stephen j. mojzsis - mojzsis research group, cu...

222
Precambrian Ophiolites and Related Rocks Edited by Martin J. van Kranendonk, R. Hugh Smithies and Vickie C. Bennett Developments in Precambrian Geology, Vol. 15 (K.C. Condie, Series Editor) 1 © 2007 Elsevier B.V. All rights reserved. DOI: 10.1016/S0166-2635(07)15075-1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 Chapter 7.5 SULPHUR ON THE EARLY EARTH STEPHEN J. MOJZSIS Department of Geological Sciences, Center for Astrobiology, University of Colorado, 2200 Colorado Avenue, Boulder, CO 80309-0399, USA 7.5-1. INTRODUCTION On the young Earth, the surface zone of the planet was shaped by physical and chem- ical interactions between the crust, hydrosphere, atmosphere and the emergent biosphere, on the geochemical cycles of the biologically important elements (H, C, N, O, P, S, Fe and others). An explicit record of the early co-evolution of the atmosphere and biosphere with the geosphere has been notoriously difficult to investigate. By its very nature the atmosphere is ephemeral, and the result has been that a direct record of its chemical evo- lution remained frustratingly out of reach. It is now reasonably well understood that the geochemical behaviour of the multiple sulphur isotopes are the best tool for investigations of the long term evolution of the surface system, and that they provide a uniquely powerful proxy for long-term changes in atmospheric chemistry and other key processes (Thiemens, 1999, 2006). The geochemistry of sulphur is complex. There is a long history of study on the topic so that a single review on the generalities of sulphur biogeochemistry on the early Earth cannot hope to cover all progress in this rapidly changing field (please see Ohmoto and Goldhaber (1997), Canfield and Raiswell (1999), Canfield (2001), Farquhar and Wing (2003) and Seal (2006) for comprehensive reviews). Instead, the goal here will be to out- line several key aspects of sulphur that are of particular interest to studies of Earth’s oldest rocks (limited to before ca. 3.5 Ga), and to make the case that a comprehensive program of retrospective multiple sulphur isotope analyses is required on samples for which prior 34 S/ 32 S data have been compiled (Strauss, 2003). When one attempts to review processes operative on the early Earth, global environ- mental aspects unique to the young planet need to be acknowledged. In the first billion years, higher crustal heat flow and enhanced mantle outgassing, widespread (and rapid?) crustal recycling and considerable changes in continental volume, and the emergence of life and its subsequent take-over of several important aspects of chemistry of the surface zone, were all likely governing factors that influenced the various sub-cycles of the global sulphur cycle schematically represented in Fig. 7.5-1. Furthermore, exogenous processes unique to the young planet were also important, even if they are more difficult to account for in physical models. These processes included a higher frequency of asteroid and comet

Upload: buithuan

Post on 10-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Precambrian Ophiolites and Related RocksEdited by Martin J. van Kranendonk, R. Hugh Smithies and Vickie C. BennettDevelopments in Precambrian Geology, Vol. 15 (K.C. Condie, Series Editor) 1© 2007 Elsevier B.V. All rights reserved.DOI: 10.1016/S0166-2635(07)15075-1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Chapter 7.5

SULPHUR ON THE EARLY EARTH

STEPHEN J. MOJZSIS

Department of Geological Sciences, Center for Astrobiology, University of Colorado,2200 Colorado Avenue, Boulder, CO 80309-0399, USA

7.5-1. INTRODUCTION

On the young Earth, the surface zone of the planet was shaped by physical and chem-ical interactions between the crust, hydrosphere, atmosphere and the emergent biosphere,on the geochemical cycles of the biologically important elements (H, C, N, O, P, S, Feand others). An explicit record of the early co-evolution of the atmosphere and biospherewith the geosphere has been notoriously difficult to investigate. By its very nature theatmosphere is ephemeral, and the result has been that a direct record of its chemical evo-lution remained frustratingly out of reach. It is now reasonably well understood that thegeochemical behaviour of the multiple sulphur isotopes are the best tool for investigationsof the long term evolution of the surface system, and that they provide a uniquely powerfulproxy for long-term changes in atmospheric chemistry and other key processes (Thiemens,1999, 2006). The geochemistry of sulphur is complex. There is a long history of study onthe topic so that a single review on the generalities of sulphur biogeochemistry on the earlyEarth cannot hope to cover all progress in this rapidly changing field (please see Ohmotoand Goldhaber (1997), Canfield and Raiswell (1999), Canfield (2001), Farquhar and Wing(2003) and Seal (2006) for comprehensive reviews). Instead, the goal here will be to out-line several key aspects of sulphur that are of particular interest to studies of Earth’s oldestrocks (limited to before ca. 3.5 Ga), and to make the case that a comprehensive programof retrospective multiple sulphur isotope analyses is required on samples for which prior34S/32S data have been compiled (Strauss, 2003).

When one attempts to review processes operative on the early Earth, global environ-mental aspects unique to the young planet need to be acknowledged. In the first billionyears, higher crustal heat flow and enhanced mantle outgassing, widespread (and rapid?)crustal recycling and considerable changes in continental volume, and the emergence oflife and its subsequent take-over of several important aspects of chemistry of the surfacezone, were all likely governing factors that influenced the various sub-cycles of the globalsulphur cycle schematically represented in Fig. 7.5-1. Furthermore, exogenous processesunique to the young planet were also important, even if they are more difficult to accountfor in physical models. These processes included a higher frequency of asteroid and comet

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 1aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

2 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-1. Schematic representation of global geochemical cycles of sulphur and the averagesulphur isotope compositions of important reservoirs in the Earth system. The interface betweenthe geosphere and hydrosphere is dominated by exchange of sulphur between seawater and rocksby fluids, weathering, dissolution and re-precipitation. Sulphide will precipitate with an ade-quate supply of dissolved iron (and other metals) and can be abiogenic or biogenic. Sulphurmay also be sequestered in evaporates, brine pools or crustal fluids as sulphate, sulphide or ele-mental sulphur. Chemical weathering is the principal mechanism that returns sulphur from rocks andsediments on land to the hydrosphere. Hydrothermal activity and subduction transports sulphur backto the geosphere. Submarine dissolution of basalt and other rocks also returns S to the hydrosphere.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 2aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-1. Introduction 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-1. (Continued.) Volcanism injects sulphur gases to the hydrosphere and atmosphere. Vol-canic gases in the atmosphere can become transformed by light-driven reactions and returned tosediments from aerosol deposition. Subduction will bring all components back to the mantle. Ex-traterrestrial input is minimal, but could be important in a few cases of large impacts.

impacts, an enhanced rate of extraterrestrial dust delivery compared to present, as well asreduced solar luminosity (but higher ultraviolet flux) from the young Sun.

However, there exists a further and yet more fundamental limitation to what can beknown about the earliest Earth. A geologic record of the interactions outlined in Fig. 7.5-1has apparently been lost for the first ca. 750 My due to the effective recycling of all crustexcept for remnant ca. 4.4–3.8 Ga zircons contained in younger sediments (see Cavosieet al., this volume). Sedimentary rocks �3.7 Ga in age, which could potentially preservea direct sample of the ancient sulphur cycle, occur only as rare and deformed enclavesin high-grade Archaean metamorphic granitoid-gneiss terranes. Nevertheless, given recentadvances in instrumental techniques, experimental and observational geomicrobiology andmolecular biochemistry, chemical oceanography, and access to an increasingly large sam-ple base of ancient rocks, our knowledge of early Earth environments has accumulated tothe point where it is now perhaps worthwhile to revisit what we know of the interactionsbetween the geochemical cycles of sulphur at that time. Specifically:(1) Sulphur comes in four stable isotopes of well-defined relative abundance. What is the

origin of sulphur to the Earth? How do changes occur to the abundance ratios of thesulphur isotopes? What is the significance of mass-independent isotope fractionationas opposed to ‘normal’ mass-dependent effects in the early Earth record?

(2) The infall of meteoritic and cometary debris to the planets was greater in the first billionyears than at present. What contributions could extraterrestrial sources have made tothe global geochemical sulphur cycle in the first billion years? Could a trace of thisextraterrestrial material remain in the oldest sedimentary rocks?

(3) Subsequent to primary outgassing, the atmosphere underwent chemical changes. Whatclues can sulphur provide to the composition and chemical evolution of the atmosphereprior to about 3.5 Ga?

