagewithoutafullsymphony

    orchestra present. How such initial acousticconditions set upby the orchestra couldbe

    improvedby the introduction ofa stageenclosure, isstudiedanalyticallywithreference to

    availableliteratureonperceptualeffectsthatappearmostrelevantfortheplayers.Computer

    modelling was used tostudyacoustic conditionsonstagewitha full symphonyorchestra

    present,andhowtheconditionsareaffectedbydifferentenclosureelementsanddesigns.

    17

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    18/210

    Thisthesisisstructuredindifferentcompletechapterscoveringdifferenttopics. Chapter2

    contains the literaturereviewformingthebackgroundof thestudy. Thesubjectivestudies

    aredescribedinChapters3and8,whiletheobjectivestudiesaredescribedinChapters47.

    Chapter3describestheresultsfromquestionnairesdistributedtotheeightdifferentorchestras

    within England and Norway. Chapter4 investigates the sound levelswithin the orchestra

    itself,andhowthe screeningeffectscausedbyplayersandobjectsonstageaffectsound

    propagation between players. Chapter 5 investigates extreme types of stage enclosure

    designsbysimplifiedanalyticalmethods,whereresultingdifferencesarecomparedtofindings

    related toperception ofsound ingeneral and findingsby others with regard toenclosure

    designs.Chapter6considerscomputermodellingofgenericstageenclosuredesignstogeta

    morecompleteimpressionofhowthedifferentdesignsaffectacousticconditions. Chapter7

    coversacousticmeasuresrelatedtoexistingstage,whileChapter8 includesthesubjective

    resultsintheeightdifferenthallsvisitedregularlybyoneorchestrawithreferencetoobjective

    results.

    18

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    19/210

    Chapter2

    Backgroundofthestudy

    Thisreviewoftheliteratureonstageacousticsforsymphonyorchestrasinconcerthallsissplitintofourmajorsections. Thefirstsectiondiscussesphysicalacousticconditionswithin

    theorchestra.Thesecondsectioncoverssubjectiveimpressionsformusiciansonstage.The

    twofinalsectionscoverobjectivemeasuresproposedforevaluatingacousticconditionsforthe

    performersandhowdesignofthestageenclosureaffectsconditionsfortheconductorandthe

    audience.Thesefoursectionscoverthebasicconcernsofthisproject.Themethodsusedfor

    thisstudyarediscussedinthelastsectionofthischapter.

    2.1 Physicalobjectivesoundbehaviourwithinsymphonyorchestras

    Sincearound1950,alotofresearchworkhasbeendevotedtoacousticconditionsforthe

    audiencein concerthalls. Thisworkis discussedand summarised by Barron (1993)and

    Beranek(2004),forinstance. Oneoutcomeofthisresearchisasetofobjectivemeasures

    relatingtoconditionsforlistenersbeingincludedinthestandardISO3382(ISO,1997).Study

    ofconditionsformusiciansonconcerthallstageshasontheotherhandreceivedmuchless

    attention.Whathasbecomeclearisthattheacousticrequirementsoflistenersandperformers

    overlapregardingqualityof thesound(likewarmth, tonecolour),butperformersalsoneed

    toheartheirowninstrumentandbeingable tocommunicatewiththeircolleagues through

    thesoundstheyproduce. Whetheranyof themeasuresusedforconcerthall listeningare

    likelytobesuitableforacousticconditionsforperformersisdebatable.Thisquestionisfurther

    exploredinSection2.2.

    Asignificantdifferencebetweenconditionsforaudienceandplayersistherangeofsource-

    receiverdistances. Foranaudiencemember10mfromthestagefront,thedistancetothe

    closestand farthestmusician will typically bein a ratioof 1:2 (a6dBdifferenceof direct

    soundlevels). Mostlistenersarefurtherawayfromthestageandtherangeofdistancestoallinstrumentswillbesmall. Foraperformerinanorchestra,someplayerswillbecloseby,

    19

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    20/210

    whileotherplayerscanbeupto20mawayfromeachother(fora16mwideand12mdeep

    stage). Thedistancesinvolvedwilldependonhowtheplayersarearrangedonstage(see

    AppendixAformoredetails).Thisleadstoadistanceratiooftypicallyupto1:20betweenthe

    distancetotheclosestandmostdistantplayer.Sucharatiocorrespondstoa26dBdifference

    ofdirectsoundlevels averysignificantdifference. Additionally, thesoundpathbetween

    distantplayerswillbeobscuredbyotherplayerssittinginbetween,aswellasmusicstands

    andinstruments. Soundreflectionsinternallywithintheorchestrawillcompensateslightlyfor

    thisattenuationbyotherplayersetc.

    Howtheorchestraitselfcontributestotheattenuationofthedirectsoundwithintheorchestra

    isobviouslyimportantforon-stageconditions.Thishaspreviouslynotbeenstudiedindetail.

    SomebriefstudieshavebeencarriedoutbyKrokstadet al.(1980),Ikedaet al.(2002)and

    Skalevik(2007). Krokstadet al.(1980)studiedsoundpropagatingthroughagroupofnine

    personssitting onaflat floor, while Ikedaet al. (2002) studied sound levelswithin a real

    symphonyorchestraatsource-receiverdistances26m. Skalevik(2007)studiedthesound

    levelswithin050ms(relativetothearrivalofthedirectsound)withdifferentsourceheightsatonesource-receiverdistanceof12m. Mommertz(1993)hasstudiedsoundpropagation

    throughrowsofaudiencesittinginatheatre,presentingresultsintermsofattenuationper

    metre.TheresultsfromMommertzsstudycannotbeapplieddirectlytotheconditionswithin

    theorchestra,sincethedensityofpeopleisdifferentforanorchestraandmusiciansarenot

    arrangedinrows. Thistopic ispursued furtherinSection4.3.7. Thesestudiesgivesome

    indicationsoftheobstructioneffectbytheorchestra,withoutanywellfoundedquantification

    oftheattenuationtoexpectalongdifferentpathswithintheorchestrawiththewholerangeof

    relevantsource-receiverdistances.Thestudiesabovegivesomeindicationoftheobstruction

    effectsoforchestraplayers,buttheresultsarefarfromcomprehensive.

    Thesoundlevelofmusicalinstrumentswithinanorchestrainparticulardirectionsisdescribed

    bytheirdirectivities.Thedirectivityofmusicalinstrumentsforasymphonyorchestrahavebeen

    measuredbyOlson(1967)andmoreextensivelybyMeyer(2009).SeeAppendixAformore

    detailsondirectivitiesofaviolinandatrumpet. Theseresultsprovidesomeindicationofthe

    directions inwhichmostsoundis radiated. Acomplicating factorwith regard todirectivity

    is that the directivity changes depending on the note being played, particularly for string

    instruments. According toOtondo & Rindel (2004) the directivityof brass instruments is

    reasonablyconsistentbetweeneachnoteplayed.Significantchangesofdirectivitydepending

    on the note being played makes it difficult to use measured directivity patterns of stringinstrumentsincalculationsofsoundlevelswithintheorchestra,whiledirectivitypatternsof

    brassinstrumentsappearsufficientlyconsistentforestimatingsoundlevels.Musicstandsand

    screensbetweenplayerswillalsoaffectthedirectsoundlevelsindifferentdirectionsfromthe

    player,particularlyathigherfrequenciesduetolimitedsizeofmusicstandsandscreens.

    Meyer (2004)alsostudiedthesourcesoundpoweroforchestralinstruments. Thehighest

    power levelswere found for percussion and brass instruments. Normally the percussion

    and brass instruments sit at the backof the stagepointing their instruments towards the

    audience/conductor. A major consequence of source levels, directivity of the different

    instrumentsandhowtheorchestraisarrangedonstage,isthatthedirectsoundlevelsfrom

    thedifferentinstrumentsvaryconsiderablywithintheorchestra.

