standard model physics results from lep2

36
Standard Model Physics Results from LEP2 Stephan Wynhoff CERN on behalf of the LEP collaborations Aleph, Delphi, L3, Opal 5th International Symposium on Radiative Corrections Carmel, USA 11.-15. September 2000

Upload: others

Post on 07-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Standard Model Physics Results from LEP2

Standard Model Physics

Results from LEP2

Stephan Wynhoff

CERN

on behalf of the LEP collaborations

Aleph, Delphi, L3, Opal

5th International Symposium on Radiative CorrectionsCarmel, USA

11.-15. September 2000

Page 2: Standard Model Physics Results from LEP2

• Fermion Pair Production

Cross sections and Asymmetries

S-matrix

Contact interactions

• Boson Cross Sections

ZZ Production

Single W Production

• W+W−Production

Cross Section

Branching Fractions

• W Mass Measurement

Mass extraction

Systematic Errors

Comparison of Direct and Indirect Results

• Standard Model Fits

Stephan Wynhoff Standard Model Physics Results from LEP2 2

Page 3: Standard Model Physics Results from LEP2

10-4

10-3

10-2

10-1

1

10

80 100 120 140 160 180 200 220s /GeV

σ/nb

88 90 92 940

10

20

30

1990-19921993-19951996-19981999-2000 (prel.)

mH=114 GeV

e+e– → hadrons

e+e– → HZ → qq_qq

_

e+e–→ W+W−

→ qq_qq

_

e+e–→ ZZ→ qq

_qq

_

L3

• large data statistics at the Z pole:

15 million hadronic and 2 million leptonic events

• above the Z resonance:

luminosity 590 – 630 pb−1 per experiment

• more than 8000 W-pair events per experiment

Stephan Wynhoff Standard Model Physics Results from LEP2 3

Page 4: Standard Model Physics Results from LEP2

See LEP2MC workshop proceedingshep-ph/0005309, hep-ph/0007180

2-Fermion Processes

• ZFITTER, KKMCbetter than 0.2% precision in σtot of hadrons, leptons

• KKMC covers LEP, LC, µ-colliders, τ - and b-factories.

4-Fermion Processes

• RacoonWW, YFSWW3σ(W+W−) to 0.4%. (double-pole approx. above thresh-old.)

• WPHACT, grc4f, WTO, ...σ(Weν) to 4-5%. (fermion loop scheme.)

• YFSZZ, ZZTOσ(ZZ) to 2%.

Excellent match in precision

Experiment ⇐⇒ Theory

Stephan Wynhoff Standard Model Physics Results from LEP2 4

Page 5: Standard Model Physics Results from LEP2

e−

e+

f

f

PP

ISR

FSR

• Initial State Radiation

• Pair Production:

• Final State Radiation

√s′:= mass of outgoing lepton pair or γ∗/Z propagator

→ high energy events:√

s′ > 0.85√

s

10 2

10 3

50 100 150 2001

10

10 2

10 3

10 4

50 100 150 200

0

20

40

60

80

100

120

140

160

180

50 100 150 2000

20

40

60

80

100

120

50 100 150 200

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

√s′ /GeV

Eve

nts

OPAL 205.4 GeV preliminary

(a) hadrons (b) e+e-

(c) µ+µ- (d) τ+τ-

Stephan Wynhoff Standard Model Physics Results from LEP2 5

Page 6: Standard Model Physics Results from LEP2

Cro

ss s

ectio

n (p

b)√s

´/s

> 0.85

e+e−→hadrons(γ)e+e−→µ+µ−(γ)e+e−→τ+τ−(γ)

LEPpreliminary

√s

(GeV)

σ mea

s/σ S

M

1

10

10 2

0.8

0.9

1

1.1

1.2

120 140 160 180 200 220

Stephan Wynhoff Standard Model Physics Results from LEP2 6

Page 7: Standard Model Physics Results from LEP2

Differential cross sections for Muon-, Tau-pair production

Preliminary LEP Averaged dσ/dcosθ (µµ)183 GeV

cosθf

dσ/d

cosθ

(pb

)

189 GeV

cosθf

dσ/d

cosθ

(pb

)

192 GeV

cosθf

dσ/d

cosθ

(pb

)