(4) Sulphur compounds are central to many fundamental biochemical processes. Whatrole could sulphur have played in the establishment of the biosphere? Could sulphurisotope fractionations serve as a robust isotopic biomarker in highly metamorphosedrocks?

(5) All rocks older than about 3.5 Ga have been strongly transformed by metamorphism.How well is the sulphur isotope record preserved in the oldest rocks?

(6) Banded iron-formations (BIFs) are the most common sedimentary rock preserved fromthe early Archaean, but their derivation remains enigmatic. What can sulphur isotopesinform us of the origins of the BIFs?

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 3aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

4 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

7.5-2. ORIGIN OF SULPHUR TO THE EARTH

The elemental inventory of the planets was determined by the composition of the neb-ular gas and dust from which the solar system formed. In stars greater than 8 times solarmass, and at temperatures near 1.5 × 109 K, oxygen fusion begins as a result of the slow(s-process) fusion of neutrons (n), protons (p) and 4He nuclei (α) to a variety of seed nuclei(Cameron, 1979; Woosley and Weaver, 1986). In this scenario, the various sulphur isotopescan be produced from the following important oxygen-burning nuclear reactions:

16O(16O, γ

) → 32S; 32S(4He, γ

) → 36S; 32S(n, γ ) → 33S; 33S(n, γ ) → 34S

Here, it can be seen how the major oxygen-oxygen reaction 16O(16O, γ ) → 32S yieldsthe abundant 32S isotope and energy. Neutrons evolved from side reactions such as16O(16O, n) → 31S can result in further s-processes and the formation of the minor isotopes(Seeger et al., 1965). As a result of these processes, there are four stable isotopes of sulphurwhich have the following relative abundances as defined by the meteorite sulphur standardCañon Diablo troilite (Hultson and Thode, 1965; see Ding et al., 2001 and Beaudoin et al.,1994):

32S = 95.02%; 33S = 0.75%; 34S = 4.21%; 36S = 0.02%

The high relative abundance of 32S can therefore be understood from the fact that it isdirectly synthesized from O-burning reactions. Sulphur is an exceptionally stable element.It has an even atomic number (Z = 16) and the nuclide 32S has both a mass number (A)

and a neutron number (N) that are multiples of 4 (the mass of the He nucleus), so thatA = Z + N = 16 + 16 + 32. Since the minor S isotopes are more closely tied to ratesand types of various s-process reactions which also include synthesis from 4He-fusion withthe stable isotopes of Si (28Si, 29Si and 30Si), the relative abundances of 33S, 34S and 36Sare much lower. This inventory of the different sulphur isotopes was imparted to the solarnebula at some time prior to the accretion of the planets.

7.5-2.1. Primordial Sulphur

The formation time of Earth and other planets, and the elemental inventory of Earth, hasbeen deduced in part on the basis of comparison with primitive meteorites (type 1 carbona-ceous chondrites; CI) and the solar photosphere. The average compositions of CI mete-orites and the Sun have been compiled by numerous workers (e.g., Anders and Grevesse,1989), who showed that CI:solar photosphere displays a nearly 1:1 correspondence in sul-phur content normalized to Si, so that bulk meteoritic sulphur is probably a reasonablygood approximation for bulk planetary sulphur isotopic compositions. Primitive carbona-ceous chondrites contain approximately 5.4 wt% sulphur (Dreibus et al., 1995) and S is thetenth most abundant element in the solar system (Anders and Ebihara, 1982). Sulphur ranksas eighth in abundance for the whole Earth (silicates + core; Morgan and Anders, 1980)and the Bulk Silicate Earth concentration is about 250 ppm (McDonough and Sun, 1995).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 4aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-2. Origin of Sulphur to the Earth 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

A summary of the various concentrations of sulphur and sulphur-containing compounds inthe terrestrial reservoirs in the atmosphere, hydrosphere, biosphere and geosphere is pro-vided in Table 7.5-1. The sulphur isotopic composition of the bulk Earth is assumed to beclose to that of the major S-phases of iron meteorites. Because the record of sulphur isgeochemical, a brief review of the stable isotope geochemistry of sulphur is warranted.

7.5-2.2. Sulphur Isotope Fractionations

For low atomic number elements like sulphur, the mass differences between the various iso-topes are large enough for many physical, chemical, and biological processes or reactionsto change the relative proportions of the isotopes (reviewed in Hoefs (1997)). In normalphysical-chemical interactions on Earth, two isotope effects – equilibrium and kinetics –result in isotope fractionation. Due to these fractionation processes, products often developunique isotopic compositions (normally expressed as ratios of heavy to light isotopes) thatmay be indicative of their source, or of the processes that formed them (Faure, 1986, andreferences therein). Reaction rates depend on the ratios of the masses of the isotopes andtheir zero-point energies. As a general rule, bonds between the lighter isotopes are severalcalories less than bonds between heavy isotopes. The lighter isotopes tend to react morereadily and become concentrated in the products, and the residual reactants tend to becomeenriched in the heavy isotopes. The magnitude of the fractionation strongly depends on thereaction pathway utilized and the relative energies of the bonds broken and formed by thereaction. Slower reactions (for instance those proceeding at lower temperatures) tend toshow larger isotopic fractionation effects than faster ones.

Equilibrium isotope-exchange reactions involve the redistribution of isotopes amongvarious chemical species or compounds. During equilibrium reactions, the heavier iso-topes preferentially accumulate in the compound with the higher energy state. Kineticisotope fractionations occur when systems are out of isotopic equilibrium, such that for-ward and back reaction rates are not identical. When reactions are unidirectional, reactionproducts become physically isolated from the reactants. Biological processes are kineticisotope reactions that tend to be unidirectional. Both diffusion and metabolic discrimina-tion against the heavier isotopic species occurs because of the differences in zero-pointenergies of the different isotopes. This can result in significant fractionations between thesubstrate (isotopically heavier) and the biologically mediated product (isotopically lighter).Many reactions can take place either under purely equilibrium conditions or be affected byan additional kinetic isotope fractionation, and metabolic (oxido-reduction) reactions willpreferentially select molecules with lighter isotopes (Schidlowski et al., 1983).

To follow the various isotopic fractionation pathways, partitioning of stable isotopes be-tween two substances A and B is expressed by use of the isotopic fractionation factor (α):

α(A − B) = RA/RB

where R is the ratio of the heavy to light isotope (e.g., 34S/32S or 33S/32S). Values for α

tend to be close to 1.00 so that differences in isotopic compositions are usually expressed inparts-per-thousand, or ‘per mil’ (�). Kinetic fractionation factors are typically described

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 5aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

6C

hapter7.5:

Sulphuron

theE

arlyE

arth

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030

3131

3232

3333

3434

3535

3636

3737

3838

3939

4040

4141

4242

4343

Table 7.5-1. Average concentration of sulphur in various reservoirs on Earth (values are in 10−6 g/g unless otherwise indicated)

Reservoir Reduced SH2S

Elemental S

S2 (S0, S8)

Oxidized SSO2 [SO]

Sulphate

SO42−

OtherOCS

TotalS

Atmospherea 3–10 × 10−5 ∼1.5 × 10−5 2–9 × 10−5b – 5 × 10−4 <1 × 10−3

Biosphere – – – – – 1000c

HydrosphereRiversd – – – 11.5 – –Oceans – – – 2784e – ∼2800f

Shale – – – – – 2400g

Granite – – – – – 260h

Mafic rocks andUltramafics

– – – – – ∼1000–4000i

Volcanic gasesj 0.057–3.21 3 × 10−4–1.89 0.006–47.7 – 2 × 10−5–0.08[0.03–0.06]

Comet particles 95480k

IDPs 41664l

Notes:apresent troposphere (Warneck et al., 1988); bas CS2; cdry weight of tissue (Berner and Berner, 1996 – citing Zinke, 1977); Schlesinger, 1997); dStumm and

Morgan (1996); eMillero and Sohn (1992); fLi (1991); gTurekian and Wedepohl (1961); hMason and Moore (1982); iWedepohl and Muramatsu (1979);jSymonds et al. (1994) values expressed in mol%; kKissel et al. (1986); lSchramm et al. (1988).

dpg15

v.2007/05/23

Prn:4/06/2007;

13:56

F:dpg15035.tex;

VTEX/JOL

p.6

aid:

15075

pii:

S0166-2635(07)15075-1

docsubty:

REV

7.5-2. Origin of Sulphur to the Earth 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

in terms of various enrichment or discrimination factors and these are defined in variousways by different researchers (see O’Neil, 1986).