    20

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    21/210

    Proximity tosome instrumentscan lead toexcesssound levelsfornearbyplayers, witha

    potentialriskofhearingimpairment.Physicalsoundlevelswithinansymphonyorchestrainan

    orchestrapitandtheriskofhearinglossamongorchestralmusicianshavebeeninvestigated

    byforinstancePeterset al.(2005),Janssonet al.(1986)andK ariet al.(2001). Leeet al.ah

    (2005)carriedoutsimilarinvestigationsformusiciansinorchestrapits.Resultsby K ariet al.ah

    (2001)showedthatmanywindinstruments,includingtrombone,flute,piccoloflute,French

    hornandclarinetarecapableofproducingsoundpressurelevelsexceeding100dBA.The

    resultsforriskofhearingimpairmentvary,with theexposuretoothersoundeventsoutside

    themusiciansprofessionallifebeingoneoftheuncertaintyfactors. Suggestedmethodsto

    reduceexposuretoexcessivesound levelsinclude theplayersusingearplugsandplacing

    soundbarriersbetweenplayers.

    Withregardtolowfrequencysoundlevelsandvibrations,Lee(1982)studiedanalyticallyhow

    reflectingsurfacesclosetodoublebassesaffectedtotalsoundlevelfromtheseinstruments,

    and found that thefloorandsidewallscancontribute toa raised levelat low frequencies.

    Askenfelt(1986)foundthroughmeasurementsonrealstagesthatthestagefloorandriserscouldcontribute toperceptually raise the level ofdouble bass. Moredetails are given in

    Section5.7.

    Bradley (1996)studiedhowaddingastageenclosure(shell)affectedtheobjectiveacoustic

    conditionsonstage(aswellasfortheaudience).Twoofthethreeshellsstudiedfullyenclosed

    thestage,whileonehadthemainreflectingsurfacesverticallyatthesides. Hefoundthat

    addingastageenclosure(shell)aroundtheorchestracontributetoraisethesoundlevelson

    stagebytypicallyabout3dB.Soundlevelsofearlysound(directsoundandearlyreflections)

    increased by less than3dB,while the levelsof late soundincreasedby 4dB.From this,

    Bradleyconcludedthat temporalclarity,asassessedby forinstancetheobjectivemeasure

    C80,didnot increasebyaddingashell. Thiscouldbeaffectedbythetypeofshellsused.

    Measuredreverberationtime,T ,onstageincreasedatlowerfrequencieswhenstageshells

    wereadded.

    Thephysicalseparationofplayersofupto20mleadstomaximumdelaysof60msdelay

    forthedirectsoundifall theplayersstarttheirnoteatthesameabsolutetime. Timingisof

    greatconcernforperformers,becauseit isamongtheaspectofperformanceleastaffected

    bytheroomacousticresponse,accordingto Sundberg (2008). Goodman (2003)includes

    contributionsfrommusicianswithregardtodifferentaspectsofmusicalperformance,among

    themTheillusionofsynchronybyE.Goodman.AccordingtoGoodmantheplayersneedto

    takeintoaccountthesynchronicityofsoundasheardbytheaudience. Playersat theback

    ofthestagenormallyneedtocompensatefortheirsoundbeingphysicallydelayedrelative

    totheplayersatthefrontpartofthestage. Playerssittingacrossthestagemuststarttheir

    noteatthesametime,otherwisethesoundwillnotarrivesynchronisedfortheaudience.This

    leadstoplayersatoppositesidesofthestagehavingtoignorethedelayofsoundintroduced

    byphysicalseparation; visualcommunicationis importantbetweenmanyplayerssincethe

    auralcuescanbemisleading. Iftheytry towaitforeachother, theorchestrarisksslowing

    downthetempo,asdescribedbyIhlen(2008). (ThisisfurtherdescribedinSection5.4.1.)

    Fredrickson(1994)foundthatvisualcuesinadditiontoauralcuesraisedtheaccuracyratings

    oftheperformedmusic.Theaccuracyofonsetofnotesisalsofinite.Rasch(1979)foundthat

    21

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    22/210

    triosplayingtogetherhadadeviationoftheironsetofnotesof3050ms. Thisindicatesthat

    atimespanof60ms(thedelayofstringsoundacrossthestagetowardstheback)forsound

    fromdifferentinstrumentsmaybeseenaspartoftheorchestrasounditself,andtheplayers

    treatsuchdelaysastolerabledeviations.

    From the investigations regarding physical conditions asdescribed above, thereare only

    limited studies regarding quantification ofhow playersand objects on stagecontribute to

    obstructsoundbetweentheplayers. Soundlevelswithin theorchestrahaveprimarilybeen

    measuredwithregardtoexcesssoundlevels.Regardingcontributionofreflectedsoundfrom

    thestageenclosure,onlychangesofaveragestagevalueshavebeenstudied. Nodetailed

    studieshavebeenfoundwithregardtothelevelofreflectedsoundfromthedifferentinstrument

    groupsprovidedbythedifferentsurfacesofastageenclosure.

    2.2 Theimpressionsofacousticconditionsonstage

    Someofthemajormechanismsstudiedbyotherswithregardtohowtheacousticconditions

    affectthemusiciansinclude: mutualhearingandcommunicationbetweenplayers(including

    theratioofsoundlevelandtimearrivalofonesowninstrumentandotherinstruments),and

    theinfluenceofreflectedsound(fromthestageenclosureortheconcerthallasawhole).The

    latterislikelytoaffectmutualhearingaswell,butthestudiesfocusingonmutualhearinghave

    normallystudiedgeneralsoundleveldifferences,whilestudiesonreflectedsoundhaveoften

    lookedatspecificreflectingsurfaces.Forthemusicians,thesoundlevelsofotherinstruments

    withintheorchestrawillbeheardinrelationtolevelofproducedsoundbytheirowninstrument.

    This leads tothe existenceofa maskingsound(ownsound) which isnot present for the

    audiencelistener.Thismakesitdifficulttoapplyfindingsregardingmaskingthresholdsbased

    onnormallisteningconditions.

    Meyer(1994)definedthreedifferentqualitylevelsofacousticconditionsforthemusicians:

    The lowest level is associated with the need for playing correctly. If players hear

    themselves too loudlyandtheotherparts tooweakly, therhythmicprecisionsuffers.

    Inthereversecasetheintonationisaffected,whereasprecisionintimingstillispossible.

    The second level relates to forming the sound quality. Ease of singing or a good

    responseof their instrument support the musicians security, enhance the accuracy

    of toneonsets and articulation, enlarges the dynamic rangeand avoids a too much

    enforcedtoneproduction. Easeofhearingeachotherenablesthemusicians toplay

    withawell-balanceddynamicrelationtotheotherpart.

    Thethirdlevelisassociatedwithcreatinganintegratedentiresoundoftheorchestra,

    related tocommonlyproducedarticulationofchordsandcommonlyformed temporal

    finestructureofdynamics. Inparticularstringplayersneedasenseofbeing integrated

    intotheirgroups.

    22

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    23/210

    Studiesonhowtheacousticconditionsaffecttheplayingconditionscanbesplitupinthree

    differentmajorapproaches:studiesofgeneralexperiences,impressionsofspecificconditions

    inasetofexistinghalls,andlaboratoryexperiments.Forallthreeapproaches,questionnaires

    and interviewshavebeen the major investigative techniques. This section issplit upinto

    resultsfromthesethreedifferentapproaches.

    2.2.1 Studiesofgeneralimpressions

    Gade(1981)interviewed32musiciansaboutdifferentaspectsofacousticconditionsingeneral

    andtheirrelativeimportance. Themostimportantaspectsfortheplayers(in rankedorder)

    cameoutas:hearingeachother,reverberation,support,timbre,dynamics,timedelay,

    change ofpitch. Soloists favoured the aspects that the players felt influencethe beauty

    ofthesound,believedtobecontrolledbyreverberation, support, timbreand dynamics.

