statistical estimation of fokker-planck equation at fixed timepautrat/tiendat_nguyen.… ·...

43
Statistical estimation of Fokker-Planck equation Statistical estimation of Fokker-Planck equation at fixed time Tien-Dat Nguyen In collaboration with Myl` ene Ma¨ ıda, Thanh Mai Pham Ngoc, Vincent Rivoirard and Viet Chi Tran. Laboratoire de Math´ ematiques d’Orsay, Universit´ e Paris-Sud. May 27 th 2020 Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 1 / 30

Upload: others

Post on 20-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation of Fokker-Planck equationat fixed time

    Tien-Dat Nguyen

    In collaboration with Mylène Mäıda, Thanh Mai Pham Ngoc,Vincent Rivoirard and Viet Chi Tran.

    Laboratoire de Mathématiques d’Orsay, Université Paris-Sud.

    May 27th 2020

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 1 / 30

  • Statistical estimation of Fokker-Planck equation

    Contents

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 2 / 30

  • Statistical estimation of Fokker-Planck equation

    Framework

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 3 / 30

  • Statistical estimation of Fokker-Planck equation

    Framework

    Consider 1-d free Fokker-Planck equation

    ∂tµt = −

    ∂x

    [µt(Hµt

    )], (1)

    where(µt)t≥0 a family of proba measures, and initial condition

    µ0(x) = p0(x)dx (unknown), and H is Hilbert transform defined by

    Hµt(x) = p.v .

    ∫dµt(y)

    x − y:= lim

    ε↘0

    ∫R\[x−ε,x+ε]

    1

    x − ydµt(y).

    Then, for f ∈ C 1:〈µt , f

    〉=〈µ0, f

    〉+

    ∫ t0

    (∫R

    ∫R

    f ′(λ)

    λ− λ̃µs(d λ̃)µs(dλ)

    )ds, t > 0.

    We have:µt = σt � µ0, (2)

    with σt(dx) =1

    2πt

    √4t − x2.1[

    −2√t,2√t](x)dx , semi-circular

    distribution.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 4 / 30

  • Statistical estimation of Fokker-Planck equation

    Framework

    Consider 1-d free Fokker-Planck equation

    ∂tµt = −

    ∂x

    [µt(Hµt

    )], (1)

    where(µt)t≥0 a family of proba measures, and initial condition

    µ0(x) = p0(x)dx (unknown), and H is Hilbert transform defined by

    Hµt(x) = p.v .

    ∫dµt(y)

    x − y:= lim

    ε↘0

    ∫R\[x−ε,x+ε]

    1

    x − ydµt(y).

    Then, for f ∈ C 1:〈µt , f

    〉=〈µ0, f

    〉+

    ∫ t0

    (∫R

    ∫R

    f ′(λ)

    λ− λ̃µs(d λ̃)µs(dλ)

    )ds, t > 0.

    We have:µt = σt � µ0, (2)

    with σt(dx) =1

    2πt

    √4t − x2.1[

    −2√t,2√t](x)dx , semi-circular

    distribution.Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 4 / 30

  • Statistical estimation of Fokker-Planck equation

    Framework

    Observations

    ConsiderXn(t) = Xn(0) + Hn(t), t ≥ 0, (3)

    where Xn(0) diagonal matrix with entriesiid∼ µ0, and Hn(t) standard

    Hermitian Brownian motion.

    � Denote Hn(C) the space of n-dim matrices Hn s.t. (Hn)∗ = Hn.

    Definition 1

    Let(Bk,l , B̃k,l , 1 ≤ k , l ≤ n

    )be a collection of i.i.d. real valued standard

    Brownian motions, the Hermitian Brownian motion, denoted Hn ∈ Hn(C),is the random process with entries {(Hn(t))k,l , t ≥ 0, k ≤ l} equal to

    (Hn)k,l =

    1√2n

    (Bk,l + i B̃k,l

    ), if k < l

    1√nBk,k , if k = l

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 5 / 30

  • Statistical estimation of Fokker-Planck equation

    Framework

    � Then (λn1(t), ..., λnn(t)) (eigenvalues of Xn(t)) solves

    dλnj (t) =1√ndβj(t) +

    1

    n

    ∑k 6=j

    dt

    λnj (t)− λnk(t), (4)

    where βj i.i.d. standard Brownian motion.