7.5-2.3. Mass-Dependent Fractionation of Sulphur Isotopes

The numerous paths of sulphur between the different reservoirs shown in Fig. 7.5-1 of-ten involve changes in oxidation states that are modulated through both abiotic and bioticequilibrium and kinetic reaction processes, and the different degrees of S-isotope fraction-ations depend on these modes of isotopic exchange. In order to track these fractionationsin nature, sulphur isotope compositions of substances are expressed with the conventionalδ notation as:

δ34SCDT(�) = (R34

sample/R34CDT − 1

) × 1000

δ33SCDT(�) = (R33

sample/R33CDT − 1

) × 1000,

where R34 = 34S/32S, R33 = 33S/32S and the reference standard is the pyrrhotite end-member phase troilite (FeS) from the Cañon Diablo meteorite (CDT; see Beaudoin et al.,1994). Similarly, this expression holds for δ36S, however the value has not usually beenreported because the trace abundance of 36S makes the measurement difficult with nor-mal mass-spectrometric techniques (e.g., Hulston and Thode, 1965; Hoering, 1989; Gaoand Thiemens, 1989). As reviewed elsewhere (Mojzsis et al., 2003; Farquhar and Wing,2003), most conventional sulphur isotope studies omitted the minor isotope 33S with theview that there would be no new information conveyed by the measurement of 33S/32S(cf. Hoering, 1989; Lundberg et al., 1994). This is because normal physical, chemical,or biological processes fractionate isotopes with predictable mass-dependent behaviour(Urey, 1947; Bigeleisen and Mayer, 1947). In other words, on sulphur three-isotope plotsof [(33S/32S)/(34S/32S)] or [(36S/32S)/(34S/32S)], the relative mass differences of the iso-topomers are such that variations in δ33S and δ33S ought to be correlated with those in δ34S.Mass-dependent fractionation laws arise from the kinetic and equilibrium reactions thatfractionate sulphur in approximate proportion to their relative mass difference. Becausethe mass difference between 33S and 32S is about half of that between 34S and 32S, anymass-dependent isotope effects in δ33S would be about half those in δ34S. Mass-dependentfractionation (MDF) processes lead to isotopic compositions that can be described by theequation:

(33S/32S)/(33S/32S

)CDT = [(34S/32S

)/(34S/32S)

CDT

]λ.

In this treatment, linear regression in (x, y) with y = ln(33S/32S) and x = ln[(34S/32S)/

(34S/32S)CDT] has slope λ. Theoretical analyses of equilibrium MDF laws define slopesof λ ≈ 0.515 (Bigeleisen and Mayer, 1947; Hulston and Thode, 1965). York regressionsthrough large datasets from sulphur standards measurements yield values λ = 0.515 ±0.005 (Farquhar et al., 2000a, 2000b, 2000c; Mojzsis et al., 2003; Farquhar and Wing,2003; Ono et al., 2003; Hu et al., 2003; Papineau et al., 2005, 2006; Papineau and Mojzsis,2006; Cates and Mojzsis, 2006; Whitehouse et al., 2005; Ono et al., 2006, 2007; Papineau

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 7aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

8 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

et al., 2007). Empirical determinations of 33S/32S are obtained by fixing λ at 0.515 with(34S/32S)V-CDT = (22.6436)−1 (Ding et al., 2001), so that regressions through standardsdata with fixed λ result in intercepts that equal ln[(33S/32S)V-CDT]. This yields (33S/32S)CDTvalues = (126.3434)−1, and with the thousands of standards measurements reported thusfar, mass-dependent values have been narrowly defined about [(34S/32S)/(33S/32S)]CDT =0 ± 0.1�(2σ).

Different modes of mass-dependent fractionations can arise from different kinetic andequilibrium effects (Bigeleisen and Wolfsberg, 1958). What is little-discussed but germaneto sulphur isotope geochemistry is that the scatter often seen in [(34S/32S)/(33S/32S)] datacan deviate slightly from orthodox mass-dependency because different slopes in λ mayresult from these different mass-dependent modes (e.g., Young et al., 2002) captured inthe compositions of natural standards. In light of this observation, Papineau et al. (2005)argued that MDF trajectories on a three-isotope plot should be projected as a band thatencompasses the different mass-dependent laws, rather than as a simple ‘terrestrial (mass-)fractionation line’. Based on this analysis, the width of the York-MDF band is defined asthe standard deviations in y about the fixed-slope York regression through all standards in(x, y)-space with a slope λ = 0.515 ± 0.005 when transformed to δ34SCDT vs δ33SCDTspace. This scrutiny of the various modes of mass-dependent sulphur isotope fractionationsin the three-isotope system yields external errors in the range of ±0.20�. Other, moredetailed studies that explore the quadruple sulphur isotope system at high resolution withlaser fluorination methods is reviewed in Ono et al. (2003, 2006, 2007).

Admittedly, there remains considerable room for improvement in these measurementsand it is expected that when synthetic sulphur standards become available, the externalerrors will decrease and finer details of sulphur isotope fractionations will be revealed.Theoretical treatments of the MDF boundaries within the range of possible MDF typesshow that they plot as shallow curves, and the York MDF-bandwidth (approximately±0.1�, 2σ in the theoretically best possible case) increases slightly with absolute valuesof (δ33S/δ34S)CDT (Fig. 7.5-2). However, some unusual photolytic atmospheric reactionsthat occur in the gas-phase, and some nuclear effects in space, produce sulphur that signif-icantly deviates from mass-dependent fractionation laws in what has come to be known as‘mass-independent fractionation’.

7.5-2.4. Mass-Independent Fractionation of Sulphur Isotopes

In order to better grasp the significance of mass-independent sulphur isotope effects cap-tured in the geologic record of the early Earth, it is worthwhile to briefly summarise theinitial discovery of this phenomenon in the oxygen isotopes. Mass-independent fraction-ation (MIF) behaviour of stable isotopes was found in the oxygen isotopic compositions(16O, 17O, 18O) of carbonaceous meteorites (Clayton et al., 1973). In extensive work since,Clayton and others have shown that on a three-isotope oxygen plot1, anhydrous miner-als in carbonaceous meteorites lie along a line of slope of +1 (Fig. 7.5-3) instead of a

1(δ17O vs δ18O; where δ1xO = ((1xO/16O)sample/(1xO/16O)V-SMOW − 1) × 1000�, x is either 7 or 8 and

V-SMOW is the Vienna standard mean ocean water).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 8aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-2. Origin of Sulphur to the Earth 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-2. Three-isotope plot (δ33S vs δ34S) for various sulphide standards that are used to definethe York-MDF bandwidth. For clarity, the error bars for the individual measurements have beenomitted (from Papineau et al., 2005).

slope of approximately +0.5 expected to define normal mass-dependent isotope effects onEarth. The initial interpretation that nucleosynthetic processes produced mass-independentisotopic signatures was re-visited by Thiemens and Heidenreich (1983) who showed ex-perimentally that the origin of MIF oxygen isotopes was likely photochemical (Fig. 7.5-4).Photolysis of diatomic oxygen under ultraviolet radiation produces MIF oxygen isotopesin the residual molecular oxygen (O2) and in the product ozone (O3). Fig. 7.5-4 definesa theoretical mass fractionation (band), which is the regime wherein all O-isotope MDFprocesses plot according to the equation:

�17O = 1000 ×{(

δ17O

1000+ 1

)−

(δ18O

1000+ 1

)λ}.

