stemcells and cancer - columbia university · breast cancer (mmtv-wnt-1) cho et al., stem cells,...

61
Stem Cells and Cancer Piero Dalerba, MD HICCC Herbert Irving Comprehensive Cancer Center Department of Pathology and Cell Biology Department of Medicine (Division of Diges+ve and Liver Diseases) CELLULAR & MOLECULAR BIOLOGY OF CANCER PATH G4500001 October 19, 2015

Upload: others

Post on 07-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Stem  Cells  and  Cancer  

Piero  Dalerba,  MD  HICCC  -­‐  Herbert  Irving  Comprehensive  Cancer  Center  

Department  of  Pathology  and  Cell  Biology  Department  of  Medicine  (Division  of  Diges+ve  and  Liver  Diseases)  

CELLULAR  &  MOLECULAR  BIOLOGY  OF  CANCER  -­‐  PATH  G4500-­‐001  October  19,  2015  

Page 2: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Structure  of  the  Class  

1.    the  concept  of    “stem  cells”  

2.    the  concept  of    “cancer  stem  cells”    

3.    biological  implicaXons  of  the  “cancer  stem  cell”  model  

4.    clinical  implicaXons  of  the  “cancer  stem  cell”  model  

Page 3: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Historical  origins  of  the  word  “stem  cell”    [#1]  

Ernst  Haeckel  is  famous  for  having  introduced  the  concept:  “Ontogenesis  recapitulates  phylogenesis”  

Ernst  Haeckel,  Anthropoghenie,  1874  Ernst  Haeckel  (1834-­‐1919)  

Images  from:  the  Wellcome  Library,  London    

The  early  stages  of  embryonic  

development  are  very  similar  across  species    

Page 4: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Historical  origins  of  the  word  “stem  cell”    [#2]  Historically,   Ernst  Haeckel   first   used   the  word   “stem   cell”   to   idenXfy   an  ancestor/progenitor   cell   that   stands   at   the   “stem”   of   a   genealogic   tree,  used   to   depict   either   evoluXonary   (i.e.   phylogeneXc)   or   developmental  (i.e.  ontogeneXc)  processes.  

PhylogeneXc  tree  of  life    (i.e.  evoluXon  of  life  on  Earth)  

Ernst  Haeckel,  1866  

ectoderm  mesoderm  

endoderm  

ICM    (inner  cell  mass)  

trophoblast  

zygote  

OntogeneXc  tree  of  life    (i.e.  embryonic  development)  

Page 5: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Current  use  of  the  word  “stem  cell”  

The   meaning   remains   essenXally   intact   today,   where   it   is  mainly   used   in   developmental   biology,   to   idenXfy   a   cell  capable   to   generate   and   sustain   over   Xme   a   specific   set   of  diversified  cell  populaXons  whose  aggregate  interacXon  leads  to  the  formaXon  of  either:  

a)      an  enXre  living  organism:                      -­‐  the  zygote  (toXpotent  capacity)                    -­‐  embryonic  stem  cells  (pluripotent  capacity)    

b)  a  specific  subset  of  its  organs  and  Xssues:                  -­‐  adult  stem  cells  (oligopotent  or  mulXpotent  capacity)    

Page 6: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Many  Xssues  have  a  “hierarchical”  organizaXon  and  undergo  a  conXnuous  process  of  cell  turnover.  

oligolineage precursors

mature cells

long-term self-renewing

stem cells

short-term multipotent progenitors

specialized  cell  types  oeen  short-­‐lived  

undergo  turnover  during  lifeXme  (with  variable  kineXcs)  

long-­‐lived  

Page 7: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Stem  Cell  ProperXes  

oligolineage precursors

mature cells

long-term self-renewing

stem cells

short-term multipotent progenitors

Stem  cells  are  defined  by  three  key  properXes:  

2)   The   ability   to   form   new   stem   cells   with   idenXcal,   intact   differenXaXon  potenXal,  thus  maintaining  the  stem  cell  pool  (self-­‐renewal);  

self-­‐renewal

differen+a+on

1)   The   ability   to   give   rise   to   a   funcXonally   heterogeneous   progeny  of   cells,  which  progressively  specialize  according  to  a  hierarchical  process  (differen+a+on);  

3)   The   ability   to   modulate   the   two   previous   properXes   according   to  environmental  sXmuli  and  geneXc  constraints  (homeosta+c  control).  

Page 8: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Examples  of  normal  Xssues  that  are  sustained  by  adult  stem  cell  populaXons  [#1].  

Hematopoietic system

Dalerba  et  al.,  Stem  cells,  cell  differenXaXon  and  cancer.  In:  Abeloff’s  Clinical  Oncology  -­‐  5th  ediXon  -­‐  Chapter  7  (2013)  

Page 9: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Intestinal epithelium

Radtke  &  Clevers,  Science  307-­‐1904-­‐1909  (2005)  

Examples  of  normal  Xssues  that  are  sustained  by  adult  stem  cell  populaXons  [#2].  