    � For t > 0 define

    µnt :=1

    n

    n∑j=1

    δλnj (t) . (5)

    Proposition 1.1

    λn(0) satisfies C0 := supn≥11

    nlog(λnj (0)

    2 + 1)

  • Statistical estimation of Fokker-Planck equation

    Framework

    � Then (λn1(t), ..., λnn(t)) (eigenvalues of Xn(t)) solves

    dλnj (t) =1√ndβj(t) +

    1

    n

    ∑k 6=j

    dt

    λnj (t)− λnk(t), (4)

    where βj i.i.d. standard Brownian motion.

    � For t > 0 define

    µnt :=1

    n

    n∑j=1

    δλnj (t) . (5)

    Proposition 1.1

    λn(0) satisfies C0 := supn≥11

    nlog(λnj (0)

    2 + 1)

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 7 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Definition of free convolution

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 8 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Definition of free convolution

    Let µ proba measure on R, and define the Cauchy transform of µ by

    Gµ(z) =

    ∫R

    dµ(x)

    z − x, z ∈ C\R. (6)

    � Denote C+ = {z ∈ C | Im(z) > 0}, and Cγ := {z ∈ C | Im(z) > γ}

    � Define: Rµ(z) = Gµ (z)−1

    z.

    Given µ1 and µ2 proba measures, ∃! proba measure µ:Rµ = Rµ1 + Rµ2

    The measure µ := µ1 � µ2, is called free convolution of µ1 and µ2.

    � Gµ does NOT vanish on C+ ⇒ define reciprocal Cauchy transform of µby

    Fµ(z) =1

    Gµ(z), z ∈ C+.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 9 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Definition of free convolution

    Let µ proba measure on R, and define the Cauchy transform of µ by

    Gµ(z) =

    ∫R

    dµ(x)

    z − x, z ∈ C\R. (6)

    � Denote C+ = {z ∈ C | Im(z) > 0}, and Cγ := {z ∈ C | Im(z) > γ}

    � Define: Rµ(z) = Gµ (z)−1

    z.

    Given µ1 and µ2 proba measures, ∃! proba measure µ:Rµ = Rµ1 + Rµ2

    The measure µ := µ1 � µ2, is called free convolution of µ1 and µ2.

    � Gµ does NOT vanish on C+ ⇒ define reciprocal Cauchy transform of µby

    Fµ(z) =1

    Gµ(z), z ∈ C+.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 9 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 10 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    For t > 0, µt = µ0 � σt ⇒ Problem: recover µ0, knowledge on µt .

    Theorem 2.1

    ∃! subordination functions w1,wfp : C2√t → C+, s.t. for z ∈ C2√t :(i) Im(w1(z)) ≥ 12Im(z), Im(wfp(z)) ≥

    12Im(z), and

    limy→+∞

    w1(iy)

    iy= lim

    y→+∞

    wfp(iy)

    iy= 1;

    (ii) Fµ0(z) = Fσt(w1(z)

    )= Fµt

    (wfp(z)

    );

    (iii) wfp(z) = z + w1(z)− Fµ0(z);(iv) Denote hσt (w) = w − Fσt (w) = t.Gσt (w) and h̃µt (w) = w + Fµt (w)

    on C+. Moreover, define Kz(w) = hσt(h̃µt (w)− z

    )+ z .

    Then, Kz(wfp(z)

    )= wfp(z) , and K

    ◦mz (w)

    m→∞−→ wfp(z) for anyw ∈ C 1

    2Im(z).

    (see also Arizmendi et al. [2] for general setting)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 11 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    For t > 0, µt = µ0 � σt ⇒ Problem: recover µ0, knowledge on µt .

    Theorem 2.1

    ∃! subordination functions w1,wfp : C2√t → C+, s.t. for z ∈ C2√t :(i) Im(w1(z)) ≥ 12Im(z), Im(wfp(z)) ≥

    12Im(z), and

    limy→+∞

    w1(iy)

    iy= lim

    y→+∞

    wfp(iy)

    iy= 1;

    (ii) Fµ0(z) = Fσt(w1(z)

    )= Fµt

    (wfp(z)

    );

    (iii) wfp(z) = z + w1(z)− Fµ0(z);

    (iv) Denote hσt (w) = w − Fσt (w) = t.Gσt (w) and h̃µt (w) = w + Fµt (w)on C+. Moreover, define Kz(w) = hσt

    (h̃µt (w)− z

    )+ z .

