standard for repair and remanufacturing of drill-through...

89
API Standard 16AR Standard for Repair and Remanufacturing of Drill-through Equipment API Standard 16AR First Edition, XXXX 2014 Draft June 9 2014

Upload: vuhanh

Post on 23-Mar-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

API Standard 16AR

Standard for Repair and Remanufacturing of Drill-through Equipment

API Standard 16AR First Edition, XXXX 2014 Draft – June 9 2014

Page 2: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment
Page 3: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

SPECIAL NOTES

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations under local, state, or federal laws.

Information concerning safety and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet.

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. Sometimes a one-time extension of up to two years will be added to this review cycle. This publication will no longer be in effect five years after its publication date as an operative API standard or, where an extension has been granted, upon republication. Status of the publication can be ascertained from the API Standards department telephone (202) 682-8000. A catalog of API publications, programs and services is published annually and updated biannually by API, and available through Global Engineering Documents, 15 Inverness Way East, M/S C303B, Englewood, CO 80112-5776.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this standard or comments and questions concerning the procedures under which this standard was developed should be directed in writing to the Director of the Standards department, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. [email protected] Requests for permission to reproduce or translate all or any part of the material published herein should be addressed to the Director, Business Services.

API standards are published to facilitate the broad availability of proven, sound engineering and operating practices. These standards are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. The formulation and publication of API standards is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220

L Street, N.W., Washington, D.C. 20005.

Copyright © 2014 American Petroleum Institute

Page 4: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

iii

FOREWORD

This standard shall become effective on the date printed on the cover but may be used voluntarily from the date of distribution. Standards referenced herein may be replaced by other international or national standards that can be shown to meet or exceed the requirements of the referenced standard. Manufacturers electing to use another standard in lieu of a referenced standard are responsible for documenting equivalency. This standard is under the jurisdiction of the API Subcommittee on Drilling Well Control Systems. This standard replaces the repair and remanufacturing chapter from API 16A. API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal state, or municipal regulation with which this publication may conflict. Suggested revisions are invited and should be submitted to the API, Standards Department, 1220 L Street, NW, Washington, DC 20005, or by email to [email protected].

Page 5: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment
Page 6: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

v

Table of Contents

(To be added on publication)

Page 7: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment
Page 8: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

SPECIFICATION FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 1

1

1. Scope

This Standard specifies requirements for repair, remanufacturing, testing, inspection, welding, marking, certification, recertification, handling, storing and shipping of drill-through equipment used for drilling for oil and gas build under API 16A. When desired this standard can also be voluntary adopted for other well control equipment build under a different specification, but this will not automatically make them API products. This standard defines Repair Service Levels for the below listed equipment and the required equipment traceability that is required to proof compliance. The repair and remanufacturing supported under this standard requires that the associated service conditions of the equipment in terms of internal pressure, temperature and wellbore fluids and ambient temperature limits for which the equipment is designed remains unchanged and is supported by the Original Product Definition.

This standard is applicable to and establishes requirements for the following specific equipment:

1. ram blowout preventers;

2. ram blocks, operators, packers and top seals;

3. annular blowout preventers;

4. annular packing units;

5. hydraulic connectors;

6. drilling spools;

7. adapters;

8. loose connections;

9. clamps.

Dimensional interchangeability is limited to end and outlet connections. Simplified examples of surface and subsea equipment defined by this standard are shown in Figures 1 and 2.

Requirements for failure reporting are outlined in Annex D.

This API standard supports the requirements of life cycle management for API 16A products.

Page 9: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

2 API STANDARD 16AR

Key: 1. Ring gaskets – API 6A 2. Annular BOP 3. Clamp 4. Ram BOP 5. Drilling spool 6. Valve - API 6A

7. Wellhead 8. Casing 9. End and outlet connections 10. Drill-through equipment – API 16A 11. Wellhead equipment - API 6A

Figure 1 — Simplified example of surface drill-through equipment

Page 10: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

2 API STANDARD 16AR

Key: 1. Riser connector 2. Flex/ball joint 3. Annular BOP 4. Hydraulic connector 5. Adapter 6. Ram BOP 7. Valve API 6A

8. Hydraulic connector 9. Wellhead 10. Riser equipment, including kill, choke,

booster and control fluid conduit lines. 11. Drill-through equipment - API 16A 12. Wellhead equipment - API 6A

Figure 2 — Simplified example of subsea drill-through equipment

Page 11: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

2 API STANDARD 16AR

2. Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. API

API Specification 5DP, Specification for Steel pipes for Use as Drill Pipe

API Specification 6A, Specification for Wellhead and Christmas Tree Equipment

API Specification 16A, Specification for Drill-through Equipment

API Specification 20E, Specification for Alloy and Carbon Steel Bolting for Use in the Petroleum and Natural Gas Industries

API Specification Q1: Specification for Quality Management System Requirements for Manufacturing Organizations for the Petroleum, Petrochemical and Natural Gas Industry

ASME

ASME Boiler and Pressure Vessel Code Section V, Article 5, UT Examination Methods for Materials and Fabrication

Article 4 is in Section 5.5 Table on 16A requirements

ASME Boiler and Pressure Vessel Code Section IX, Articles I, II, III and IV

ASNT

ASNT-SNT-TC-1A, Recommended Practice for Personnel Qualification and Certification in Nondestructive Testing

ASTM

ASTM A370, Test Methods and Definitions for Mechanical Testing of Steel Products

ASTM D395, Standard Test Methods for Rubber Property — Compression Set

ASTM D412, Test Methods for Vulcanized Rubber, Thermoplastic Rubbers and Thermoplastic Elastomers

ASTM D471, Standard Test Method for Rubber Property — Effect of Liquids

ASTM D1414, Standard Test Methods for Rubber O-Rings

ASTM D1415, Standard Test Method for Rubber Property — International Hardness

ASTM D1418, Standard Practice for Rubber and Rubber Lattices — Nomenclature

ASTM D2240, Test Method for Rubber Property — Durometer Hardness

ASTM E10, Standard Test Method for Brinell Hardness of Metallic Materials

ASTM E18, Standard Test Methods for Rockwell Hardness of Metallic Materials

ASTM E94, Standard Guide for Radiographic Testing

ASTM E140, Hardness Conversion Tables for Metals

Page 12: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 3

ASTM E165, Standard Test Method for Liquid Penetrant Examination

ASTM E384, Standard Test Method for Knoop and Vickers Hardness of Materials

ASTM E569, Standard Practice for Acoustic Emission Monitoring of Structures During Controlled Simulation

ASTM E709, Standard Guide for Magnetic Particle Examination

ISO

ISO 2859-1:1989, Sampling procedures for inspection by attributes — Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspection

ISO 6506-1, Metallic materials, Brinell hardness test, Part 1: Test method

ISO 6507-1, Metallic materials, Vickers hardness test, Part 1: Test method

ISO 6508-1, Metallic materials, Rockwell hardness test, Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N,T)

ISO 6892, Metallic materials , Tensile testing at ambient temperature

ISO 13665, Seamless and welded steel tubes for pressure purposes — Magnetic particle inspection of the tube body for the detection of surface imperfections

ISO 9712, International Standard for Nondestructive Testing Personnel Qualification and Certification

CSWIP-WI-6-92, Requirements for the Certification of Visual Welding Inspectors (Level 1), Welding Inspectors (Level 2) and Senior Welding Inspectors (Level 3) (fusion welding) in accordance with the requirements of BS EN ISO 176371:2011

NACE

NACE MR0175, Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment

SAE

SAE AMS-H-6875A, Heat Treatment of Steel Raw Materials

3 Terms, Definitions and Abbreviations

3.1 Terms and Definitions For the purpose of this document, the following terms and definitions apply. 3.1.1 acceptance criteria defined limits placed on characteristics of materials, products or service 3.1.2 adapter pressure-containing piece of equipment having end connections of different nominal size designation and/or pressure rating

Page 13: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

4 API STANDARD 16AR

3.1.3 annular blowout preventer blowout preventer that uses a shaped elastomeric sealing element to seal the space between the tubular and the wellbore or an open hole

3.1.4 blind-shear ram BSR closing and sealing component in a ram blowout preventer that first shears the tubular in the wellbore and then seals off the bore or acts as a blind ram if there is no tubular in the wellbore

3.1.5 blind ram closing and sealing component in a ram blowout preventer that seals the open wellbore API 16A

3.1.6 blowout preventer BOP equipment (or valve) installed at the wellhead to contain wellbore pressure either in the annular space between the casing and the tubulars or in an open hole during drilling, completion, testing or workover operations

3.1.7 body any portion of equipment between end connections, with or without internal parts, which contains wellbore pressure

3.1.8 bolting threaded fasteners used to join end or outlet connections

3.1.9 calibration comparison and adjustment to a standard of known accuracy 3.1.10 cast (verb) pour molten metal into a mould to produce an object of desired shape

3.1.11 casting (noun) object at or near finished shape obtained by solidification of a substance in a mould 3.1.12 Certificate of Statutory Compliance document in which the OEM, OEM licensed facility, Repairer, Remanufacturer, or recognized technical authority certifies that the equipment and / or system meets the required standards or rules as depicted in the relevant area of operations regulatory requirement 3.1.13 Certificate of Conformance COC document in which the OEM, OEM licensed facility, Repairer, Remanufacturer, or recognized technical authority certifies that the assembly or part has been manufactured / remanufactured in conformance

Page 14: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 5

to the mentioned standard(s), specifications and guidelines in accordance with the Original Product Definition (OPD), including design changes resulting from a malfunction or failure history of drill-through equipment manufactured, remanufactured and / or repaired to the appropriate standard/specification 3.1.14 Certificate of Usage Compatibility document in which a Manufacturer, Repairer, Remanufacturer, or recognized technical authority certifies that the part or system is compatible with the OEM Product definition or Original Product Definition, including design changes resulting from a malfunction or failure history of drill-through equipment manufactured, remanufactured or repaired to the appropriate American National Standard / Specification and is fully compatible and can be integrated into other systems guaranteeing the operations envelope 3.1.15 Certificate of Service COS document in which the equipment OEM, OEM licensed facility, Repairer, Remanufacturer, recognized technical authority / Owner or Operator certifies that that the equipment has been inspected, properly maintained and tested in accordance with Original Equipment Manufacturer (OEM) specifications 3.1.16 chemical analysis determination of the chemical composition of material 3.1.17 clamp (noun) device with internal angled shoulders used to fasten mating hubs 3.1.18 clamping load axial load applied to clamp hubs by the clamp due to bolt tightening 3.1.19 closure bolting threaded fasteners used to assemble pressure-containing parts other than end and outlet connections 3.1.20 conformance compliance with specified requirements in every detail 3.1.21 corrosion-resistant ring groove ring groove lined with metal resistant to metal-loss corrosion 3.1.22 design status status of an API product managed under the requirements of this specification, with regard to changes to elements of the Original Product Definition (OPD) as well as improvements to the OPD or obsolescence of the product

Page 15: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

6 API STANDARD 16AR

3.1.23 drilling spool pressure-containing piece of equipment having end connections, used below or between drill-through equipment, manufactured in conformance with API 16A 3.1.24 end connection flange (studded or open-face), hub connection or other end connection (3.47) used to join together equipment and integral to that equipment 3.1.25 equipment any single completed unit that can be used for its intended purpose without further processing or assembly 3.1.26 fabrication weld weld that joins two or more pieces of metal

3.1.27 flange protruding rim, with holes to accept bolts and having a sealing mechanism, used to join pressure-containing equipment together by bolting to another flange 3.1.28 forge (verb) lastically deform metal, usually hot, into desired shapes with compressive force, with open or closed dies

3.1.29 forging (noun) shaped metal part formed by the forging method

3.1.30 full-penetration weld eld that extends throughout the complete wall section of the parts joined

3.1.31 heat cast lot material originating from a final melt

NOTE For remelted alloys, a heat is defined as the raw material originating from a single remelted ingot.

3.1.32 heat-affected zone HAZ portion of the base metal which has not been melted, but whose mechanical properties or microstructure has been altered by the heat of welding or cutting

3.1.33 heat treatment heat treating alternate steps of controlled heating and cooling of materials for the purpose of changing physical or mechanical properties

Page 16: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 7

3.1.34 heat treatment load material moved as a batch through one heat treatment cycle

3.1.35 hot-work (verb) deform metal plastically at a temperature above the recrystallization temperature

3.1.36 hub protruding rim with an external angled shoulder and a sealing mechanism used to join pressure-containing equipment

3.1.37 hydraulic connector hydraulically actuated drill-through equipment that locks and seals on end connections

3.1.38 indication visual sign of cracks, pits or other abnormalities found during liquid penetrant and magnetic particle examinations

3.1.39 integral (adjective) parts joined by the forging, casting or welding process

3.1.40 leakage visible passage of pressurized fluid from the inside to the outside of the pressure-containment area of the equipment being tested

3.1.41 loose connection flange (studded or open-face), hub connection or other end connection (3.47) used to join together equipment, but not integral to the equipment

3.1.42 maintenance upkeep of the well control equipment which is performed in accordance with the equipment owner’s PM program and the manufacturer’s guidelines.

NOTE These procedures may include but are not limited to, inspections, function testing, pressure testing, non-destructive

examination and change out of parts.

3.1.43 major repair weld weld that is the greater in thickness of either 1 inch or 25 percent of the original base metal thickness

3.1.44 non-pressure-containing weld weld whose failure will not reduce the pressure-containing integrity of the component

Page 17: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

8 API STANDARD 16AR

3.1.45 original equipment manufacturer OEM design owner or manufacturer of the traceable assembled equipment, single equipment unit, or component part.

NOTE 1 If any alterations to the original design and/or assembled equipment or component part are made by anyone other than the OEM, the assembly, part, or component is not considered an OEM product.

NOTE 2 The party that performs these alterations is then designated as the OEM.

3.1.46 original product definition OPD complete definition of the requirements for the original assembled product, single equipment unit or component part, including specified limits and tolerances, health, safety and environmental requirements, limitations of use, customer specific requirements, design acceptance criteria, materials of construction, materials processing requirements and physical properties, physical dimensions and requirements for manufacturing process controls, inspection, assembly and testing, marking, handling, storage, maintenance, service and records requirements

3.1.47 other end connection OEC connection which is not specified in an API / ISO standard

NOTE This includes API ISO flanges and hubs with non-API/ISO gasket preparations and manufacturer's proprietary connections.

3.1.48 part individual piece used in the assembly of a single unit of equipment

3.1.49 post-weld heat treatment PWHT heating and cooling a weldment in a controlled manner to obtain desired properties

3.1.50 pressure-containing part pressure-containing member part exposed to wellbore fluids whose failure to function as intended would result in a release of wellbore fluid to the environment

NOTE Examples include bodies, bonnets and connecting rods.

3.1.51 pressure-containing weld weld whose failure will reduce the pressure-containing integrity of the component

3.1.52 pressure-controlling part pressure-controlling member parts intended to control or regulate the movement of wellbore fluids

NOTE Examples include packing elements, rams, replaceable seats within a pressure-containing member or part.

Page 18: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 9

3.1.53 pressure-retaining part pressure-retaining member part not exposed to wellbore fluids whose failure to function as intended will result in a release of wellbore fluid to the environment

NOTE Examples include closure bolts and clamps.