196 GeV

cosθf

dσ/d

cosθ

(pb

)

200 GeV

cosθf

dσ/d

cosθ

(pb

)

202 GeV

cosθf

dσ/d

cosθ

(pb

)

0

2

4

-1 -0.5 0 0.5 10

1

2

3

4

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 10

1

2

3

4

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 10

1

2

3

-1 -0.5 0 0.5 1

Use for limits on

• Contact interactions

• Fermion size

• Extra dimensions, TeV strings, gravitons

Stephan Wynhoff Standard Model Physics Results from LEP2 7

Page 8: Standard Model Physics Results from LEP2

For

war

d-B

ackw

ard

Asy

mm

etry √s

´/s

> 0.85

e+e−→µ+µ−(γ)e+e−→τ+τ−(γ)

LEPpreliminary

√s

(GeV)

AF

B

mea

s -AF

B

SM

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

120 140 160 180 200 220

Stephan Wynhoff Standard Model Physics Results from LEP2 8

Page 9: Standard Model Physics Results from LEP2

Fermion Pair - Heavy Flavours

s (again) the ratio of cross sections

0.14

0.16

0.18

0.2

0.22

0.24

0.26

80 100 120 140 160 180 200√s (GeV)

Rb

Rb

LEP preliminary

√s’/√s > 0.1 , 0.85

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

80 100 120 140 160 180 200√s (GeV)

Rc

Rc

LEP preliminary

√s’/√s > 0.1 , 0.85

-0.2

0

0.2

0.4

0.6

0.8

1

80 100 120 140 160 180 200√s (GeV)

b-A

sym

met

ry

Ab FB

LEP preliminary

√s’/√s > 0.1 , 0.85

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

80 100 120 140 160 180 200√s (GeV)

c-A

sym

met

ry

Ac FB

LEP preliminary

√s’/√s > 0.1 , 0.85

Stephan Wynhoff Standard Model Physics Results from LEP2 9

Page 10: Standard Model Physics Results from LEP2

• Measure Interference between γ and Z (jhad)

-4

-3

-2

-1

0

1

2

3

4

50 75 100 125 150 175 200

s [GeV]

σ int/σ

tot [

%]

no cuts'/s > 0.85

σ0a(s) =

4

3πα2

gafs

+jaf(s−m2

Z) + raf s

(s−m2Z)

2 +m2ZΓ

2Z

, for a = tot, fb,

A0fb(s) =

3

4

σ0fb(s)

σ0tot(s)

, with σ0fb =

4

3(σf − σb) .

• Photon exchange

• Z-Boson exchange

• γ/Z interference

“Standard” fits: fix gaf and jaf ZFITTER, TOPAZ0

S-Matrix fits: fix gaf only ZFITTER, SMATASY

Stephan Wynhoff Standard Model Physics Results from LEP2 10

Page 11: Standard Model Physics Results from LEP2

-0.5

0

0.5

1

1.5

91.17 91.18 91.19 91.2mZ [GeV]

j had

tot

68% CL

SM

L3 Z dataL3 data ≤ 189 GeVLEP + Tristan (potential)

MZ[MeV] jtothad corr.

L3 Z data 91 185.2±10.3 0.44±0.59 -0.95L3 ≤ 189GeV 91 187.5±3.9 0.31±0.13 -0.57LEP + Tristan: ±2.3 ±0.04 -0.28

Stephan Wynhoff Standard Model Physics Results from LEP2 11

Page 12: Standard Model Physics Results from LEP2

L =1

1 + δef

∑i,j=L,R

ηijg2

Λ2ij

(eiγµei)(fjγµfj),

e+

e−

l+, q−

l−, q

g2 / Λ2

g Coupling, byconvention g2/4π = 1

ηij Helicity amplitudes,choose |ηij| = 0, 1

Λ Energy scale

d cos θ=

dσSM

d cos θ+ cint(s, cos θ)

1

Λ2+ cci(s, cos θ)

1

Λ4.

ηRR ηLL ηLR ηRLAA ±1 ±1 ∓1 ∓1VV ±1 ±1 ±1 ±1RR ±1 0 0 0LL 0 ±1 0 0

LEP Preliminary 130-202 GeV

Λ- (TeV) Λ+ (TeV)

LL 10.2 12.8

RR 9.7 12.3

VV 17.2 20.4

AA 13.9 17.6

Λ- Λ+

20. 0 20.

