stellar tidal disruption by a supermassive black hole binary

11
Stellar Tidal Disruption by a Supermassive Black Hole Binary Angelo Ricarte In collaboration with Priya Natarajan and Jane Lixin Dai

Upload: ledieu

Post on 14-Feb-2017

223 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Stellar Tidal Disruption by a Supermassive Black Hole Binary

Angelo Ricarte In collaboration with Priya Natarajan and Jane Lixin Dai

Page 2: Stellar Tidal Disruption by a Supermassive Black Hole Binary

What is a Tidal Disruption Event?

•Debris  creates  transient  accre-on  disk  —>  flare  •Stars  come  from  far  away  via  two  body  relaxa-on  (Magorrian  and  Tremaine  1999)  •10-­‐5  events/yr/galaxy  (e.g.,  Donley  et  al.  2002)

Rees  (1988)

Page 3: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Thousands are soon to be detected

Komossa  (2004)

•X-­‐ray  luminosi-es  peak  up  to  1045  erg/s,  then  decline  by  factors  of  1000-­‐6000.    (See  Komossa  2012  for  a  recent-­‐ish  review)  

•Today,  we  know  of  30-­‐40  (hSp://astrocrash.net/resources/tde-­‐catalogue/)  

•We  expect  thousands  from  mul-  wavelength  surveys.    (Strubbe  &  Quataert  2011)

Page 4: Stellar Tidal Disruption by a Supermassive Black Hole Binary

• Presence  of  a  binary  can  change  the  -dal  disrup-on  rate  by  many  orders  of  magnitude,  depending  on  separa-on  (Chen  et  al.  2007,  2009)  

• Liu  et  al.  (2009)  predict  a  modified  light  curve  with  truncated  power  law  and  accre-on  islands.

What about a SMBH binary?

TDE  by  SMBH  binary?  Liu  et  al.  (2014)

Truncation

“Accretion Islands”

Page 5: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Goal: Understand debris behavior

• Start  with  star  on  coplanar  parabolic  orbit  at  -dal  disrup-on  radius.  

• Use  Runge-­‐KuSa  4(5)  integra-on  for  individual  par-cles.  

• Non-­‐interac-ng  par-cles,  no  GR.  

The Setup

Are  there  observables  that  can  be  inverted  back  to  physical  parameters?

Page 6: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Mass Fallback Rates

Trunca-on:    stream  misses  -dal  disrup-on  radius.      

Accre-on  Islands:    secondary  passes  parallel  to  stream  and  primary.

Page 7: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Close binaries can inhibit flares

Theorists  overpredict  the  rate  of  -dal  disrup-ons  by  1-­‐2  orders  of  magnitude  (Magorrian  &  Tremaine  1999,  Wang  &  MerriS  2004).      

Perhaps  perturber  objects  can  reduce  detectability.

Page 8: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Accretion by Secondary BH?

Possible  flares  when  crossing  streams?      

Hydrodynamics  might  help.

Page 9: Stellar Tidal Disruption by a Supermassive Black Hole Binary

New stream crossings

Crossings  should  dissipate  energy  and  may  be  important  in  determining  accre-on  onto  the  secondary.  

Shiokawa  et  al.  (2015)

Page 10: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Complex Large Scale Structure

Large  surface  areas  may  have  implica-ons  for  reprocessed  emission.  

Could  broad  emission  lines  be  a  signature  of  a  binary?

Page 11: Stellar Tidal Disruption by a Supermassive Black Hole Binary

Conclusions

• Fallback  rates  (and  maybe  spectra?)  encode  informa-on  about  the  geometry  of  the  black  hole  binary.  

• Close  secondary  perturber  objects  may  decrease  the  detectability  of  -dal  disrup-on  flares.  

• On  my  to-­‐do  list:  

• Complete  analysis  of  fallback  rate  curves.    Move  to  Fourier  space?  

• Explore  prospects  of  reprocessed  emission  as  signature  for  binary