3.1.54 procedure qualification record PQR record of the welding data used to make the test weldment containing the actual values or ranges of the essential and supplementary essential variables used in preparing the test weldments, including the test results

3.1.55 product definition design documentation of a particular product which includes the complete set of design verification and validation files

3.1.56 product owner/operator owner or operator of the product repaired or remanufactured in conformance with this document

3.1.57 product history file PHF composite file of records from a traceable API product which includes all records associated with the original API product (including Monogram requirements) and those certification records required by this document

3.1.58 ram blowout preventer blowout preventer that uses metal blocks with integral elastomer seals to seal off pressure on a wellbore with or without tubulars in the bore

3.1.59 rated working pressure maximum internal pressure that the equipment is designed to contain and/or control

3.1.60 recognized technical authority OEM holding the manufacturing and quality licenses, or registered professional engineer, or a technical classification society, or engineering firm in which its employees hold appropriate licenses to perform the verification in the appropriate jurisdiction, and evidence to demonstrate that the individual, society, or firm has the applicable expertise and experience necessary to perform the required verifications.

3.1.61 record (noun) retrievable information

Page 19: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

10 API STANDARD 16AR

3.1.62 remanufacture process of disassembly, reassembly and testing of drill-through equipment, with or without the replacement of parts, in which machining, welding, heat treatment or other manufacturing operation is employed

3.1.63 repair process disassembly, reassembly and testing of drill-through equipment, with or without the replacement of parts

NOTE Repair does not include machining, welding, heat treating or other manufacturing operation of component parts and does not include the replacement of pressure-containing part(s) or member(s). Repair may include replacement of parts other than pressure-containing part(s) or member(s).

3.1.64 repair weld welding performed subsequent to original heat treatment other than base weld repair

3.1.65 serialization assignment of a unique code to individual parts and/or pieces of equipment to maintain records

3.1.66 stabilized pressure testing in a state in which the initial pressure-decline rate has decreased to within the manufacturer's specified rate

NOTE Pressure decline can be caused by such things as changes in temperature, setting of elastomer seals or compression of air trapped in the equipment being tested.

3.1.67 statement of fact SOF document in which the OEM, OEM licensed facility, Repairer, Remanufacturer, or recognized technical authority certifies that the maintenance / repair performed on a part or system is either not covered by a full service history and required traceability, or the maintenance / repair was made with limited scope defined by the Owner.

NOTE The OEM, OEM licensed facility, Repairer, Remanufacturer, or recognized technical authority can therefore not provide the required guarantee that the whole part / system is in conformance with the Original Product Definition, including design changes resulting from a malfunction or failure history of drill-through equipment manufactured, remanufactured and/or repaired to the appropriate standard/specification.

3.1.68 stress relief controlled heating of material to a predetermined temperature for the purpose of reducing any residual stresses

3.1.69 trepan (verb) produce a hole through a part by boring a narrow band or groove around the circumference of the hole and removing the solid central core of material

Page 20: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 11

3.1.70 variable-bore ram VBR closing and sealing component in a ram blowout preventer that is capable of sealing on a range of tubular sizes

3.1.71 visual examination examination of parts and equipment for visible defects in material and workmanship

3.1.72 volumetric non-destructive examination examination for internal material defects by radiography, acoustic emission or ultrasonic testing

3.1.73 weld (verb) act of fusing materials, with or without the addition of filler materials

3.1.74 weld groove area between two metals to be joined that has been prepared to receive weld filler metal

3.1.75 welding application of any one of a group of welding processes, which applies heat energy sufficient to melt and join one or more pieces of metal through localized fusion and coalescence

3.1.76 welding procedure specification WPS written welding procedure that is qualified to provide direction for welding in accordance with requirements of this standard and describing the specific essential, nonessential, and supplementary essential variables required for each welding process.

NOTE These variables and their meanings are defined, respectively, in Article II, QW-250 through QW-280 and Article IV of the ASME Boiler & Pressure Vessel Code Section IX–Welding and Brazing Qualifications.

3.1.77 weldment portion or area of a component on which welding has been performed. A weldment includes the weld metal, the heat-affected zone (HAZ), and the base metal unaffected by the heat of welding

3.1.78 wrought structure structure that contains no cast dendritic structure

3.1.79 yield strength stress level, measured at room temperature, at which material plastically deforms and will not return to its original dimensions when the stress is released

NOTE 1 The term is expressed in Newton’s per square millimeter (pounds per square inch) of loaded area.

NOTE 2 All yield strengths specified in this sandard are considered as being the 0,2 % yield offset strength in accordance with ISO 6892.

Page 21: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

12 API STANDARD 16AR

3.2 Abbreviated terms

ANSI Standards Institute

API American Petroleum Institute

AQL acceptance quality level

ASME American Society of Mechanical Engineers

ASNT American Society for Nondestructive Testing

ASTM American Society for Testing and Materials

AWS American Welding Society

BSR blind shear ram

BOP Blowout Preventer

COC Certificate of Conformance

COS Certificate of Service

HAZ heat-affected zone

ID inside diameter

ITP inspection test plan

LP liquid penetrant

MP magnetic particle

NACE National Association of Corrosion Engineers

NDE nondestructive examination

OD outside diameter

OEC other end connection

OEM original equipment manufacturer

OPD original product definition

OS operating system

PHF product history file

PQR procedure qualification record

PWHT post-weld heat treatment

RSL remanufacturing service level

SOF statement of fact

TPI third party inspection

VBR variable-bore ram

WPS welding procedure specification

Page 22: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 13

4. Quality Control Requirements

4.1 General

This clause specifies the quality control requirements and quality control requirements for equipment and material manufactured to meet this standard. The following subjects are covered:

― Measuring and testing equipment (see 4.2).

― Quality control personnel qualifications (see 4.3).

― Quality control requirements for equipment and parts (see 4.4).

― Quality control requirements for specific equipment and parts (see 4.5)

― Quality control records (see 4.6)

4.2 Measuring and testing equipment

4.2.1 General

Equipment used to inspect, test or examine material or other equipment shall be identified, controlled, calibrated and adjusted at specified internals in accordance with documented manufacturer instructions, and consistent with nationally or internationally recognized standards specified by the manufacturer, to maintain the accuracy required by this Standard.

4.2.2 Pressure-measuring devices

4.2.2.1 Type and Accuracy

Test pressure-measuring devices shall be accurate shall be accurate to at least ±0.5% of full-scale range. If pressure gauges are used in lieu of pressure transducers, they shall be selected such that the test pressure is indicated within 25% or more than 75% of full-pressure span of the gauge. Pressure gauges shall have a minimum face diameter of 100mm (4 in). Pressure tests must be displayed as a chart in the Project History File (PHF) or Material Data Book (MDB). The record shall identify the recording device, and shall be dated and signed.

4.2.2.2 Calibration procedure

Pressure-measuring devices shall be periodically calibrated with a master pressure-measuring device or a deadweight tester to at least three equidistant points of full scale (excluding zero and full scale as required points of calibration).

4.2.2.3 Calibration Intervals

Intervals shall be established for calibrations based on repeatability and degree of usage.

Page 23: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

14 API STANDARD 16AR

Calibration intervals shall be a maximum of three months until recorded calibration history can be established by the manufacturer and new intervals established, not exceeding ASTM minimum requirements.

4.3 Quality control personnel qualifications

4.3.1 Non-destructive examination (NDE) personnel

Personnel performing NDE shall be qualified in accordance with the manufacturer's documented training program that is based on the requirements specified in ISO 9712, EN 473 or ASNT SNT-TC-1A.

4.3.2 Visual examination personnel

Personnel performing visual examinations, including welders, shall take and pass an annual vision examination in accordance with the manufacturer's documented procedures that meet the applicable requirements of ISO 9712, EN 473, or ASNT SNT-TC-1A.

4.3.3 Welding inspectors

Personnel performing visual inspection of welding operations and completed welds shall be qualified to one of the following: ― AWS Senior Certified Welding Inspector (SCWI);

― AWS Certified Welding Inspector (CWI);

― AWS Certified Associate Welding Inspector (CAWI);

― CSWIP Certified Visual Welding Inspectors (Level 1);

― CSWIP Certified Welding Inspectors (Level 2);

― CSWIP Certified Senior Welding Inspectors (Level 3)

― Welding inspector certified by the manufacturer's documented training program

The manufacturer shall have written procedures: 1) Defining the In-house welding inspector certification program including training syllabus, Instructor

qualification requirements, length of certification and renewal requirements;.

2) Defining the roles, responsibilities, authority and accountability of a welding inspector;

3) Defining essential welding variables and equipment monitoring;

4) Defining Welding, Weld NDE and PWHT audits. Internal Audits shall be performed at least annually, covering all on-site areas and shifts. Supplier Audits shall be performed in accordance with the Manufacturers written procedure for Validation of Supplier Processes

4.3.4 Welder performance qualification

Welders and welding operators shall be qualified in accordance with ASME, BPVC, Section IX, Article III.

Page 24: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 15

4.3.5 Third Party Inspection

If Third Party Inspection is used, the following applies:

1) Third Party Inspectors (TPI) shall be competent based on the appropriate education, training, skills and experience needed to perform the inspection service and certification related product requirements defined in the inspection scope.

2) Evidence of the determination of competence of TPI personnel shall be recorded and maintained by the TPI company in accordance with their QMS documented procedures and requirements for competence.

3) The TPI scope shall be clearly defined in the purchase order by the client.

4) The TPI requirements defined in the purchase order shall be included in the Inspection Test Plan for the product.

4.3.6 Equipment certification

Equipment certification shall be approved by a Recognized Technical Authority.

4.3.7 Other personnel

All other personnel performing measurements, inspections or tests for acceptance shall be qualified in accordance with the manufacturer's Q1 QMS documented procedures and requirements for competence.

4.4 Quality control requirements for equipment and parts

4.4.1 General

All pressure-containing and pressure-controlling parts exposed to wellbore fluid shall be in conformance with the requirements of NACE MR0175, ISO 15156 (all parts).

4.4.2 Material requirements

Material used for pressure-containing parts or members shall comply with API 16A.

4.4.2.1 Closure Bolting

Closure bolting and other parts shall conform to, or exceed, the manufacturer's written specification and API 16A standard revision under which originally built. The manufacturer shall retain individual-heat-traceability records for closure bolting, as required.

4.4.2.2 Studs and nuts other than closure bolting

Studs and nuts shall conform to the requirements of API 6A. Carbon steel studs and nuts shall be in conformance with API 6A or API 20E, BSL-2 specifications. Materials and consumables shall be fully traceable.

Page 25: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

16 API STANDARD 16AR

4.4.2.3 Bolting environment

Bolting selection for surface and subsea pressure control equipment shall consider the maximum hardness requirements, in relation to the operational environment and selected corrosion protection system in order to prevent hydrogen embrittlement.

4.4.3 Quality control instructions

All quality control work shall be controlled by the manufacturer's documented instructions, which includes an appropriate Inspection Test Plan (ITP) or other methodology that provides an auditable tracking document with quantitative and qualitative acceptance criteria.

4.4.4 Non-destructive examination (NDE)

NDE instructions shall be detailed regarding the requirements of this International Standard and those of all applicable nationally or internationally recognized standards specified by the manufacturer. All NDE instructions shall be approved by a NDE Level III examiner.

4.4.4.1 NDE qualification levels

NDE level I:

a) The NDE Level I is qualified to perform system calibrations, Implement techniques and conduct

limited evaluation in the NDE method in which the individual is certified.

b) The NDE Level I does not Interpret test results for acceptance or rejection.

NDE Level II:

a) The NDE Level Il is qualified to setup and calibrate equipment, Interpret and evaluate results with

respect to applicable codes, standards, and specifications.

b) The NDT Level Il is familiar with the scope and limitations of the used methods for which qualified.

c) The NDE Level II can provide training of NDE Level I personnel.

d) The NDE Level II is qualified to prepare written Instructions, and report the NDE results.

NDE Level III: a) The NDE Level III is qualified to select the appropriate NDE techniques based on knowledge of

materials, fabrication methods and product design for the part.

b) The NDE Level III is responsible to establish techniques and procedures for the examination of a

part.

c) The NDT Level III evaluates and interprets the results of the NDE method in conformance with the

codes, standards and specifications.

d) The NDE Level III establishes acceptance criteria where none are available.

Page 26: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 17

e) The NDE Level III is responsible for the training and certification examination of NDE Level I and II

personnel.

4.4.5 Acceptance status

The acceptance status of all equipment, parts and materials shall be indicated either on the equipment, parts or materials or in the records traceable to the equipment, parts or materials.

4.5 Quality control requirements for specific equipment and parts

Unless specified differently in this standard, quality control requirements for API 16A equipment will be in conformance with API 16A. All new manufactured or replacement parts shall be in full conformance to API 16A requirements, including design verification and testing. Remanufacturing Service Levels (RSL) for remanufactured parts / assemblies indicate the level of traceability and conformance of the API 16A (see Table 1).

Table 1 – API 16A Requirements Tensile testing RSL-1 RSL-2 RSL-3

Pressure-containing parts material qualification tensile testing in conformance with API 16A.

Repairs excluding base

material.

Repairs including base

material

All parts, repairs and

base material

Pressure-controlling parts material qualification tensile testing in conformance with API 16A.

Repairs excluding base

material.

Repairs including base

material

All parts, repairs and

base material

Impact testing RSL-1 RSL-2 RSL-3

Pressure-containing parts material qualification impact testing in conformance with API 16A.

Repairs excluding base

material.

Repairs including base

material

All parts, repairs and

base material

Pressure-controlling parts material qualification impact testing in conformance with API 16A.

Repairs excluding base

material.

Repairs including base

material

All parts, repairs and

base material

Hardness testing RSL-1 RSL-2 RSL-3

Hardness testing methods shall be in accordance with ISO 6892, ISO 6506-1, ISO 6507-1 or ISO 6508-1, as appropriate.

API 16A API 16A API 16A

At least one hardness test shall be performed on each part tested, at a location determined by the manufacturer's specifications.

Remanufacturer specification

OEM specification

OPD specification

The hardness testing used to qualify each part shall be performed after the last heat-treatment cycle (including all stress-relieving heat-treatment cycles) and after all exterior machining operations.

API 16A API 16A API 16A

When equipment is a weldment composed of different material designations, the manufacturer shall perform hardness tests on each component part of the weldment after the final heat treatment (including stress-relieving). The results of these hardness tests shall satisfy the hardness value requirements for each respective part.

Remanufacturer specification

OEM specification

OPD specification

Hardness measurements on parts manufactured from carbon low alloy and martensitic stainless type steels shall exhibit maximum values in accordance with NACE MR0175 and minimum values equal to or greater than those specified in API 16A.

API 16A API 16A API 16A

The part does not exhibit the required minimum hardness level for the API material designation: The tensile strength, as determined from the tensile tests results, shall be used with the hardness measurements in order to determine the minimum acceptable hardness value for parts manufactured from the same heat.

Remanufacturer specification

OEM specification

OPD specification

The part does not exhibit the required minimum hardness level for the API material designation: The minimum acceptable hardness value for any part shall be determined by the minimum acceptable Brinell hardness for the part after the final heat-treatment cycle (including stress-relieving cycles)

Remanufacturer specification

OEM specification

OPD specification

Page 27: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

18 API STANDARD 16AR

Critical dimensions RSL-1 RSL-2 RSL-3

Critical dimensions, as defined by the manufacturer, shall be documented for each part and such documentation shall be retained by the manufacturer in accordance with API 16A.