    Accordingtothemusicians,merepersonaldifferencesinjudgementonacousticqualityare

    rare (they try toworkasone unit, putting personal tasteaside), but differences between

    instrumentswereobserved. Forinstance,playersofpianoand timpani/percussionappeared

    tohavedifferentopinionsthantherestoftheorchestra. Musiciansreportedtheyseldomtalk

    aboutacousticswithacousticiansorothers.

    Gentaet al. (2007b)distributedquestionnairestothemusiciansoftwoprofessionalorchestras,

    enquiringwhichacoustically relatedaspects/attributesweremost important forthem. The

    resultsindicatedthatensembleandclaritywerethemostimportantattributes,followedby

    dynamics, timbre, tonalbalance, soundstrengthand soundenvelopment. TheBorda

    countmethodwasfoundasthemosteffectivemethodforfindingtherankorderofthedifferentattributesamongtheplayers. Miller(1987)conductedasimilarquestionnairestudywithone

    symphonyorchestrawhere the results indicated that themusicians relations to acoustics

    couldbereducedtofourfactors:ensemble,interference,supportandtonequality.Guthrie

    (2008),involvingninemusiciansparticipating,foundthefollowingaspectstobehighlyrelevant,

    regardingacousticresponse: ratioof volumebetweenyourselfandothers,commonaural

    spacebetween all musicians, reverberance of space and ability to distinguish between

    individualvoices.Theresultsfromthesethreestudiesagreereasonablywellwiththefindings

    byGade(1981).

    Meyer (1994)askedmorespecificallydoublebassplayersfor theiropinions onstagefloor

    propertiesinaquestionnaire.Theresultsshowedthat50%oftheplayerspreferredawooden

    flooroveracavity(moreresonance,morecarryingsound)while50%preferredanon-

    vibratingfloor(Thesoundismoreeasilycontrolled,Acavitymakesthesounddull). The

    positiveimpressionswerebelievedtoberelatedtoraisedsoundlevelatlowerfrequencies,as

    foundbyAskenfelt(1986),whilethenegativeimpressionswereassignedtotheenergyloss

    causedbytheenergytransmissionintothefloor.

    Ueno&Tachibana(2005)establishedacognitivemodelofmusiciansperceptioninconcert

    hallsbasedonan interviewsurvey. Theirmodeldescribeshowthemusiciansrelatetothe

    physicalbehaviour ofan acousticspaceas tacit knowinga skillacquiredovertimeby

    repeatingthetask,withoutnecessarilybeingabletotellhowtheskillisacquiredandhow

    23

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    24/210

    the physical conditions actually are perceived. The preference or evaluation of acoustic

    conditions are found to be affected by the arrangement with other players (solo playing,

    quartet,orchestra)andthewordsusedtoexpresstheirexperienceswillvary. Butbytaking

    thebackgroundandtheintentionsoftheplayersintoaccountandconsideringthesemantic

    aspectsofwordsused,theybelievedthedifferencesofthejudgementscanbeinterpreted.

    Overall these results suggest that the musicians relate to the physical conditions at a

    subconsciouslevelandthattheabilitytocommunicateclearly/efficientlyisofhighestconcern

    amongtheplayers.

    2.2.2 Studiesofimpressionsofspecificstages

    Withregard tostudiesofperceivedacousticconditionsonspecific(existing)stages, there

    arefewstudies involvingafull symphonyorchestra. Investigationsofacousticconditionson

    stageforsmallerensembles,likechambergroups,havebeenstudiedbyforinstance Barron

    (1978),Marshallet al.(1978),DAntonio(1992),Chiang&Chen(2003)andSanders(2003).

    Theseresultscannotbeseenas directlyvalid forimpressionsamongplayerin symphony

    orchestras,since smallergroups areexpected tohave lessproblems with time delay and

    obstructionof thedirectsound. Severalinvestigationsofacousticconditionsforsymphony

    orchestrasarebasedonexperiencesfromconsultancyjobs,whereonlyaverylimitedsetof

    hallsordifferentacousticconditionswereincluded,likeforinstanceShankland(1979),Gade

    (1989c),Allen(1980),Benade(1984),Harkness(1984)andKanet al.(1995).Themusicians

    absolutepreferenceforaparticularstageislikelytobesignificantlycolouredbyindividual

    preferencesamongthemusicians. Fromstudiesofperceivedaudioqualityamonglistenersingeneral,Zielinskiet al. (2008)foundthatbiasduetoaffectivejudgementsmayresultin

    errorsofup to40%with respectto the totalrange ofthescale. Thissuggeststhatonly

    relativedifferencesinpreferencebetweendifferentstagesmaybevalidwhenstudyingthe

    relationbetweenobjectivebehaviourandsubjectiveimpressions.Themostsignificantstudies

    ofrelativechangeofpreferencearegivenbelow.

    Some studies involved changing the acoustic conditions for one stage and asking the

    musiciansabouttheperceivedimpressionofconditionsbeforeandafterthechange. Rindel

    (1991) studied the effect of adding overhead reflectors on stage, Kahle & Katz (2004)

    investigatedtheeffectofmakingthebackwallabsorbing,whileBerntson&Andersson(2007)

    studiedhowchangesofthestageenclosureinaniterativeprocesswithplayerscontributedto

    improvetheconditionsfortheplayers.Astudyby Halmrast(2000)focusedontherelevanceof

    combfilteringinthefrequencydomainonperceivedsoundacrossthestageforonesymphony

    orchestraplayingat twodifferentvenues. Theresultsfromthesestudiesare referredto in

    moredetailinChapter5, thoughsuchsinglecasestudiesmayhavelowgeneralvalidityfor

    severalreasons: theplayersmayhavebecomefamiliarwiththenewconditionsoveronlya

    verylimitedtimeperiod. Iftheplayershaveadaptedtotheirexistingconditionsoverseveral

    years,theperceivedchangeofconditionscouldalsobemisleading. Therefore,thechange

    ofpreferencemayonlybevalidfortheparticularinitial/existingconditionseveniftheplayersweresufficientlyfamiliarisedwithnewconditions.

    24

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    25/210

    Gade (1989c) carried out a study of three Danish symphony orchestras impressions of

    acousticconditionsofnineperformancevenuesincludingtheirhomevenues.Thismeantthat

    thedifferentstagesinvolvedwerejudgedbydifferentorchestras,exceptforonehallwhere

    twooftheorchestrasregularlyperformed. Oneoftheseorchestraswentonatourwithinthe

    UnitedKingdomandtheimpressionsofthevisitedhallswerealsostudied. Theinclusionof

    differentorchestrasmakesitmoredifficulttodirectlycompareimpressionsofthenineDanish

    halls inGadesstudy. Theplayersmayaswellhaveadapted totheirhomevenues,which

    couldcontributetomaketheirjudgementslessvalidingeneralterms. ForhisUKstudy,the

    impressionsbytheplayersmaysufferfrompoorvalidityandreliabilitysincetheplayersonly

    visitedthesehallsonce. ThevenuesincludedinGadesstudyincludepurposebuiltconcert

    halls,butalsosmallervenueswithshortmeasuredreverberationtimes.Thismeantthatvenue

    typeand stageenclosure design bothvariedat the same time,making itmoredifficultto

    isolatecauseandeffect.Similar,morerecentstudieswerecarriedoutbyCederlof(2006)and

    Giovannini (2008), though thehallsstudiedbyCederlof (2006) includedonlypurpose-built

    concerthalls(withinSweden). Theresultsfromthesestudiesarediscussedinmoredetailin

    Chapter8.