In this case, �17O is the permil deviation from mass-dependent fractionation and λ repre-sents the slope, which expresses the mass-dependent fractionation relationship betweenδ17O and δ18O (approximately δ17O = 0.52 × δ18O). Mass-dependent fractionationprocesses result in isotopic compositions that have a �17O of 0�, while mass-independentprocesses that arise from ultraviolet photolysis will result in �17O �= 0�, or significantdeviation from the mass-dependent fractionation band. In Fig. 7.5-4, product ozone (O3)from the photolysis of molecular oxygen (O2) has a positive �17O, which means that it issignificantly more enriched in 17O than it would if the fractionation process was purely

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 9aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

10 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-3. Three-isotope plot (δ17O vs δ18O) of anhydrous minerals in carbonaceous meteoritesshowing MIF oxygen isotopes (from Clayton et al., 1973).

mass-dependent. The isotopic composition of residual O2 also shows MIF in isotopicmass-balance and has a negative �17O, which is a depletion of 17O relative to isotopic com-positions characteristic of mass-dependent processes. The slope of the data in Fig. 7.5-4 isclose to +1, while the slope for MDF processes is about +0.5. These results convincinglydemonstrated that UV photochemical reactions can lead to products and residual reac-tants that exhibit mass-independent fractionation. Note that the range of δ18O and δ17Oin Fig. 7.5-4 for the photochemical experiments is different than that observed in car-bonaceous meteorites (Fig. 7.5-3). This could mean that photochemical reactions are moreefficient in a controlled experiment and/or that isotopic dilution occurred from mixingmass-independently fractionated components within dominantly mass-dependently frac-tionated oxygen reservoirs. Further progress in our understanding is hampered by the factthat the actual mechanism(s) for mass-independent fractionation have yet to be fully elu-cidated with quantum-chemical theory (Thiemens, 1999; Mauersberger et al., 1999; Gaoand Marcus, 2001; Deines, 2003).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 10aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-2. Origin of Sulphur to the Earth 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-4. Three-isotope plot (δ17O vs δ18O) for oxygen isotopes in product O3 and residual O2after irradiation of O2 with ultraviolet light from electrical discharge (from Thiemens, 1999).

Sulphur is isoelectronic with oxygen2 and has also been found to display mass-independent isotope fractionation. Multiple sulphur isotope data are reported using theconventional notation as:

�33S = 1000 ×{(

δ33S

1000+ 1

)−

(δ34S

1000+ 1

)λ}

�36S = 1000 ×{(

δ34S

1000+ 1

)−

(δ36S

1000+ 1

)λ},

where �33S and �36S are the permil deviations from mass-dependent isotopic fraction-ation processes, δ3xS = ((3xS/32S)sample/(

3xS/32S)CDT − 1) × 1000� where x = 3, 4or 6, and λ represents the mass-dependent fractionation relationship between δ33S andδ34S (δ33S = 0.52 × δ34S) or between δ36S and δ34S (δ36S = 1.9 × δ34S). Like oxygen

2Only mass-dependent fractionations have been reported for Selenium (Johnson and Bullen, 2004). Telluriumdoes not appear to display MIF, although searches have been conducted (Fehr et al., 2005).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 11aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

12 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-5. Three isotope plots (δ33S vs δ34S) showing (a) experimental results with an ArF excimerlaser on SO2 gas and (b) Precambrian sedimentary sulphide and sulphate multiple sulphur isotopecompositions (from Farquhar et al., 2001).

�17O, sulphur �33S and �36S values ∼0� result from MDF processes such as kinetic,equilibrium and oxido-reduction reactions. Laboratory experiments have shown that mass-independently fractionated sulphur isotopes can arise in gas-phase reactions with startingmixtures of SO2, H2S and CS2 (Zmolek et al., 1999; Farquhar et al., 2000a, 2000b, 2001).Results from photolysis experiments with an ArF excimer UV laser at 193 nm in a SO2

gas are shown in Fig. 7.5-5(a). These experiments documented MIF sulphur isotopes inproduct S0, SO4

2− and residual SO2. The �33S values of these S-phases are positive forproduct elemental sulphur so that they plot above the mass-dependent fractionation band,and negative for product sulphate (i.e., they plot below the MDF band).

The MIF behaviour of three sulphur isotopes (32S, 33S and 34S) in photochemical ex-periments resembles multiple sulphur isotopes from Precambrian sedimentary sulphidesand sulphates as seen in Figs. 7.5-5(b) and 7.5-6. Similar to the results for oxygen iso-topes, the main difference between the plots is that the range of δ33S and δ34S values islarger in the photochemical experiments (tens of permil) and much smaller (a few permil)for natural samples that exhibit mass-independent behaviour such as found in pre-2.45 Gasedimentary sulphides and sulphates. As for the oxygen case discussed above, this may

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 12aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-2. Origin of Sulphur to the Earth 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-5. (Continued.)

arise from more efficient photochemical reactions in controlled experiments and/or fromisotopic dilution occurring in natural systems.

Barring further detailed experimental verification from a wider range of UV wave-lengths (Lyons, 2006), data from ancient sulphur are consistent with the view that shortwavelength solar radiation (i.e., λ < 220 nm) penetrated deeply in the early terrestrialatmosphere in the absence of an effective ozone screen to lead to significant MIF in thegeologic record (Farquhar et al., 2001). It is interesting to note that the higher extreme UV(EUV) output observed for young solar-type stars (Wood et al., 2002) requires that in theearly Earth’s atmosphere the incident solar EUV flux fell from ∼30× to approximately 4×present between 4.4 to 3.5 Ga (Zahnle, 2006). The evolution in the incident UV flux hasyet to be accounted for in our models for the generation of mass-independent fractionationof sulphur isotopes in the ancient atmosphere. Mass-independently fractionated signaturesin early Precambrian sedimentary sulphides and sulphates could be coupled to results ofexperiments that explore the magnitude of MIF under specific atmospheric regimes andUV intensities at different wavelengths. These data could then be used to trace the chemi-cal evolution of the atmosphere in relation to the long-term interaction of the surface zonewith the evolving young Sun.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 13aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

14 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-6. Plot of �33S vs δ34S for sulphides and sulphates from pre-2.45 Ga samples (triangles)with data from samples younger than ca. 2 Ga (from Farquhar and Wing, 2003). The field of isotopecompositions for barite and hydrothermal sulphide (volcanogenic massive sulphide ‘VMS’ deposits)is shown. Data for pre-2.45 Ga samples tend to plot with an aspect ratio similar to the 193 nmphotolysis array of SO2 and SO (discussed in Farquhar et al., 2001; Pavlov and Kasting, 2002).

It is thought that the early Earth experienced significant mass input from extraterrestrialsources from the sweep-up of remnant debris from solar system formation. Therefore, itmakes sense to explore whether extraterrestrial sources of sulphur could have been impor-tant to the earliest sulphur cycle.

7.5-3. EXTRATERRESTRIAL INPUTS TO THE SULPHUR CYCLE ON THE EARLYEARTH

Dust delivery has always been important to planets, and interplanetary dust was likelya major contributor to the surface inventory of biogenic elements at the formation andearly evolution of terrestrial planets (Maurette et al., 2000; Pavlov et al., 1999; Martyand Yokochi, 2006). Micrometeorites and interplanetary dust particles dominate the con-temporary extraterrestrial matter flux to Earth on the order of 103–104 tons/yr (Love and

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 14aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-3. Extraterrestrial Inputs to the Sulphur Cycle on the Early Earth 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Brownlee, 1993), or about 2–3 orders of magnitude above the calculated present-day me-teorite flux (Bland, 2005).

In the last decade evidence has emerged that many (or most) stars are born with cir-cumstellar disks with abundant dust and rocky debris (Habing et al., 2001; Carpenter etal., 2005). The solar system’s original disk became severely depleted by planetesimal ac-cretion and by planet formation within about the first 100 My (Rieke et al., 2005) haveshown that some debris disk systems observed around young (<1 Gyr old) stars by theSpitzer telescope look brighter than others of similar age and may represent dust gener-ated from evaporation of comets and/or planetary-scale bombardment events (Kenyon andBromley, 2005) well after the primary phase of planetary accretion should have ended (Be-ichman et al. 2005; Rieke et al., 2005; Meyer et al., 2006). If cometary dust productionrates from comet Hale-Bopp (Bocklée-Morvan et al., 2004) are any measure of the com-position of the early disk dust for our solar system, then the combined sulphur speciesmeasured for coma dust (OCS, CS2, H2CS) amounts to a mere ∼0.65% of the comet’s wa-ter content. At first glance, it appears that late implantation of extraterrestrial sulphur fromdust would have been a relatively minor player in the chemistry of early planetary surfacesand atmospheres. Since some meteorite components show mass-independently fraction-ated sulphur isotopes, it is germane to explore whether these inputs were at all significantto the post-primary accretion sulphur budget of the early Earth.