Remanufacturer specification

OEM specification

OPD specification

The manufacturer shall define and document the extent to which dimensions shall be verified.

Remanufacturer specification

OEM specification

OPD specification

Traceability RSL-1 RSL-2 RSL-3

Parts and material shall be traceable to the individual heat and heat-treatment lot.

Partial traceability

through MDB and PHF to

Remanufacturer specification

Full traceability

through MDB and PHF to

OEM specification

Full traceability

through MDB and PHF to

OPD

Identification shall be maintained on materials and parts, to facilitate traceability, as required by documented manufacturer requirements.

Partial traceability

through MDB and PHF to

Remanufacturer specification

Full traceability

through MDB and PHF to

OEM specification

Full traceability

through MDB and PHF to

OPD

Manufacturer-documented traceability requirements shall include provisions for maintenance or replacement of identification marks and identification control records.

Reconstructed PHF and MDB

Partial traceability

through MDB and PHF to

Remanufacturer specification

Full traceability

through MDB and PHF to

OEM specification

Full traceability

through MDB and PHF to

OPD

Chemical analysis RSL-1 RSL-2 RSL-3

Chemical analysis shall be performed on a heat basis. Reconstructed PHF and MDB

Partial traceability

through MDB and PHF to

Remanufacturer specification

Full traceability

through MDB and PHF to

OEM specification

Full traceability

through MDB and PHF to

OPD

Chemical analysis shall be performed in accordance with the manufacturer's written procedure.

Remanufacturer specification

OEM specification

OPD specification

The chemical composition shall meet the requirements of API 16A. API 16A API 16A API 16A

Visual examination RSL-1 RSL-2 RSL-3

Each part shall be visually examined. API 16A API 16A API 16A

Visual examination of castings and forgings shall be performed in accordance with the manufacturer's written specification.

Remanufacturer specification

OEM specification

OPD specification

Acceptance criteria shall be in accordance with manufacturer's written specifications.

Remanufacturer specification

OEM specification

OPD specification

Non-well fluid-wetted and non-sealing surfaces shall be examined in accordance with visual examination methods described in API 16A.

API 16A API 16A API 16A

Surface NDE RSL-1 RSL-2 RSL-3

All accessible well fluid-wetted surfaces and all accessible sealing surfaces of each finished part shall be inspected after final heat treatment and after final machining operations by either magnetic particle (MP) or liquid penetrant (LP) methods.

API 16A API 16A API 16A

All accessible well fluid-wetted surfaces of each finished part shall be inspected after final heat treatment and after final machining operations by the LP method.

API 16A API 16A API 16A

MP examination shall be in accordance with procedures specified in ISO 13665. Prods are not permitted on well fluid-wetted surfaces or sealing surfaces.

API 16A API 16A API 16A

LP examination shall be in accordance with procedures specified in ASTM E 165.

API 16A API 16A API 16A

Acceptance criteria for MP and LP in conformance with API 16A. API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Page 28: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 19

Weld NDE general RSL-1 RSL-2 RSL-3

100 % of all surfaces prepared for welding shall be visually examined prior to initiating welding.

API 16A API 16A API 16A

Examinations shall include a minimum of 12 mm (0,5 in) of adjacent base metal on both sides of the weld.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Weld NDE surface preparation acceptance shall be in accordance with the manufacturer's written specification.

Remanufacturer specification

OEM specification

OPD specification

All welds shall be examined according to manufacturer's written specification.

Remanufacturer specification

OEM specification

OPD specification

Any undercut detected by visual examination shall be evaluated in accordance with the manufacturer's written specification.

Remanufacturer specification

OEM specification

OPD specification

Surface porosity and exposed slag are not permitted on or within 3 mm (0,125 in) of sealing surfaces.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Weld NDE — Surface examination (other than visual) RSL-1 RSL-2 RSL-3

100 % of all pressure-containing welds repair and weld metal overlay welds and repaired fabrication welds shall be examined by either MP or LP methods after all welding, post-weld heat treatment and machining operations are completed.

API 16A API 16A API 16A

The examination shall include 12 mm (0,5 in) of adjacent base material on both sides of the weld.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Acceptance criteria for MP and LP in conformance with API 16A. API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Repair welds RSL-1 RSL-2 RSL-3

All repair welds shall be examined using the same methods and acceptance criteria used in examining the base metal.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

The examination shall include 12 mm (0,5 in) of adjacent base material on both sides of the weld.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Surfaces of ground-out areas for repair welds shall be examined prior to welding to ensure defect removal using the acceptance criteria for fabrication welds

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Weld NDE — Volumetric examination of fabrication weld RSL-1 RSL-2 RSL-3

100 % of all pressure-containing welds shall be examined by either radiography, ultrasonic or acoustic emission methods after all welding and post-weld heat treatment.

API 16A API 16A API 16A

All repair welds for which the repair is greater than 25 % of the original wall thickness or 25 mm (1 inch) (whichever is less) shall be examined by either radiography, ultrasonic or acoustic emission methods after all welding and post-weld heat treatment.

API 16A API 16A API 16A

Examinations shall include at least 12 mm (0,5 in) of adjacent base metal on all sides of the weld.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Radiography examination RSL-1 RSL-2 RSL-3

Radiographic examinations shall be performed in accordance with procedures specified in ASTM E 94, to a minimum equivalent sensitivity of 2 %.

API 16A API 16A API 16A

Acceptance criteria for radiography in conformance with API 16A. API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Page 29: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

20 API STANDARD 16AR

Ultrasonic examination RSL-1 RSL-2 RSL-3

Ultrasonic examinations shall be performed in accordance with procedures specified in ASME Boiler and Pressure Vessel Code, Section V, Article 4.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Acceptance criteria for Ultrasonic examination in conformance with API 16A..

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Acoustic emission examination RSL-1 RSL-2 RSL-3

Acoustic emission (AE) examinations shall be performed in accordance with procedures specified in ASTM E 569. The acoustic emission examination shall be conducted throughout the duration of the hydrostatic “in-plant” test.

API 16A API 16A API 16A

Acceptance criteria for Acoustic emission examination in conformance with API 16A.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Weld NDE — Hardness testing RSL-1 RSL-2 RSL-3

All accessible pressure-containing, non-pressure-containing and major repair welds shall be hardness tested.

API 16A API 16A API 16A

At least one hardness test shall be performed in both the weld and in the adjacent unaffected base metal after all heat treatment and machining operations.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

The hardness recorded in the PQR shall be the basis for acceptance if the weld is not accessible for hardness testing.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Volumetric NDE parts - Sampling RSL-1 RSL-2 RSL-3

As far as practical the entire volume of each part shall be volumetrically inspected (radiography or ultrasonic) after heat treatment for mechanical properties and prior to machining operations that limit effective interpretation of the results of the examination

API 16A API 16A API 16A

For quench-and-tempered products, the volumetric inspection shall be performed after heat treatment for mechanical properties exclusive of stress-relief treatments or re-tempering to reduce hardness.

API 16A API 16A API 16A

Volumetric NDE parts - Ultrasonic examination RSL-1 RSL-2 RSL-3

Hot-worked parts: Ultrasonic examination of hot-worked parts shall be performed in accordance with the flat-bottom-hole procedures specified in ASTM A 388 (except immersion method may be used) and ASTM E 428.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Calibration: Distance amplitude curve (DAC) shall be based on 1,6 mm (1/16 in) flat-bottom hole for metal thicknesses through 38 mm (11/2 in), on 3,2 mm (1/8 in) flat-bottom hole for metal thicknesses from 38 mm (11/2 in) through 150 mm (6 in), and on 6,4 mm (1/4 in) flat-bottom hole for metal thicknesses exceeding 150 mm (6 in).

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

The following acceptance criteria apply:

― no single indications exceeding reference distance amplitude

curve;

― no multiple indications exceeding 50 % of reference distance

amplitude curve. Multiple indications are defined as two or more indications (each exceeding 50 % of the reference distance amplitude curve) within 13 mm (1/2 in) of each other in any direction.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Page 30: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 21

Volumetric NDE parts - Radiographic examination RSL-1 RSL-2 RSL-3

Radiographic examination of hot-worked parts shall be performed in accordance with API 16A.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Acceptance criteria The following acceptance criteria apply to hot-worked parts:

― no cracks, laps, or bursts;

― no elongated indications with length greater than: Thickness, T Inclusion length mm (in) mm (in) < 19,0 (0,75) 6,4 (0,25) 19,0 to 57,0 (0,75 to 2,25) 0,33T (0,33T) > 57,0 (2,25) 19,0 (0,75) no group of indications in a line that have an aggregate length greater than T in a length of 12T.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Non-metallic sealing materials and moulded sealing assemblies

RSL-1 RSL-2 RSL-3

Testing of each batch shall be in accordance with ASTM procedures as defined in API 16A. Mechanical property data shall include the following:

a) hardness data in accordance with ASTM D 1415 or ASTM

D 2240;

b) tensile data in accordance with ASTM D 1414 or ASTM

D 412;

c) elongation data in accordance with ASTM D 1414 or ASTM

D 412;

d) modulus data in accordance with ASTM D 1414 or ASTM

D 412.

API 16A API 16A API 16A

If a suitable ASTM procedure cannot be applied, the manufacturer shall provide a written procedure for testing.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Characteristics shall be defined by measurements of physical properties.

API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Mechanical property data shall include hardness, tensile, elongation and modulus.

API 16A API 16A API 16A

Acceptance shall be in accordance with manufacturer's written specifications.

Remanufacturer specification

OEM specification

OPD specification

Metallic inserts in moulded assemblies

Sampling shall be in accordance with manufacturer's written requirements or ISO 2859-1, Level II 4.0 AQL.

API 16A API 16A API 16A

All methods shall be in accordance with manufacturer's written requirements.

Remanufacturer specification

OEM specification

OPD specification

Acceptance shall be in accordance with manufacturer's written specifications.

Remanufacturer specification

OEM specification

OPD specification

Acceptance shall be in accordance with manufacturer's written requirements and NACE MR0175.

Remanufacturer specification

OEM specification

OPD specification

Welding NDE shall be in accordance with manufacturer's written specifications.

Remanufacturer specification

OEM specification

OPD specification

Annular packers when shipped separately from a BOP RSL-1 RSL-2 RSL-3

When shipped separately (not part of an assembled BOP), annular packers shall be pressure-tested and drift tested in accordance with API 16A.

API 16A API 16A API 16A

All other drill-through equipment RSL-1 RSL-2 RSL-3

All quality control requirements shall be documented in the manufacturer's written specifications.

Remanufacturer specification

OEM specification

OPD specification

Page 31: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

22 API STANDARD 16AR

Assembled equipment RSL-1 RSL-2 RSL-3

The quality control requirements for assembled equipment shall include drift tests, pressure tests and hydraulic operating system tests.

API 16A API 16A API 16A

Serialization is required on all assembled equipment and shall be carried out in accordance with the manufacturer's written specification.

Remanufacturer specification

OEM specification

OPD specification

A report shall be prepared in which all serialized and individual-heat-traceable parts are listed as traceable to the assembly (e.g., assembly part number, serial number).

API 16A API 16A API 16A

A drift test is required on ram BOP, annular BOP, hydraulic connectors, drilling spools and adapters.

API 16A API 16A API 16A

The hydrostatic proof or shell test pressure shall be determined by the rated working pressure for the equipment and be in conformance with API 16A.

API 16A API 16A API 16A

The hydraulic operating system test shall be tested on each assembled blowout preventer and hydraulic connector.

API 16A API 16A API 16A

The hydraulic operating chamber shall be tested at a minimum test pressure equal to 1,5 times the operating chambers rated working pressure.

API 16A API 16A API 16A

Closed-preventer test RSL-1 RSL-2 RSL-3

Each ram and annular blowout preventer shall be subjected to a closed-preventer test after the hydrostatic proof test. The hydraulic operating system pressure used shall be equal to or less than the manufacturer's specified operating pressure.

API 16A API 16A API 16A

Annular packing tests shall require pressure-testing on the appropriate size drill pipe and without out drill pipe in accordance with API 16A.

API 16A API 16A API 16A

VBRs shall be tested on the minimum and maximum sizes for their range.

API 16A API 16A API 16A

Each preventer equipped with blind-shear rams shall be subjected to a shearing test.

API 16A API 16A API 16A

The closed-preventer test for each blowout preventer equipped with a hydraulic ram-locking system shall be pressure tested with the locking system engaged.

API 16A API 16A API 16A

Hydraulic connector tests RSL-1 RSL-2 RSL-3

Since there is no closure unit in a hydraulic connector, the hydrostatic proof test shall take the place of any rated working pressure tests.

API 16A API 16A API 16A

Corrosion-resistant overlay RSL-1 RSL-2 RSL-3

Corrosion-resistant overlay of API 6A ring groove specification. API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Other corrosion-resistant overlays specification. API 16A API 16A or exceeded by

OEM specification

API 16A or exceeded by

OPD specification

Pre-heating RSL-1 RSL-2 RSL-3

Pre-heat specification. Remanufacturer specification

OEM specification

OPD specification

Post-weld heat treatment RSL-1 RSL-2 RSL-3

Post-weld heat treatment specification. Remanufacturer specification

OEM specification

OPD specification

Page 32: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 23

4.6 Requirements for quality control records

4.6.1 General

The quality control records required by this Standard are those documents and records necessary to substantiate that all materials and equipment made to this Standard do conform to the specified requirements.

4.6.2 NACE records requirements

Records required substantiating conformance of equipment to NACE requirements shall be in addition to those described in other clauses of this Standard, unless the records required by this Standard also satisfy the NACE MR0175 requirements.

4.6.3 Records control

The organization shall maintain a documented procedure to define the controls and responsibilities needed for the initiation, identification, collection, storage, protection, retrieval, retention time, and disposition of records. Records, including those from outsourced activities, shall be established and controlled to provide evidence of conformity to requirements and of the effective operation of the quality management system. Records shall be retained for a minimum of ten years following the date the equipment was received by the service provider, or as required by customer, legal and other applicable requirements, whichever is longer. All records required by this Standard shall be signed and dated. Records shall be legible, identifiable, retrievable and protected from damage, deterioration or loss. Records can be hard copies and/or computer-stored as defined in the organization records control system procedure.

4.6.4 Records to be maintained by remanufacturer

4.6.4.1 General

The remanufacturer shall retain all documents and records as required in clause 5.6.4.1. The remanufacturer shall provide a PHF and MDB in conformance with Annex Band Annex C to their client in either electric format, hard copy or both, as specified in the purchase order by the client.

4.6.4.2 Parts or components covered in API 16A

The following records shall be retained: 1) weld procedure qualification record;

2) welder qualification record; 3) material test records:

― chemical analysis; ― tensile tests (QTC);

Page 33: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

24 API STANDARD 16AR

― impact tests (QTC, as required); ― hardness tests (QTC);

4) NDE personnel qualification records;

5) NDE records:

― surface NDE records;

― full penetration fabrication;

― weld volumetric NDE records;

― repair weld NDE records; 6) hardness test records;

7) welding process records:

― welder identification;

― weld procedures;

― filler materials;

― post-weld heat treatments;

8) heat treatment records:

― actual temperature;

― actual times at temperature;

9) volumetric NDE records;

10) hydrostatic pressure test records; 11) critical dimensions as defined by the manufacturer.