    Halmrast(2000)carriedoutmeasurementsofimpulseresponsesacrossthestagewithafull

    symphonyorchestrapresent. Hefoundthat ifmeasuredresponsesshowedcombfiltering in

    thefrequencydomain,itwouldindicatenegativecolourationeffectsperceivedbytheplayers

    onstage.Theobservedcombfilteringwasduetoanearlyreflectioninterferingwiththedirect

    sound(within-orchestra)sound. Ifthedelaybetweenthedirectsoundandthisreflectionwas

    525ms,theperceivednegativeeffectsappeared tobemostprominent. Thistimeinterval

    resultsinacombfilterwithabandwidthbetweencancelationscorrespondingtothecritical

    bandwidthofourauditorysystem.Withnofurtherstudiesofthisphenomenon,itisdifficultto

    sayifthecombfilterobservedistherealcauseoranindicationoftheproblemsreportedby

    theplayers.SeeChapter5andAppendixDforfurtherdiscussionsofHalmrastsfindings.

    Severalof theresultsfromthe studiesmentionedabovecanbe seenas contradicting, for

    instancewithregardtotheeffectofdifferenttimearrivalsofearlyreflectionsandthebenefitsof

    overheadreflectingsurfaces.Suchcontradictionsarelikelytoarisewhenstudiesinvolveonly

    alimitedsetofhallsororchestras. Thestudiesmentionedabove,whichinvolvedmorethan

    onestage,hadthedifferentstagesjudgedbydifferentorchestrasorbythehomeorchestras;it

    isdifficulttoknowhowthepreferencesandadaptationwilldifferamongthejudgingorchestras

    andtodrawconclusionsthatwillhavegeneralvalidity.

    2.2.3 Laboratoryexperiments

    Severalstudieshaveinvestigatedmutualhearingbetweenplayers.Thetolerancefordelayof

    thedirectsound,audibilityofearlyreflectionsandpreferenceforlaterarrivingreflectionsare

    amongothertopicsconsideredinlaboratorystudies.

    Gade (1989b) studied how sound levels and delay of sound affected how two players

    experiencedplayingtogether.Theeffectofearlyreflectionswasalsostudied.Thetwoplayers

    weresittinginphysicallyseparatedanechoicchamberswithauralcommunicationprovidedby

    25

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    26/210

    microphonesandloudspeakers.Threeviolinplayers,threecelloplayersandthreefluteplayers

    participated. Thedirectsoundfromtheotherplayerwasdelayed,changedinlevelandlow

    passfiltered. Thechangesofdelayand levelweredesignedtosimulatespecificdistances

    betweenplayersandthelossathighfrequenciestosimulatetheobstructioneffectintroduced

    bytheorchestra.Thesoundoftheotherplayerwasplayedfromoneloudspeakerinfrontofthe

    playersandasetofearlyreflectionsandreverberantsoundwereintroducedbyaloudspeaker

    verticallyabovetheplayers. Theresultsshowedthatadelayofdirectsounddelayedmore

    than20mswasfounddisturbingbytheplayers.Suchadelaycorrespondstoa7mseparation

    betweentheplayers. Alossofhighfrequencysoundandintroductionofreverberantsound

    werefoundtomakemutualhearingmoredifficult. Forsomeofthe instruments, theresults

    indicatedthatthesoundofonesowninstrumentcontributedtocompletelymasktheaudibility

    ofearlyreflectionsupto20100ms. Therewasnovisualcontactbetweentheplayers.The

    lackofvisualcuesmayhaveexaggeratedthenegativeeffectsofdelayeddirectsound. The

    effectsobservedwithearlyreflectionsandreverberantsoundmayhavebeenaffectedbythe

    simplifiedmethodofgeneratingthesesoundcomponentsinthelaboratory.

    Guthrie(2008)performedsimilarinvestigationswithtwomusicianssittinginseparaterooms

    playingtogether. Inadditionto transmittingsoundfromtheotherinstrumentandartificially

    simulating a set of different room acoustic responses, cameras and displays were also

    includedtoallowvisualcommunicationbetweentheplayers.Thevisualcommunicationwas

    switchedonandoffasanexperimentalparameter.Theresultsindicatedthattheself-to-other

    ratioinsoundlevelsismostcrucialforgoodcommunicationbetweentheplayers,followedby

    visualcommunication.

    Nakayama(1986)andSatoet al.(2000)foundthroughlaboratoryexperimentswithfivecello

    soloistsandonealto-recordersoloistthatthepreferreddelayofareflectiondependedonthe

    tempoofthemusicalmotifplayed. Alongerdelaytimewaspreferredfortheslowestmotif.

    Nakayama (1986) foundapreference forreflection fromabove,whensimulating twoearly

    reflections. AcomparablestudybyNakayama&Uehata(1986)showedthatareflectionin

    themedianplanecouldcreateaperceivedsoundimageinthefrontaldirection. Aperceived

    soundimageinfrontaldirectionswasbelievedtobebeneficialfortheperformergivingthe

    impressionthattheirsoundwasbeingdirectlypropagatedtothelistener.

    Meyer (1986)studied players sensitivity toanearlyreflectiondepending ondirection and

    musicalinstrumentbeingplayed. Theresultsindicated thatat1kHzthemusicianswillbe

    moresensitive to reflectionsarriving fromabovecompared toreflectionsarriving fromthe

    sidesordiagonallyfromabove.Thiswasfoundbetocausedbymaskingeffectsoftheirown

    instrument.Thisobservationledtotheproposalofabeneficiallayoutforoverheadreflectors,

    asshowninFigure2.1: aflat reflectorabove thestringswould enable reflectionsbackto

    thestringplayersfromthedirectionfromwhich theyweremostsensitive. Atilted reflector

    abovethewoodwind(facingtheaudience)wouldreflectsoundfromthestringplayersdown

    towardsthewoodwindplayersverticallyfromabove,while reflectingsoundfromwoodwind

    diagonallydowntowardsthestrings.Suchanarrangementwasbelievedtohelpthewoodwind

    playershearthestringswithoutwoodwindsbecomingtooloudforthestringplayers. Buton

    theotherhand,ahorizontalreflectingsurfaceabovethestringplayerscanmakeitdifficultto

    hearotherstringplayersatafartherdistance,sincethesensitivityforthereflectionfromones

    26

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    27/210

    owninstrumentcouldbehigher thanreflectionsfromplayersat adistance. Thisis further

    discussedinSection5.5.2.

    WindsStrings

    Figure2.1:LongsectionviewofreflectorabovestringsandwoodwindsasproposedbyMeyer(1986).

    Naylor & Craik (1988) carried out investigations of hearing oneself and other players.

    Musiciansinananechoicchamberplayedalongtopre-recordedmusic. Differentversionsof

    pre-recordedmusicwereusedtosimulatedifferentacousticconditions.Theirresultsshowed

    thatincreasingthetemporalandpitchdifferencebetweensoundofselfandothers,improved

    theimpressionofhearingselfandotherplayers.Theoptimumtotallevelofotherswasfound

    tobewithin23and+5dBArelativetolevelofownsound. AccordingtoNaylor(1985),this

    intervalis fortriplecounterpointplaying. Forunisonandsinglecounterpointtherespective

    intervalswerefoundtobe15to+5and21to+7dBA.Naylor(1988)suggestedthatthe

    levelofonesowninstrumentwasalmostindependentoftheroomandthattheroommainly

    controlled the levelofothers. The levelbalancebetweenselfandotherswas found tobe

    important. ThisagreeswellwithGadesfindingwithregardtoaudibilityofearly reflections

    ofonesowninstrumentasreferredtoabove. Naylorfoundthatreflectorsnearasymphony

    orchestrawere founduseful forincreasing the levelofothersand the ratioofearly tolate

    soundlevel,butforsmallenclosuresabsorptionmayinsteadbeneededtoavoidexcessively

    high sound levels. Reverberation was also found useful for raising the perceived level of

    others.Stringplayersatreardesks(atthesidesofthestage)werementionedasparticularly

    challengedplayerswithregardtohearingwithintherestoftheirsections,andcouldbenefit

    fromreceivingreflections. Ternstromet al.(2005)foundcomparablelimitsforlevelofothers

    fromalaboratorystudywithsingers:thesingersperformedbestwithregardtointonationwith

    soundlevelofowntheirvoicebeingwithin15dBto+5dBrelativetotheothers.Thesound

    leveloftheothersingerswasestimatedbyrecordingthesoundatboththeearsofthesingers

    duringanoperaperformance(byuseofminiaturemicrophones).