Stephan Wynhoff Standard Model Physics Results from LEP2 12

Page 13: Standard Model Physics Results from LEP2

Z

Z

e−

e+

f

f

f'

f'

Z

Z

e−

e+

f

f

f'

f'

0

0.5

1

1.5

170 180 190 200

Ecm [GeV]

σZZ

NC

02 [p

b]

LEP Summer 00 - Preliminary20/07/2000

±2.0% uncertainty

ZZTO

YFSZZ

Stephan Wynhoff Standard Model Physics Results from LEP2 13

Page 14: Standard Model Physics Results from LEP2

e+ e+

γ

W

Q2→0

e− νe

WMW

2s

f– ‘

f

0

0.5

1

160 170 180 190 200 210

Ecm [GeV]

σ(e+

e– → e

νW)

[pb]

LEP Preliminary21/07/2000

±5.0% uncertainty

grc4fWPHACT IFL/α(t)

W → ff-’

Stephan Wynhoff Standard Model Physics Results from LEP2 14

Page 15: Standard Model Physics Results from LEP2

• W-pair production at LEP

e– W–

f

f´νe

W+

f

e+

e–

e+γ,Z

W–

f

W+ f

SM branchings Br(W → qq′) = 67.6%Br(W → lν) = 10.8% per lepton flavour

D E L P H I R u n : E v t :

B e a m :

DA S :

P r o c :

S c a n :

1 0 4 . 4 Ge V 2 9 - Ap r - 2 0 0 0

2 9 - Ap r - 2 0 0 0

1 1 : 4 3 : 3 4

2 9 - Ap r - 2 0 0 0

109372 8483

T a n a g r a

• Fully hadronic: 45.6% 4 jets

High Multiplicity, balanced events

Y

XZ

• Semileptonic: 3×14.6% 2 jets, 1 lepton

Hadronic energy plus high energy lepton ornarrow jet (τ )

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOO

OOOOOOOO

OOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOO

OOOO

OOOOOO

OOOOOOOOOOOOO

OOOOOOOO

OOOOO

OO

OO

OO

OO

OO

OO

OO

OO++++

• Fully leptonic: 10.6% 2 leptons

Low multiplicity, acoplanar, missing energy

Stephan Wynhoff Standard Model Physics Results from LEP2 15

Page 16: Standard Model Physics Results from LEP2

0

5

10

15

20

160 170 180 190 200 210

Ecm [GeV]

σWW

[pb]

LEP Preliminary21/07/2000

Gentle 2.1 (±0.7%)

RacoonWW / YFSWW 1.14

0

5

10

15

20

160 170 180 190 200 2100

5

10

15

20

160 170 180 190 200 210

RacoonWWYFSWW 1.14

16

17

18

Excellent agreement with

• RacoonWW• YFSWW

at Ecm > 170 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 16

Page 17: Standard Model Physics Results from LEP2

21/07/2000

Br(W→hadrons) [%]

ALEPH 67.22 ± 0.53

DELPHI 67.81 ± 0.61

L3 68.47 ± 0.59

OPAL 67.86 ± 0.62

LEP 67.78 ± 0.32

66 68 70

Br(W→hadrons) [%]

Summer 00 - Preliminary - [161-207] GeV

DELPHI [161-202] GeV

L3 [161-202] GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 17

Page 18: Standard Model Physics Results from LEP2

• Indirect determination of |Vcs|:Br(W → hadrons)

1 −Br(W → hadrons)=

∑ ∣∣∣∣∣V2ij

∣∣∣∣∣

1 +

αs

π

• Direct determination of |Vcs| from tagged charm:

OPAL :Γ(W → cX)

