statistical signal and array processing - george...

16
1 Statistical Signal and Array Processing Harry L. Van Trees University Professor Emeritus Kristine L. Bell Applied & Engineering Statistics May 19, 2006 Van Trees & Bell 2 Objectives Apply statistical signal processing techniques to important new systems Advance the theory in the areas of: Array processing Bayesian estimation Nonlinear tracking/filtering Write / edit books

Upload: vuphuc

Post on 30-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

1

Statistical Signal and Array Processing

Harry L. Van TreesUniversity Professor Emeritus

Kristine L. BellApplied & Engineering Statistics

May 19, 2006

Van Trees & Bell 2

Objectives

• Apply statistical signal processing techniques to important new systems

• Advance the theory in the areas of:

• Array processing• Bayesian estimation• Nonlinear tracking/filtering

• Write / edit books

Van Trees & Bell 3

Activities

• Applications– Novel Satellite Communications (Argon ST / DARPA)– Space-time Adaptive Processing (STAP)

for Navy E2C (Lockheed Orincon / ONR)– Aeroacoustic Sensor Networks (Army Research Office)

• Theory– Recursive Bayesian bounds (DARPA SPO)– Tracking using sparse arrays (DARPA SPO)– Multistatic radar (DARPA SPO)

• Books– Optimum Array Processing, Part IV of

Detection, Estimation & Modulation TheoryH. L. Van Trees, 2002

– Bayesian Bounds, H. L. Van Trees and K. Bell,IEEE Press, 2006

Van Trees & Bell 4

Novel Satellite Communications

“ In the past, we successfully showed we can overcome the jamming of our satellite navigation systems. Can we also protectthe uplinks of our satellite communications systems? The Novel Satellite Communications program (NSC) is using new phenomenologies to overcome this vulnerability, ensuring that our troops will always have robust satellite communications available.Last year, we performed field testing that confirmed the properties of the antijam phenomenologies we are exploiting. This year, three teams are developing the algorithms and techniques that exploit these phenomena to provide a robust antijam capability for our communications satellites.”

Michael Zatman, DARPA Tech 2005, August 9-11, 2005

Van Trees & Bell 5

Van Trees & Bell 6

Overview

• Full Beam Set Algorithm – Provides a set of beampatterns that collectively “cover” an Area of

Interest (AOI) on the earth’s surface while suppressing up to NTjammers in the AOI

– Each beam may allow jmax jammers not to be nulled– Beams may be scanned to detect new users and jammers

• Beam Subspaces– For a known user (or set of users), beam subspaces are

collection of beams that span the user and un-nulled jammersubspaces

– Subspace processing provides reduced rank data for subsequent processing

Van Trees & Bell 7

Full Beam Set Generation

• Define Grid Points on AOI– e.g. hexagonal grid with 121 points

• For each Grid Point– Find maximum SINR beam with jmax

un-nulled jammers– MVDR with parametric interference

covariance matrix, pointing to Grid PointStart by excluding jmax closest jammers

Adjust jammer selection iteratively to improve SINR

-200 -100 0 100 200-250

-200

-150

-100

-50

0

50

100

150

200

250AOI

x (km) y

(km

)

Van Trees & Bell 8

Scenario

• 1084-element cantor ring array configuration• NT = 20 randomly distributed jammers• jmax = 3 un-nulled jammers per beam

• Beam set quality given as percent coverage of AOI at -3 dB SINR loss level

-10 -8 -6 -4 -2 0 2 4 6 8 10

-8

-6

-4

-2

0

2

4

6

8

meters

met

ers

Phased Array, N=1084

Van Trees & Bell 9

Typical Beams (jmax = 3)

Beam 17, SINRL=-0.98078 dB

x (km)

y (k

m)

-200 -100 0 100 200

-200

-100

0

100

200

-50

-40

-30

-20

-10

0Beam 50, SINRL=-2.6664 dB

x (km)

y (k

m)

-200 -100 0 100 200

-200

-100

0

100

200

-50

-40

-30

-20

-10

0

Beam 96, SINRL=-2.9547 dB

x (km)

y (k

m)

-200 -100 0 100 200

-200

-100

0

100

200

-50

-40

-30

-20

-10

0Beam 121, SINRL=-1.6157 dB

x (km)

y (k

m)