    Ueno&Tachibana(2003) established asystem forregenerating roomimpulse responses

    fromrealhallsinananechoicchamber.Thisenabledarapidswitchbetweendifferentplaying

    conditionsfortheplayersbasedonrealroomresponses.Impulseresponsesfromrealspaces

    werecollectedbyuseofanomnidirectionalsourceandsixmicrophonesfourinthehorizontal

    (front, back and left and right) and two in the vertical plane (below and above). These

    measuredresponseswereconvolvedwiththedirectsoundfromtheinstrumentplayedinthe

    anechoicchamber. Theresultingsoundwasplayedback in the sameanechoicchamber

    fromsixloudspeakerslocatedinthesamedirectionsasthesixmicrophonesusedtocapturetherealroomresponse.Thesynthesisedimpulseresponsesintheanechoicchambershowed

    27

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    28/210

    goodagreementwiththerealimpulseresponses,alsoforcalculatedacousticmeasuresbased

    onthe impulseresponses. Thesimulatedimpulseresponsesenabledtheearlyreflections,

    reverberationanddiscretelatereflectionstobecontrolledindependently.Initialresults(Ueno

    et al., 1998) indicated that differences in the compositionofearly reflectionswere hardly

    recognised by the players. Results from Ueno& Tachibana (2003) showed that for solo

    playing,themusicians(threeflute,oneclarinet,twooboe,threeviolinandthreeviolaplayers)

    preferredalowlevelofearlyreflectionsandmoderatelevelofreverberantsound.Withregard

    toadiscretelatereflection(arrivingat250ms),theresultsindicatedthatsuchareflection

    waspreferredaslongasitwasatamoderatelevel.Uenoet al.(2004)studiedtwoplayers

    playingtogetherinseparatedanechoicchambersusingthedeveloped6-channelsimulation

    system. Theresultsindicatedthatbothearlyreflectionsandreverberationshouldbeatan

    optimum level for the most preferred conditions for playing together. This was basedon

    impulseresponseonanemptystagewithasource-receiverdistanceofapproximately6.7m.

    Withregardtothevalidityofthelaboratorystudies,investigationsofmutualhearingbetween

    twoplayerswithouttherestoftheorchestrapresentmayhaveresultedinunnaturalconditionsfortheplayersorconditionsthatbetterapplytosmallerensemblescomparedtosymphony

    orchestras.Theobstructioneffectbyplayerssittinginbetweenandmaskingeffectscausedby

    interferingsoundfromotherinstrumentswillnotbefullyencounteredundersuchconditions.

    OnlyNaylor&Craik(1988)appeartohaveusedinterferingsoundforstudiesofmutualhearing.

    TheinvestigationsbyGade(1989b)includedhighfrequencyattenuationofthedirectsoundto

    simulatetheobstructioneffect.Theomissionofotherplayerscouldrepresentconditionsmore

    valid forsmallerensembles than forsymphonyorchestras. The limitednumber ofplayers

    involvedandthenumberofloudspeakersusedforthereproductionofearlyreflectionsand

    reverberantsoundmaywell have contributed toreducedvalidity of the results from these

    laboratoryinvestigations.Anothercriticalfactormaybethemusicalrepertoirechosenforthe

    studies.Gade(1989b)used,inparticular,theTrioSonatabyJ.S.Bachandthe40thSymphony

    byW.A.Mozartassourcematerial. OnthecontraryGuthrie(2008)usedarepertoirewhere

    the structureand durationofnotesproduced by the individualplayersare lesspredicable

    (C.Wolff). Suchsignificantdifferencesinsourcematerialscanhavecontributedtodifferent

    conclusionsregardingtheimportanceofdifferentacousticalaspects.Thefindingswithregard

    totheaudibilityofearlyreflectionsof onesowninstrumentmaybesufficientlyvalid, since

    anintroduction ofother playerswillmakeearly reflectionsofonesownsoundeven more

    inaudibleduetomaskingeffects.Thisfindingsuggeststhatsurfacessurroundinganorchestra

    willmainlycontrolthelevelofothers,notthelevelofonesowninstrument.

    2.3 Proposedacousticmeasures

    Someofthelaboratorystudiesmentionedaboveledtoproposalsofacousticmeasuresto

    assess the acousticconditionsforthe performers. Belowfollowsmoredetail onthemost

    significantmeasuresproposedforassessingtheacousticconditionsfortheperformers: the

    ST measures. OtherproposedmeasureslikeMTF andRR160arepresentedattheendof

    thissection.

    28

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    29/210

    Thefirstdedicatedstageacousticmeasureswereproposedby Gade(1989c)andlaterrevised

    inGade(1992)thesupportST measures.ThefollowingSupportmeasures,ST havebeen

    proposedbyGade(1992): STearly (previouslydenotedST 1)toassessensembleconditions,

    STlate forassessing the impressionof reverberationand STtotal forassessingsupportfrom

    the room forsoundfromthemusiciansown instrument. TheST measuressumthelevel

    ofsoundreflectionsreturningbacktoamusicianonstagefromanydirection,byuseofan

    omnidirectionalloudspeakerandmicrophone. Thesumofreflectionsistakenwithindifferent

    time intervals relative to the emissionofsound. The time intervals forSTearly, STlate and

    STtotal are 20100, 1001000 and 201000ms respectively. The microphone should be

    1m fromthecentreofthesoundsourceat1 mheight, toemulate aninstrumentandthe

    roomacousticresponseof itasreceivedatthemusiciansears. Thecombinedlevelofthe

    measureddirectsoundandthestagefloorreflectionisusedasthereferencelevel,summed

    withinthetimeinterval010msfromthemeasuredimpulseresponse. Equations(2.1)(2.3)

    arethe mathematicaldefinitionsof STearly, STlate andSTtotal. For theDanishhallsstudied

    byGade(1989c),STearly showedcorrelationatasignificantlevelwithsubjectivemeasures

    representingmutualhearing (ensemblemeasures),whileSTlate (replacingCS asproposed

    inGade(1989b))showedsignificantcorrelationwithperceivedreverberation. Gade(1989c)

    alsoproposedameasurecalledEEL (EarlyEnsembleLevel).Thismeasurewasobtainedby

    measuringacrossthestageusingtwomicrophones,withonemicrophoneforthereference

    levelandonemeasuringmicrophonefortheresponseacrossthestage. Equation2.4shows

    themathematicaldefinitionofEEL. Em istheenergyresponseatthemeasuringmicrophone

    witht =0referringtotimeforemissionofsound.Duetotheabsenceofsignificantcorrelations

    betweenEEL andsubjectivemeasures,EEL waslateromitted(Gade,1992).SeeSection7.7

    formoredetailsonmeasurementofST onrealstages.