Page 10: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

CK20

MUC2

Tumors are histological “caricatures” of corresponding normal tissues

colon cancer SU#56 colon cancer UM#8 colon cancer UM#17

colon cancer UM#4 colon cancer SU#60 colon cancer MIC#69 normal colon

normal colon

Page 11: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

David  von  Hansemann  (1858-­‐1920)  

Tumors  are  histological  “caricatures”  of  their  corresponding  normal  Xssues.  

Images  from:  Historic  Book  Collec+on,  Humboldt  Universität,  Berlin  

von   Hansemann,   Die   mikroskopische   Diagnose   der   bösar+gen   Geschwülste  [The  microscopic  diagnosis  of  malignant  tumors]  (1897)    

Figure  7.  Rectal  Cancer  […]  Great  similarity  with  the  normal  mucosa.  Goblet  cells.      

Page 12: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

normal  colon   colon  cancer  

Tumor  Xssues  act  as  “histological  caricatures”  of  their  normal  counterparts.    

The three-dimensional architecture and cell composition of neoplastic tissues usually

mirrors that of the corresponding normal tissues of origin, and includes a variety of cell types.

Rajendran  and  Dalerba,  TheoreXcal  and  experimental  foundaXons  of  the  “cancer  stem  cell”  model.  In:  Cancer  Stem  Cells  (ed.  V.K.  Rajasekhar)  -­‐  Chapter  1  (2014)  

Page 13: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Key  points  [#1]  •  cancer tissues are frequently heterogeneous in cell

composition; this diversity often mirrors the repertoire of specialized cell types found in normal counterparts;

•  thus, in many instances, cancer tissues are not simply amorphous collections of transformed cells, but complex three-dimensional structures that retain architectural features of their parent tissues;

amorphous tumor mass

architecturally complex tumor mass

vs.  

Page 14: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

If  tumor  Xssues  are  “caricatures”  of  normal  ones  (and  retain  many  of  their  architectural  features),  then  do  they  also  contain  a  pathological  (e.g.  mutated)  stem  cell  populaXon  that  sustains  their  long-­‐term  growth?  

The  “Cancer  Stem  Cell”  hypothesis  

In  other  words,  are  malignant  Xssues  the  product  of  pathological  stem  cells?  

If  this  hypothesis  is  correct,  what  are  its  biological  implicaXons  and  

how  can  we  test  it?  

Page 15: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Biological  implicaXons  of  the  “Cancer  Stem  Cell”  hypothesis  

1)  Origin  of  cell  heterogeneity  in  cancer  Xssues  Is  the  cellular  diversity  observed  within  tumor  Xssues  generated  only  by  geneXc  mechanisms  (e.g.  random  mutaXons)  or  also  by  epigeneXc  mechanisms  (e.g.  mulX-­‐lineage  differenXaXon)?  

geneXc  vs.  epigeneXc  diversity  

2)  FuncXonal  hierarchy  in  cancer  cell  populaXons  

Are  the  different  types  of  cancer  cells  found  within  malignant  Xssues  also  different  in  their  capacity  to  sustain  

long-­‐term  Xssue  expansion  and  proliferaXon?  

tumorigenic  vs.  non-­‐tumorigenic  populaXons  

Page 16: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Sources  of  cell  heterogeneity  in  cancer  Xssues  [#1]  

differences   between   various   types   of   cancer  cells  are  caused  by  differences  in  the  repertoire  of   geneXc   mutaXons   (i.e.   co-­‐existence   of  different  geneXc  sub-­‐clones);  

“stochasXc”  model  (random  mutaXon)  

differences   between   various   types   of   cancer  cells   are   caused   by   differenXal   acXvaXon   of  specialized   gene-­‐expression   programs   that  “enforce”   specific   cell   idenXXes   (i.e.  differenXaXon);  

“cancer  stem  cell”  model    (mulX-­‐lineage  differenXaXon)  

clone  #3  

clone  #2  clone  #1  

lineage  cell  type  #2  

lineage  cell  type  #1  

lineage  cell  type  #3  

the  heterogeneity  is  geneXc   the  heterogeneity  is  epigeneXc  

Page 17: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Monoclonal  origin  of  human  cancer  

Stanley  M.  Gartler    (1923  -­‐  present)  

From:  Rubin’s  Pathology:  clinicopathologic  foundaXons  of  medicine  -­‐  7th  ediXon  (2015)  Strayer  and  Rubin  –  Chapter  5  “Neoplasia”.  