    Then, Kz(wfp(z)

    )= wfp(z) , and K

    ◦mz (w)

    m→∞−→ wfp(z) for anyw ∈ C 1

    2Im(z).

    (see also Arizmendi et al. [2] for general setting)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 11 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    For t > 0, µt = µ0 � σt ⇒ Problem: recover µ0, knowledge on µt .

    Theorem 2.1

    ∃! subordination functions w1,wfp : C2√t → C+, s.t. for z ∈ C2√t :(i) Im(w1(z)) ≥ 12Im(z), Im(wfp(z)) ≥

    12Im(z), and

    limy→+∞

    w1(iy)

    iy= lim

    y→+∞

    wfp(iy)

    iy= 1;

    (ii) Fµ0(z) = Fσt(w1(z)

    )= Fµt

    (wfp(z)

    );

    (iii) wfp(z) = z + w1(z)− Fµ0(z);(iv) Denote hσt (w) = w − Fσt (w) = t.Gσt (w) and h̃µt (w) = w + Fµt (w)

    on C+. Moreover, define Kz(w) = hσt(h̃µt (w)− z

    )+ z .

    Then, Kz(wfp(z)

    )= wfp(z) , and K

    ◦mz (w)

    m→∞−→ wfp(z) for anyw ∈ C 1

    2Im(z).

    (see also Arizmendi et al. [2] for general setting)Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 11 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    Lemma 2.2

    For z ∈ C2√t , Gµ0(z) =1

    t

    (wfp(z)− z

    )= Gµt

    (wfp(z)

    ).

    Consequently,∣∣wfp(z)− z∣∣ ≤ √t.

    � For γ > 0, Cγ denotes the centered Cauchy distribution, parameter γ.

    � For any proba measure µ on R:

    fµ∗Cγ (x) = −1

    πImGµ(x + iγ), x ∈ R. (7)

    Then, with γ > 2√t, for x ∈ R

    fµ0∗Cγ (x) =1

    πt

    [γ − Imwfp(x + iγ)

    ]. (8)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 12 / 30

  • Statistical estimation of Fokker-Planck equation

    Free deconvolution by subordination method

    Construction of estimate

    Lemma 2.2

    For z ∈ C2√t , Gµ0(z) =1

    t

    (wfp(z)− z

    )= Gµt

    (wfp(z)

    ).

    Consequently,∣∣wfp(z)− z∣∣ ≤ √t.

    � For γ > 0, Cγ denotes the centered Cauchy distribution, parameter γ.

    � For any proba measure µ on R:

    fµ∗Cγ (x) = −1

    πImGµ(x + iγ), x ∈ R. (7)

    Then, with γ > 2√t, for x ∈ R

    fµ0∗Cγ (x) =1

    πt

    [γ − Imwfp(x + iγ)

    ]. (8)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 12 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 13 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Observation: matrix Xn(t) , at time t > 0, given n.Thus, an estimator of Gµt (z):

    Ĝµnt (z) :=1

    n

    n∑j=1

    1

    z − λnj (t)=

    1

    nTr((

    zIn − Xn(t))−1)

    . (9)

    Theorem 3.1

    ∃! a fixed-point to the functional equation in w(z), for z ∈ C2√t :

    1

    t

    (w(z)− z

    )= Ĝµnt

    (w(z)

    ), (10)

    this fixed-point is denoted ŵnfp(z). Moreover,∣∣ŵnfp(z)− z∣∣ ≤ √t.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 14 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Observation: matrix Xn(t) , at time t > 0, given n.Thus, an estimator of Gµt (z):

    Ĝµnt (z) :=1

    n

    n∑j=1

    1

    z − λnj (t)=

    1

    nTr((

    zIn − Xn(t))−1)

    . (9)

    Theorem 3.1

    ∃! a fixed-point to the functional equation in w(z), for z ∈ C2√t :

    1

    t

    (w(z)− z

    )= Ĝµnt

    (w(z)

    ), (10)

    this fixed-point is denoted ŵnfp(z). Moreover,∣∣ŵnfp(z)− z∣∣ ≤ √t.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 14 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    � Fourier Transform (FT) of Cauchy distribution Cγ : f ?Cγ (z) = e−γ|z|.