    E(20100ms)STearly= 10 log10 dB (2.1)E(010ms)

    E(1001000ms)STlate= 1 0 log10 dB (2.2)E(010ms)

    E(201000ms)STtotal= 1 0 log10 dB (2.3)E(010ms)

    Em(080ms)EEL = 10 log10 dB (2.4)E(010ms)

    Gade (1989c) investigated thevalidityof theseobjective measures through threedifferent

    studies.HisfirststudyincludedthreeDanishorchestrasimpressionsofninevenuesincluding

    theirhomevenues,andhisthirdstudyinvestigatedhowanexistingstagecouldbeimproved

    bymodifyingthestageenclosure. Forthesetwostudiessignificantcorrelationswerefound

    betweenST measuresandsubjectivemeasures.Onthecontrary,theresultsfromhissecond

    studywithoneoftheDanishorchestrasvisitingeighthallswithintheUnitedKingdomindicatedthatSTearly didnot correlatewellwithsubjectivemeasures. Asdiscussed inSection2.2.2

    29

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    30/210

    Gadesfirstandsecondstudymaysufferfrompoorvalidityandreliability. ThevalidityofST

    isdiscussedinmoredetailinChapter7.Otherstudieshavecoveredthetechnicalaspectsof

    ST ,consideringtheeffectofthetimelimitsused,andtheimportanceofhavingchairsonthe

    stagewhilecarryingoutthemeasurements. ResultsbyvandenBraaket al.(2005),Jeon&

    Barron(2005),OKeefe(1995)andOKeefe(1994)indicatethatthedefinitionof ST andhow

    itshouldbemeasuredcontributetoreducedreliabilityofST .Thisisdiscussedinmoredetail

    inSection7.7. Kimet al.(2005)andGiovannini&Gade(2007)foundthat STearly wasnot

    veryresponsivetochangestothestageenclosure,buttheperceivedimpressionsofthese

    changeswerenotinvestigated.

    Naylor (1988) proposed the use ofmodulation transfer functions (MTF) measuredacross

    the stage toevaluate conditions formutual hearing. Thiswas basedon the use ofMTF

    for assessing speech intelligibility, as proposed by Houtgast & Steeneken (1973). The

    mathematicaldefinitionof themodulation transferfunction,MTF,asusedbyNaylor(1988)

    wasbasedon Houtgast&Steeneken (1973). InHoutgast&Steeneken (1973), MTF was

    appliedtoperceivedspeechintelligibilitywhereroomreverberationandthebackgroundnoisecontributeto reduce thecalculated speech intelligibility. Naylor (1988)setthebackground

    noise level to represent the levelof interferingsound from otherplayers. In thisway the

    communication channel between two players could be assessed taking into account the

    influenceofdisturbingsound.Nostudiesbyothershavebeenfoundwhichhaveinvestigated

    thevalidityofNaylorsproposedmethod.

    Griesinger(1995)proposedameasurecalledrunningreverberationforassessingperceived

    reverberationduringmusicalperformance. Equation(2.5)showsthemathematicaldefinition

    ofRR160. NoinvestigationshavebeenfoundwhichstudythevalidityofRR160otherthan

    Griesinger,butKahle&Jullien(1994)foundobjectivemeasurescomparabletoRR160 tobest

    correlatewiththesubjectiveimpressionofreverberance.

    E(160320ms)RR160 = 10

    log10 dB (2.5)E(0160ms)

    vandenBraak&vanLuxemburg (2008)proposedameasuredenoted LQ740 forassessing

    acousticconditionsforconductorofasymphonyorchestra.Thismeasurewasalsoproposed

    toberelevantfortheplayers.SeeSection2.4formoredetails.

    vonBek esy(1971)proposedtheconceptofauditorybackwardinhibitionbasedonlaboratory

    experimentsthatindicatedthatdiscretereflectionsarrivingwithin60200msafterthedirect

    sound could contribute to reduced clarity of sound. Based on the concept of auditory

    backwardinhibition, itwassuggestedinAshley(1979)andAshley(1981)thatthearrivalof

    suchreflectionscouldexplainthepreferenceforcertainconcerthallstagesamongorchestral

    musicians.Thiswasnotdevelopedtodefineanacousticmeasure.Blauert&Tttemann(1980)

    triedtoreproducethelaboratoryexperimentsinitiallycarriedoutbyvonB esy(1971).Theirek

    resultsdidnotshowanyevidenceofthemechanismauditorybackwardinhibition. Afterthe

    publicationbyBlauert&Tttemann(1980),auditorybackwardinhibitionhasnotbeenfound

    mentionedinliterature.

    30

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    31/210

    Two objective measures were also proposed at an early stage of this project, based on

    monophonicomnidirectionalimpulseresponsesmeasuredonstagewithoutafullsymphony

    orchestra present. The first measure proposed (EB Ensemble Balance) was designed

    forassessingthebalancebetweenearlyreflectionsfromanotherplayercomparedtoearly

    reflectionsfromonesowninstrument.Thesecondmeasure(EMDT Early-MidDecayTime)

    wasdesignedforassessingtemporalclarityofsoundfromforwardintegrationofthemeasured

    acousticresponse,mimickingthetemporalintegrationinthehumanauditorysystemasused

    by Cremer (1989). From the investigations of real halls and perceived conditions, these

    objectivemeasuresdidnotshowanysignificant correlations withthe subjectivemeasures

    investigated. ResultsbyGade(1989c)andNaylor(1988)indicatethatearlyreflectionsfrom

    ones own instrument will bemasked by the direct soundofones own instrument. This

    may explainwhy EB wasnot found significantwhen relating to subjective characteristics.

    The low significance of EMDT may relate to both its mathematical definition and how it

    wasassessed forthisprojectwithoutmusicianspresentonstage. Thesetwoproposed

    measuresarethereforeherenotdescribedanyfurther,butthedefinitionandfailureofthese

    measures(describedinfurtherdetailinSection 9.5)mayproviderelevantinformationforfuture

    investigations. SeeBarron&Dammerud(2006)andDammerud&Barron(2007)formore

    detailsonthesemeasures.

    Theobjectiveacousticmeasureslistedabovehavemainlybeeninvestigatedbytheauthors

    who originally proposed the measure(s). Only the ST measures have been investigated

    by others, but mainly regarding the physical behaviour of the measures. Nostudies are

    foundintheliteratureregardingthecorrelationbetweentheacousticmeasuresandsubjective

    characteristics,wherealargenumberofprofessionalsymphonyorchestraplayinginpurpose-

    builtconcerthallshasparticipated.

    2.4 Effectofstageenclosureforconductorandaudience

    Whenstudyingpreferredconditionsamongtheplayers,itisrelevanttostudyhowthedesign

    ofthestageenclosureaffectstheconditionsfortheconductorandtheaudienceaswell.This

    sectioncoversthemainresultsfoundintheliteraturewithregardtooptimumstageenclosure

    designforthesetwogroups.

    InMeyer (1994)andMeyer (2008)conditionsfortheconductors(ofsymphonyorchestras)

    werestudied. AccordingtoMeyer(1994)theacousticconditionsattheconductorsposition

    areimportantforreachingawell-balancedorchestrasoundfortheaudience. Hefoundthat

    anoverhead reflectorabove the centre of the orchestra couldlead toa lackofperceived

    reverberant hall sound and that it could lead to strings becoming too loud, in particular

    comparedtowoodwindinstruments.Thefollowingconditionswerefoundtoresultinfavourable

    conditions for the conductor: wallsatthesideofthestage, a largevolume infront ofthe

    conductor(exposedstage) to linkwith therestof thehallvolume,andoverheadreflectors

    designedtomainlyreflectwoodwindsoundtowardstheconductor.

    31

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    32/210

    vanden Braak&vanLuxemburg (2008)experimentedwiththeeffectsofstageenclosure

    by lookingat twospecificstages. Lookingat values of ST did not revealany significant

    differencesinacousticconditionsforthedifferentconfigurationsanddidnotagreewiththe

    impressionsamong the musicians and conductor performing on these two stages. They

    proposedanewmeasure(furtherinvestigatedinvandenBraaket al.(2009)),calledLQ740,

    asdefinedinEq.2.6.Thismeasurerepresentstheenergyratioofmeasuredearlyreflections

    within 740ms (relative to arrival of the direct sound) and measured late energy level

    within 40ms. The measurements were carried out with the soundsource atdifferent

    positionswithintheorchestraandareceiverattheconductorsposition(bothomnidirectional).

    TheirmeasuredvaluesofcalculatedvaluesLQ740 agreedwellwiththeactualconductors

    impressionsoftheacousticconditions,aswellastheimpressionsamongtheplayers.