Nature  Rev.  Cancer,  10:441-­‐448  (2010)  

Page 18: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Indirect  evidence  of  mulX-­‐lineage  differenXaXon  in    human  hematological  malignancies  

Philip  Fialkow  (1934-­‐1996)  

oligolineage precursors

long-term self-renewing

stem cells

short-term multipotent progenitors

mature cells

Image  from:  University  of  Washington  

CML  (chronic  myelogenous  leukemia)  

monoclonal expansions of either A or B G6PD alleles

Page 19: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Sources  of  cell  heterogeneity  in  cancer  Xssues  [#2]  

IMPORTANT:   the   two   models   are   not   mutually   exclusive,   the  two   mechanisms   co-­‐exist   and   act   together   to   generate   cell  diversity…  but  with  different  funcXonal  consequences!  

“stochasXc”  model  (random  mutaXon)  

“cancer  stem  cell”  model    (mulX-­‐lineage  differenXaXon)  

vs.  clone  #3  

clone  #2  clone  #1  

lineage  cell  type  #2  

lineage  cell  type  #1  

lineage  cell  type  #3  

Page 20: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

ImplicaXons  of  different  sources  of  cell  diversity    

The  different  types  of  cancer  cells  (i.e.  the  different  geneXc   clones   within   the   tumor   mass)   are   all  endowed  with  long-­‐term  growth  and  proliferaXon  capacity.   Each   of   them   can   expand   as   a   disXnct  monoclonal  populaXon.  

“stochasXc”  model  (random  mutaXon)  

Only  a  subset  of  cancer  cells,  the  “cancer  stem  cells”  (CSC),  is  endowed  with  long-­‐term  growth  capacity,   while   other   tumor   cell   types   have  l imited   proliferaXve   capacity.   Tissues  originated  from  CSC  contain  mulXple  cell  types  as  a    result  of  mulX-­‐lineage  differenXaXon.  

“cancer  stem  cell”  model    (mulX-­‐lineage  differenXaXon)  

clone  #3  

clone  #2  clone  #1  

monoclonal  expansion  #1  

monoclonal  expansion  #2  

monoclonal  expansion  #3  

long-­‐term  growth  and  full  reconsXtuXon  of  parent  Xssue  diversity  

limited  proliferaXon  

Page 21: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

cell sorting by flow cytometry

Experimental  approach  to  test  the  “cancer  stem  cell”  model  

primary  tumor  specimen  

dis-­‐aggregaXon  into  single-­‐cell  suspension  

evaluation of differential tumorigenic properties by

injection in NOD-SCID mice +

evaluation of the ability to re-create the phenotypic

heterogeneity of parent tumors +-

laser detector

staining  with  monoclonal  anXbodies  

visualizaXon  of  different  cell  types  by  flow  cytometry    

Page 22: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Experimental  validaXon  of  the  “cancer  stem  cell”  model  

Colon  Cancer  

Page 23: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

EpCAM  

SelecXon  of  surface  markers  for  differenXal  isolaXon    by  flow  cytometry  of  mature/immature  cell  types    

in  the  human  normal  colon  epithelium  

CD44   merge  

Piero  Dalerba  and  Shigeo  Hisamori  

Page 24: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Sorting and injection strategy for differential tumorigenicity experiments based on EpCAM/CD44 in human Colon Cancer.

2nd sort

P9

P5

2nd sort

subcutaneous injection in immunodeficient mice

(NOD/SCID, NOD/SCID/IL2Rγ-/-)

D

22.6 %

63.8 % A

92.7 %

B

96.7 %

1st sort

1st sort

C

UM-COLON#4 Linneg population

Cell dose and tumor formation

in NOD/SCID mice

dose take

EpCAMhigh/CD44+ 1000 2/3

EpCAMlow/CD44neg 10.000 0/3

CD44

Dalerba et al., P.N.A.S., 104: 10158-10163 (2007)

Page 25: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Reconstitution of parental EpCAM/CD44 expression profile in tumors grown from sorted EpCAMhigh/CD44+ cells.

parent xenografts

UM#4

MIC69

tumors grown from [EpCAMhigh/CD44+]

26.42 %

0.74 % *

19.84 %

3.4 %

ES

Ahi

gh/C

D44

+ ce

lls

14 % 19 %

C

F

BA

ED

Dalerba  et  al.,  PNAS,  104:10158-­‐10163  (2007)  

Page 26: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Morphology and differentiation of human CRC tumors grown from EpCAMhigh/CD44+ cells.

CK20

Muc

Normal epithelium

UM#4 [xeno]

UM#4 [ESA/CD44]

MIC69 [ESA/CD44]

MIC69 [xeno]

A

F

B

G I

DC

H L

E

Dalerba  et  al.,  PNAS,  104:10158-­‐10163  (2007)  

Page 27: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

LimitaXons  of  classic  transplantaXon  experiments  based  on  flow  cytometry  [#1]  

Due   to   obvious   ethical   reasons,   transplantaXon  experiments  using   human   cells   are  performed   in  xenogeneic  hosts  (i.e.  immuno-­‐deficient  mice).  

Are   differences   in   the   tumorigenic   capacity   of  different  tumor  cell  types  due  to  an  incompaXbility  of  specific  cell  types  with  the  mouse  microenvironment?  