7.5-3.1. Extraterrestrial Dust

Interplanetary dust particles compositionally resemble the CM type carbonaceous chon-drites (Kurat et al., 1994). Murchison (CM) meteorite contains 3.3% S (Wasson andKallemeyn, 1988), and has 34S/32S and 33S/32S values comparable to terrestrial crust andmantle (Gao and Thiemens, 1993a) with average �33S = 0.013 ± 0.054�. These valuesare well within the terrestrial mass-dependent field of the sulphur isotopes. Other primi-tive meteorites such as Orgeuil (CI), considered by some to be a representative of Jupiterfamily comet compositions (Gounelle et al., 2006), contains upwards of 5% total sulphur.Orgeuil has 34S/32S and 33S/32S values slightly enriched in the heavier isotopes comparedto Murchison, and preserves an average �33S value of −0.005� (Gao and Thiemens,1993a). The majority of meteoritic materials that have been analysed so far for the minorsulphur isotopes indicate that inhomogeneities in S isotope compositions possibly relatedto nucleosynthetic, spallation reactions on Fe, or gas-phase (ion-molecule) photolytic re-actions in space, were mixed-in for the most part in the early solar system (Hulston andThode, 1965; Gao and Thiemens, 1993a, 1993b). Values of �33S not equal to 0� havebeen found in a class of igneous meteorites called the ureilites (Farquhar et al., 2000b), inorganic residues from carbonaceous chondrites (Cooper et al., 1997), in the acid-resistant‘phase Q’ of the Allende meteorite (Rees and Thode, 1977), in various phase separates ofchondrite (Rai and Thiemens, 2007) as well as achondrite (Rai et al., 2005) meteorites.Greenwood et al., 2000a) raised the possibility that the increased rates of extraterrestrialmatter input to the planets of the early solar system from later bombardments could haveimplanted heterogeneous distributions of the sulphur isotopes to the early surface.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 15aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

16 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

7.5-3.2. Sulphur and the Late Heavy Bombardment

We have no direct measure of the influx of extraterrestrial dust to Earth before about 3.85Ga during the so-called ‘late lunar cataclysm’ or ‘late heavy bombardment’ (Tera et al.,1974; Ryder, 1990). Hartmann et al. (2000) calculated that the total mass of impactors tothe Moon at ca. 3.9 Ga was approximately 6 × 1021 g, and that the amount of mass ac-cumulated by the Moon in the 4.4–4.0 Ga timeframe was roughly equivalent to the massinflux that formed the major lunar basins during the late heavy bombardment (4.1–3.85 Ga;reviewed in Mojzsis and Ryder (2001)). Therefore, the total amount of dust accumulatedto the Moon during the Hadean could have been on the order of 1.2 × 1022 g. Severalstudies have attempted to acquire information on the rate of accumulation and intensity ofimpacts at the tail end of the bombardment epoch from the study of Earth rocks. Koeberland Sharpton (1988) searched for shock features in quartz from ∼3.7–3.8 Ga rocks fromIsua (West Greenland). Later, Koeberl et al. (1998, 2000) looked for impact shocked zir-cons from the same Isua rocks, and of the hundreds of crystals studied, none showed anyevidence of optically resolvable shock deformations (Koeberl, 2003). Mojzsis and Ryder(2001) and Anbar et al. (2001) could likewise find no unequivocal chemical evidence fromplatinum-group elements for the late heavy bombardment in sedimentary rocks with ages atleast to ∼3.83 Ga (Nutman et al., 1997; Manning et al., 2006). On the other hand, Schoen-berg et al. (2002) reported tungsten isotope anomalies in ca. 3.7–3.8 Ga paragneisses fromWest Greenland and Labrador (Canada) which they interpreted to be remnants of the latebombardment in younger materials. However, follow-up studies with platinoid elements,Cr and other isotopic systems (e.g., Frei and Rosing, 2005) could find no corroboratingevidence for cosmic materials in the Isua sediments (Koeberl, 2006). To further compoundthese difficulties, the various studies cited above explored rocks with formation times (ca.3.7–3.8 Ga) that likely did not overlap with the main period of late heavy bombardment tothe inner solar system (Kring and Cohen, 2002).

Since evidence for the bombardment epoch from terrestrial rocks remains elusive, allestimates of the role of extraterrestrial matter to the early Earth must be treated with cau-tion. Marty and Yokochi (2006) estimated the total range of all extraterrestrial material(including dust and other meteoritic debris) collected on Earth’s surface from 4.4–3.8 Gato have been in the range of 2.4–7.2 × 1023 g. With the average sulphur content of CMand CI meteorites provided above as a guide, this would amount to an accumulation ofabout 0.8–3.6 × 1022 g of extraterrestrial sulphur to the planet integrated over the first 600My Although significant when compared to the cumulative mass delivered to the Moon asprovided in Hartmann et al. (2000), this amount is still �1% of the total sulphur inven-tory for all sediments + seawater presently in the surface zone of the Earth (Holser et al.,1988). In terms of MIF sulphur, Farquhar et al. (2002) argued that bulk extracts of manydifferent meteorite classes indicate that �33S values are homogeneous and range between−0.01 and +0.04�. Earth’s mantle did not inherit S-isotope heterogeneities from its ownformation. It appears that terrestrial sulphur was dominantly indigenous to the Earth sinceprimary accretion ceased prior to ∼4.4 Ga and that extraterrestrial matter was, overall, arelatively minor contributor to the global sulphur cycle to the early Earth. This is important,

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 16aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-4. Sulphur and the Hadean Earth Surface State 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

because mass-independently fractionated sulphur isotopes documented in the oldest Earthrocks and minerals can with reasonable confidence be assigned an origin from terrestrialatmospheric reactions.

7.5-4. SULPHUR AND THE HADEAN EARTH SURFACE STATE

No terrestrial rocks have yet been found that yield ages older than ca. 4.03 Ga (Bowringand Williams, 1999). What we do know of the geochemical evolution of Hadean Earthcomes primarily from the study of pre-4.0 Gyr old Hadean detrital zircons shed in youngersediments captured in the Mount Narryer (Froude et al., 1983) and the Jack Hills (Comp-ston and Pidgeon, 1986) sedimentary belts in Western Australia (see Cavosie et al., thisvolume).

7.5-4.1. Surface Environments in the Hadean

A subset of Hadean zircons, which are up to 4.38 Gyr old (Harrison et al., 2005, 2006)are enriched in heavy oxygen (Wilde et al., 2001; Mojzsis et al., 2001; Peck et al., 2001;Cavosie et al., 2005, 2006; Trail et al., 2007). This observation, coupled with characteristictrace element patterns (Maas and McCulloch, 1991; Maas et al., 1992; Peck et al., 2001;Crowley et al., 2005) has provided mutually consistent evidence that an evolved rock cyclewas present within ∼150 My of the formation of the Moon (cf. Whitehouse and Kamber,2002; Nemchin et al., 2006; Coogan and Hinton, 2006). Detailed studies of Hadean zirconsfrom 176Hf/177Hf systematics show that large volumes of continental crust were presentthroughout the Hadean (Amelin et al., 1999; Harrison et al., 2005, 2006; cf. Valley, 2006).Zircon thermometry based on Ti contents of individual pre-4.0 Ga Jack Hills grains alsoshows that formation temperatures cluster narrowly around 680 ◦C (Watson and Harrison,2005). The simplest explanation for this result is that low-temperature wet minimum-meltconditions during granite genesis prevailed in Hadean melts that gave rise to the oldestzircons (Watson and Harrison, 2006). Studies of pre-4 Ga zircons now provide a ratherfirm foundation to arguments that water and a sustained atmosphere was present within thefirst 100 My of the formation of the solar system. In the absence of an actual rock recordfrom the first ∼500 My, what data for the earliest surface state might possibly be gleanedfrom sulphur isotopes?