    � bandwidth h > 0 and a regularizing Kernel K (compactly supported inFourier domain) ⇒ estimator of p0 via its FT:

    p̂?0(z) = eγ|z|.K ?h (z).

    1

    πt

    [γ − Imŵnfp(x + iγ)

    ]?(z), (11)

    with Kh(x) =1hK (

    xh ).

    For instance, choose K (x) = sinc(x), then K ?(z) = 1[−1,1](z).

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 15 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    � Fourier Transform (FT) of Cauchy distribution Cγ : f ?Cγ (z) = e−γ|z|.

    � bandwidth h > 0 and a regularizing Kernel K (compactly supported inFourier domain) ⇒ estimator of p0 via its FT:

    p̂?0(z) = eγ|z|.K ?h (z).

    1

    πt

    [γ − Imŵnfp(x + iγ)

    ]?(z), (11)

    with Kh(x) =1hK (

    xh ).

    For instance, choose K (x) = sinc(x), then K ?(z) = 1[−1,1](z).

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 15 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Consistency of estimator

    Proposition 3.2

    Let γ > 2√t:

    (i) for any z ∈ C2√t , ŵnfp(z)a.s.−→ wfp(z) as n→∞ ;

    (ii) the convergence is uniform on Cγ ;

    (iii) convergence rate on Cγ :

    supn∈N

    supz∈Cγ

    E[∣∣√n(ŵnfp(z)− wfp(z))∣∣2] < +∞. (12)

    Proof: We have∣∣∣ŵnfp(z)− wfp(z)∣∣∣ ≤ ( tγ2γ2 − 4t)×∣∣∣Ĝµnt (wfp(z))− Gµt(wfp(z))∣∣∣ .

    Using properties on Ĝµnt ⇒ we get (i) and (ii).

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 16 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Consistency of estimator

    Proposition 3.2

    Let γ > 2√t:

    (i) for any z ∈ C2√t , ŵnfp(z)a.s.−→ wfp(z) as n→∞ ;

    (ii) the convergence is uniform on Cγ ;(iii) convergence rate on Cγ :

    supn∈N

    supz∈Cγ

    E[∣∣√n(ŵnfp(z)− wfp(z))∣∣2] < +∞. (12)

    Proof: We have∣∣∣ŵnfp(z)− wfp(z)∣∣∣ ≤ ( tγ2γ2 − 4t)×∣∣∣Ĝµnt (wfp(z))− Gµt(wfp(z))∣∣∣ .

    Using properties on Ĝµnt ⇒ we get (i) and (ii).Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 16 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Proof of Proposition 3.2-(iii)

    Decompose by:

    Ĝµnt (z)− Gµt (z) =Ĝµnt (z)− E(Ĝµnt (z)

    )+ E

    (Ĝµnt (z)

    )− E

    (Gµn0�σt (z)

    )+ E

    (Gµn0�σt (z)

    )− Gµt (z)

    =An,1(z) + An,2(z) + An,3(z).

    Then,� Fluctuations of Ĝµnt ⇒ upper bounds for nAn,1(z) and nAn,2(z).(see more in [6], S.Dallaporta and M.Février, 2019)

    Remark: Xn(0) is random.

    � The third term E(Gµn0�σt (z)

    )− Gµt (z) is associated to a C.L.T., so is

    of order n1/2.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 17 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Proof of Proposition 3.2-(iii)

    Decompose by:

    Ĝµnt (z)− Gµt (z) =Ĝµnt (z)− E(Ĝµnt (z)

    )+ E

    (Ĝµnt (z)

    )− E

    (Gµn0�σt (z)

    )+ E

    (Gµn0�σt (z)

    )− Gµt (z)

    =An,1(z) + An,2(z) + An,3(z).

    Then,� Fluctuations of Ĝµnt ⇒ upper bounds for nAn,1(z) and nAn,2(z).(see more in [6], S.Dallaporta and M.Février, 2019)

    Remark: Xn(0) is random.