Page 28: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008)

Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653, (2008)

Mouse epithelial “Cancer Stem Cell” models show that

differences in tumorigenic capacity can exist independently of species-specific differences in

host microenvironment.

CD34+, KRT10neg: tumorigenic CD34neg, KRT10+ : non-tumorigenic

Malanchi  et  al.,  Nature,  452:650-­‐653,  (2008)  

DMBA/TPA-induced Skin Carcinoma

Mouse  models  of  epithelial  “Cancer  Stem  Cells”  

Page 29: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

LimitaXons  of  classic  transplantaXon  experiments  based  on  flow  cytometry  [#2]  

Most  experiments  are  performed  using  high  numbers  of  purified  cells  (102-­‐103  cells/dose).  

How   can   we   be   absolutely   certain   that,   indeed,   the  various  cell  types  found  in  secondary  tumors  arise  from  the  mulX-­‐lineage  differenXaXon  of  a  single  cell,  and  not  from  the  parallel  expansion  of  mulXple  geneXc  clones?  

Page 30: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Lineage  tracing  experiments  on  “Cancer  Stem  Cells”  

Analysis of a well-differentiated human colon cancer tissue

reveals the presence of multiple epithelial cell types

Analysis of monoclonal EGFP+ colon cancer xenograft tissues reveals the presence of multiple

epithelial cell types, closely recapitulating the full cellular diversity of the parent tissue

Infection of cancer cells with a lentivirus

encoding EGFP

Subcutaneous injection into a NOD/SCID/IL2Rϒ-/- mouse

and generation of a monoclonal EGFP+ colon

cancer tissue

Monoclonality of cancer tissues is verified by

confirmation of a unique lentivirus integration site

Isolation of a single (n= 1) EGFP+ human colon CSC

(EpCAMhigh/CD44+)

Dissociation into a single-cell

suspension

Rajendran  and  Dalerba,  TheoreXcal  and  experimental  foundaXons  of  the  “cancer  stem  cell”  model.  In:  Cancer  Stem  Cells  (ed.  V.K.  Rajasekhar)  -­‐  Chapter  1  (2014)  

Page 31: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

UM-COLON#4 clone 8 Lin- phenotypic populations

Tested for tumorigenicity

Cell dose and tumor formation in NOD/SCID/

IL2Rγ-/- mice

500 cells 100 cells

EGFP+/EpCAM+/CD44+ 5/5 (100%) 5/5 (100%)

EGFP+/EpCAM+/CD44- 0/5 (0%) 0/5 (0%)

Cell dose and tumor formation in NOD/SCID/IL2Rγ-/- mice (EpCAM+/CD44+)

Xenograft line 10,000 5,000 1,000 500 100 50 30 10 5 1 frequency (95%CE)

UM-COLON#4 - - 3/3 12/12 12/14 3/4 13/30 2/34 0/4 1/132* 1/62 (1/44 – 1/89)

UM-COLON#8 4/4 4/4 4/4 3/4 4/10 2/10 - 1/6 - - 1/223 (1/117 – 1/427)

Clo

ne 8

CD

44-

Clo

ne 8

CD

44+

pare

nt C

D44

- pa

rent

CD

44+

A

B C

F G H

KRT20 Ki67

D E

Generation and characterization of a monoclonal colon cancer xenograft, from a single (n =1) “cancer stem cell”

Dalerba et al., Nature Biotechnology, 29:1120-1127, 2011

Page 32: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Key  points  [#2]  

•  the cellular diversity of cancer tissues frequently recapitulates the physiological lineage composition of their normal counterparts;

•  the cellular diversity of cancer tissues is frequently epigenetic in origin, and arises as the result of a multi-lineage differentiation process, reminiscent of a stem cell hierarchical system;

•  often, within cancer tissues, only a specific subset of cancer cells is endowed with the capacity to initiate the growth of a secondary tumor when transplanted; tumors originated from these cells, however, recapitulate the repertoire of heterogeneous cells types found in the parent tissues; these cells are defined “cancer stem cells”;

Page 33: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Integrated  view  of  cell  heterogeneity  in  cancer  Xssues  

“stochasXc”  model  (random  mutaXon)  

“cancer  stem  cell”  model    (mulX-­‐lineage  differenXaXon)  

geneXc  clone  #3  

geneXc  clone  #2  

geneXc  clone  #1  

lineage  cell  type  #2  

lineage  cell  type  #1  

lineage  cell  type  #3  

Integrated  model    clone  #1    

(undergoing  mulX-­‐lineage  epigeneXc  differenXaXon)   clone  #2    

(undergoing  mulX-­‐lineage  epigeneXc  differenXaXon)  

clone  #3    (undergoing  mulX-­‐lineage  epigeneXc  differenXaXon)  

Page 34: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Charles  Darwin  (1858-­‐1920)  