Γ(W → had)= 0.47 ± 0.04 ± 0.06

LEP |Vcs|Indirect 0.989 ± 0.016

Direct 0.95 ± 0.08

Stephan Wynhoff Standard Model Physics Results from LEP2 18

Page 19: Standard Model Physics Results from LEP2

21/07/2000

W Leptonic Branching Ratios

ALEPH 11.19 ± 0.34DELPHI 10.33 ± 0.45L3 10.22 ± 0.36OPAL 10.52 ± 0.37

LEP W→eν 10.62 ± 0.20

ALEPH 11.05 ± 0.32DELPHI 10.68 ± 0.34L3 9.87 ± 0.38OPAL 10.56 ± 0.35

LEP W→µν 10.60 ± 0.18

ALEPH 10.53 ± 0.42DELPHI 11.28 ± 0.56L3 11.64 ± 0.51OPAL 10.69 ± 0.49

LEP W→τν 11.07 ± 0.25

LEP W→lν 10.74 ± 0.10

10 11 12

Br(W→lν) [%]

Summer 00 - Preliminary - [161-207] GeV

DELPHI [161-202] GeV

L3 [161-202] GeV

Indirect extraction from TEVATRON:

Br(W → eν) [%]

CDF 10.50 ± 0.30

D0 10.39 ± 0.35

10.43 ± 0.25

Stephan Wynhoff Standard Model Physics Results from LEP2 19

Page 20: Standard Model Physics Results from LEP2

q1

q2

e,µ,τ

ν

q2q1

q4q3

• reconstruct lepton and jets

• impose kinematic constraints:

E and *p conservation → 1C for qq+ν, 4C for qqqqequal masses of recontructed W’s → +1C

• special for qqqq events: jet pairing problem

q2q1

q4q3

q2q1

q4q3

q2q1

q4q3

→ choose best pairing

• also gluon radiation is taken into account→ split into 4 and 5 jet sample (D,O)

Stephan Wynhoff Standard Model Physics Results from LEP2 20

Page 21: Standard Model Physics Results from LEP2

L3

minv [GeV]

Num

ber o

f Eve

nts

/ 1 G

eV1999 Data qqeνM.C. reweighted

M.C. background (a)

preliminary

MW = 80.28 ± 0.19 GeV

0

20

40

60

60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95

MW (GeV/c2)

Eve

nts

per

1 G

eV/c

2

ALEPH Preliminaryµνqq selection

√s = 191.6,195.5,199.5,201.6 GeV

Data (Luminosity = 237 pb-1)

MC (mW = 80.60 GeV/c2)

Non-WW background

DELPHI preliminary

0

10

20

30

40

50

60

70

80

90

50 55 60 65 70 75 80 85 90 95 100

W mass (GeV/c2)

even

ts /

2 G

eV/c

2

0

50

100

150

200

70 80 90m / GeV

Ev

ents

/ G

eV qqqq 4-jet

OPAL 192-202 GeV preliminary

→ compare reweighted Monte Carlo to data (A,L,O)→ convolute differential cross-section with resolution

function (D,O)→ fit Breit-Wigner curve to measured mass spectrum (O)

Stephan Wynhoff Standard Model Physics Results from LEP2 21

Page 22: Standard Model Physics Results from LEP2

• all LEP2 data until 1999 included:

80 80.2 80.4 80.6 80.8 81

MW [GeV]

preliminary

80 80.2 80.4 80.6 80.8 81

ALEPH

DELPHI

L3

OPAL

LEP

80.440 ± 0.064 GeV

80.380 ± 0.071 GeV

80.375 ± 0.077 GeV

80.485 ± 0.065 GeV

80.427 ± 0.046 GeV

χ2/dof = 27.1/29

• LEP value is a combination of individual measurementsfrom the experiments for different channels and years

• contribution to total error from

statistics: 30 MeVsystematics: 36 MeV

Stephan Wynhoff Standard Model Physics Results from LEP2 22

Page 23: Standard Model Physics Results from LEP2

• LEP energy error ∆Ebeam = 21 MeV

⇒ ∆MW = ∆EbeamEbeam

· MW = 17 MeV

• new LEP spectrometer → precision ∆Ebeam < 15 MeV(not yet achieved)

• Final State Interactions in qqqq events

γ,Z

W–

W+

πo πo

K+ K+

π– π–

ColourReconnection

Bose-Einstein

• cross-talk affects reconstruction of invariant masses

Stephan Wynhoff Standard Model Physics Results from LEP2 23

Page 24: Standard Model Physics Results from LEP2

Identical pions close in phase space:Q2 = squared 4-momentum difference

Q [GeV]

R2

WW qqlv data - 189 GeV•

Z→light quark data - 91 GeV¬

L3 preliminary

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Intra-W effects:

W± � Zdecays (Z �→ bb)

Cross talk in W+W− → qqqq ?