-200 -100 0 100 200

-200

-100

0

100

200

-50

-40

-30

-20

-10

0

Pointing Direction

Un-nulledjammers

Nulledjammers

Nulledjammers

Van Trees & Bell 10

STAP for E2C

• Program

– Replace rotating linear array with circular phased array

– Develop STAP algorithm

• Our role

– Full rank algorithms have too many DOF to be computationally feasible (e.g. 360) in real time

– Develop clever reduced-rank algorithms that have acceptable performance

Van Trees & Bell 11

Courtesy of Dr. R. David Dikeman

Van Trees & Bell 12

CSTAP Scenario Modeled

Velocity

Elevation

Velocity

Azimuth

Geometry

Passiveelements

Activeelements

Antenna Array

-40 -20 0

30

-150

60

-120

90

-90

120

-60

150

-30

180 0

Element Pattern

18# Pulses300 HzPRF

3.75 MHzSamp. Freq.3.75 MHzBandwidth435 MHzFrequency

Radar Parameters

Van Trees & Bell 13

Candidate techniques

• PRI LCMV – MQPC

• Adaptive Subspace

– Elgenspace

– Conjugate gradient / MSWF

Van Trees & Bell 14

PRI LCMV-MQPC

Azimuth Angle (deg.)

Dop

pler

Fre

quen

cy (H

z)

PRI LCMV-MQPC, Iteration 5, SINR = 21.1981 dB

-180 -90 0 90 180-150

-120

-90

-60

-30

0

30

60

90

120

150

-50

-40

-30

-20

-10

Van Trees & Bell 15

Battlefield Aeroacoustic Sensor Network

6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.48.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

Site 3

Site 1

Site 4

Site 5

x-position (km)

y-po

sitio

n (k

m)

• Targets move along track between arrays

• Arrays collect broadband aero-acoustic data

• Bearing and power levels seen at arrays change rapidly as vehicle passes

Sponsored by Army Research Lab

Van Trees & Bell 16

Target Data as Seen at Arrays

Bearing SpectrogramSite 3

Tim

e (s

ec)

Freq. (Hz)0 100 200

400

350

300

250

200

150

100

50

0

Site 1

Freq. (Hz)0 100 200

400

350

300

250

200

150

100

50

0

Site 4

Freq. (Hz)0 100 200

400

350

300

250

200

150

100

50

0

Site 5

Freq. (Hz)0 100 200

400

350

300

250

200

150

100

50

0-180 0 1800

50

100

150

200

250

300

350

400

Tgt1

Tgt2Tim

e (s

ec)

Site 3

Bearing (deg)-180 0 1800

50

100

150

200

250

300

350

400

Tgt1

Tgt2

Site 1

Bearing (deg)-180 0 1800

50

100

150

200

250

300

350

400

Tgt1

Tgt2

Site 4

Bearing (deg)-180 0 1800

50

100

150

200

250

300

350

400

Tgt1

Tgt2

Site 5

Bearing (deg)

Van Trees & Bell 17

MAP-PF Position Tracking Results

7.4 7.6 7.8 88.8

9

9.2

9.4

9.6

9.8

10

Site 3

Site 1

Site 4

Site 5

x-position

y-po

sitio

n

Target 1

TrueMAP-PF

7.4 7.6 7.8 88.8

9

9.2

9.4

9.6

9.8

10

Site 3

Site 1

Site 4

Site 5

x-position

y-po

sitio

n

Target 2

TrueMAP-PF

-180 0 1800

50

100

150

200

250

300

350

400

Tim

e (s

ec)

Site 3

Bearing (deg)

TrueTgt 1Tgt 2

-180 0 1800

50

100

150

200

250

300

350

400Site 1

Bearing (deg)

TrueTgt 1Tgt 2

-180 0 1800

50

100

150

200

250

300

350

400Site 4

Bearing (deg)

TrueTgt 1Tgt 2

-180 0 1800

50

100

150

200

250

300

350

400Site 5

Bearing (deg)

TrueTgt 1Tgt 2

Guided Signal Processing Tracking

Van Trees & Bell 18

Theory

• Recursive Bayesian bounds (DARPA SPO)

• Tracking using sparse arrays (DARPA SPO)

• Multistatic radar (DARPA SPO)

Van Trees & Bell 19

Recursive Bayesian Bounds

• Observe a nonlinear function of a vector parameter θ on the presence of noise

• Observe a nonlinear function of a discrete-time random process x(k) in the presence of noise

• In general, an analytic expression for the performance of the estimator cannot be found

• Lower bounds on performance are the primary approach

Van Trees & Bell 20

Parameter Estimation Bounds (Covariance Inequality)