Images  from:  the  Wellcome  Library,  London    

Conceptual  implicaXons  of  the  “cancer  stem  cell”  theory  for    “evoluXonary”  or  “darwinian”  models  of  tumor  progression  

the  “units  of  selecXon”  in  cancer  Xssues  are  individual  “cancer  stem  cells”    

(i.e.  the  cells  with  self-­‐renewal  capacity)  as  opposed  to  any  individual  cell  

clone  #1    (sustained  by  “cancer    stem  cells”  with  geneXc    

background  #1  )  

clone  #2    (sustained  by  “cancer    stem  cells”  with  geneXc    

background  #2)  

clone  #3    (sustained  by  “cancer    stem  cells”  with  geneXc    

background  #3  )  

Page 35: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Origin  and  biological  idenXty  of  “cancer  stem  cells”  

1)  “cancer  stem  cells”  vs.  normal  stem  cells  Are  “cancer  stem  cells”  mutated  variants  of  normal  stem  cells  

(that  have  lost  normal  homeostaXc  controls)  or  do  they  correspond  to  more  mature,  differenXated  cell  types  (that  have  

aberrantly  acquired  the  capacity  to  self-­‐renew)?      

2)  one  vs.  mulXple  “cancer  stem  cell”  idenXXes  Are  “cancer  stem  cell”  populaXons  homogeneous  or  

heterogeneous  in  their  epigeneXc  idenXXes  (i.e.  do  they  encompass  one  or  mulXple  cell  types)?  

Page 36: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

TheoreXcal  consideraXons  in  support    of  a  stem  cell  origin  of  cancer  Xssues.  

•  •  •  • 

•  •  •  •  •  •  •  • 

•  •  •  • 

Cancer  originates  as  the  result  of  the  progressive  accumulaXon  of  mulXple  geneXc  mutaXons  over   several   years   (Fearon  and  Vogelstein,  1990).  Thus,  stem  cells  represent  the  ideal  targets  for  malignant  transformaXon,  as  they  are   long-­‐lived   and   have   the   opportunity   to   accumulate   sequenXal  mutaXons  over  Xme.  

•  •  •  • 

•  •  •  •  •  •  •  • 

•  •  •  •  •  •  •  • 

•  •  •  •  •  •  •  • 

•  •  •  • 

stem  cells  (long-­‐lived)  

mature  cells  (oeen  short-­‐lived)  

1st mutation 2nd mutation 1+2 1

1+2

1+2

1 1

1 1

1

1 1

1

1+2

1+2

1+2 1+2

1+2

2

Page 37: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

“Cancer  stem  cells”  is  an  operaXonal  definiXon.  

1.   Only   a   subset   of   cancer   cells   within   each   tumor   is   endowed   with   tumorigenic  capacity  and  can  be  serially  transplanted  into  immunodeficient  mice.  

Three  observaXons  define  the  existence  of  a  “Cancer  Stem  Cell”  populaXon:  

3.   Tumors   grown   from   tumorigenic   cells   contain   mixed   populaXons   of   both  tumorigenic   and   non-­‐tumorigenic   cancer   cells,   thus   recreaXng   the   full   phenotypic  heterogeneity  of  the  parent  tumor.  

2.  Tumorigenic  cancer  cells  are  characterized  by  a  disXncXve  profile  of  surface  markers  and  can  be  differenXally  and  reproducibly  isolated  from  non-­‐tumorigenic  ones  by  flow  cytometry.  

1)    it  is  a  “working  tool”  to  dissect  the  funcXonal  hierarchy  of  cancer  populaXons;  2)   it   implies   the   fulfillment   of   two   stem-­‐cell   properXes   (i.e.   self-­‐renewal   and  differenXaXon),   but   it   does   not   imply   the   origin   of   “cancer   stem   cells”   from   normal  stem  cells.  

Thus,  the  concept  of  “Cancer  Stem  Cells”…  

Page 38: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

       a)    are  they  homogeneous  or  heterogeneous  populaXons?  

       b)    which  cell  types  do  they  contain?    

       c)    are  they  composed  by  immature  or  mature  cell  types?    

LimitaXons  of  transplantaXon  experiments  based  on  flow  cytometry  [#3]  

Flow   cytometry   provides   only   limited   knowledge   about  molecular   idenXty,   funcXonal   status   and   heterogeneous  composiXon  of  “cancer  stem  cells”.

Page 39: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

+-

3) Single-cells from selected phenotypic populations are sorted into individual 96-well PCR plates

1 cell/well (96-well PCR plate)

6) Individual cell real-time PCR curves are analyzed and converted into gene-expression levels. Individual cells are associated into distinct subsets using

statistical clustering algorithms.

5) 9,216 (96x96) single-cell PCR reactions are run in parallel using a microfluidic chip

1) Primary tissues are collected from surgical specimens and dis-aggregated into single-cell suspensions.