Q [GeV]

D, (±

,±)/

0.04

GeV

L3 data

inter-W correlation

no inter-W correlation

p < 1.5 GeVL3

0.80.9

11.11.21.31.41.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

→ BE correlations only inside each W!?

Stephan Wynhoff Standard Model Physics Results from LEP2 24

Page 25: Standard Model Physics Results from LEP2

Compare particle flow between jets from

C

D

A

B

• same (A,C)

• different (B,D)

W-Boson

0

2

4

6

0 50 100 150 200 250 300 350particle flowparticle flowparticle flowparticle flowparticle flow φ

1/N

evt d

σ/dφ

ALEPHpreliminary

particle flow

data (@ 189 GeV)WWZZqqγ

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4norm. particle flownorm. particle flownorm. particle flownorm. particle flownorm. particle flow φr

1/N

evt d

σ/dφ

r

norm. particle flow

data (@ 189 GeV)WWZZqqγ

W-jets W-jets

ALEPHpreliminary

A B C D

0.75

1

1.25

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1φr

1/N

evt d

σ/dφ

r(A

+C)/

(B+D

)

ALEPH preliminary

data 189, 196, 200 GeV combined

KoralW, ki = 0.

KoralW, ki = 0.6

KoralW, ki = 2.3

KoralW, ki = 1000. L3, ALEPH:

R =dn/dφ(A+ C)

dn/dφ(B +D)

→ not yet statistically significant, but promising

Stephan Wynhoff Standard Model Physics Results from LEP2 25

Page 26: Standard Model Physics Results from LEP2

• ∆MW = mqqqq −mqqlν probes possible effects of FSI

-0.5 0 0.5

∆MW [GeV]

preliminary

-0.5 0 0.5

ALEPH

DELPHI

L3

OPAL

LEP

0.032 ± 0.091 GeV

−0.011 ± 0.112 GeV

0.190 ± 0.130 GeV

−0.103 ± 0.111 GeV

0.005 ± 0.051 GeV

FSI 0.056 GeV

→ no indication for mass shift due to FSI

• FSI systematic error is estimated by comparingMC models

for BE → with and w/o cross-talkfor CR → SK I, SK II, SK II’, ARIADNE I and II,

HERWIG, GH

all experiments are affected in the same way!

• error on qqqq due to BE: 25 MeV CR: 50 MeV

statistical error component: 34 MeV (qqqq only)

Stephan Wynhoff Standard Model Physics Results from LEP2 26

Page 27: Standard Model Physics Results from LEP2

typical example

Source Systematic Errors on MW in MeVqq+ν qqqq Combined

Colour Reconnection – 50 13Bose-Einstein Correlations – 25 7LEP Beam Energy 17 17 17ISR / FSR 8 10 8Hadronisation 26 23 24Detector Systematics 11 8 10Other 5 5 4Total Systematic 35 64 36Statistical 38 34 30Total 51 73 47

• due to FSI → contribution to combined MW measurement:

qqqq 27% and qq+ν 73%

Stephan Wynhoff Standard Model Physics Results from LEP2 27

Page 28: Standard Model Physics Results from LEP2

• comparison with other W mass measurements:

W-Boson Mass [GeV]

mW [GeV]

χ2/DoF: 0.1 / 1

80 80.2 80.4 80.6

pp−-colliders 80.452 ± 0.062

LEP2 80.427 ± 0.046

Average 80.436 ± 0.037

NuTeV/CCFR 80.25 ± 0.11

LEP1/SLD/νN/mt 80.386 ± 0.025

Stephan Wynhoff Standard Model Physics Results from LEP2 28

Page 29: Standard Model Physics Results from LEP2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.51.5 2.0 2.5ΓW[GeV]

ALEPH 2.17±0.20

DELPHI 2.09±0.15

L3 2.19±0.21

OPAL 2.04±0.18

LEP 2.12±0.11

LEP Preliminary : Summer 2000

• compare direct width determination by CDF

ΓW = 2.06 ± 0.13 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2 29

Page 30: Standard Model Physics Results from LEP2

10

10 2

10 3

80.25 80.5mW [GeV]

mH [G

eV]