7.5-4.2. Sulphide in Hadean Zircon

Some Hadean zircons contain inclusions of diverse minerals, but few studies have providedcomprehensive results bearing on identified inclusions in these samples (Maas et al., 1992;Cavosie et al., 2004; Crowley et al., 2005). In fact, zircons with noticeable inclusions areoften avoided during the selection process as an ion probe spot analyses that overlap in-clusions may affect data (e.g., Amelin et al., 1999). Individual Hadean zircons have beenshown to contain polyphase domains of albite, Ca-Al silicate, muscovite/quartz/Fe-oxide,

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 17aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

18 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-7. Optical micrographs of Hadean zircon sample JH992_CF01_88 from Mojzsis et al.(2001). The location of a Ni-rich pyrite inclusion is shown by the arrow. The multicollector ion mi-croprobe analysis area is indicated by the dashed oval (transmitted light micrograph at top, reflectedlight below).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 18aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-4. Sulphur and the Hadean Earth Surface State 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

abundant quartz, K-feldspar, and phosphates such as monazite, apatite and xenotime (Maaset al., 1992; Cavosie et al., 2004; Crowley et al., 2005). In these studies, it is important todistinguish between primary melt inclusions and secondary/exsolution products of zircon.Mineral inclusions encapsulated inside zircons are only of relevance to host rock charac-teristics if it is possible to show that they represent patches of melt now solid at normalsurface temperatures and specifically of magmatic origin. Such inclusions are often ovoidand chemically incompatible with zircon. For example, in sample JH992_88 from Mojzsiset al. (2001), a small (<10 µm diameter) Ni-rich pyrite inclusion was identified near thecentre of a 96% concordant 4.105 Ga zircon with igneous [Th/U]Zr values = 0.52 (Mojzsisand Harrison, 2002). This zircon has no visible alteration or cracks leading to or from theinclusion (Fig. 7.5-7). Zircon JH992_88 has δ18OVSMOW values from two separate analy-sis spots of +5.9 ± 0.7� and +6.3 ± 0.4� (reported in Mojzsis et al., 2001), which areslightly enriched in 18O compared to average crust and mantle oxygen (+5.5�; Eiler etal., 1997), but still within the field of I-type magmas (White and Chappell, 1977). Thesulphide contained ∼2 wt% Ni as determined by wavelength dispersive spectroscopy byelectron microprobe, which along with oxygen values, is consistent with a mafic- (or ultra-mafic?) origin for zircon and its inclusion (e.g., Fleet, 1987). Three separate measurementsof the multiple sulphur isotope composition of this sulphide were obtained following thetechniques described in Mojzsis et al. (2003). The δ34S values yield a narrow range of−8.1 to −10.1� (1σ uncertainties were ±0.17�); these values are lower in 34S/32S thanaverage MORB and mantle (Chaussidon et al., 1987) but comparable to those reportedfor hydrothermally altered oceanic crust sulphides (Alt, 1995). Two of the three �33S val-ues measured for the inclusion are within 1σ error of the York-MDF band (+0.5 ± 0.5�and −0.9 ± 1.2�), and the third has a slightly 33S-depleted value of −1.3 ± 0.7� (Ta-ble 7.5-2). The absence of resolvable �33S in 2/3 of the measurements may in part be aconsequence of the low S count rates for this minute sulphide inclusion. It is obvious thatfurther analyses of this kind are needed on larger sulphide inclusions in Hadean zirconwhen they can be found. Other sulphide inclusion studies in resistant mineral hosts such

Table 7.5-2. Sulphur isotope composition of sulphide inclusion in JH992_CF01_88 by in situ ionmicroprobe multicollection

spot 34S/32S ±1σ 33S/32S ±1σ

CF01_88@1 4.4640E–02 7.89E–06 7.9399E–03 5.53E–06CF01_88@2 4.4549E–02 7.60E–06 7.9464E–03 3.94E–06CF01_88@3 4.4603E–02 7.09E–06 7.9399E–03 9.28E–06

spot δ34SVCDT ±1σ δ33S ±1σ �33S ±1σ

CF01_88@1 −8.11 0.18 −5.53 0.70 −1.35 0.71CF01_88@2 −10.12 0.17 −4.71 0.50 0.50 0.52CF01_88@3 −8.92 0.16 −5.53 1.17 −0.93 1.18

Notes: zircon 207Pb/206Pb age (1σ) = 4105±11 Ma; [Th/U]Zr = 0.52; δ18OZr = +5.9±0.7� and +6.3±0.4�at two separate spots as reported in Mojzsis et al. (2001). Average 32S count rates were: 3.62E7 to 4.23E7 cps.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 19aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

20 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

as in diamonds (Chaussidon et al., 1987) have been used to draw conclusions about thenature of sulphur in the mantle as well as crust of the Archaean. For instance, Farquhar etal. (2002) reported the presence of resolvable �33S anomalies in Archaean eclogite-typediamonds from the Orapa kimberlite (Kaapvaal Craton, Botswana) and inferred from theseresults that atmospheric MIF sulphur was transferred to the mantle. If mass-independentlyfractionated sulphur isotopes are preserved in Hadean zircons, as hinted at by the singleanalysis that provided a slightly negative �33S composition, it may be possible in the fu-ture with a greatly expanded data set to place some general constraints on the couplingbetween Hadean mantle, crust and atmosphere.

It is interesting to note that in the conceptual model of Farquhar et al. (2002) for theearly Archaean sulphur cycle, sulphur dioxide expelled from volcanoes and transformedby ultraviolet radiation can be deposited to surface reservoirs as aerosols and ultimatelyrecycled into the mantle. In their schema, sulphate in oceanic crust accumulates uniformlynegative �33S values (Farquhar and Wing, 2003) which can become reduced to sulfide(biologically or thermo-chemically), subducted, and recycled into arc magmas (Fig. 7.5-8).

Fig. 7.5-8. A schematic model for sulphur cycles on the early Earth (from Mojzsis et al., 2003).The figure represents a passive margin environment, for a model of the possible contribution ofmass-independent sulphur to subduction products on the early Earth see Farquhar et al. (2002).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 20aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-4. Sulphur and the Hadean Earth Surface State 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-9. Changing CO2 levels in the Earth’s atmosphere over time expressed as both partial pres-sure of CO2 in bars (left), and against present atmospheric level (PAL; right). The grey shaded regionis the range of concentrations required to compensate for the fainter young Sun (Kasting, 1993).Other data points shown are reviewed in (Rollinson, 2007). The multiple sulphur isotopes provide astrong upper constraint on the limit of CO2 partial pressure to below 0.5 bar as far back as 3.83 Ga,and perhaps before 4.0 Ga (Cates and Mojzsis, 2007b). The same may be said for partial pressuresof methane, which had to be below the threshold necessary for haze formation (Pavlov et al., 2001a,2001b).

A key feature of these arguments is that the atmosphere must have been transparent toultraviolet and that an ozone UV shield was not present for MIF sulphur isotopes to be im-parted to crustal rocks (Farquhar and Wing, 2003). This is because ultraviolet absorption bythe Rayleigh scattering tail of the CO2 absorption spectrum at partial pressures that exceed∼0.5 bar would have blocked UV sufficiently (Shemansky, 1972) to stop the reactionsresponsible for mass-independent sulphur isotope fractionations (Farquhar et al., 2001).Under these conditions, and with most solar models which show that solar luminosity was∼70% of present day values, other greenhouse gases were required to keep the HadeanEarth from freezing over (Kasting, 1993). Abundant methane is the prime candidate for agreenhouse gas that supplemented water vapor and CO2 throughout the Hadean-Archaeanto have kept the Earth above the freezing point of water (Sagan and Mullen, 1972; Kasting,2005). Sagan and Chyba (1997) and Pavlov et al. (2001a, 2001b) suggested that photolysisof methane in the mesosphere by wavelengths shorter than 145 nm could have generatedan organic haze that served as an UV shield early in Earth’s history to stabilise ammonia. Ifhowever short wavelength UV sulphur dioxide photolysis accounts for the Archaean mass-

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 21aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

22 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

independently fractionated sulphur isotopes, data are inconsistent with the presence of ahigh-altitude UV shield, whether from ozone, dense CO2 or an organic haze (Fig. 7.5-9).

It may also be that the atmosphere was mostly transparent to UV for much of the Hadeanand the planet was cool (Zahnle, 2006), although the lack of evidence for glaciations olderthan ∼2.9 Ga (Young et al., 1998) apparently weakens this hypothesis.

7.5-5. SULPHUR AND THE EARLY ARCHAEAN ATMOSPHERE

Quantitative constraints on the composition of the Archaean-Proterozoic atmospherehave been attempted for many years based on investigations of redox-sensitive mineralsin the geologic record used as input parameters for model calculations. The prevailingview has been that free oxygen (O2) levels were substantially lower than present values,with estimates of pO2 � 10−2 present atmospheric level (PAL) before about 2.3 Ga (e.g.,Cloud, 1968, 1972; Walker, 1990; Holland, 1984, 1994; Kasting, 1993; Rye et al., 1997;Rye and Holland, 1998; Farquhar et al., 2000a; Pavlov and Kasting, 2002). Alternatively,some have argued for an O2-rich surface zone, or at least the condition that the atmospherewas not anoxic, for much or all of the Archaean (Dimroth and Kimberley, 1976; Towe,1990; Ohmoto, 1997; Watanabe et al., 1997). Regardless of these different arguments foran oxic Archaean, it has not been specified whether these models would also apply to theHadean Earth. Several reviews of the geologic evidence used to support the contentionthat the Archaean was anoxic by Holland (1984, 1994) noted detrital uraninite and pyritegrains in pre-2.3 Ga sediments as well as other geochemical data (e.g., Fe(II)/Fe(III) inpalaeosols) as indicative of global anoxia at time of deposition (Rye and Holland, 1998;Rasmussen and Buick, 1999).