    E(740ms)LQ740= 10 log10 dB (2.6)E(40ms)

    Insomecasesareflectorabovetheorchestramaybeneededtoraisethesoundlevelsor

    improvethe balanceof theorchestrainstruments forsomesectionsof theaudiencearea.

    Cremer&Muller(1982)foundthatmaximum30%ofthespaceabovetheorchestrashould

    becoveredbyreflectorsforthe audiencespointof view, whereasBeranek(1992)setthis

    limitat50%. Meyer (1977)foundtheceiling(oroverheadreflector)tobeimportantforthe

    brilliance,whereasthesidewallswereimportantforvolumeandsonority. Bradley(1996)found

    fromhisexperimentswithaddedstageenclosures(shells)onthreeexistingstages,thatthe

    changesofobjectiveacousticconditionsweremoresignificantonstagecomparedtoin the

    audience. Onlylookingatobjectiveacousticmeasurescouldforthisstudyhavelimitedthe

    apparentchangesfortheaudience.

    Griesinger (2006) found that too high a level of early reflections, or too low a level of

    direct sound, could contribute to an impression of a remote and muddy sound (lack of

    definition/clarity)fortheaudience.InGriesinger(2007),moredetailswereprovidedregarding

    thishypothesis.

    Miller(1987)carriedoutexperimentswithrisers(raisedplatforms)forbrassandpercussion

    andfoundthatriserscontributedtoraisethedirectsoundleveloftheseinstruments.Insome

    casesthisledtobrassandpercussionbeingtooloudcomparedtostringsandwoodwinds,

    butwithbrassandpercussiononaflatfloor,thedirectsoundlevelsfromtheseinstrumentsinthestallsareawerefoundtobetoolow.

    Theseresultssuggestthatfromtheconductorsandtheaudiencespointofview, thestage

    enclosureshouldnothaveamajor,solidreflectingsurfaceatlowheightabovetheorchestra.

    The resultsalsosuggest that sidewallsclose totheorchestraare beneficial and that the

    stageenclosureshouldnotbetooreflectiveorenclosedaroundtheorchestra.Smallerareas

    of reflectorabove the orchestra can be beneficial for the level balance between different

    instrumentsandperceivedclarity.

    32

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    33/210

    2.5 Approachesusedforthisstudy

    The literature review has shown thereare stillmany unresolvedquestions with regard to

    how musicians relate to acoustic conditions on concert hall stages and what their main

    concernsare. Aqualitative understanding ofhow musicians relate toacousticconditions

    couldbeessentialbeforetryingtofindobjectivequantitativemeasuresthatcorrespondwith

    their ratingofdifferentacousticaspects. A focusonquantitativephysicalmeasurescould

    result in what couldbe describedas a positivistic approach, asused in social sciences.

    PositivismhasbeendescribedbySmith(1998)asfollows: Positivistapproachesareunited

    intheirattempttoeradicatemetaphysicsandotherhangoversfromrationalismfromscientific

    knowledge. Inparticular,theyarestronglyattachedtogroundingallourknowledgeofthings

    in perceptions, impressions and sensations as evidence of their tangible and observable

    existence. Positivism hasbeenseenrelated torationalismasdefinedbySmith (1998):

    In knowledge construction rationalism is often seen as opposed to experience (with the

    strongest contrastbeingbetween rationalismand empiricism). Forpositivists, rationalismwasthesourceofmetaphysicalspeculationandit undermined thehealthysenseofdoubt

    whichempiricismwassupposedtoengendermanyfailedpositivistswereattackedfortheir

    rationalist leanings. Reference topositivisticapproacheshavebeenmadeforinstancein

    musicalsciencebyDuffin(2007).Thedifferenttemperamentsofnotesinmusicalscaleshave

    moreorlessdisappearedaftertheintroductionoftheequaltemperament.Equaltemperament

    ismathematicallyelegant, but lacks thepossibility ofharmonic variationbetweendifferent

    keys. From Duffin (2007): In general terms positivism looks for empirical data to justify

    knowledgeorbeliefs. Asaresultitexcludesthingsthatcannotbestudiedbyquantification

    orthatdonotfit theoriesassembledbydocumentedevidence. Thismeansthatsomething

    socomplexandirrationalasthedivisionofsoundsintoamusicalscalewasboundtoprefer

    theorderandapparentsimplicityofequaltemperament. Blauert(2007)raisedaconcernfor

    acousticiansnothavingasufficientunderstandingofthehigher(lessquantifiable)levelsof

    communicationwithinacousticspaces.Acousticiansarenormallytrainedinnaturalsciences,

    whilemusicianshaveamusicaleducationwhichincludesverylittlethatisrelatedtonatural

    sciences.Theremaythereforebeariskofstudiescarriedoutbyacousticianshavingafocus

    onthephysicalaspectswhilepayinglessattentiontootherlesseasilyquantifiableaspects.

    Withsuchapositivisticapproachtherecouldbeanoverlyoptimisticbeliefintheimportance

    ofthequantifiableaspects.

    Themainaimsforthisprojectweretobetterunderstandhowstageacousticconditionsare

    perceivedbysymphonyorchestramusiciansandhowauditoriumandstageenclosuresshould

    bedesignedforoptimumauralworkingconditionsforthemusicians.Fromtheliteraturereview

    above,fewsystematicstudiesofacousticconditionsspecificallyforsymphonyorchestrashave

    beencarriedout. Studiesofphysicalconditionsimposedbytheorchestraconfigurationhave

    beenverybrief. Laboratorystudiescarriedouthavenotincludedafullsymphonyorchestra,

    only a few playersor single players. For studies of specificstages there are only a few

    investigations carriedout,whichmayhavelowvaliditycausedbythe halls andorchestras

    covered. Forthisproject,laboratoryandmodellinginvestigationshavebeenlimitedtoscale

    andcomputermodellinglaboratoryinvestigationsincludingprofessionalmusicianswerenot

    possibleduetoalackofananechoicchamber. Studyingimpressionsofacousticconditions

    33

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    34/210

    with a limited set of players and different acoustic conditions, will normally lead to high

    uncertaintiesassociatedwiththeirjudgements. Withregardtorelationsbetweensubjective

    andobjectivemeasures,mostpreviousstudieshaveonlyinvestigatedimpressionsofhome

    stagesorhallsvisitedoccasionally. Thelevelofadaptationbytheplayerstocertainacoustic

    conditionscouldhavecontributedtoreducedvalidityofthesestudies.

    Theearlypartofthisthesiscoversinvestigationsofhowacousticconditionsareexperienced

    bythemusicians. Byuseofquestionnairesanddialoguewithmusicians,theirpointofview

    hasbeenstudied.Thisstudyisfollowedbyinvestigationsofphysicalconditionsonstageand

    howthesephysicalconditionsarelikelyaffectsubjectiveimpressionsliketheabilitytohear

    otherplayersclearly.Tominimisetheeffectofuncertaintiesrelatedtospecificcases,generic

    acousticconditionsonstagehavebeenstudiedobjectively(byuseofscaleandcomputer

    modellingaswellasanalyticalstudies)withreferencetogeneralfindingswithinthefieldof

    soundperception (psychoacoustics). With theseapproaches, the investigation will not be

    limited toexistingacousticmeasures(quantitativemethods)withthe riskof too limitedan

    approach. Inaddition tosuchinvestigations, theplayers impressionsofhallsvisitedonaregularbasishavebeenstudied.Thesetwoapproachesavoidenquiringaboutimpressionsof

    acousticconditionsonlyexperiencedoccasionally.Whilethemajorityofsubjectivedataused

    hereisforhallsvisitedregularly,someimpressionsofhallsvisitedonlyoccasionallyhavealso

    beenincluded.

    Theaboveapproachesweremotivatedbysearchingforrelationsbetweenobjectiveacoustic

    conditionsandperceivedconditions,byuseofquantitativebutalsomorequalitativemethods.

