status of ignition experiments on the nif · clear progress on the road to ignition challenges...

26
LLNL-PRES-667243 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Status of Ignition Experiments on the NIF NIF/JLF Users Group Meeting Livermore, CA February 11 th , 2015

Upload: others

Post on 07-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

LLNL-PRES-667243

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Status of Ignition Experiments

on the NIF

NIF/JLF Users Group Meeting

Livermore, CA

February 11th, 2015

Page 2: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory N141014

1.2x

1.5x

2x

3x

5x

10x

110608

110615 110620

110826

110904

110908 110914

111103

111112

111215

120126

120131120205

120213

120219

120311

120316

120321

120405

120412

120417

120422

120626

120716

120720

120802

120808

120920

130331

130501

130530

130710

130802

130812

130927

131119

131212

131219

140120

140225

140304

140311

140511

140520

140707

140722

140819

140926

141008

141016

Fuel rR (g/cm2)

Neu

tro

n Y

ield

10 kJ

1 kJ

0.27

0.40

0.54

0.68

0.82

0.92

GLC

0.4 0.6 0.8 1.0 1.2

1014

1015

1016

CH LF

CH HF

HDC 2SH VAC

HDC 3SH GASHigh foot

Low foot (NIC)

We are developing a promising path forward with low

mix, high velocity implosions and improving symmetry

control to reach toward higher yields

HDC NVH

Adiabat shaped

Page 3: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

*rR = Areal density

50 million degrees

100 g/cc

Hot spot

Ignition requires compression to high pressures and

temperatures in short time scales to self-heat

22

33.

~stagstag

DTignition

P

const

P

TRE

r

10/9

3

5/2~imp

ablstag

vpP

Heating from fusion > Cooling from conduction & x-ray losses

Stagnation pressure depends on

how the hot spot was assembled:

Page 4: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

On the NIF, we use a laser driven hohlraum to implode

the capsule attempting to create conditions needed for

ignition

Laser "Pulse-shape"

Ablator

Gold

hohlraum

wall

Helium gas

Laser entrance hole (LEH)

Page 5: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Hohlraum dynamics are complicated, and diagnosing

plasma conditions is an area of active, ongoing

research

• Backscatter losses ~ 15% (~200kJ)

• Capsule drive is over-predicted~ 200kJ

drive degradation required for 2D HYDRA

simulations to match experiment

• Suprathermal electron generation (0.5 - 2 kJ)

• Poor late-time inner beam propagation

requires high inner beam power to achieve

implosion symmetry

• Require cross-beam energy transfer (CBET)

to control implosion symmetry leads to

time-dependent asymmetries

Page 6: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Page 7: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Plastic Ignition Capsule

~2 mm diameter

195 µm

Page 8: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

X-ray picture of capsule taken down axis of

the hohlraum just before a shot

2mm diameter

capsule

Page 9: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

The challenge

— near spherical implosion by ~35X

195 µm

DT shot N120716

Bang Time

(less than diameter

of human hair)

~2 mm diameter

Page 10: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

The capsule must be designed to withstand

hydrodynamic instabilities

Page 11: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

High Foot Campaign increased the power in the start of

the laser drive to reduce hydrodynamic instabilities

experimentally confirmed

Raman, Peterson, Smalyuk, Robey

Rippled target

X-ray snapshots

Lo-Foot vs Hi-Foot Growth factor at 650 µm

-200

0

200

400

600

800

1000

1200

0 40 80 120 160 200

Op

tical

Dep

th G

row

th F

acto

r

Mode Number

Simulation Low foot

650 µm

High

foot

Hydro-growth

radiography (HGR)

target

Page 12: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

1 O. Hurricane et al, Nature 506, 343–348 (20 February 2014)

NIF Shot Identifier

2011 2014 2012 2013

High Foot1 experiments represent a seed change in

performance – exhibiting significant alpha heating

Page 13: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Controlling instability with High Foot pulses lets us probe other