    � The third term E(Gµn0�σt (z)

    )− Gµt (z) is associated to a C.L.T., so is

    of order n1/2.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 17 / 30

  • Statistical estimation of Fokker-Planck equation

    Statistical estimation

    Proof of Proposition 3.2-(iii)

    Decompose by:

    Ĝµnt (z)− Gµt (z) =Ĝµnt (z)− E(Ĝµnt (z)

    )+ E

    (Ĝµnt (z)

    )− E

    (Gµn0�σt (z)

    )+ E

    (Gµn0�σt (z)

    )− Gµt (z)

    =An,1(z) + An,2(z) + An,3(z).

    Then,� Fluctuations of Ĝµnt ⇒ upper bounds for nAn,1(z) and nAn,2(z).(see more in [6], S.Dallaporta and M.Février, 2019)

    Remark: Xn(0) is random.

    � The third term E(Gµn0�σt (z)

    )− Gµt (z) is associated to a C.L.T., so is

    of order n1/2.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 17 / 30

  • Statistical estimation of Fokker-Planck equation

    MISE

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 18 / 30

  • Statistical estimation of Fokker-Planck equation

    MISE

    Some assumptions

    Assumption 4.1 (H1)

    p0 belongs to space S(a, r , L) defined for a > 0, L > 0 and 0 < r ≤ 2 by

    S(a, r , L) :=

    {f density s.t.

    ∫R

    ∣∣f ?(z)∣∣2.e2a|z|rdz ≤ L2} . (13)

    Assumption 4.2 (H2)

    For κ > 0 sufficiently large, ∃C > 0:

    µ0((κ,+∞)

    )≤ Cκ. (14)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 19 / 30

  • Statistical estimation of Fokker-Planck equation

    MISE

    By Parseval’s equality:

    ‖p̂0 − p0‖2 ≤1

    π‖p̂?0 − K ?h .p?0‖

    2 +1

    π‖K ?h .p?0 − p?0‖

    2 (15)

    Under Assumption (H1)-(H2):

    MISE = E(‖p̂0 − p0‖2

    )≤ Cvar .e

    2γh

    √n

    + Cbias(L)e−2ah−r . (16)

    Then, minimizing in h ⇒ convergence rate for MISE.

    MISE =

    O(n−

    a2(a+γ)

    )if r = 1

    O(

    exp{− 2a(2γ)r (ln

    √n)r

    +∑k

    i=1 b∗i (ln√n)r+i(r−1)

    })if r < 1

    O(

    1√n

    exp{

    2γ(2a)1/r

    (ln√n)1/r −

    ∑ki=1 d

    ∗i (ln√n)

    1r −i

    r−1r

    })if r > 1

    (17)where b∗i and d

    ∗i are some coefficients. (see more in [7] C.Lacour)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 20 / 30

  • Statistical estimation of Fokker-Planck equation

    MISE

    By Parseval’s equality:

    ‖p̂0 − p0‖2 ≤1

    π‖p̂?0 − K ?h .p?0‖

    2 +1

    π‖K ?h .p?0 − p?0‖

    2 (15)

    Under Assumption (H1)-(H2):

    MISE = E(‖p̂0 − p0‖2

    )≤ Cvar .e

    2γh

    √n

    + Cbias(L)e−2ah−r . (16)

    Then, minimizing in h ⇒ convergence rate for MISE.

    MISE =

    O(n−

    a2(a+γ)

    )if r = 1

    O(

    exp{− 2a(2γ)r (ln

    √n)r

    +∑k

    i=1 b∗i (ln√n)r+i(r−1)

    })if r < 1

    O(

    1√n

    exp{

    2γ(2a)1/r

    (ln√n)1/r −

    ∑ki=1 d

    ∗i (ln√n)

    1r −i

    r−1r

    })if r > 1

    (17)where b∗i and d

    ∗i are some coefficients. (see more in [7] C.Lacour)

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 20 / 30

  • Statistical estimation of Fokker-Planck equation

    Simulations

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 21 / 30

  • Statistical estimation of Fokker-Planck equation

    Simulations

    µ0 ∼ Cauchy(0,5) with n = 2000, at t = 15

    −100 −50 0 50 100

    0.00

    00.

    005

    0.01

    00.

    015

    0.02

    00.