5. Quality Management System Requirements

5.1 Control of Documents

The quality management system documentation shall include: 1) Statements of quality policy and quality objectives;

2) A quality manual that addresses each requirement of this specification and includes:

Page 34: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 25

― the scope of the quality management system, including justification for any exclusions to specific quality management system elements;

― a description of the sequence and interaction between the processes of the quality management system;

― identification of processes that require validation; ― reference to documented procedures that control the quality management system processes; ― documented procedures established for the quality management system; ― documents and records to ensure the effective planning, operation, and control of its processes

and compliance with specified requirements; and ― identification of legal and other applicable.

5.2 Training and Awareness

The organization shall: 1) Provide Quality Management System training to the organization’s personnel and contractors who

affect the execution of services or provision of service-related products;

2) Ensure that customer-specified training and/or customer-provided training, if required, is included in

the training program;

3) Maintain appropriate records on education, training, skills and experience.

5.3 Control of testing, measuring, monitoring equipment

The remanufacturer shall maintain a documented procedure which defines the required testing, measurement, monitoring, and detection equipment to be controlled and necessary to provide evidence that service or service-related product meets specified requirements. The procedure shall address equipment traceability, frequency of calibration, calibration method, acceptance criteria, suitable environmental conditions, storage and handling. The procedure shall identify required assessments and maintain records when the validity of the previous testing, measuring, monitoring, or detection results are found not to conform to calibration requirements. The organization shall take appropriate action on the equipment and any service affected. Testing, measuring, monitoring and detection equipment shall have unique identification. When the equipment is externally provided, the organization shall verify that the equipment is suitable to provide evidence of conformity of service or service-related product to specified requirements.

Page 35: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

26 API STANDARD 16AR

5.4 Contract Review

5.4.1 General

The organization shall maintain a documented procedure for the review of contract requirements related to the execution of services or provision of service-related products.

5.4.2 Determination of Requirements

The organization shall determine: 1) Requirements specified by the customer, including the requirements for service planning,

execution, and evaluation;

2) Legal and other applicable requirements;

3) Requirements not stated by the customer but considered necessary by the organization or

industry recognized Standards for the execution of service and provision of service related

product.

4) Documentation requirements pertaining to the certificate of compliance/conformance, MDB, PHF,

and any other required traceable documents.

Where the customer has provided incomplete, incorrect or unachievable requirements in the purchase order, the customer requirements shall be informed by the remanufacturer and records maintained.

5.5 Purchasing Control

The organization shall maintain a documented procedure and qualification of outsourced services to ensure that purchased or outsourced services and service-related products conform to specified requirements. Selection of outsourced service suppliers by the remanufacturer shall include the following prior to initiation of the purchase agreement: 1) Assessment of the supplier at supplier’s facility to meet the organization’s purchasing

requirements, and

2) Verification that the supplier’s quality management system conforms to the quality system

requirements specified for suppliers by the organization.

5.6 Design and Development

5.6.1 Design and Development Planning

The organization shall maintain a documented procedure to plan and control the design and development of the product, including the use of service-related products. The procedure shall identify:

Page 36: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 27

1) the design and development stages;

2) the activities required for completion, review, and verification of each stage;

3) the interfaces between different groups involved in design and development; and

4) the responsibilities and authorities for the design and development activities.

The organization shall manage the interfaces between different groups involved in design and development to ensure effective communication and clear assignment of responsibilities. When design and development are outsourced, the organization shall ensure the supplier meets the requirements of clause 6.6 and provide objective evidence that the supplier has met these requirements.

5.6.2 Design documentation

Design documentation shall include the methods, assumptions, formulas and calculations.

5.6.3 Design and Development Inputs

Inputs relating to design of the product shall be determined and records maintained.

These inputs shall include: 1) customer-specified requirements

2) legal requirements; and

3) other applicable requirements including:

― requirements provided from an external source, ― requirements for products and service-related products, including its functional and technical

requirements, ― environmental and operational conditions ― historical performance and other information derived from previous similar product designs.

5.6.4 Design Verification

The design and development requirements are to be examined and confirmed to be in conformance with specified requirements of the contract and relevant standards.

NOTE Design verification activities includes one or more of the following: 1) confirming the accuracy of design results through the performance of alternative calculations,

2) review of design output documents independent of activities of design and development,

3) comparing new designs to similar proven designs.

Page 37: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

28 API STANDARD 16AR

5.6.5 Design Validation

Design and development validation shall be performed in accordance with planned arrangements (see clause 6.7.1) to ensure that the resulting product is capable of meeting the requirements for the specified application or intended use, where known. Wherever practicable, validation shall be completed prior to the delivery or implementation of the product. Records of the results of validation and any necessary actions shall be maintained.

NOTE Design validation includes one or more of the following: 1) prototype tests;

2) functional and/or operational tests of production products;

3) tests specified by industry standards and/or regulatory requirements;

4) field performance tests and reviews.

5.6.6 Control of design and development changes

Design and development changes shall be identified and records maintained. The changes shall be reviewed, verified and validated, as appropriate, and approved before implementation. The review of design and development changes shall include evaluation of the effect of the changes on constituent parts and product already delivered. Records of the results of the review of changes and any necessary actions shall be maintained.

6. Responsibilities

6.1 OEM

1) The original product manufacturer (OEM) of the API product is responsible for compliance to the standard in manufacturing / remanufacturing, documentation (Manufacturing Data Book (MDB) + Project History File (PHF) and certification.

2) The OEM is responsible for the definition of the original product definition (OPD) and the ongoing product design status.

3) The OEM is responsible for documenting design changes resulting from a malfunction or failure history of drill-through equipment manufactured, remanufactured and / or repaired in the Original Product Definition.

4) The OEM is responsible to audit OEM approved repair facilities in compliance with the requirements of this product standard to assure compliance.

5) The OEM shall in accordance with the applicable API standard for manufacturing retain documents required for repair and remanufacturing for ten years.

6) On request and in agreement with the equipment owner, the OEM will maintain the MDB and PHF for periods exceeding the record keeping requirement of ten years as listed under this standard.

Page 38: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 29

7) On request and in agreement with the equipment owner, the OEM will maintain the decommissioning record for 5 years.

6.2 Repairer / Remanufacturer

1) The Repairer / Remanufacturer of the API product is responsible for compliance to the standard in manufacturing, documentation (Manufacturing Data Book (MDB) + Project History File (PHF) and certification.

2) The repairer / Remanufacturer shall provide the product owner with an overview of equipment traceability and compliance to the OPD before selecting and agreeing the Remanufacturing Service Level (RSL) in the purchase order.

3) The Repairer / Remanufacturer is responsible to audit Repairer / Remanufacturer approved repair facilities in compliance with the requirements of this product standard to assure compliance.

4) The repairer / remanufacturer shall in accordance with the applicable API standard for manufacturing retain documents required for repair and remanufacturing for ten years.

5) On request and in agreement with the equipment owner, the Repairer / Remanufacturer will maintain the Manufacturing data book for periods exceeding the record keeping requirement of ten years as listed under this standard.

6) On request and in agreement with the equipment owner, the Repairer / Remanufacturer will maintain the decommissioning record for 5 years.

6.3 Product Owner:

1) The product owner is responsible to keep an up to date MDB + PHF.

2) The product owner is responsible to keep the equipment in certification.

3) The product owner is responsible to document the requirements for the MDB + PHF in the Purchase Order for repair and / or remanufacturing.

4) The product owner is responsible to document the required Remanufacturing Service Level for the product in the Purchase Order for repair and / or remanufacturing.

5) The product owner is responsible to list the requirements for Third Party Inspection (TPI) requirements in the Purchase Order for repair and / or remanufacturing.

6) The product owner is responsible to keep accurate records of product use and exposure to Sulfide Stress Cracking environment.

7) The product owner is responsible for scheduling the required maintenance for the product, including the recommendations from the OEM.

8) The product owner/operator is responsible for the product status verification and traceability, field configuration assessment and service conditions, maintenance and service procedures, inspection

and test procedures, design status assessment and disposition, usage and performance history evaluation, repair and selection of remanufacture procedures as described in this standard.

Page 39: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

30 API STANDARD 16AR

7. Repair / Remanufacturing Service Level Minimum Requirements

7.1 General

Repair and remanufacturing under this standard excludes work performed on equipment under maintenance. Quality control requirements for specific equipment and parts as documented in clause 5.5 shall meet or exceed the agreed Remanufacturing Service Level (RSL) as documented in the customer purchase order. The RSL for the entire system/assembly cannot be higher than the lowest RSL level of a part. Parts that do not meet the minimum of RSL-1 quality requirements defined in clause 5.5 of this standard are not considered suitable for service.

7.2 Original Equipment Manufacturer (OEM)

Throughout field life of an API 16A product the control of the design specification may change as result of equipment being maintained / remanufactured by organizations other than those who own the Original Product Definition (OPD). The design owner or manufacturer of the traceable assembled equipment, single equipment unit, or component part is the OEM. NOTE: If any alterations to the original design and/or assembled equipment or component part are made by anyone other than the OEM, the assembly, part, or component is not considered an OEM product. The party that performs these alterations is then designated as the OEM as illustrated in Annex E.

7.3 Requirements for Pressure Testing

7.3.1 General

All drill-through equipment shall be subjected to a hydrostatic proof test prior to shipment from the service or repair facility. Water with soluble oil that also provides corrosion protection in the vapor phase should be used as the testing fluid to avoid corrosion of the drill-through equipment. The type of soluble oil and concentration used shall be documented in the test records. Water can be used in the bore for pressure testing, but requires preservation of the drill-through equipment afterwards.

7.3.2 Hydrostatic Proof/Shell Test

Drill-through equipment shall be tested with its sealing mechanisms in the open position, if applicable. Equipment repaired will require hydrostatic proof testing of the equipment to rated working pressure. Equipment remanufactured will require hydrostatic proof testing of the equipment to 1.5 times rated working pressure.

Page 40: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 31

For equipment with end or outlet connections having different working pressures, the lowest rated working pressure shall be used to determine the shell pressure test.

7.3.3 Operating Chamber Pressure Test

The hydraulic operating system test shall be tested on each assembled blowout preventer and hydraulic connector. The hydraulic operating chamber shall be tested at a minimum test pressure equal to 1.5 times the operating chamber’s rated working pressure. The hydrostatic proof test and the hydraulic operating chamber test shall consist of three steps: ― an initial pressure-holding period of not less than 3 min;

― reduction of the pressure to zero;

― a second pressure-holding period of not less than 15 min. The timing of the test shall not start until the test pressure has been stabilized within the manufacturer/remanufacturer specified range and the external surfaces have been thoroughly dried. The acceptance criterion shall be zero leakage.

7.3.4 Closed-preventer test

Each ram and annular blowout preventer shall be subjected to a closed-preventer test after the hydrostatic proof test. The hydraulic operating system pressure used shall be equal to or less than the specified operating pressure. The test fluids used for all closed preventer tests shall meet the requirements of 7.2.1. The timing of all closed-preventer tests shall not start until the test pressure has stabilized. Closed-preventer tests shall be performed at low and high pressures, with the low pressure test always preceding the high pressure test.

7.3.5 Low Pressure Test

A pressure of 1.4 MPa to 2.1 MPa (200 psi to 300 psi) shall be applied and held below the closed ram or annular packing unit for not less than 10 min after stabilization.

7.3.6 High Pressure Test

A pressure at least equal to the rated working pressure of the preventer shall be applied and held below the closed ram or annular packing unit for not less than 10 min after stabilization (see exception for annular packing units in section 7.2.8).

7.3.7 Acceptance Criteria

There shall be no visible leakage.

Page 41: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

32 API STANDARD 16AR

7.3.8 Annular packing unit tests

Annular packing units shall be tested in two stages.

The stage one test shall require pressure-testing on the appropriate size drill pipe in accordance with Table 2, unless otherwise specified by customer. The stage two test shall require pressure-testing without drill pipe in the preventer, i.e. on the open hole. The high pressure test for this stage shall be as specified in 7.2.6, except as a minimum it shall be performed at 50% of the rated working pressure of the preventer.

Table 2 – Pipe Size Requirements

Bore Size Pipe Diameter

mm (in) mm (in)

179 and 228 7 1/16 and 9 88.9 3 ½

279 and larger 11 and larger 127.0 5

7.3.9 Pipe, blind and variable-bore rams

These tests shall be performed with the appropriate size drill pipe for the rams being tested. VBRs shall be tested on the minimum and maximum sizes for their range including pipe geometry changes as defined in API 5DP.

7.3.10 Blind-shear rams

Each preventer equipped with blind-shear rams shall be subjected to a shearing test. The minimum size shear pipe used shall conform to Table 3 or unless otherwise specified by customer.

Table 3 - Shear pipe requirements

BOP size Shear pipe (minimum)

179 mm (7 1/16 in) 3 1/2 in 13.3 lb./ft Grade E-75

228 (9 in) 3 ½ inch 13.3 lb./ft Grade G105

279 mm (11 in) 5 in 19.5 lb./ft Grade G105

346 mm (13 5/8 in) 5 in 19.5 lb./ft Grade G-105

425 (16 ¾ in) 5 ½ inch 24.7 lb./ft Grade S135

476 (18 ¾ in) 5 ½ inch 24.7 lb./ft Grade S135

540 (21 ¼ In) 5 ½ inch 24,7 lb./ft Grade S135

Unless specified different by the customer, these tests shall as a minimum be performed without tension in the pipe, in unconstrained condition in the BOP and with zero wellbore pressure. Shearing and sealing shall be achieved in a single operation. The maximum shear pressure available at the rated working pressure of the BOP equals:

(

)

The maximum seal pressure available at the rated working pressure of the BOP equals:

Page 42: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 33

(

)

MSP = Maximum shear / seal pressure RSP = Rated System operating working pressure RWP = Rated working pressure of the BOP SR = Shear ratio CR = Closing Ratio Shear Documentation shall include:

1) BOP

― Manufacturer

― Description

― Bore size (inch)

― Rated working pressure.

2) BOP Operator

― Type

― Rated hydraulic working pressure

― Operator closing area

― Operator shearing area

― Connection rod area

3) Shear Rams

― Shear ram type (casing shear ram, blind shear ram)

― Part number upper and lower ram.

― Shear blade part number (when applicable)

― Ram seal part numbers

― Minimum operator pressure for low pressure seal.

4) Pipe description

― Pipe manufacturer

― Pipe outside diameter (inch)

Page 43: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

34 API STANDARD 16AR

― Pipe inside diameter (inch)

― Pipe weight including tool joints (ppf)

― Pipe API grade (ksi)

― Pipe API class (new, premium, class -1, class-2)

5) Pipe properties

― Material composition

― Hardness (HRC)

― Yield Strength, 0.2% offset (psi)

― Elongation (%)

― Reduction of area (%)

― Charpy V-notch at 70 deg F. (ft-lb).

6) Shear test results

― Shear pressure and shear force at zero well bore pressure

― Seal pressure and seal force at 200-300 psi wellbore pressure

― The maximum shear pressure available at the rated working pressure of the BOP

― The maximum seal pressure available at the rated working pressure of the BOP

7.3.11 Rams lock test

This test determines the ability of the blowout preventer's ram-locking device to maintain a wellbore pressure seal after removing the closing and/or locking pressure(s). This test shall apply to each included ram that is designed to operate with the ram-locking system. The preventer shall be tested after the rams are closed, the locks engage and then all operating pressure(s) released.