2) Single-cell suspensions are stained with fluorochrome-conjugated monoclonal antibodies and analyzed by flow cytometry

4) RNA is reverse transcribed and loaded into a microfluidic chip

Dalerba  et  al.,  Nature  Biotechnology,  29:1120-­‐1127  (2011)  

Analysis  of  Xssue  cell  composiXon  using  single-­‐cell  genomics  

Page 40: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Each row identifies an

individual single-cell

Each column identifies an

individual gene

genes

cells

Fluo

resc

ence

sign

al

Ct value

1)   For   each   of   the   9,216   (96x96)   SINCE-­‐PCR   reac;ons,   an   amplifica;on   curve   is   generated  and  an  individual  threshold  cycle  (Ct)  value  is  calculated.  

2)   Ct   values   are   normalized   and   color-­‐coded.   Normalized   Ct   values   (Ctnorm)   are   obtained   by  subtrac;ng  from  the  raw  Ct  value  (Ct)  the  mean  Ct  value  for  the  same  gene  on  the  whole  sample  (Ctmean)  and  then  by  dividing  by  three  ;mes  the  standard  devia;on  of  the  same  gene’s  Ct  values  distribu;on   (3SDCt).   Results   are   color-­‐coded   using   increasingly   darker   shades   of   red   for   high  expression  values  (Ct  <  Ctmean),  increasingly  darker  shades  of  green  for  low  expression  values  (Ct  >  Ctmean)  and  grey  for  lack  of  expression  (Ct  >  40).  

3)   Gene-­‐expression   results   are   ploUed   using   hierarchical  clustering   algorithms   available   in   the   MATLAB   so[ware  (MathWorks   Inc.).   Hierarchical   clustering   is   performed   on   both  cells   and   genes,   to   visualize   simultaneously   cells   with   similar  expression  paUerns  and  genes  with  similar  expression  profiles.  

High expression

Low expression

Normalization of SINCE-PCR threshold cycles (Ct)

No expression

Ct >40 Ct mean Ct -3SD

Analysis and graphic display of single-cell PCR data

Hierarchical clustering associates genes with

similar expression patterns

Hierarchical clustering

associates cells with similar expression

profiles

For each gene, Ct values are normalized

and color-coded

red: Ct < Ct mean green: Ct > Ct mean

grey: Ct > 40

Ct value for gene “X”

n. o

f sin

gle-

cells

Ct norm = Ct - Ct mean

3 SD Ct

Ct +3SD

3SD Ct

TaqMan PCR cycle

M96 chip

Dalerba  et  al.,  Nature  Biotechnology,  29:1120-­‐1127  (2011)  

Page 41: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

CD44

EpCAM

CD66a CEACAM1

Analysis  by  flow  cytometry  of  the  human  colon  epithelium:  dissecXon  and  purificaXon  of  disXnct  cell  subtypes.  

Dalerba et al., Nature Biotechnology, 29:1120-1127, 2011

Page 42: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

KRT20 CEACAM1 MUC2 Ki67

C DA B E F

Single-cell PCR analysis of human normal colon epithelium

color key - normalized C

t values

high expression

low expression

CA1+ SLC26A3+

MUC2+ TFF3high

OLFM4+ CA2high

LGR5+ ASCL2+

GUCA2B+

Goblet cells

Enterocytes

CBC (columnar basal cells)

Novel populations

Dalerba et al., Nature Biotechnology, 29:1120-1127, 2011

Sorting gate

Page 43: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

MUC2 KRT20

UM-COLON#4 Clone 8

OLF

M4+

C

A2h

igh

LG

R5+

A

SCL2

+

MUC2+ TFF3high

Single-­‐cell  PCR  analysis  of  a  monoclonal  colon  cancer  xenograe  originated  from  a  single  (n  =1)  “cancer  stem  cell”  

Dalerba et al., Nature Biotechnology, 29:1120-1127, 2011

Page 44: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Key  points  [#3]  

•  “cancer   stem   cell”   populaXons,   as   currently   defined   using  flow   cytometry   and   operaXonal   criteria,   are   oeen  heterogeneous   and   contain   mulXple   cell   types,   including  immature  progenitor  populaXons;  

•  it  is  unclear  whether  all  or  only  some  of  the  cell  types  within  the   currently   defined   “cancer   stem   cell”   populaXons   are  endowed  with  “cancer  stem  cell”  properXes;  

•  it   also   remains   unclear  whether   the   epigeneXc   idenXty   of  “cancer  stem  cells”  corresponds  to  that  of  normal  stem  cells  or  of  more  differenXated,  specialized  cell  types.  

Page 45: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

“EvoluXon”  of  “Cancer  Stem  Cells”  over  disease  progression?    

Dalerba  et  al.,  Stem  cells,  cell  differenXaXon  and  cancer.  In:  Abeloff’s  Clinical  Oncology  -­‐  5th  ediXon  -­‐  Chapter  7  (2013)  

Most  likely,  the  molecular  idenXty  of  “cancer  stem  cells”  

evolves  during  disease  progression.  