Recursive WW[Rapoport & Oshman 04 (T)][Reece & Nicholson 05 (T)][Bell & Van Trees 06 (T/A)]

Weiss – Weinstein (WW)[Weiss & Weinstein 85, 88]

Recursive mixed[Bell & Van Trees 06]

Mixed Bayesian[Renaux et al 06]

Mixed[Abel 93]

[McAulay & Hofstetter 71]

RBZB[Reece & Nicholson 05 (T)]

Bobrovsky – Zakai (BZB)[Bobrovsky et al 76, 87][Reuven & Messer 97]

Barankin[Barankin 4-9]

[McAulay & Hofstetter 71]

RB Bhat.[Reece & Nicholson 05 (T)]

B Bhat. (BB)[Van Trees 66, 68]

Bhattacharyya[Bhat. 48]

RBCRB[Tichavsky et al 98]

BCRB[Van Trees 68]

Cramér-Rao[Fisher 22, Dugue 37, Cramér 46, Rao 45]

Recursive BayesianBayesianDeterministic

Van Trees & Bell 21

An SAT – type analogy

are to

−30 −25 −20 −15 −10 −5−45

−40

−35

−30

−25

−20

−15

−10

−5

0

SNR (dB)

Loca

l MS

E (

dB)

MLE Barankin Cramer−Rao

ESTIMATION THEORYBOUNDS

as

BASKETBALLREBOUNDS

- IN BOTH CASES -GEORGE MASON IS IN THE FINAL FOUR!

are to

Van Trees & Bell 22

Tracking using sparse arrays

d1 d2 … dN-2 dN-1

θ

Target TrackTarget

Van Trees & Bell 23

Tracking using sparse arrays

-1 -0.5 0 0.5 1-40

-35

-30

-25

-20

-15

-10

-5

0

u = cos(θ)

Bea

mpa

ttern

(dB

)

Van Trees & Bell 24

Tracking using sparse arrays

-1 -0.5 0 0.5 1

50

100

150

200

250

300

350

400

450

500

Bearing (u)

Tim

e

-50 -40 -30 -20 -10 00

50

100

150

200

250

300

350

400

450

500

RMSE

Tim

e

TrueTracks

SimBCRB

-1 -0.5 0 0.5 1

50

100

150

200

250

300

350

400

450

500

Bearing (u)

Tim

e

-50 -40 -30 -20 -10 00

50

100

150

200

250

300

350

400

450

500

RMSE

Tim

e

TrueTracks

SimBCRB

-1 -0.5 0 0.5 1

50

100

150

200

250

300

350

400

450

500

Bearing (u)

Tim

e

-50 -40 -30 -20 -10 00

50

100

150

200

250

300

350

400

450

500

RMSE

Tim

e

TrueTracks

SimBCRB

-1 -0.5 0 0.5 1

50

100

150

200

250

300

350

400

450

500

Bearing (u)

Tim

e

-50 -40 -30 -20 -10 00

50

100

150

200

250

300

350

400

450

500

RMSE

Tim

e

TrueTracks

SimBCRB

Van Trees & Bell 25

Issues

• Bound performance of trackers

• Utilize sidelobe / grating lobe structure to improve performance

Van Trees & Bell 26

Multistatic Radar Geometry

y

Target Track

(xT,yT)

RR

xRX

TXi

θa

RTi(xT,yT) · ·

(xTXi ,yTXi)

(0,0)

Target

TXj

RTj(xTXj ,yTXj)

Van Trees & Bell 27

Two Transmitter Example

(x0,y0)

300 m/sec

200 sec

RX400 sec

–60 –40 –20 0 20 6040x (km)

y (km)

60

50

40

30

20

10

0TX2

TX1

0 sec

Van Trees & Bell 28

Multistatic Radar BCRB

Van Trees & Bell 29

Books

• Optimum Array Processing, Part IV of Detection, Estimation & Modulation Theory,

H. L. Van Trees, 2002

• Bayesian Bounds, H. L. Van Trees and K. Bell, IEEE Press, 2006

Van Trees & Bell 30

Optimum Array Processing

• Published in 2002

• Widely-used in graduate schools & industry

• In 4th printing

• Chinese edition in print

Van Trees & Bell 31

Bayesian Bounds

• An IEEE Press Reprint Book published in conjunction with Wiley

• Contains 80 selected papers which include most of the important results in the area

• Contains about 50 pages of new text to provide context and integration of the material

Van Trees & Bell 32

Summary

• An active research and educational program that combines theory and practical application