W-Boson Mass [GeV]ALEPH

DELPHI

L3

OPAL

LEPpp

Average

80.440±0.064

80.380±0.071

80.375±0.077

80.485±0.065

80.427±0.04680.451±0.062

80.436±0.037

mt =174.3±5.1 GeV

∆α(5)

had =0.02755±0.00046

Stephan Wynhoff Standard Model Physics Results from LEP2 30

Page 31: Standard Model Physics Results from LEP2

• compare direct MW and M t with fit to electroweak data:

80.2

80.3

80.4

80.5

80.6

130 150 170 190 210

mH [GeV]113 300 1000

mt [GeV]

mW

[G

eV]

Preliminary

68% CL

LEP1, SLD, νN Data

LEP2, pp− Data

• from electroweak fitswith LEP data: M t = 179+13

−10 GeVall data except direct MW: MW = 80.386 ± 0.025 GeV

Standard Model parameter relationsconfirmed at 1-loop level W W

b

t

Stephan Wynhoff Standard Model Physics Results from LEP2 31

Page 32: Standard Model Physics Results from LEP2

•α(M2Z) is important ingredient in EW fits → M H

• running of α:

α(s) =α(0)

1 − ∆αlep(s) − ∆α(5)had(s) − ∆αtop

had(s)• ∆αlep(s) known to 3-loop level

• important is contribution from ∆α(5)had

→ less precise

∆α(5)had(s) ∝

∞∫

4M2π

R(s′) ds′

s′(s′ − s)

γ

q

q

γ

• the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

can be measured and calculated in perturbative QCD• recent measurements by BES II are now included:

BES-II (preliminary 1999)

BES-II (1998)

MK1 normalised to pQCD

γγ2

MEA

RpQCD

√ s (GeV)

Sum of exclusive channels→

← Inclusive data {

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

Stephan Wynhoff Standard Model Physics Results from LEP2 32

Page 33: Standard Model Physics Results from LEP2

Mass of the Higgs Boson

0

2

4

6

10 102

103

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02804±0.00065

0.02755±0.00046

theory uncertainty

∆α(5)had M H log(M H/ GeV) M H limit

[ GeV] (95% C.L.)

0.02804 ± 0.00065 60+52−29 1.78+0.27

−0.28 < 162 GeV

new BES included0.02755 ± 0.00046 88+60

−37 1.94+0.22−0.24 < 203 GeV

new BES and pQCD0.02738 ± 0.00020 104+59

−39 2.02+0.19−0.20 < 215 GeV

(Jegerlehner et al., Pietrzyk et al., Martin et al., includes new results on MW by Tevatronand on heavy flavours by SLD)

• the new values of ∆α(5)had yield

→ a better error on log(M H/ GeV)

→ a better agreement with Higgs searches at LEP

• the Higgs boson is light . . . but heavier than

M H > 112.3 GeV at 95% CL (limit from direct searches at LEP)

Stephan Wynhoff Standard Model Physics Results from LEP2 33

Page 34: Standard Model Physics Results from LEP2

• Measurement of Fermion Pair Production in good agree-ment with Standard Model predictions

• Further improvement on MZ, jhad within S-Matrix ansatz

• No new (contact) interactions below 10-20 TeV

• Cross sections for Single W, W+W−, ZZ agree as well

• LEP measures W mass and width with increased precision

MW = 80.427 ± 0.046 GeVΓW = 2.12 ± 0.11 GeV

. . . in perfect agreement with fit to electroweak data

• outlook on LEP MW:

with 2000 data → statistical error × 0.85→ δMW = 30 − 40 MeV

• there is progress going on in α(M2Z) determination

• although we are always looking for deviations . . .

The Standard Model works

The Standard Model Higgs boson is light(and maybe already observed?)

Stephan Wynhoff Standard Model Physics Results from LEP2 34

Page 35: Standard Model Physics Results from LEP2

133 - 202 GeV

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-0.04 -0.02 0 0.02 0.04 0.06 0.08jb

tot

j b fb

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3jc tot

j c fb

Stephan Wynhoff Standard Model Physics Results from LEP2

Page 36: Standard Model Physics Results from LEP2

133 - 202 GeV

Stephan Wynhoff Standard Model Physics Results from LEP2