7.3.12 Elastomeric Seal Requirements

All elastomer components used for FAT of units repaired or remanufactured in compliance with 16AR must be fully design verified and validated in the BOP design in which they are being used.

7.3.13 Wellbore Sealing Components and Consumables

All BOP system elastomeric seal elements shall be addressed in the equipment owner’s PM program for the system.

Page 44: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 35

If the remanufacturer / manufacturer must provide components to allow for testing, those parts/components will be removed after testing when conformance has been proven. Responsibility will be with the equipment owner to add those components when putting the system into service. Traceability must be maintained of the parts added to maintain compliance with the standard and to maintain the equipment’s Operation Service Level. Independent ram assemblies and operators will be treated as a separate component from the blowout preventer.

7.3.14 Operating Sealing Components and Consumables

Identification of non-wellbore non-metallic components, such as elastomeric seals used in ram and annular type BOP actuation systems, shall be in accordance with the manufacturer / remanufacturer written specifications. Markings and traceability must still be maintained and can be done through a traceable number by the remanufacturer / manufacturer, permanently stamped or etched into the ram assembly. Ram assemblies and operators will be provided with a separate certificate showing conformance or compatibility (where applicable). Specialized components, including proprietary design BOP seals and packing units, shall be stored in accordance with the OEM recommendations.

7.4 Dimensional check

For recertification all API and sealing dimensions must be within product definition tolerances. Corrosion must be removed and parts dimensional verified to have sufficient remaining strength in conformance with the product definition. Wear tolerances defined in the product definition, must be used to verify if the part is suitable for service. Dimensional checks shall include at a minimum the following:

― Wear of all and sealing surfaces.

― Flange and Bore Dimensions

― Pressure Retaining Components

― Pressure controlling Components

― Any Critical Areas per the Product Definition

Dimensional must be documented and approved by a supervisor who is deemed competent and can assure the technician is competent to record and take measurements in accordance with the established QMS.

Page 45: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

36 API STANDARD 16AR

7.5 NDE – Initial Inspection

The following inspections shall be performed before proceeding with remanufacture of equipment.

― All well-fluid wetted surfaces shall be MPI or DPI inspected

― All welds shall be MPI or DPI inspected ― External surfaces shall be 100% visually inspected and any anomalies further investigated with

MPI or DPI

― Unacceptable indications found with MPI or DPI shall be removed.

If full weld records are not available it is advisable to acid etch the BOP to determine any previous weld.

7.6 Inspection on closure bolting (pressure retaining)

If closure bolting identification is lost, it shall be replaced.

If closure bolting or other closing devices are intended for reuse, they shall undergo a thorough inspection which includes: ― Wet particle MPI or DPI

― Hardness measurements on bolts & nuts

― Threads (internal / external) must be inspected for wear and stretch

― Bolt holes threads must be inspected for wear and confirmed to be within specification

― Bolt holes must be checked to verify if weld repairs have been made. Bolt hole surfaces should be

etched when traceability of repairs has been lost

― Full dimensional inspection of pressure retaining of non-threaded devices

7.7 Visual Inspection at disassembly

All parts shall be 100% visually inspected and includes but is not limited to: ― Critical wear areas and body structure

― All threaded lifting bolt holes

― Sealing surfaces

― Door/Bonnet assembly alignment

― Straightness of parts

― Flatness of seal areas

Page 46: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 37

― Damage to running surfaces

― Corrosion / pitting

7.8 Drift Test

A drift test is required on ram BOP, annular BOP, hydraulic connectors, drilling spools and adapters. Pass a drift mandrel through the bore of the assembly after all pressure testing. Drift mandrel diameter shall be 1/32” (0.79mm) smaller than the bore diameter with a tolerance of +0.01” / -0” (+0.25mm / - 0 mm). Drift mandrel gauge length shall be at least 51 mm (2 in) longer than any cavity that intersects the bore, but not less than 305 mm (12.0 in).

7.9 Replacement Parts – Qualifications

Replacement parts shall meet or exceed the specifications as listed in the product definition from the OEM. Replacement parts other than approved by the OEM shall be fully designed verified and tested in conformance with API 16A and be supported by a Certificate of Usage Compatibility, certifying that the part or system is compatible with the OEM Product definition or Original Product Definition, including design changes resulting from a malfunction or failure history of drill-through equipment manufactured, remanufactured or repaired to the appropriate Standard / Specification and is fully compatible and can be integrated into other systems guaranteeing the operations envelope as defined by the OEM Replacement parts must be documented in the PHF. Unique markings of the part shall provide the traceability that allows verification of the part design status.

7.10 General Equipment Specifications

Equipment repaired and / or remanufactured under API 16AR shall general equipment specification in conformance with Annex A.

7.11 Documentation

Repair and remanufacturing activities performed on the product shall be fully documented, supported by the required certification and added to the PHF. Documentation must provide traceability as required under API 16A.

7.12 Failure Reporting

The equipment owner of blowout prevention equipment shall provide a written failure report to the equipment manufacturer of any malfunction or failure that occurs. Guidelines for failure reporting can be found in Annex D.

Page 47: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

38 API STANDARD 16AR

8. Materials

8.1 General

Unless specified differently in this standard, material requirements for API 16A equipment will be in conformance with API 16A, clause 6.

This clause describes the material performance, processing and compositional requirements for pressure-containing or pressure containing parts and all other parts which shall as a minimum satisfy the OPD design requirements for the product repaired and /or remanufactured under this standard.

Metallic materials exposed to well bore fluids and gasses shall meet the design requirements of NACE MR0175 / ISO 15156 does allow shear blades not to be Sulfide Stress Cracking (SSC) resistant. Suitability of the shear blades that do not comply with the hardness limitations and its potential influence on the sealing capability in SSC environment is the responsibility of the user. Meeting NACE MR0175 / ISO 15156 for prevention of Sulfide Stress Cracking (SSC) can be achieved by:

― Deployment of the Well Control Equipment in a non-SSC environment

― The use of the WCE in an inhibited fluid environment

― Material hardness shall not exceed 22HRC and care must be taken when hardness exceeds 26 HRC (rams only)

― The use of Corrosion Resistant Alloy (CRA) and its application that is SSC resistant.

8.2 Metallic Parts

A written material specification shall be required for all manufacturing / remanufacturing of metallic pressure-containing, pressure-controlling and all other parts. The remanufacturer shall be capable to meet or exceed the material specifications for the product as listed in the OPD, which shall contain the following information:

― acceptance and/or rejection criteria;

― material composition with tolerance;

― material qualification;

― allowable melting practice(s);

― forming practice(s);

― heat treatment procedure, including cycle time and temperature with tolerances, heat treating

equipment and cooling media;

― NDE requirements;

― mechanical property requirements.

Page 48: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 39

8.3 Non-metallic parts

Each manufacturer shall have written specifications for all elastomeric materials used in the production of drill-through equipment. These specifications shall include the following physical tests and limits for acceptance and control: ― acceptance and/or rejection criteria

― physical property requirements.

― material qualification, which shall meet the equipment temperature and pressure class requirement.

― storage and age-control requirements.

― Hardness in accordance with ASTM D 2240 or ASTM D 1415;

― Normal stress-strain properties in accordance with ASTM D 412 or ASTM D 1414;

― Compression set in accordance with ASTM D 395 or ASTM D 1414;

― Immersion testing in accordance with ASTM D 471 or ASTM D 1414;

― Generic base polymer testing in accordance with ASTM D1418

8.4 Base metal material Identification

8.4.1 General

In order to start the repair and remanufacturing process control must also be established over the material properties.

8.4.2 Original Material Test Records (MTRs).

If no original Material Tests Records are available, the following must be tested and documented to establish material property requirements for pressure-containing members to meeting RSL-1: ― Determining hardness and approximant tensile values

― Determining Chemical composition

In order to meet the requirements of RSL-2 or 3, all the material property requirements for pressure-containing members must be available or be re-established in conformance with section 9.5. Pressure-containing members manufactured under API 6A and from only which the impact strength is not available meets the requirements of RSL-2.

8.4.3 Determining Hardness and approximate ultimate tensile values:

Determining Hardness and approximate tensile values shall be done in accordance with

Page 49: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

40 API STANDARD 16AR

Brinell: ASTM E10 (Brinell) or ASTM E110 (portable testing) ISO 6506-1, Metallic materials, Brinell hardness test, Part 1 Rockwell: ASTM E18 for Rockwell ISO 6508-1, Metallic materials, Rockwell hardness test, Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N,T) Vickers: ASTM E384 for Vickers ISO 6507-1, Metallic materials, Vickers hardness test, Part 1 Harness conversion shall be done in accordance with ASTM E 140, Hardness Conversion Tables for Metals The hardness of a material is in principle related to the UTS and not to the YS. Yield Strength and Ultimate Tensile Strength show a linear correlation with hardness for most steels. However, for steel that shows evidence of strain hardening, a lower strength can be measured for a given hardness. There can be a non-linear relation between strength and hardness. If uncertainty exists with respect to the material specification, it is required to validate the material properties as per the RSL, clause 5.5.

8.4.4 Determining Chemical Composition:

In absence of material specifications for the parts of the system, PMI shall be used to confirm that the material from the pressure containing and pressure controlling parts meets the requirements of the product definition. The material identification shall be done using an industry recognized process that is capable of: ― Determining carbon content

― Determining all alloying elements such that the material can be matched to a base material

specification.

― Determining Nickel and sulfur content for NACE MR0175 applications.

― Determining other types of non iron-based materials (i.e. type of overlay materials). Prior to welding of carbon and low alloy steel, all elements in the carbon equivalency formula shall be adequately identified as per ASME, QW-403.26 Section IX:

C.E. = C% + Mn%/6 + (Cr%+Mo%+V%)/5 + (Ni%+Cu%)/15

8.5 Pressure-containing members

8.5.1 Property requirements

Pressure-containing members shall be manufactured from materials as specified by the manufacturer that meet the requirements of API16 and are listed in Table 4 and Table 5 below.

Page 50: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 41

Charpy V-notch impact testing shall conform to clause 9.4.5.2.

Table 4 — Material property requirements for pressure-containing members

Material designation

Yield strength 2 % offset

min.

Tensile strength

min.

Elongation in 50 mm

min.

Reduction of area

min.

MPa (psi) MPa (psi) % %

36K 248 36 000 483 70 000 21 none specified

45K 310 45 000 483 70 000 19 32

60K 414 60 000 586 85 000 18 35

75K 517 75 000 655 95 000 18 35

Non-standard materials yield as specified, Tensile as specified, elongation 15 % reduction in area 20%

Table 5 — Material applications for pressure-containing members

Part

Rated working pressure

13.8 MPa (2 000 psi)

20.7 MPa (3 000 psi)

34.5 MPa (5 000 psi)

69.0 MPa (10 000 psi)

103.5 MPa (15 000 psi)

138.0 MPa (20 000 psi)

Body 36K, 45K, 60K, 75K 45K

60K, 75K 60K, 75K

End connections 60K 75K

Blind flanges 60K 75K

Blind hubs 60K 75K

Non-standard materials may be used that have a design stress intensity that is not less than that of the lowest strength standard material permitted for the applications above.

8.5.2 Heat treating

In principle parts in the remanufacturing process can be fully annealed and again heat treaded (quenched and tempered) with the aim to restore the material properties that meet the minimum requirements of API 16A. Although this may lead to distortion of dimensions, surfaces and tolerances of the part, it may in some occasions be economical to do so. All heat-treatment operations shall be performed utilizing equipment qualified in accordance with the requirements specified by the manufacturer / remanufacturer (see Annex H for a recommended practice). Care should be taken in loading of material within furnaces such that the presence of one part does not adversely affect the heat-treating response of any other part. Temperature and times for heat treatment shall be determined in accordance with the manufacturer's / remanufacturers written specification. Quenching shall be performed in accordance with the manufacturer's / remanufacturers written specifications. a) Water quenching

Page 51: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

42 API STANDARD 16AR

The temperature of the water or water-based quenching medium shall not exceed 38 °C (100 °F) at the start of the quench, nor exceed 49 °C (120 °F) at the completion of the quench.

b) Oil quenching / Polymer

The temperature of any oil/polymer-quenching medium shall be greater than 38 °C (100 °F) at the start of the quench.

8.5.3 Chemical composition

8.5.3.1 General

The remanufacturer shall specify the range of chemical composition of the material used to remanufacture pressure-containing members.

Material composition shall be determined on a heat basis (or a remelt ingot basis for remelt grade materials) in accordance with the manufacturer's written specification.

8.5.3.2 Composition limits

The chemical composition limits of pressure-containing members manufactured from carbon and low alloy steels or martensitic stainless steels shall comply with API 16A.

8.5.4 Material qualification

8.5.4.1 Tensile testing

If yield strength 0.2% offset, tensile strength, elongation and reduction area must be reestablished for the remanufacturing in order to meet RSL-2 and/or RSL-3 requirements, removing a test specimen from the part is required. Tensile test specimens shall be removed from a part and must meet dimensions as described in section 8.5.8. Tensile tests shall be performed at room temperature in accordance with the procedures specified in ISO 6892 or ASTM A 370 A minimum of one tensile test shall be performed. The results of the tensile test(s) shall satisfy the applicable requirements of API 16A. If the results of the first tensile tests do not satisfy the applicable requirements, two additional tensile tests may be performed in an effort to qualify the material. The results of each of these additional tests shall satisfy the requirements of API 16A.

8.5.4.2 Impact testing

If impact strength must be reestablished for the remanufacturing in order to meet RSL-2 and/or RSL-3 requirements, removing a test specimen from the part is required. Impact testing shall be performed on parts used for pressure-containing members. Impact test specimens shall be removed from a part and must meet dimensions as described in section 8.5.8.

Page 52: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 43

Standard-size specimens of cross-section 10 mm 10 mm shall be used, except where there is insufficient material, in which case the next smaller standard-size specimen obtainable shall be used. When it is necessary to prepare sub-size specimens, the reduced dimension shall be in the direction parallel to the base of the V-notch. Impact tests shall be performed in accordance with ASTM A 370 using the Charpy V-notch technique. In order to qualify material for an ISO temperature rating T-0, T-20 or T-75, T 350 the impact tests shall be performed at or below the test temperature shown in Table 5. Pressure containing members from which the impact strength is unknown shall not be higher classed than T-0. A minimum of three impact specimens shall be tested to qualify a part. The average of the impact property value shall be at least the minimum value shown in Table 5. In no case shall an individual impact value fall below 2/3 the required minimum average. No more than one of the three test results shall be below the required minimum average. If a test fails, then one retest of three additional specimens (removed from the same part may be made. The retest shall exhibit an impact value for each specimen equal to or exceeding the required minimum average. The values listed in Table 6 are the minimum acceptable values for forgings and wrought products tested in the transverse direction and for castings and weld qualifications. Forgings and wrought products may be tested in the longitudinal direction instead of the transverse direction, in which case they shall exhibit 27 J (20 ft-lb) minimum average value. For equipment rated for 20,000 psi and higher pressure , the Charpy V –notch impact values shall be in accordance with the class T-HP or table 23 or 68J (50ft-lb) minimum average in the longitudinal direction

Table 6 — Acceptance criteria for Charpy V-notch impact tests

Temperature rating

Test temperature

Minimum impact value required for average of

each set of three specimens

Minimum impact value permitted for one specimen

only per set

°C (°F) J (ft-lb) J (ft-lb)

T-0, 18 0 20 15 14 10

T-20 T350 29 20 20 15 14 10

T-75 59 75 20 15 14 10

T-HP -29 -20 41 30 33 24

Rated pressure can be de-rated for elevated temperature service over 250 degrees F per annex G of API-6A.