    Itwillalsoberelevantto studyhowobjectiveacousticconditionsshouldbeassessed. In

    particular, should the acousticconditionsbeassessedwitha full symphonyorchestra (or

    equivalent group of people) present? Scale modelling have been used in this study to

    investigate indetail the acousticconditions within anorchestra configuration and how the

    roomimpulseresponsesonstageareaffectedbythepresenceoftheorchestra. Computer

    modellingwasusedtostudyhowdifferentstageenclosuredesignsaffectacousticconditions.

    Measuredresponsesonexistingstages(withoutafullsymphonyorchestrapresent)werealso

    studied,tofindthemostvalidandreliablewaytoassessrealobjectiveacousticconditions.

    34

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    35/210

    Chapter3

    Musiciansimpressionsof

    acousticconditions

    3.1 Introduction

    Togetabetterunderstandingofhowmusicianswithinsymphonyorchestrasexperienceand

    relate to the acoustic conditions on stage, the first subjective study involved distributing

    questionnaires to eight symphony orchestras six English and two Norwegian. The

    six English orchestraswere: BBC Philharmonic, Bournemouth SymphonyOrchestra, City

    of Birmingham Symphony Orchestra, Hall London Philharmonic Orchestra and Royale,

    PhilharmonicOrchestra. ThetwoNorwegianorchestraswereOsloPhilharmonicOrchestra

    andTrondheimSymphonyOrchestra.Theresultsfromthisstudyarereportedinthischapter,

    while the results from the second subjective investigation are presented in Chapter 8.

    Musicians impressions of stageacoustic conditionshave previously been investigated by

    severalauthors. Gadeinvestigatedthisthroughbothlaboratoryexperimentsandinterviews

    with musicians (Gade (1981)and Gade (1989b)). Whichaspectsofstageacoustics that

    appearmostimportantforthemusicianswereinvestigatedthroughquestionnairesby Genta

    et al. (2007b).LaboratoryinvestigationshavealsobeencarriedoutbyNaylor&Craik(1988),

    Meyer(2009)andUenoet al.(2004).Alotoffindingscameoutofthesestudiesinbriefthe

    resultsconsistentlyshowthatthemostimportantaspectsfortheplayersappeartobehearing

    eachotherclearly, withhearing ofothers well balancedwith theirown sound. Asuitable

    amountofacousticresponsefromtheauditoriumalsoappearscrucialforthem.

    Thequestionnairedistributedtotheeightorchestrasconsistedofquestionsrelatedtostaging

    conditions(likerisersandspaceavailable),acousticandnon-acousticconditions. Someof

    thequestionswereopen(wheretheplayerscouldcommentfreely),whereasformostofthe

    questionsthemusicianswereaskedabouttheirpreferencesonbipolarsemanticdifferential

    scales (Likert rating scales), ranging 15. For some of these rating questions they were

    asked to further comment on their preferenceor experiences. The musicians were alsorequestedtolistthehalltheyrememberasprovidingthebestacousticconditionstheyhad

    35

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    36/210

    everexperiencedintheircareer,alongwithcommentsonwhytheypreferredthisparticular

    hall.TheBritishorchestraswereaskedtoratethehallstheyregularlyperformin,withrespect

    tooverallacousticimpression(OAI),with33hallsbeingjudgedbytheorchestrasoverall.One

    oftheNorwegianorchestraswasaskedtorate12hallswithinEurope,USAandJapanwhich

    theyhavevisitedoverseveraloccasions(34times).Theywereaskedtoprovidereasonsfor

    theirleastandmostpreferredhall.Someofthequestionsmentionedherewerenotincluded

    foralltheorchestras,buttheresponserateonallindividualquestionswassufficienttodraw

    someconclusions.

    Theresponsesfromthedifferentinstrumentgroups(string,woodwind,brassandpercussion)

    have been compared. For the purpose-built concert halls regularly visited, the ratings

    havebeencomparedwithavailableobjectiveacousticmeasuresandarchitecturalmeasures

    obtainedfromhalldrawings.Someofthehallswereratedbymorethanoneorchestra.This

    hasallowedinvestigationoftheconsistencyofjudgementsofoverallacousticimpression.The

    statisticalanalysesweredoneusingSPSSversion14andMATLABR2006a.

    Thechapter isorganisedintothreemajorpartswithdiscussion/conclusionsectionsat the

    endofeachpart.Thefirstpartcoverstheopenquestionsinthequestionnaireincludingtheir

    favouritehalls,whilethesecondpartcoversthepreferencequestions. Inthethirdpart, the

    hallsratedbytheplayersarestudiedwithreferencetoobjectivemeasuresrelatedtothehalls.

    3.2 Questionnairemethod

    QuestionnairesconsistingoftwosidesofA4weredistributedtotheplayersbytheirorchestra

    administration. Typicallytheyweregiventwoweekstorespondandreturn thequestionnaire

    backtotheadministration. Theirresponsesonindividualhallswerebasedonmemory. The

    questionnaireswereinitiallypilotedwithasetofplayersandorchestrarepresentatives.

    Thetopofthequestionnairecontainedabriefintroductionandaskedwhichinstrumentthey

    playandhow manyyears theyhavebeenplayingprofessionally inasymphonyorchestra.

    The bodyof the questionnaire contained preference and open questions. The details on

    thesequestions are given in respectivesectionsbelow. See AppendixB fora sample of

    thequestionnairedistributed.

    3.3 Questionnaireresultsingeneral

    Intotal 180 playersresponded108 stringplayers (60 %), 28woodwind players(16%),

    32brassplayers(18%)and11percussionplayers(6%). Thenumberof responseswithin

    eachorchestravariedfrom5to55(responseratesof681%).

    With regard to years of experience as professional symphony orchestra musician, theaveragesforthedifferentinstrumentgroupswere:21yearsforstringplayers,24forwoodwind

    36

  • 7/21/2019 Stage harmonic for acoustics orchestra PhD 2010 Dammerud J

    37/210

    players,22 forbrassplayersand27yearsforpercussionplayers. Amongall theplayersthe

    averagewas22yearsofexperience,withamaximumof45yearsandaminimumof1year.

    Tenplayers(6%)reportedtheyhadlessthan5yearsofexperience. Thisindicatesthatthe

    playerswhorespondedhaveconsiderableexperience.

    3.4 Openquestions

    3.4.1 Non-acousticissuesimportantonstage

    Theplayerswereasked: Whatnon-acoustic issuesaresignificanttoyouthatdifferentiate

    between the hallsyouplay in (suchas visibilityofotherplayers, lighting, thermal comfort

    etc.)? Table 3.1 shows the relative frequencyofdifferentnon-acoustic issuesmentioned

    assignificantbytheplayers. Theresultsshowthattemperatureandairqualityareofmost

    significancetothem,withabouttwothirdsoftheplayersfindingthisimportant.Notonlyisthis

    forcomfortreasons,butalsoforinstrumentconditionsseveralwoodwindplayersmentioned

    problemswiththeirreedsindryhalls. Lightingismentionedequallyfrequently. Visibilityand

    spaceismentionedbyaboutonethirdoftheplayers.Beingabletoseetheconductor,principal

    andleadingplayersappearsasimportantfortheplayers,especiallyifauralcuesarenoteasy

    tohear.20%oftherespondentsmentionedthatstageconditionsareimportant. 10%ofthe

    playersmentionedstaging(risersandoverallstagedesign)assignificant. Somementioned

    beingabletogetonandoffthestagesafely(noholesinthestageflooretc.),andtheflexibility

    thestageoffersfortheplayerstoarrangethemselvesastheywish.Backstagefacilities,quality

    ofnearbyrestaurants,contactwiththeaudienceandhearingeachotherwerealsomentioned,

    butonlybyafewplayers.

    Table3.1:Relativefrequencyofnon-acousticissuesmentionedbytheplayers.