 

 

While,  in  the  early  stages  of  neoplasXc  transformaXon,  the  first  round  of  mutaXons  is  likely  to  occur  in  the  long-­‐lived  stem  cell  compartment,  it  is  also  possible  that,  during  disease  progression,  a  second  round  of  

mutaXons  might  disable  controls  in  self-­‐renewal  

pathways  and  “unleash”  self-­‐renewal  in  rapidly  dividing    mulX-­‐potent  progenitors.  

Page 46: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Does  the  “Cancer  Stem  Cell”  hypothesis  have  implicaXons  for  the  modeling  of  

metastasis?  

Page 47: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

TradiXonal  model  of  Metastasis.  

Dalerba  et  al.,  Ann.  Rev.  Med.,  58:267-­‐84  (2007)  

primary tumor

apoptosis

Clone#1

Clone#2

Clone#3

The   “classic”   model   predicts   that   primary   tumors   and  autologous  metastases  will  display  substanXal  differences  (e.g.  different  repertoires  of  geneXc  mutaXons).  

Page 48: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

primary tumor

Cancer Stem Cell

Differentiated cancer cells

“Cancer  Stem  Cell”  model  of  Metastasis.  

metastasis

The   “cancer   stem   cell”   model   predicts   that  primary   tumors   and   autologous   metastases   will  show  substanXal  degrees  of  similarity.  

•   gene-­‐expression  profiling                                          (Weigelt  et  al.,  Nat.  Rev.  Cancer,  5:591-­‐602,  2005)  •   histopathology                                                          (Brabletz  et  al.,  Nat.  Rev.  Cancer,  5:744-­‐749,  2005)  

apoptosis (e.g. anoikis)

Dalerba  et  al.,  Annual  Review  of  Medicine,  58:267-­‐284  (2007)  

Indeed,   this   has   been   a   common   (though  somewhat  unexpected)  experimental  finding:  

Page 49: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Clinical  implicaXons  of  the  “Cancer  stem  cell”  hypothesis  

1)  “Cancer  stem  cells”  and  tumor  aggressiveness  Is  the  cell  composiXon  of  tumor  Xssues  associated  to  a  more  or  less  aggressive  disease?  Are  tumors  with  abundant  “cancer  

stem  cells”  more  aggressive?  

2)  “Cancer  stem  cells”  and  response  to  treatments  Are  the  different  types  of  cancer  cells  found  within  malignant  Xssues  also  different  in  their  sensiXvity  to  various  types  of  

anX-­‐tumor  therapies?  

Page 50: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Gene-expression arrays:

Breast Cancer Stem Cells

Vs Normal Breast Epithelium

Strategy designed to maximize the content of prognostically relevant information, including:

1) tumor-specific genes

2) cancer stem cell-specific genes

ExploiXng  “cancer  stem  cells”  to  develop  a    prognosXc  tool  for  human  Breast  Cancer  paXents  

186 genes Invasiveness Gene Signature

(IGS)

Liu et al., NEJM, 357:217-226 (2007)

Page 51: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

The  IGS  is  associated  with  poor  prognosis  in  human  

Breast  Cancer  

Breast Cancer patients whose tumor is characterized by a transcriptional profile similar to the IGS are characterized by reduced overall and disease-free survival.

population:

early breast cancer patients

from the

Netherlands Cancer Institute (NKI database)

Liu et al., NEJM, 357:217-226 (2007)

Page 52: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

KRT20

Dalerba et al., Nature Biotechnology, 29:1120-1127, 2011

normal colon colon adenoma colon carcinoma

Sparsity test FRD < 0.0001

Mining of gene-expression databases using Boolean logic.

Page 53: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Expression  of  differenXaXon  genes  associates  with  paXent  survival.  

Page 54: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Tumor  progressively  exhausts  its  growth  potenXal    

Treatment  is  broadly  cytotoxic,  but  does  not  specifically  target  self-­‐

renewing  cancer  cells  

Treatment  targets  all    self-­‐renewing  cancer  cells  

Tumor  is  grossly  reduced  in  size,  but  eventually  relapses  driven  by  self-­‐

renewing  cancer  cells.  

a)  

b)  

long-­‐term  outcome  

type  of  treatment  

ImplicaXons  of  the  CSC  model  for  the  design  and  evaluaXon  of  anX-­‐tumor  treatments    

Rajendran  and  Dalerba,  TheoreXcal  and  experimental  foundaXons  of  the  “cancer  stem  cell”  model.  In:  Cancer  Stem  Cells  (ed.  V.K.  Rajasekhar)  -­‐  Chapter  1  (2014)  

short-­‐term  outcome  

Page 55: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

“Stem  Cell”  working  models  to  explain  tumor  resistance    to  classic  anX-­‐neoplasXc  agents  (i.e.  chemotherapy,  radiotherapy)  

a) quiescent - G0 state (leukemia)

b) high-level expression of:

- drug pumps (leukemia) - enzymes for DNA repair (brain cancer) - scavengers of ROS (breast cancer) - anti-apoptotic pathways

a) multi-potent progenitors: - high proliferation rates b) mature - differentiated cancer cells: - exposed to high intra-cellular concentrations of cytotoxic drugs - exposed to high levels of ROS (“reactive oxygen species”) - vulnerable to extensive DNA damage - sensitive to apoptosis

Classical anti-tumor agents (e.g. agents toxic to proliferating cells in the S or M phase of the cell cycle)

Examples:

- Vinca alkaloids - Anti-metabolites - Topo-isomerase inhibitors - Ionizing radiation

Cancer Stem Cell (CSC)

a) multi-potent progenitors (not self-renewing)

b) mature - differentiated cancer cells

Page 56: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Tumor is disrupted in architecture, but eventually

relapses driven by self-renewing cancer cells

Treatment targets a specific lineage of cells, not encompassing

all self-renewing cancer cells

ImplicaXons  of  the  CSC  model  for  the  design  and  evaluaXon  of  anX-­‐tumor  treatments    

“Targeted” therapies might be aimed at cell populations devoid of self-renewal capacity, leading to inconsequential clinical results.

Page 57: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Key  points  [summary  #1]    

1) tumor tissues are frequently heterogeneous in cell composition; this diversity: a) is not only genetic, but also epigenetic in origin; b) it often mirrors the physiological diversity of specialized cell types found their normal counterparts; c) can arise as the result of a multi-lineage differentiation process, reminiscent of a stem cell hierarchical system;

2) in tumor tissues, the capacity to form tumors upon transplantation is frequently restricted to a subset of cancer cells, operationally defined as “cancer stem cells”; the precise molecular identity of “cancer stem cells” is still under study, and probably evolves over time, during disease progression;

Page 58: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Key  points  [summary  #2]    

3)   analysis   by   gene-­‐expression   arrays   of   a   bulk   tumor’s  transcripXonal   profile   and   the   idenXficaXon   of   a   high  degree   of   similarity   with   a   gene-­‐expression   signature  characterisXc   of   “cancer   stem   cells”   is   usually   associated  with  a  more  aggressive  disease;    

4)   anX-­‐tumor   treatments   unable   to   target   and   eradicate  “cancer  stem  cell”  populaXons  are   likely  unable  to  achieve  long-­‐term  eradicaXon  of  tumor  Xssues.  

Page 59: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

“Not   everyone   accepts   the   hypothesis   of   cancerous   stem   cells.  SkepXcs   say   proponents   are   so   in   love   with   the   idea   that   they  dismiss  or   ignore  evidence  against   it.   […]  the  hypothesis  was  more  akin  to  religion  than  to  science.”  

 Gina  Kolata    “Scien+sts  Weigh  Stem  Cells’  Role  as  Cancer  Cause”  The  New  York  Times  (December  21,  2007)  

Final  remarks  

Page 60: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Suggested  readings  

•  Ramalho-­‐Santos  M.  and  Willenbring  M.              On  the  origin  of  the  term  “stem  cell”              Cell  Stem  Cell,  1,  35–38  (2007)  

•  Weinberg  R.A.              MulX-­‐step  Tumorigenesis            Chapter  11  -­‐  In:  The  Biology  of  Cancer  (2nd  ediXon),  439-­‐509  (2014)  

•  Rajendran  P.S.  and  Dalerba  P.            TheoreXcal  and  experimental  foundaXons  of  the  “cancer  stem  cell”  model.              Chapter  1  -­‐  In:  Cancer  Stem  Cells,  3-­‐16  (2014)  

•  Dalerba  P.,  Clarke  M.F.,  Weissman  I.L.,  Diehn  M.              Stem  Cells,  Cell  DifferenXaXon  and  Cancer            Chapter  7  -­‐  In:  Abeloff’s  Clinical  Oncology  (5th  ediXon),  98-­‐107  (2013)  

Page 61: StemCells and Cancer - Columbia University · Breast Cancer (MMTV-Wnt-1) Cho et al., Stem Cells, 26:364-371 (2008) Skin Cancer (squamous cell carcinoma) Malanchi et al., Nature, 452:650-653,

Conflict  of  interest  disclosures    

•  Some   of   the   “single-­‐cell   genomics”   techniques   described   in   this  presentaXon  have  been  patented  by  my  former  academic  insXtuXon  (Stanford   University)   and   licensed   to   a   start-­‐up   pharmaceuXcal  company   (Quan+cel   Pharmaceu+cals   Inc.).   As   a   result   of   the  licensing   agreement   negoXated   by   Stanford   University,   I   was  awarded  an  aliquot  of   restricted  stock   in   the  company.  Aside   from  this,  I  have  no  other  financial  interests  in  the  company  (e.g.  no  paid  consultant  agreements,  no  industry-­‐sponsored  research  grants).