8.5.5 Qualification test coupons (QTC)

In remanufacturing the QTC used for reestablishing the material properties is removed from the part requiring weld repair.

Page 53: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

44 API STANDARD 16AR

A QTC may be taken from an equal size part from the same heat number as the part requiring weld repair to represent the impact and/or tensile properties, provided it satisfies the requirements of this standard. The properties exhibited by the QTC shall represent the properties of the material comprising the equipment it qualifies. When the QTC is a trepanned core or a prolongation removed from a production part, the QTC shall only qualify parts having the same or smaller equivalent round (ER). A QTC may only qualify material and parts produced from the same heat.

8.5.6 Equivalent round (ER)

8.5.6.1 General

The dimensions of a QTC for a part shall be determined using the following ER method.

8.5.6.2 ER methods

Annex-I illustrates the basic models for determining the ER of simple solid and hollowed parts and more complicated equipment. The ER of a part shall be determined using the actual dimensions of the part in the “as-heat-treated” condition.

8.5.6.3 Required dimensions

The ER of the QTC shall be equal to or greater than the dimensions of the part it qualifies, except the size of the QTC is required not to exceed 125 mm (5 in) ER.

8.5.7 Processing

8.5.7.1 Melting practices

In no case shall the QTC be processed using a melting practice(s) cleaner than that of the material it qualifies [e.g. a QTC made from a remelt grade or vacuum-degassed material may not qualify material from the same primary melt which has not experienced the identical melting practice(s)]. Remelt grade material removed from a single remelt ingot may be used to qualify other remelt grade material which has been processed in like manner and is from the same primary melt. No additional alloying shall be performed on these individual remelt ingots.

8.5.7.2 Welding

Welding on the QTC is prohibited, except for attachment-type welds.

8.5.7.3 Heat treating

All heat-treatment operations shall be performed utilizing “production type” equipment certified in accordance with the manufacturer/remanufacturer written specification. “Production type” heat-treatment equipment shall be considered equipment that is routinely used to process parts.

Page 54: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 45

Qualification of heat treatment equipment shall be in conformance with Annex H. The QTC shall experience the same specified heat-treatment processing as the parts it qualifies. The QTC shall be heat-treated using the manufacturer/remanufacturer specified heat-treatment procedures. When the QTC is not heat-treated as part of the same heat treatment load as the parts it qualifies, the austenitizing (or solution heat-treat) temperatures for the QTC shall be within 14 °C (25 °F) of those for the parts. The tempering temperature for the part shall be no lower than 14 °C (25 °F) below that of the QTC. The upper limit shall be no higher than permitted by the heat-treatment procedure for that material. The cycle time of the QTC at each temperature shall not exceed that for the parts.

8.5.8 Tensile and impact testing

It is allowable to remove tensile and impact specimens from multiple QTCs as long as the multiple QTCs have had the same heat-treatment cycle(s). Tensile and impact specimens shall be removed from the part such that their longitudinal centerline axis is wholly within the center core ¼T envelope for a solid QTC or within 1 mm (¼ in) of the mid-thickness of the thickest section of a hollow QTC (see Annex-I). For QTCs larger than the dimensions specified in Annex I, the test specimens need not be removed from a location farther from the QTC surface than would be required if the specified QTC dimensions were used. When a sacrificial production part is used as the QTC, the test specimens shall be removed from a section of the part meeting the dimensional requirements of the QTC for that production part.

8.5.9 Hardness testing

A hardness test shall be performed on the QTC after the final heat-treatment cycle. Hardness testing shall be performed in accordance with procedures specified in ISO 6892 or ISO 6506-1 as appropriate.

9. Welding requirements

9.1 General

The welding specification of this standard defines the minimum requirements for joining and repairing pressure containing and load bearing parts by fusion welding and for qualification of fusion-welding procedures. All welding of components exposed to wellbore fluid shall comply with the welding requirements of NACE MR0175. Verification of compliance shall be established through implementation of the manufacturer's written welding procedure specification (WPS) and the supporting procedure qualification record (PQR).

Page 55: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

46 API STANDARD 16AR

When material specifications for pressure-containing and pressure-retaining components require impact testing, verification of compliance shall be established through implementation of the manufacturer's WPS and supporting PQR. Welding shall be performed in accordance with welding procedure specifications (WPS), written and qualified in accordance with ASME, BPVC:2004, Section IX, Article II. The WPS shall describe all the essential, non-essential and supplementary essential (if required, see ASME, BPVC:2004, Section IX) variables. The PQR shall record the essential, and supplementary essential (if required) variables of the weld procedure used for the qualification test(s). Both the WPS and PQR shall be maintained as records in accordance with the quality control record requirements from section 5.6.3 and 5.6.4. Welds from previous remanufacturing without sufficient documentation / traceability in the PHF to meet the design specification of the manufacturer / remanufacturer of the product shall be removed.

9.2 Weldment design and configuration

9.2.1 Pressure-containing fabrication weldments

Pressure-containing fabrication weldments contain and are wetted by wellbore fluid. Only full-penetration welds fabricated in accordance with the manufacturer's written specification shall be used. Figures G.1 through G.3 in Annex-G are provided for reference. Welding and completed welds shall meet the quality control requirements of clause 5.5.

9.2.2 Load-bearing weldments

Load-bearing weldments are those subject to external loads and not exposed to wellbore fluids. Joint design shall be in accordance with the manufacturer's written procedures. Welding and completed welds shall meet the quality control requirements of clause 5.5.

9.2.3 Repair welds

All repair welding shall be carried out in accordance with the manufacturer's written specification. All repair welds to pressure-containing members performed subsequent to original heat treatment shall be mapped. Welding and completed welds shall meet the quality control requirements of clause 5.5.

9.2.4 Weld surfacing (overlay) for corrosion resistance and wear resistance for material surface property controls

9.2.4.1 Corrosion-resistant ring grooves

9.2.4.1.1 General

Standard dimensions for the preparation of type SR ring grooves for overlays are specified in API 6A, section 10.

Page 56: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 47

If equipment has metal-overlaid, corrosion-resistant ring grooves, the ring gasket type and number shall be followed by “CRA” to designate a corrosion-resistant alloy, or “SST” to designate an austenitic stainless steel.

9.2.4.1.2 Chemical analysis

Chemical analysis on the weld metal shall be performed in accordance with the requirements of ASME. BPVC:2004, Section IX, at a location 3 mm (0.125 in) or less from the original base metal surface. The chemical composition of the deposited base metal at the location shall be as specified by the remanufacturer, OEM or OPD holder. For austenitic or 300 series stainless steels, the chemical composition shall be given in Table 7.

Table 7 —Chemical composition of austenitic or 300 series stainless steels

For the nickel-based alloy UNS N06625, the chemical composition shall meet one of the classes given in table 8

Table 8 —Chemical composition of the nickel-based alloy UNS06625

Welds for use in hydrogen sulphide service shall conform to the requirements of ISO 15156 (all parts), NACE MR 0175.

9.2.4.1.3 Application

― Post weld heat treatment: End and outlet connections with corrosion-resistant weld-overlaid ring grooves shall be subjected to post weld heat treatment in accordance with the WPS.

― Ring joint grooves for welding: Ring grooves for welding shall be prepared in accordance with API 6A, table 52.

― Other weld preparations: Other weld preparations may be used if the mechanical properties of the deposited weld metal equal or exceed those of the base metal.

Page 57: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

48 API STANDARD 16AR

9.2.4.2 Other corrosion-resistant overlays other than ring grooves

The provisions of section 10.2.4.2 apply to the use of corrosion-resistant weld overlay for bodies, bonnets, clamp hub end connectors, and end outlet connectors for the purposes other than API 6A standard ring grooves. The manufacturer shall use a written procedure that provides controls for consistently meeting the manufacturer-specified material surface properties in the final machined condition. As a minimum, this shall include inspection methods and acceptance criteria. Qualification shall be in accordance with Articles II and III of ASME Boiler and Pressure Vessel Code Section IX for corrosion-resistant weld metal overlay or hard facing weld metal overlay as applicable.

9.2.4.3 Chemical analysis

Chemical analysis of the weld metal shall be performed in accordance with the requirements of ASME. BPVC:2004, Section IX, at the minimum overlay thickness as specified by the remanufacturer, OEM or OPD holder for the finished component. Provisions for the chemical analysis of section 10.2.4.1.1 apply.

9.2.4.4 Mechanical properties overlays

Base metal shall retain the minimum mechanical property requirements after post-weld heat treatment. The manufacturer shall specify the methods to assure that these mechanical properties and record the results as part of the PQR. If the overlay material is considered part of the remanufacturer, OEM or OPD holder or API 16A design criteria, mechanical testing of the overlay is required as part of the weld qualification.

9.2.4.5 Guided-bend tests

Guided-bend tests and acceptance criteria shall be in accordance with ASME, BPVC:2004, Section IX, to confirm weld-overlay material bond integrity.

9.2.4.6 Mechanical properties base material

Mechanical properties of the base material shall retain the minimum mechanical property requirements after thermal treatment. The manufacturer shall specify the methods to ensure these mechanical properties, and shall record the results as a part of the PQR.

9.2.4.7 Weld conformance overlays

Hardness test shall be performed at a minimum of three test locations in each base material, the heat affected zone and in each layer of the overlay up to a maximum of two layers. See figure 3 required hardness test locations.

Page 58: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 49

Key Dimensions in millimetres (inches)

1 Weld

2 HAZ

3 Base

Figure 3 —Hardness test locations for weld overlays

For corrosion-resistant ring groove overlay, chemical analysis shall be performed in the weld metal in accordance with the requirements of ASME Section IX at a location of 3 mm (0.125 in) or less from the original base metal surface. The average of three or more test results shall be equal or greater than 83 HRB and recorded as part of the PQR. The chemical composition of the deposited weld metal at that location shall be as specified by the remanufacturer, OEM or OPD holder.

9.2.4.8 Quality control requirements

The remanufacturer, OEM or OPD holder shall use a written procedure that provides controls for consistency meeting the specified material surface properties in final machined condition.

9.3 Welding controls

9.3.1 Procedures

The manufacturer's system for controlling welding shall include procedures for monitoring, updating and controlling the qualification of welders, welding operators and the use of welding-procedure specifications.

9.3.2 Application

Welding shall be performed by personnel qualified in accordance with the requirements of clause 4.3. Welding shall be performed in accordance with written WPS and qualified in accordance with Article II of ASME Section IX. The WPS shall describe all the essential, non-essential and supplementary

Page 59: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

50 API STANDARD 16AR

essential (in accordance with ASME Section IX) variables. Welders and welding operators shall have access to, and shall comply with, the welding parameters as defined in the WPS.

9.3.3 Designed welds

For all welds that are considered part of the design of a production part, the manufacturer shall specify the requirements for the intended weld. Dimensions of groove and fillet welds with tolerances shall be documented in the manufacturer's specification. Figures 9 through 12 depict some typical joint designs.

9.3.4 Preheating

Preheating of assemblies or parts, when required, shall be performed in accordance with the remanufacturer, OEM or OPD holder written procedures.

9.3.5 Instrument calibration

Instruments to verify temperature, voltage and amperage shall be serviced and calibrated in accordance with the written specification of the manufacturer performing the welding.

9.3.6 Materials

9.3.6.1 Welding consumables

Welding consumables shall conform to American Welding Society (AWS) or the consumable manufacturer's approved specifications. The manufacturer shall have a written procedure for storage and control of welding consumables. Materials of low-hydrogen type shall be stored and used as recommended by the consumable manufacturer to retain their original low-hydrogen properties.

9.3.6.2 Deposited weld metal properties

The deposited weld metal mechanical properties shall meet or exceed the minimum specified mechanical properties of the base material. Verification of properties shall be established through the implementation of the manufacturer's WPS and supporting PQR. When materials of differing strength are joined, the weld metal shall meet the minimum requirements of the lesser material.

9.3.7 Post-weld heat treatment

Post-weld heat treatment of components shall be in accordance with the remanufacturer, OEM or OPD holder written procedures. Furnace post-weld heat treatment shall be performed in equipment meeting the requirements specified by Local post-weld heat treatment shall consist of heating a band around the weld at a temperature within the range specified in the qualified WPS. The minimum width of the controlled band adjacent to the weld, on the face of the greatest weld width, shall be the thickness of the weld. Localized flame-heating is permitted provided the flame is baffled to prevent direct impingement on the weld and base material.

Page 60: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 51

When PWHT is required for, all-weld-metal test coupons shall be PWHT’d with the nominal temperature and maximum time to be used in production. The tensile strength, yield strength and elongation shall meet the base metal properties.

All WPS’s shall specify the following if PWHT is required: ― Holding temperature range

― Holding time

In addition, the WPS should specify the following if PWHT is required: ― Maximum heating rate

― Maximum cooling rate

9.4 Welding procedure and performance qualifications

9.4.1 General

All weld procedures, welders and welding operators shall be qualified in accordance with the qualification and test methods of Section IX, ASME Boiler and Pressure Vessel Code, as amended below.

9.4.2 Base metals

The manufacturer may use ASME Section IX P number materials. In principle, materials not listed in ASME BPCV Section IX must have their own WPS. The manufacturer may establish an equivalent P number (EP) grouping for low alloy steels not listed in ASME Section IX with nominal carbon content equal to or less than 0.35 %. Low alloy steels not listed in ASME Section IX with nominal carbon content greater than 0.35 % shall be specifically qualified for the manufacturer's specified base material. Qualification of a base material at a specified strength level also qualifies that base material at all lower strength levels.

9.4.3 Filler material qualification

Filler metals shall be specified in each WPS by ASME II, Part C/AWS specification and classification or other recognized international standard. Welding consumables shall be clearly identified by trade name, as applicable, and the identity maintained until consumed.

9.4.4 Chemical Analysis

Chemical analysis of the base materials and filler metal for the test weldment shall be obtained from the supplier or by testing, and shall be part of the PQR.

Page 61: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

52 API STANDARD 16AR

9.4.5 Heat-treat condition

All testing shall be done with the test weldment in the post-weld heat-treated condition. Post-weld heat treatment of the test weldment shall be according to the remanufacturer, OEM or OPD holder written specifications.

9.4.6 Procedure qualification record

The PQR shall record all essential and supplementary essential (when required by ASME) variables of the weld procedure used for the qualification test(s). Both the WPS and the PQR shall be maintained as records in accordance with the requirements of Clause 4.

9.5 Other Welding Qualification requirements

9.5.1 ASME Section IX, Article I — Welding general requirements

9.5.1.1 General

Article I of ASME Section IX shall apply with additions as given below.