As outlined in Mojzsis et al. (2003), the extensive production of mass-independentlyfractionated S isotopes formed on Earth in gas-phase reactions in UV transparent anoxicatmospheres, and preserved in terrestrial rocks and minerals in the absence of enough MDFoceanic sulphate to dilute mass-independently fractionated sulphur products to the surfacezone, potentially provides three fundamental constraints on the nature of the early Earth’satmosphere:(1) Separate mass-dependent arrays of slope m ≈ 0.5–0.52 within MIF δ33S vs δ34S data

from ancient sulphur minerals show that effective oxidation of sulphur in the surfacezone and homogenization of reduced and oxidised sulphur reservoirs by biological cy-cling was either absent or suppressed. In a model study, Pavlov and Kasting (2002)argued that in addition to the palaeosol and detrital mineral data cited above, pO2

levels had to be below ∼10−6 PAL throughout the Archaean. A conclusion of thiswork, and separate experimental studies of microbial sulphate reduction capabilitiesof organisms at low seawater SO4

2− concentrations (Habicht et al., 2002), is that sul-phate was severely limited in the oceans for microbial sulphate reduction before therise of atmospheric oxygen in the Proterozoic (Papineau et al., 2005, 2007; Papineauand Mojzsis, 2006). This observation is important because in standard 34S/32S isotopic

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 22aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-5. Sulphur and the Early Archaean Atmosphere 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-10. Plot of �33S vs δ34S for closed cell photolysis experiments of SO2 gas mixtures irra-diated at 193 nm (from Farquhar and Wing, 2003; data in Farquhar et al., 2001).

analyses of ca. 3.5 Ga barite deposits from the North Pole (Warrawoona Group, Pil-bara Craton, Western Australia), Shen et al. (2001) concluded that a 20� range in δ34Svalues was evidence for effective microbial sulphate reduction by 3.5 Ga. As noted pre-viously, photolysis reactions that involve SO2 +SO and other gases (e.g., H2S, CS2) inanoxic atmospheres are known to produce large MIF effects (Fig. 7.5-10) with a rangein 34S/32S of product sulphur that can mimic the entire range of biological fractiona-tions of the sulphur isotopes. This observation underscores the now critical importanceof multiple isotope measurements in all subsequent sulphur studies of ancient rocks,and warrants a comprehensive re-visit of pre-2.3 Gyr old terranes previously sampledfor sulphur (reviewed in Strauss (1997, 2003)).

(2) Experiments to delimit the range of conditions necessary for UV light-driven pho-tolysis reactions with sulphur gases deep in the atmosphere, and to investigate themagnitude of isotopic fractionations in the mass-independently fractionated products(reviewed in Thiemens (1999) and Farquhar et al. (2001)), have succeeded in repro-ducing the large range of MIF observed in Archaean sulphides. A consensus view hasemerged that column abundances of O2 and O3 before ∼2.3 Ga were very low if, forexample, 190 nm UV and other wavelengths could penetrate deep into the atmosphere

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 23aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

24 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

to result in widespread MIF. Farquhar et al. (2000a, 2001) showed that this result canbe used to place an upper limit on pO2 in the Archaean of <10−2 PAL and an upperlimit on pCO2 of ∼0.5 bar (1.5 × 103 PAL). Methane may have been present, but didnot produce aerosols to attenuate UV (Fig. 7.5-9).

(3) In Fig. 7.5-6 the principal laboratory reaction that has been documented to be mostconsistent with the data thus far obtained for MIF S in the geologic record involvesSO2 photolysis at 193 nm UV (Farquhar and Wing, 2003). Pavlov and Kasting, 2002used one-dimensional photochemical models of atmospheres at various O2 concen-trations and found that the transfer of MIF S to the surface by aerosol deposition isonly possible in anoxic conditions of the early Earth (e.g., Kasting et al., 1989, 1992).The proposed mechanism is that MIF in sulphur aerosols are preserved from homoge-nization in oceanic sulphate reservoirs only in atmospheres where pO2 � 10−6 PAL.Pavlov and Kasting (2002) concluded that it is not possible to preserve MIF δ33S/δ34Sin high-O2 atmospheres; in these models, the demise of MIF S in the geologic recordis reached even before the pO2 = 10−6 PAL threshold was overtaken in the Paleopro-terozoic (Farquhar et al., 2000a; Mojzsis et al., 2003; Ono et al., 2003; Bekker et al.,2004), sometime between 2.35 and 2.42 Ga during glaciations (Papineau et al., 2006,2007).

As ever larger data sets become generated for multiple S isotopes in early Archaean rocks,results provide an increasingly robust indication that a chemically reactive, UV transparent,anoxic atmosphere existed on Earth prior to about 2.35 Ga. This anoxic regime stretchedas far back as ∼3.83 Ga, and perhaps well into the Hadean. The diverse �33S values forsulphides reported from Archaean and early Proterozoic rocks means that up to severalpercent of the marine sulphur cycle was affected by atmospheric deposition of MIF Saerosols following residence in the atmosphere.

A consequence of planetary-scale deposition of sulphur aerosols (Fig. 7.5-8) is that theycould have been tapped as a food source for early microbial communities that metaboliseelemental sulphur and sulphate.

7.5-6. SULPHUR AND EARLY LIFE

Sulphur has played a central role in biological systems since the origin of life and hasfollowed the genomic and metabolic diversification of organisms since their emergencesome 4 b.y. ago (DeDuve, 2005). A landmark in studies of the evolutionary relationshipsof organisms was established with the comparative sequence analysis of genomes used toinfer phylogenetic relationships (Woese and Fox, 1977; Woese, 2000). It is now widelyheld that the evolutionary history of life is recapitulated by its molecular biochemical in-heritance (Pace, 1997, 2001), and that all life can be classified into three Domains withinthe small subunit ribosomal RNA Phylogenetic Tree: Bacteria, Archaea and Eukarya. Inthis context, a major objective to analyse the sulphur isotope compositions of Archaeansediments has been to identify and trace the long-term evolution of microbial metabolisms(e.g., Monster et al., 1979; Schidlowski et al., 1983), and lately, to be able to relate the

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 24aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-6. Sulphur and Early Life 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

divergence of different sulphur metabolisms to events in the geologic and paleontologicalrecord (Canfield, 2004). This rationale is based on several key observations: (i) some ofthe most deeply branching lineages in the universal phylogenetic tree that reside close tothe ‘Root’ population that gave rise to all extant life, can metabolize sulphur compounds;(ii) significant sulphur isotopic fractionations can result from enzymatic processing of S-containing molecules; and (iii) sulphides preserved in the geological record have a largerange of isotopic compositions and data show that this range has increased in time (re-viewed in Canfield and Raiswell (1999)).