    025

    x

    p0*C

    auch

    y(0,

    gam

    ma)

    estimate density

    true density

    Figure: 1st step: convolution between the estimate p̂0 and Cγ

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 22 / 30

  • Statistical estimation of Fokker-Planck equation

    Simulations

    µ0 ∼ Cauchy(0,5) with n = 2000, at t = 15

    −100 −50 0 50 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    x

    p0

    estimate density p^0

    true density p0

    Figure: 2nd step: After deconvolution with Cγ .

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 23 / 30

  • Statistical estimation of Fokker-Planck equation

    Simulations

    µ0 ∼ Gaussian(0,5) with n = 2000, at t = 15

    −100 −50 0 50 100

    0.00

    00.

    005

    0.01

    00.

    015

    0.02

    00.

    025

    0.03

    0

    x

    p0*C

    auch

    y(0,

    gam

    ma)

    estimate density

    true density

    Figure: 1st step: convolution between the estimate p̂0 and Cγ

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 24 / 30

  • Statistical estimation of Fokker-Planck equation

    Simulations

    µ0 ∼ Gaussian(0,5) with n = 2000, at t = 15

    −100 −50 0 50 100

    0.00

    0.02

    0.04

    0.06

    0.08

    x

    p0

    estimate density p^0

    true density p0

    Figure: 2nd step: After deconvolution with Cγ

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 25 / 30

  • Statistical estimation of Fokker-Planck equation

    Conclusion

    Outline

    1 Framework

    2 Free deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    3 Statistical estimation

    4 MISE

    5 Simulations

    6 Conclusion

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 26 / 30

  • Statistical estimation of Fokker-Planck equation

    Conclusion

    Conclusion

    Solving fixed-point equation results an estimator ŵnfp for subordinationfunction.

    The convergence of ŵnfp(z) towards wfp(z) is uniform and has a rate

    of n1/2.

    Using Stieltjes-inversion-formula to recover the density function,remaining in a classical convolution with Cauchy distribution Cγ .

    Using a regularizing Kernel to do the deconvolution with Cγ .

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 27 / 30

  • Statistical estimation of Fokker-Planck equation

    Conclusion

    Conclusion

    Solving fixed-point equation results an estimator ŵnfp for subordinationfunction.

    The convergence of ŵnfp(z) towards wfp(z) is uniform and has a rate

    of n1/2.

    Using Stieltjes-inversion-formula to recover the density function,remaining in a classical convolution with Cauchy distribution Cγ .

    Using a regularizing Kernel to do the deconvolution with Cγ .

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 27 / 30

  • Statistical estimation of Fokker-Planck equation

    Conclusion

    Conclusion

    Work in progress: to improve the rate of convergence.

    Using Cross-Validation to obtain a data-driven optimal value forbandwidth h.

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 28 / 30

  • Statistical estimation of Fokker-Planck equation

    Some of references

    Greg W. Anderson, Alice Guionnet and Ofer Zeitouni, An introduction to RandomMatrices, Cambridge University Press, 2010.

    O. Arizmendi, P. Tarrago and C. Vargas, Subordination methods for freedeconvolution, submitted, 2020.

    S.Belinschi and H.Bercovici, A new approach to subordination results in freeprobability, Journal d’Analyse Mathematique, 101:357-365,2007.

    P. Biane, On the free convolution with a semi-circular distribution, Indiana Uni.Math. J., page 705-718, 1997.

    C. Butucea and A. B. Tsybakov, Sharp optimality in density deconvolution withdominating bias, I., Teor. Veroyatn. Primen., 52(1):111-128, 2007.

    S. Dallaporta and M. Fevrier, Fluctuations of linear spectral statistics of deformedWigner matrices, hal-02079313, 2019.

    C. Lacour, Rates of convergence for nonparametric deconvolution, Comptes rendusde l’Acedémie des sciences. Série I, Mathématique, 342(11):877-882,2006.

    and others.Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 29 / 30

  • Statistical estimation of Fokker-Planck equation

    Thank you for your attention !

    Dat T. Nguyen (LMO) Statistical estimation of Fokker-Planck equation Orsay, May 2020 30 / 30

    FrameworkFree deconvolution by subordination methodDefinition of free convolutionConstruction of estimate

    Statistical estimationMISESimulationsConclusion