9.5.1.2 Hardness testing

9.5.1.2.1 General

Hardness testing shall be conducted across the weld and base material heat-affected zone (HAZ) cross-section and shall be recorded as part of the PQR. Results on all pressure-containing and pressure-controlling parts exposed to wellbore fluid shall be in conformance with NACE MR0175 requirements. The remanufacturer, OEM or OPD holder shall specify the hardness testing locations in order to determine maximum hardness. Testing shall be performed on the weld and base-material HAZ cross-section in accordance with ISO 6508 (all parts) or ASTM E18, Rockwell method; or ISO 6507 (all parts), using the 98 N method or ASTM E384, Vickers 10 kgf method. Results shall be converted to Rockwell C, as applicable. ISO 18265 or ASTM E140 shall be used for the conversion of hardness readings for materials within the scope of their application. Other conversion tables also exist. Users may establish correlations for individual materials outside the scope of ISO 18265 or ASTM E140.

9.5.1.2.2 Rockwell method (ISO 6508-1)

If the Rockwell method is selected by the manufacturer, the following procedure shall be used:

a) for a weld cross-section thickness less than 12 mm (1/2 in), four hardness tests each shall be

made in the base material(s), the weld and the HAZ;

Page 62: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 53

b) for a weld cross-section thickness equal to or greater than 12 mm (1/2 in), six hardness tests each shall be made in the base material(s), the weld and the HAZ;

c) HAZ hardness tests shall be performed in the base material within 1.5 mm (0.06 in) of the weld interface and at least one each within 3 mm (0.125 in) from top and bottom of the weld. See Figure 4 for test locations.

Key Dimensions in millimetres (inches)

1 Weld

2 HAZ

3 Base

a Typical

Figure 4 — Rockwell hardness test locations

9.5.1.2.3 Vickers method (ISO 6507-1)

If the Vickers method is selected by the manufacturer, the following procedure shall be used: a) for a weld cross-section thickness less than 12 mm (1/2 in), four hardness tests each shall be

made in the base materials and the weld;

b) for a weld cross-section thickness equal to or greater than 12 mm( ½ in), six hardness tests each shall be made in the base material(s) and the weld;

c) multiple HAZ hardness tests equally spaced 3 mm (0.125 in) apart shall be performed in each of the base materials within 0.25 mm (0.01 in) of the weld interface and at least one within 1.5 mm (0.06 in) from the top and the bottom of the weld. See Figure 5 for test locations.

Page 63: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

54 API STANDARD 16AR

Dimensions in millimetres (inches)

Key

1 Weld

2 HAZ

3 Base

a Typical

Figure 5 — Vickers hardness test locations

9.5.1.2.4 Hardness testing (optional) — Minimum mechanical properties

For the purpose of hardness inspection and qualifying production weldments, a minimum of three hardness tests in the weld metal shall be made and recorded as part of the PQR. These tests shall be made by the same methods used to inspect production weldments. These tests may be used to qualify weld metal with hardness less than shown in 8.5.1.4 by the method shown in the same subsection.

9.5.1.3 Impact testing

When impact testing is required by the base material specification, the testing shall be performed in accordance with ASTM A 370 using the Charpy V-notch technique. Results of testing in the weld and base material HAZ shall meet the minimum requirements of the base material. Records of results shall become part of the PQR. When impact testing is required of the base material, one set of three test specimens each shall be removed at the 1/4 thickness location of the test weldment for each of the weld metal and base material HAZ. The root of the notch shall be oriented normal to the surface of the test weldment and located as follows: a) weld metal specimens (three each) 100 % weld metal;

b) HAZ specimens (three each) shall include HAZ material as specified in the manufacturer's written procedure;

c) when weld thickness of the product is equal to or greater than 50 mm (2 in), impact testing shall be performed on weld metal and HAZ material removed within 1/4 thickness.

9.5.2 ASME Section IX, Article II — Welding procedure qualifications

9.5.2.1 General

Article II of ASME Section IX shall apply with additions as shown in this section.

Page 64: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 55

9.5.2.2 Heat treatment

The post-weld heat treatment of the test weldment and the production weldment shall be in the same range as that specified on the WPS. Allowable range for the post-weld heat treatment on the WPS

shall be a nominal temperature of 14 °C ( 25 °F). The stress-relieving heat-treatment(s) time(s) at temperature(s) of production parts shall be equal to or greater than that of the test weldment.

9.5.3 ASME Section IX, Article III — Welding performance qualifications

9.5.3.1 General

Article III of ASME Section IX shall apply with additions as shown in this subsection.

9.5.3.2 Bolt, tapped and blind hole repair performance qualification

The welder or welding operator shall perform an additional repair welding performance qualification test using a mock-up hole (refer to Annex G, Figure G.2). The repair welding qualification test hole shall be qualified by radiography according to clause 5, or shall be cross-sectioned through the centerline of the hole and both faces shall be examined by NDE in accordance with clause 5. This evaluation shall include the total depth of the hole.

The repair weld qualification shall be restricted by the following essential variables for performance controls. a) The hole diameter used for the performance qualification test is the minimum diameter qualified.

Any hole with a diameter greater than that used for the test shall be considered qualified.

b) The depth-to-diameter ratio of the test hole shall qualify all repairs to holes with the same or smaller depth-to-diameter ratio.

c) The performance qualification test shall have straight parallel walls. If any taper, counter-bore or other aid is used to enhance the hole configuration of the performance test, that configuration shall be considered an essential variable.

For welder performance qualification, ASME Section IX P-1 base metals may be used for the test coupon in place of the low alloy steels covered by this standard (Table 20).

9.5.4 ASME Section IX, Article IV — Welding data

Article IV of ASME Section IX shall apply as written.

9.6 Other requirements

Where metallic permanent backing material is permitted, the P-number or its nominal chemical composition shall be specified in the WPS and/or the applicable fabrication drawing. For joints between similar materials, the chemical composition of backing materials shall match the nominal base metal chemical composition.

Page 65: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

56 API STANDARD 16AR

Temporary attachments welded to the base metal shall be compatible with the base metal and welded in accordance with a qualified weld procedure. Temporary attachments shall be removed by gouging or grinding and the base metal restored to its original condition before final heat treatment (if required), pressure testing, and final acceptance. The base metal shall be inspected with MT or PT upon removal of the attachment.

10. Decommissioning

The Repairer / Remanufacturer is responsible for determining, documenting and executing requirements for the decommissioning of API 16A products. The equipment owner shall be informed when API 16A products cannot (economically) meet the minimum requirements of this standard. At the end of the decommissioning process, a report shall be written capturing the date and location of the decommissioning. All documentation shall be retained and available for a minimum of five years past the date of decommissioning of the equipment. The decommissioning report shall be approved by the owner/operator and included in the PHF.

11. Marking requirements

All equipment, as listed in Section 1, manufactured in accordance with this standard shall be marked in accordance with the procedure and requirements API 16A. Equipment shall be stamped on the product with the product description code (PDC) or alphanumeric code, followed by “API 16A ”

11.1 Low-stress-area marking

For identification on low-stress areas (such as nameplates, outside diameters of flanges, etc.), the use of sharp “V” stamping is acceptable.

11.2 High-stress-area marking

For identification on high-stress areas, dot, vibration or round “V” stamping is acceptable. Sharp “V” stamping is allowed in high-stress areas only if subsequent stress-relieving is performed to the component.

11.3 Weld metal overlays

When equipment has weld metal-overlaid ring grooves, the ring gasket type and number shall be followed by “CRA” to designate a corrosion-resistant alloy or “SST” to designate an austenitic stainless steel.

11.4 Wellbore non-metallic components

For identification of wellbore non-metallic components, such as ram and annular-type BOP packers and seals, the manufacturer shall have a written procedure for affixing the required codification to the product or its package.

Page 66: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 57

The remanufacturer / manufacturer shall retain a certificate of compliance for non-metallic sealing materials and molded sealing assemblies to manufacturer's written requirements.

11.5 Non-wellbore non-metallic components

Identification of non-wellbore non-metallic components, such as elastomeric seals used in ram and annular type BOP actuation systems, shall be in accordance with the manufacturer's written specification.

11.6 Specific codification requirements of equipment

Ring gaskets shall be marked in accordance with API 6A. Studs and nuts shall be marked in accordance with API 20E. Closure bolting shall be marked in accordance with API 20E. Wellbore non-metallic components shall be marked with an alphanumeric code system in the sequence denoted in API 16A. In addition, the manufacturer's part number shall be marked on the component.

11.7 Product description code (PDC)

The product description code (PDC) is used as an aid in describing equipment manufactured to this standard. The PDC is a twelve digit number that can be used to fully describe the equipment to which it is applied. The location and meaning of the digits that make up the PDC are described in API 16A.

12. Storing and shipping

12.1 Storing for periods greater than 30 days

12.1.1 Draining after testing

All equipment shall be drained after testing and prior to storage.

12.1.2 Rust prevention

Prior to storage, parts and equipment shall have exposed metallic surfaces protected with a rust preventative which will not become fluid at temperatures below 50 °C (125 °F).

12.1.3 Connection-surface protection

All connection faces and ring gasket grooves shall be protected with durable covers.

12.1.4 Hydraulic operating system

The hydraulic operating system shall be flushed with a non-freezing, corrosion-inhibiting fluid in accordance with the equipment manufacturer's written procedures. Ports shall be plugged prior to storing.

Page 67: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

58 API STANDARD 16AR

Equipment may be stored with customer specified control fluid to avoid contamination with corrosion inhibiting fluid.” It is recommended to paint stencil on the outside of the connector near the operating control ports “Shipped with fluid xxxxx.” CAUTION Mixing of OEM control fluids may create highly caustic compounds. These compounds can cause extreme damage to lip seal elastomers.

12.1.5 Elastomeric seals

Elastomeric seals shall be stored in accordance with the manufacturer's written procedures.

12.1.6 Ring gaskets

Loose ring gaskets shall be wrapped or boxed for storage and shipping.

12.2 Shipping

All equipment shall be shipped in accordance with the manufacturer's written procedures.

13. Certification

13.1 Certificate of Conformance

Minimum requirements for the Certificate of Conformance (COC) shall be used to certify repairs and remanufacturing under this standard. The minimum requirements for the COC are listed in Annex F.

13.2 Certificate of Usage Compatibility

Replacement parts other than those supported by the OEM product definition shall be supported by a Certificate of Usage Compatibility in the PHF.

13.3 Certificate of Service

Equipment has been inspected, properly maintained and tested in accordance with Original Equipment Manufacturer (OEM) specifications should be documented by Certificate of Service in the PHF.

13.4 Statement of Fact

Maintenance / repair performed on a part or system which is either not covered by a full service history and required traceability, or the maintenance / repair was made with limited scope defined by the Owner, should be documented by a Statement of Fact in the PHF.

Page 68: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 59

Annex A (Normative)

General Equipment Specifications

A.1 General

This annex provides specifications for repair and remanufacturing of equipment covered by the scope of API 16AR.

A.2 Blowout preventers and drilling spools

A.2.1 Size designation

Equipment to which this standard is applicable shall have a vertical through-bore dimension (drift diameter) corresponding with the size designation as shown in Table A1.

Table A1 — Equipment size

Nominal size designation Drift diameter

mm (in) mm (in)

179 7 1/16 178.61 7.032

228 9 227.84 8.970

279 11 278.64 10.970

346 13 5/8 345.31 13.595

425 16 3/4 424.69 16.720

476 18 3/4 475.49 18.720

527 20 3/4 526.29 20.720

540 21 1/4 538.99 21.220

680 26 3/4 678.69 26.720

762 30 761.24 29.970

A.2.2 Service conditions

A.2.2.1 Rated working pressure

The rated working pressure is determined by the lowest pressure rating of all integral end or outlet connections. Equipment to which this standard is applicable shall be rated in only the rated working pressures shown in Table A2.

Table A2 — Equipment rated working pressures

MPa (psi)

6.9 1 000

13.8 2 000

20.7 3 000

34.5 5 000

69.0 10 000

103.5 15 000

138.0 20 000

Page 69: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

60 API STANDARD 16AR

A.2.2.2 Temperature ratings

Minimum temperature is the lowest ambient temperature to which the equipment may be subjected. Maximum temperature is the highest temperature of the fluid that may flow through the equipment.

A.2.2.2.1 Temperature ratings for metallic materials

Equipment shall be repaired or remanufactured for metallic parts to operate within the temperature ranges shown in Table A3. Equipment from which traceability is lost or from which material properties cannot be reconstructed, will be temperature classified to T-0.

Table A3 — Temperature ratings for metallic materials

Classification Operating range

°C °F

T-75 59 to 121 75 to 250

T-20 29 to 121 20 to 250

T-0 18 to 121 0 to 250

T 350 -29 to 177 -20 to 350

Note: Information on strength of materials at elevated temperatures is found in annex G of API 6A and TR 6MET

A.2.2.2.2 Temperature ratings for non-metallic sealing materials

Equipment shall be repaired or remanufactured for wellbore elastomeric materials to operate within the temperature classifications of Table A4.

Table A4 — Temperature ratings for non-metallic sealing materials

Lower Limit

Upper Operating Limit

Upper extreme limit

(first digit)

(second digit)

(third digit)

Code Temperature Code Temperature Code Temperature

F C

F C

F C

A -15 -26 A 150 66 A 180 82

B 0 -18 B 180 82 B 200 93

C 10 -12 C 210 99 C 220 104

D 20 -14 D 240 116 D 250 121

E 30 -1 E 270 132 E 300 149

F 40 4 F 300 149 F 350 177

G Other Other G Other Other G Other Other

Example: Material "FDE" has a lower temperature rating of 40 degrees F , a continuous elevated temperature rating of 240 degrees F and an extreme temperature limit of 300 degrees F

All other elastomeric seals shall be designed to operate within the temperature ranges specified in the OEMs written specifications or OPD.

A.2.2.2.3 Wellbore elastomeric materials

The purchaser shall provide the temperature range for which wellbore elastomeric materials must operate.

Page 70: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 61

A.2.3 Outlet connections

The purchaser shall determine the number, location, size, pressure and temperature ratings for all outlet connections. It should be noted that the pressure rating for the BOP or drilling spool is determined by the lowest pressure rating of all end or outlet connections. Flanged end and outlet connections shall be in conformance to the dimensional requirements of API Specification 6A and API Specification 16A, section 5.3 prior to assembly and testing.

A.2.4 Equipment details/data book

On request of the purchaser, and when specified in the contract, a data book shall be supplied, which shall meet or exceed the requirements for the Manufacturing Data Book (MDB) and / or Project History File (PHF), as listed in Annex B and Annex C.

Page 71: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

62 API STANDARD 16AR

Annex B (Normative)

Manufacturing Data Book Requirements

The below mentioned document contents for the construction of the Material Data Book (MDB) shall be provided and recorded in order to provide the minimum traceability requirements for maintenance and remanufacturing of pressure control equipment manufactured under API 16A.

Manufacturing Data Book (MDB)

Document Contents Delivered to Client Maintained by Manufacturer

Purchase order number/sales order number √ √

Date of Manufacturing √ √

Serial Numbers of equipment and location √ √

Assembly drawings showing:

Actual overall package dimensions

Pressure rating

End connection/outlet description

Mass,

Centre of gravity,

List of materials for components defined in API Specification 16A, section 8.5.1 and the location of their use.

√ √

Manufacturer's statement of compliance to current edition of API Specification 16A.