parameters and obtain a 'derivative' in a complex parameter space

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

0

5

10

15

20

25

30

110

60

81

10

61

51

10

62

01

10

82

61

10

90

41

10

90

81

10

91

41

11

10

31

11

11

21

11

21

51

20

12

61

20

13

11

20

20

51

20

21

31

20

21

91

20

31

11

20

31

61

20

32

11

20

40

51

20

41

21

20

41

71

20

42

21

20

62

61

20

71

61

20

72

01

20

80

21

20

80

81

20

92

01

30

33

11

30

50

11

30

53

01

30

71

01

30

80

21

30

81

21

30

92

71

31

11

91

31

21

91

40

12

01

40

22

51

40

30

41

40

31

11

40

51

11

40

52

01

40

70

71

40

81

9

Fu

sio

n Y

ield

(kJ

)

Yield from fuel compression

Yield from self heating

Energy delivered to fuel

Coast/No-coast Increasing Energy AuDU hohlraums Thinner ablators

Repeat?

@ 350 TW

DU higher drive Thinner AuDU Full Quench

165 μ

m

175 μ

m

195 μ

m

165 μ

m

175 μ

m

in D

U

in D

U

Page 14: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Ignition requires:

Improved implosion symmetry

Increased implosion velocity

Increased hot spot compression

Clear progress on the road to ignition challenges

still remain

c Energy for ignition ~ c 2)

DT yield vs ignition parameter c

~ 100 X EDT (start of experiments)

~ 10 X EDT (end of NIC, 2012)

~ 3 X EDT (today, High Foot)

Erequired

Ignition (G>1)

Alpha-heating

High Foot has

demonstrated

improved control

over high-mode

instabilities

Page 15: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Ignition requires:

Improved implosion symmetry

Increased implosion velocity

Increased hot spot compression

Clear progress on the road to ignition challenges

still remain

c Energy for ignition ~ c 2)

DT yield vs ignition parameter c

~ 100 X EDT (start of experiments)

~ 10 X EDT (end of NIC, 2012)

~ 3 X EDT (today, High Foot)

Erequired

Ignition (G>1)

Alpha-heating

Low mode

asymmetry control

still needs to be

improved

10/9

3

5/2~imp

ablstag

vpP

Page 16: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Rugby hohlraums are currently under investigation to

address implosion symmetry challenges

2/12/2015

Smooth beam coverage along hohlraum wall

Outers

Outers

50o

44o

He fill with 1.75% Ne Atomic

Uses Standard TMP

cylinder rugby

Page 17: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Ignition requires:

Improved implosion symmetry

Increased implosion velocity

Increased hot spot compression

Clear progress on the road to ignition challenges

still remain

c Energy for ignition ~ c 2)

DT yield vs ignition parameter c

~ 100 X EDT (start of experiments)

~ 10 X EDT (end of NIC, 2012)

~ 3 X EDT (today, High Foot)

Erequired

Ignition (G>1)

Alpha-heating

10/9

3

5/2~imp

ablstag

vpP

Page 18: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Near-vacuum (low He gas-fill) hohlraums have reduced

laser-plasma interactions and improved hohlraum efficiency

Same laser energy

leads to a higher

temperature to drive

the capsule

inte

rnal

rad

iati

on

tem

pera

ture

(eV

) 250

ΔTr > 20 eV

Increased drive temperatures

time (ns)

Reduced backscatter

Near-vacuum hohlraums have also measured a 100x reduction in suprathermal

electron generation

Page 19: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Ignition requires:

Improved implosion symmetry

Increased implosion velocity

Increased hot spot compression

(reduced entropy/adiabat)

Clear progress on the road to ignition challenges

still remain

c Energy for ignition ~ c 2)

DT yield vs ignition parameter c

~ 100 X EDT (start of experiments)

~ 10 X EDT (end of NIC, 2012)

~ 3 X EDT (today, High Foot)

Erequired

Ignition (G>1)