Design Verification Report

Rated Working Pressure

Temperature ratings

SMYS

UTS

NACE

Other specific customer requirements

√ √

Material Test Records (including the following):

a) Certified Material test reports

b) Chemical Analysis √ √

c) Tensile tests (QTC) or prolongation √ √

d) Impact tests (QTC as required) or prolongation as required

√ √

e) Hardness tests (QTC) or prolongation. √ √

f) NDE Personnel qualification records May be difficult to get for older products, can be retrieved if brought in for repair at

original facility

Page 72: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 63

Manufacturing Data Book (MDB) continued.

Document Contents Delivered to Client Maintained by Manufacturer

Material Specification Number √ √

Welding Process Records √ Most OEM's give a Weld Data Sheet

which includes: - Welder ID - Filler Metal

- Heat and/or batch number - WPS #

- Stress Charts - PWHT

√ All remaining

documentation required as defined in API 16A are kept at OEM facility for required length of

time

NDE Records:

a) Surface NDE Records √ √

b) Full penetration fabrication √ √

c) Weld volumetric NDE records √ √

d) Repair weld NDE records √ √

Heat Treatment Records

a) Actual Temperature √ √

b) Actual times at temperature √ √

Third Party or Class Society Inspection Reports √ √

Test Report(s), Pressure Testing and FAT

a) Volumetric NDE Records / radiographic UT Records

√ √

b) Hydrostatic pressure test records √ Limited scope and pressure test only

c) Critical dimensions (as defined by OEM) √ Limited scope and basic dimensions only

(height, weight, etc…)

√ Critical dimensions

kept by OEM.

Certificate of Conformance a) include standard to which equipment is

certified to

√ √

Page 73: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

64 API STANDARD 16AR

Annex C (Normative)

Product History File Requirements

The below mentioned document contents for the construction of the Product History File (PHF) shall be provided and recorded in order to provide the minimum traceability requirements for maintenance and remanufacturing of pressure control equipment manufactured under API 16A. Traceability shall be provided by the repairer / remanufacturer in the PHF for the parts being either original parts or non-original parts.

Product History File (PHF) Repair with Original Parts Only

Document Contents Delivered to Client Maintained by Manufacturer

Manufacturing Data Book √ N/A

Serial Numbers of equipment and location √ N/A

Design Verification Report Still covered by original design verification , however design

verification reports remain proprietary to OEM

N/A

Third Party or Class Society Inspection Reports √ N/A

Test Report(s), Pressure Testing and FAT

N/A

a) Volumetric NDE Records / radiographic UT Records

√ N/A

b) Hydrostatic pressure test records √ Limited scope and pressure test only

N/A

c) Critical dimensions (as defined by OEM) √ Limited scope and basic dimensions

only (height, weight, etc…)

N/A

Certificate of Conformance a) include standard to which equipment is

certified to.

√ N/A

Page 74: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 65

Product History File (PHF) Repair with NON-OEM Parts Only Manufacturing Data Book (if available)

√ N/A

Serial Numbers of equipment and location √ N/A

Design Verification Report (if available)

Repair facility will be required to ensure that all design verification is

compliant with API 16A.

N/A

PMI Test √ N/A

Material Specification Number √ N/A

Welding Process Records (if applicable)

√ Most OEM's give a Weld Data Sheet

which includes: - Welder ID - Filler Metal

- Heat and/or batch number - WPS #

- Stress Charts - PWHT

N/A

NDE Records √ N/A

Heat Treatment Records (if applicable) √ N/A

Third Party or Class Society Inspection Reports √ N/A

Test Report(s), Pressure Testing and FAT √ N/A

a) Volumetric NDE Records / radiographic UT Records

√ N/A

b) Hydrostatic pressure test records √ Limited scope and pressure test only

N/A

c) Critical dimensions (as defined by OEM) √ Limited scope and basic dimensions

only (height, weight, etc…)

N/A

Certificate of Compatibility a) include standard to which equipment is

certified to.

√ N/A

Page 75: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

66 API STANDARD 16AR

Annex D (Normative)

Failure reporting

D.1 User Recommendations The equipment owner of blowout prevention equipment shall provide a written failure report to the equipment manufacturer of any malfunction or failure that occurs. The failure report shall include the following: ― as much information as possible on the operating conditions that existed at the time of the malfunction or

failure; ― an accurate a description as possible of the malfunction or failure; ― any operating history of the blowout prevention equipment leading up to the malfunction or failure (e.g. field

repair, modifications made to the blowout prevention equipment, etc.).

The manufacturer shall respond to receiving the failure report and provide a timeline to provide failure resolution.

D.2 Manufacturer’s Recommendations

D.2.1 Manufacturer’s Internal Recommendations All significant problems experienced with blowout prevention equipment noted during its manufacture, testing or use shall be formally communicated to the individual or group within the manufacturer's organization responsible for the design and specification documents. The manufacturer shall have a written procedure that describes forms and procedures for making this type of communication, and shall maintain records of progressive design, material changes, or other corrective actions taken for each model and size of blowout prevention equipment.

D.2.2 Manufacturer’s External Recommendations All significant problems experienced with blowout prevention equipment shall be reported in writing to each and every equipment owner of the blowout prevention equipment within three weeks after the occurrence. The manufacturer shall communicate any design changes resulting from a malfunction or failure history to every equipment owner using the affected equipment. That notice shall be within 14 days after the design change.

Page 76: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 67

Annex E (Normative)

OEM ownership

Original Equipment Manufacturer (OEM) as per API STD 53. The design owner or manufacturer of the traceable assembled equipment, single equipment unit, or component part. NOTE: If any alterations to the original design and/or assembled equipment or component part are made by anyone other than the OEM, the assembly, part, or component is not considered an OEM product. The party that performs these alterations is then designated as the OEM.

New pressure control equipment

Repair / Maintenance

Remanufacture(hot work)

OEM parts Non OEM

Assembly after repair contains parts from various suppliers.

OEM will only guarantee

performance of the original product.

OEM remains the same for the whole assembly

after repair

Owner / User controls the specification of the hybrid system, unless one of the suppliers of

parts adopts the assembly as OEM and will provide a COC for

the assembly.

Yes

No OEM or OEM licensed facility

Non OEMNo

Repairer of the part becomes the OEM

for the partOEM remains the same for the

remanufactured part

Yes

Page 77: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

68 API STANDARD 16AR

Company Registration No.: 16AR-0000 Certificate No.: ABC-14-0001

Annex F (Informative)

Minimum requirements for Certificate Of Conformance (COC)

Example

CERTIFICATE OF CONFORMANCE

Certificate No. :

Customer :

Customer Reference No.:

Date of Remanufacture:

Customer Purchase Order:

Work Order No.:

A. Assurance:

This is to confirm that the drill through equipment remanufactured per the above purchase order and as listed below have been inspected and/or remanufactured and maintained in accordance with the following:

1. API Spec.16AR “Specification for Drill-through Equipment Repair and Remanufacture”, 1st Edition

2. Companies current understanding of implementation and interpretation of Jurisdictional regulations listed here:

a. ………….. b. …………..

In addition, the following additional standard(s) have been used in support of the repair and remanufacture of the equipment listed on this certificate:

API Spec16A “Specification for Drill-through Equipment”, 3rd Edition

……………

……………

Controlled Document No. Revision Date/Level Page 1 of 2

Company Name Company Address

Company telephone number

Page 78: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 69

B. The certification is related to the following operational limitation:

Maximum Working Pressure:

Design Temperature (minimum to maximum):

Sour Service according to NACE MR0175 / ISO 15156: Yes / No

Other limitation:

C. List of inspected equipment:

Item Assembly or Part No. Qty. Description Serial Number(s)

1

2

3

D. Comments:

It is the responsibility of the owner to ensure that risk analysis is considered and carried out prior to every operation including subject equipment when evaluating the risk situation.

All documentation in support of the above listed products is retained on file by the Company for a minimum of 10 years for repair / remanufacture.

All documents and inspection reports to support this certificate of conformance have been verified to the best of my knowledge to be true and correct.

All documents and inspection reports to support this certificate of conformance have been added to the Project History File.

E. Conditions

Non-metallic sealing material shall be capable of functioning at specified design temperature and at retained fluid rating, Sour Service, NACE MR0175 / ISO 15156.

Certificate of Conformance Approval

Signature Signature

Name: Name: Title: Title:

Company disclaimer or Quality disclaimer if so desired by the organization.

Controlled Document No. Revision Date/Level Page 2 of 2

16AR-0000

Page 79: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

70 API STANDARD 16AR

Annex G (Informative)

Recommended weld preparation design dimensions

Dimensions in millimetres (inches) unless otherwise indicated

a) V-groove

b) U-groove

c) Heavy-wall V-groove

a Maximum misalignment.

Figure G.1 — Typical weld grooves for pipe butt joints

Page 80: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 71

Dimensions in millimetres (inches) unless otherwise indicated

a Maximum misalignment (unless removed by machining).

b Remove to sound metal by machining. c Maximum misalignment.

d Backing shall be removed. Material shall be compatible with base material.

Figure F.2 — Typical attachment welds

Page 81: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

72 API STANDARD 16AR

Dimensions in millimetres (inches) unless otherwise indicated

a Ratio of d1 to D2 shall not exceed 1,5:1. b Depth required to maintain a maximum of 1,5:1 depth, d1, to diameter, D2, ratio.

Figure F.3 — Typical repair welds

Key

1 side

2 end

a Original area.

Figure F.3 — Repairs

Page 82: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 73

Annex H (Normative)

Qualification of heat-treating equipment

H.1 General

All heat treatment of parts and QTCs shall be performed with equipment meeting the requirements of this annex.

H.2 Temperature tolerance

The temperature at any point in the working zone shall not vary by more than 13 25 set-point temperature after the furnace working zone has been brought up to temperature. Furnaces which are

used for tempering, aging and/or stress-relieving shall not vary by more than 8 °C ( 15 set-point temperature after the furnace working zone has been brought up to temperature.

H.3 Furnace calibration

H.3.1 General

Heat treatment of production parts shall be performed with heat-treating equipment that has been calibrated and surveyed.

H.3.2 Records

Records of furnace calibration and surveys shall be maintained for a period not less than two years.

H.3.3 Temperature survey method for calibration of batch-type furnaces

A temperature survey within the furnace working zone(s) shall be performed on each furnace at the maximum and minimum temperatures for which each furnace is to be used.

A minimum of nine thermocouple test locations shall be used for all furnaces having a working zone greater than

0.3 m3 (10 ft3).

For each 3,5 m3 (125 ft3) of furnace working zone surveyed, at least one thermocouple test location shall be used, up to a maximum of 40 thermocouples. See Figures H.1 and H.2 for examples of thermocouple locations.

For furnaces having a working zone less than 0.3 m3 (10 ft3), the temperature survey may be made with a minimum of three thermocouples located either at the front, centre and rear, or at the top, centre and bottom of the furnace working zone.

After insertion of the temperature-sensing devices, readings shall be taken at least once every 3 min to determine when the temperature of the furnace working zone approaches the bottom of the temperature range being surveyed.

Once the furnace temperature has reached the set-point temperature, the temperature of all test locations shall be recorded at 2-min intervals, maximum, for at least 10 min. Then readings shall be taken at 5-min intervals, maximum, for sufficient time (at least 30 min) to determine the recurrent temperature pattern of the furnace working zone.

Before the furnace set-point temperature is reached, none of the temperature readings shall exceed the set-point temperature by more than 13

After the furnace control set-point temperature is reached, no temperature reading shall vary beyond the limits specified. The temperatures within each furnace shall be surveyed within one year prior to use of the furnace for heat treatment.

When a furnace is repaired or rebuilt, a new temperature survey shall be carried out before the furnace is used for heat treatment.

Page 83: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

74 API STANDARD 16AR

a) Top view b) Side view

Figure H.1 — Thermocouple locations — Rectangular furnace (working zone)

a) Side view b) Top view

Figure H.2 — Thermocouple locations — Cylindrical furnace (working zone)

H.3.4 Continuous-type furnaces method

Furnaces used for continuous heat treatment shall be calibrated in accordance with procedures specified in SAE AMS-H-6875F.

Page 84: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 75

H.4 Instruments

H.4.1 General

Automatic controlling and recording instruments shall be used. Thermocouples shall be located in the furnace working zone(s) and protected from furnace atmospheres by means of suitable protective devices.

H.4.2 Accuracy

The controlling and recording instruments used for the heat-treatment processes shall be accurate to 1 % of their full-scale range.

H.4.3 Calibration

Temperature-controlling and -recording instruments shall be calibrated at least once every three months.

Equipment used to calibrate the production equipment shall be accurate to 0.25 % of full-scale range.

Page 85: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

76 API STANDARD 16AR

Annex I (Normative)

Equivalent Rounds (ER) models

When L is less than T, consider section as a plate of L thickness. Area inside dashed lines is 1/4 T envelope for test specimen removal. When L is less than D, consider as a plate of T thickness

Figure I.1—Simple geometric equivalent rounds (ER) sections/shapes having length L

a. Where T is the thickness when the component is heat-treated, use the larger of the two indicated dimensions.

When all internal and external surfaces during heat treatment are within 13 mm (1/2 in) of the final

surfaces, ER 1-1/4 T. (must this not be ¼ T ?, see API 16A 2004 Also check conformance with 9.5.8.) When all internal and external surfaces during heat treatment are not within 13 mm (1/2 in) of the final

surfaces, then ER 2 T. On multi-flanged components, T shall be the thickness of the thickest flange.

Figure I.2 — Complex-shaped components

Page 86: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 77

b. Envelope for test specimen removal. .

Figure I.3 — Equivalent round models

Page 87: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

78 API STANDARD 16AR

Annex J (Normative)

Replacement parts

Page 88: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

STANDARD FOR REPAIR AND REMANUFACTURING OF WELL CONTROL EQUIPMENT 79

Bibliography

[1] API Bulletin 6AF, Capabilities of API flanges under combinations of load

[2] API Specification Q2: Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum, Petrochemical and Natural Gas Industry

[3] ASME Boiler and Pressure Vessel Code Section VIII, Division 1, Appendix 4, Rounded Indication Charts Acceptance Standard for Radiographically Determined Rounded Indications in Welds

[4] ASME Boiler and Pressure Vessel Code Section VIII, Division 2, Pressure Vessel — Alternate Rules, Appendix 4, Design Based on Stress Analysis

[5] ASME Boiler and Pressure Vessel Code Section VIII, Division 2, Pressure Vessel — Alternate Rules, Appendix 6, Experimental Stress Analysis

[6] ASTM A 193, Specification for Alloy Steel and Stainless Steel Bolting Materials for High Temperature Service

[7] ASTM A 320, Specification for Alloy Steel Bolting Materials for Low Temperature Service

[8] ASTM A 453, Specification for Bolting Materials, High Temperature, 50 to 120 ksi Yield Strength, with Expansion Coefficients Comparable to Austenitic Steels

[9] ASTM E 747, Standard Practice for Design, Manufacture, and Material Grouping Classification of Wire Image

[10] AWS QC1 Standard for AWS Certification of Welding Inspectors

Page 89: Standard for Repair and Remanufacturing of Drill-through ...mycommittees.api.org/standards/ecs/sc16/TG7/Shared... · Standard for Repair and Remanufacturing of Drill-through Equipment

Additional copies are available through Global Engineering Documents at (800) 854-7179 or (303) 397-7956

Information about API Publications, Programs and Services is available on the World Wide Web at http://www.api.org

Product No: G6HT01