Alpha-heating

10/9

3

5/2~imp

ablstag

vpP

Page 20: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Directed pulse shaping (“adiabat shaping”) is predicted

to decrease adiabat (increase compression, rR) while

preserving favorable stability

We have begun exploring this concept through a series of focused experiments and

recently, integrated DT layered implosions tests

Predicted ablation front growth factors

100 300 200

500

Ab

lati

on

Fro

nt

Gro

wth

Fa

cto

r

1000

0

0

High

foot

Low foot

Mode Number

Hybrid

Hohlraum internal temperature

20 15

100

200

300

10 5 0 0

time (ns)

TR (

eV

)

High foot Low foot Hybrid

α ~ 2.5

α ~ 1.8

α ~ 1.4

Page 21: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

We are also exploring alternate ablator materials –

Different benefits and different challenges

Si-doped CH

(1.1 g/cc)

W-doped HDC

(3.5 g/cc)

Cu-doped Be

(1.85 g/cc)

Be, ρ=1.85 g/cm3

DT 0.3 mg/cm3 DT 0.3 mg/cm3 DT 0.3 mg/cm3

DT ice

69 μm

0.255 g/cm3

DT ice

55 μm

0.255 g/cm3 DT ice

69 μm

0.255 g/cm3

0

100

200

300

400

0 10 20Las

er

po

we

r (T

W)

Time (ns)

0

100

200

300

400

0 10 20Las

er

po

we

r (T

W)

Time (ns)

0

100

200

300

400

0 10 20Las

er

po

we

r (T

W)

Time (ns)

• Long pulse

• Low r, lower absorbed E

• Easily doped, fab’d

• Short pulse

• Ablator EOS?

• Obtaining dopant level?

• Intermediate pulse

• Ablator microstructure?

• X-ray preheat?

Page 22: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

200 µm

α > 10

α > 4 α ~ 2.7

4.5 ns pulse, 5x convergence

6 ns pulse,

12x convergence

8 ns pulse,

30x converg.

radiation temperature

time (ns)

inte

rnal

rad

iati

on

te

mp

era

ture

(eV

)

α > 10

α > 4

α ~ 2.7

ignition design

Implosions in near-vacuum hohlraums have been extended from

short pulse, low convergence ignition-relevant, high convergence

The high density of diamond (HDC) ablators may enable

using near-vacuum hohlraums to reach significant alpha

heating

Symmetry control is an ongoing challenge

Page 23: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Viewfactors

(2/3 hohlraum)

Diagnose wall

motion and drive

spectrum

Exciting progress on hohlraum and capsule performance

depends on NIF’s unique and expanding suite of

diagnostics

Hohlraum plasma

conditions

Dot Spectroscopy Time resolved spectrometer (NXS)

Measure internal plasma

temperature

gas-fill NVH

Page 24: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory

Capsule

implosion

Exciting progress on hohlraum and capsule performance

depends on NIF’s unique and expanding suite of

diagnostics

45-nm tent

Divots Ring

Native surface

roughness (“Ultimate”

HGR) hydro instability

measurements

DIXI (Dilation X-ray

Imager) fast resolution

(~10 ps) of burning

core

Page 25: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E

Lawrence Livermore National Laboratory N141014

1.2x

1.5x

2x

3x

5x

10x

110608

110615 110620

110826

110904

110908 110914

111103

111112

111215

120126

120131120205

120213

120219

120311

120316

120321

120405

120412

120417

120422

120626

120716

120720

120802

120808

120920

130331

130501

130530

130710

130802

130812

130927

131119

131212

131219

140120

140225

140304

140311

140511

140520

140707

140722

140819

140926

141008

141016

Fuel rR (g/cm2)

Neu

tro

n Y

ield

10 kJ

1 kJ

0.27

0.40

0.54

0.68

0.82

0.92

GLC

0.4 0.6 0.8 1.0 1.2

1014

1015

1016

CH LF

CH HF

HDC 2SH VAC

HDC 3SH GASHigh foot

Low foot (NIC)

We are developing a promising path forward with low

mix, high velocity implosions and improving symmetry

control to reach toward higher yields

HDC NVH

Adiabat shaped

Page 26: Status of Ignition Experiments on the NIF · Clear progress on the road to ignition challenges still remain c Energy for ignition ~ c 2) DT yield vs ignition parameter c ~ 100 X E