7.5-6.1. Sulphur Chemistry and the Origin of Life

Reduced sulphur as H2S, and its organic derivatives in the thiols (R′–SH) and the thioesters(CO–S), form from the dehydration condensation of carboxylic acid (R′–COOH) and thiolin the simple reaction:

These compounds were likely participants in the most basic proto-metabolic processes inthe origin of life. Furthermore, no discussion of sulphur biochemistry is complete withouttaking into account the rich chemistry of metal-sulphur compounds. In all contemporaryorganisms, transition metal sulphide clusters play a central catalytic role in biological en-ergy conversion systems (Beinert, 2000) and have been important since the establishmentof the earliest metabolic cycles (Rees and Howard, 2003). It is the connection betweenthe essential role of thioesters and the predominance of mineral sulphides in hydrother-mal and volcanic vents that has led a number of workers to speculate how life couldhave emerged in such environments (e.g., Russell and Hall, 1997; Russell and Martin,2004). Hydrothermal cells form wherever there is hot rock in contact with water, and suchenvironments may have been widespread in the Hadean crust. It is thus highly likely –because of the ubiquity of hydrothermal environments away from a surface zone affectedby impacts and intense UV – that the deep biosphere was amongst the earliest on Eartheven if it was not necessarily the first (Russell and Arndt, 2005). As a basis for an iron-sulphide theory for the origin of life, Wächtershäuser (1988, 1992) proposed a ‘fast origin’by an autotrophic proto-metabolism of low-molecular weight constituents (Fig. 7.5-11)in hydrothermal environments. Along these lines, Cody et al. (2000) presented experi-mental support for the formation of pyruvic acid (CH3–CO–COOH) from formic acid(HCOOH) in the presence of organo-metallic sulphur compounds such as nonylmercap-tane (Fe2(CH3S)2–(CO)6), and iron sulphide (FeS2) at high temperatures and pressuresconsistent with shallow oceanic crust near volcanic centres (250 ◦C and 200 MPa). Mix-ture of these reaction products with lower temperature fluids that emanated further awayfrom vent centres, such as is found at the crust-ocean interface, would have been moreconducive to the survivability of other important biomolecules such as amino acids and

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 25aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

26 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-11. Basic proto-biotic reactions that could have taken place in the ‘Iron-Sulphur World’(modified after Wächtershäuser (2000)).

nucleosides (Orgel, 1998). In a separate analogy with the H2S/CO system, the formationof FeS2 in the simple reaction:

FeS(pyrrhotite) + H2S → FeS2(pyrite) + H2

produces molecular hydrogen. The FeS/H2S couple is a strong reductant that could haveplayed an important supporting role in prebiotic organic synthesis under crustal conditionscommon to the Hadean Earth.

Therefore, a self-consistent picture has emerged that hydrothermal zones in shallowHadean oceanic crust were, if not the birthplace of life on Earth as advocated by Russelland Arndt (2006) and Russell et al. (2005), at least were the crucible wherein early biolog-ical forms found a ready source of fluids rich in reduced carbon and more complex organicmolecules (Shock and Schulte, 1998). In this scenario, electron acceptors such as S0 eitherfrom recycled sulphur in oceanic crust, from sulphidic hydrothermal fluids, or transferredfrom the water column to the crust plumbing system (Fig. 7.5-1) to be catalysed by car-bonylated iron-sulphur clusters (Cody et al., 2000), could have provided both a kick-startto, and a rich food source for, the Hadean biosphere.

A primordial repose for life in deep hydrothermal vent systems that metabolized re-duced sulphur compounds is further supported by molecular phylogenetic studies. Bio-chemical evidence shows that some of the earliest biomes were located in deep hydrother-

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 26aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-6. Sulphur and Early Life 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-12. Phylogenetic tree based on ssu 16s rRNA comparisons which shows Bacterial and Ar-chaeal lineages of extant organisms capable of elemental sulphur reduction (framed characters),sulphate reduction (underlined lineages) and sulphide oxidation (boxed lineages). This figure is mod-ified from Pace (1997) with information from Klein et al. (2001), Canfield and Raiswell (1999),Stetter and Gaag (1983).

mal environments. A crucial caveat to these studies is that before we actually know howlife on Earth began there is no definite requirement that life started in a mild-, medium- orhot-hydrothermal vent field, even if it is a compelling and convenient place for the originof life (Nisbet and Sleep, 2001). Sulphate and other oxidised S species figure prominentlyas electron acceptors for those deeply branching microbes that perform microbial sulphatereduction, yet were probably of limited use in the absence of significant sulphate beforethe Proterozoic. Instead, the ancient metabolic cycles of life that arose out of the metal-Schemistry described above in all probability metabolized volcanogenic sulphur gases suchas H2S, SO2 and sulphur compounds including elemental S.

7.5-6.2. Sulphur Metabolic Styles of Early Life

Many hyperthermophilic, deep-branching organisms in the domains Bacteria (Thermoto-gales, Proteobacter) and in various Archaea (sub-Domain Crenarcheota and Pyrococcus,Thermoplasma in sub-Domain Euryarcheota) are known to reduce elemental sulphur to

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 27aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

28 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

H2S with both H2 and organic compounds as an electron donor (Fig. 7.5-12). This path-way could have evolved from proto-metabolic metal-sulphur cycles, and presently involvesa short electron transport chain controlled by the activity of key enzymes including sulphurreductase, polysulphide reductase and hydrogenase (Laska et al., 2003). The antiquityof this metabolism is further evident in that both deep-branching bacterial and archaeallineages share this metabolic style (Stetter and Gaag, 1983; Stetter, 1996; Canfield andRaiswell, 1999), an observation that strongly suggests that elemental sulphur reduction(ESR) might be an inherited trait from the last common ancestor of all life that resided ina high-temperature environment (Corliss, 1990).

Supposing that ESR is truly ancient, it still remains unknown whether the last commonancestral population at the base of the phylogenetic tree (labelled ‘Root’ in Fig. 7.5-12)included the genes for this particular metabolic style. Elemental sulphur reduction couldvery well have evolved later in one of the domains and subsequent lateral gene transferoccurred between domains. Indeed, the lateral-transfer argument holds for all the discus-sions on the early rise of metabolisms interpreted from extant phylogenies if they cannotbe specifically tied to molecular or isotopic biomarkers in the geologic record. It is antici-pated that future phylogenetic comparisons with amino acid sequences of specific enzymeswill better constrain the branching sequence of lineages. If a large number of lineages thatperform a specific metabolic pathway are known from both the bacterial and archaeal do-mains, evidence would seem to favour a deeply ancient origin. A critical clue may be thatno known Eukaryal organism has this metabolic style. Anaerobic respiration with elemen-tal sulphur is performed by several bacteria and archaea, but has only been investigated ina few organisms in detail (Hedderich et al., 1998). As was noted by Canfield and Raiswell(1999), organisms that do ESR can readily obtain elemental sulphur from rapid cooling ofvolcanogenic sulphur gases where:

SO2 + 2H2S ↔ 3S0 + 2H2O.

This reaction shifts the equilibrium in favor of S0 (Grinenko and Thode, 1970). For exam-ple, with S0 present, microbes can perform the reaction:

4S0 + 4H2O → 3H2S + SO42− + 2H+

and in the presence of iron hydroxides, which were abundant in the oceans before 1.9 Ga(see Holland, 1984; Bjerrum and Canfield, 2002; Thamdrup et al., 1993):

H2S + 4H+ + 2Fe(OH)3 → 2Fe2+ + S0 + 6H2O

As implied by Fig. 7.5-11, the rich chemistry at the interface of metal-sulphur and bio-chemistry is not restricted to iron, even if that particular branch of inorganic biochemistryhas always been dominated by Fe-S (Daniel and Danson, 1995). Many metals which hap-pen to be abundant in most mafic and ultramafic rocks readily interact with sulphur, suchas Zn, Mo, Co and Ni. Average MORB contains 79 ppm Zn, 0.46 ppm Mo, 47 ppm Coand 150 ppm Ni (Hertogen et al., 1980; Newsom et al., 1986; Hofmann, 1988). Tran-sition metal-sulphur chemistry figures prominently in the biochemistry of many deeply-branching microbes (reviewed in Konhauser, 2007). Most of the various catalytic roles of

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 28aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-6. Sulphur and Early Life 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

metal ion + S clusters other than Fe await experimental verification from analysis of con-trolled (culture) experiments and such experiments represent an important new avenue forresearch into the question of a biological origin of sulphur isotope fractionations in thegeologic record.

Microbial sulphate reduction (MSR) is an anaerobic metabolic pathway in which SO42−

is used as an electron acceptor to be reduced to H2S with electron donors such as H2 and/ora variety of organic molecules to produce hydrogen sulphide in the general form:

SO42− + 5H2 → H2S + 4H2O

Sulphate reduction in bacteria and archaea can proceed via dissimilatory or assimilatorypathways that either excrete H2S or insert it in organic compounds. A few key enzymesand compounds in MSR are illustrated in Fig. 7.5-13. The timing of evolution of thesegenes is not accurately known, but qualitative information can be obtained from molecularphylogeny of sulphate reducers.

7.5-6.3. Biological Sulphur Isotopic Fractionations

Sulphate-reducers preferentially metabolize 32SO42− rather than 34SO4

2− to produce iso-topically light H2S with a range of δ34S values between −4 and −46� under non-limiting concentrations of SO4

2− (Canfield and Raiswell, 1999, and references therein).Microbially-produced H2S can react with dissolved Fe2+ or other metal cations to precip-itate sulphides in the simple reaction:

2H2S + Fe2+ → FeS2 + 2H2

Diagenetic sulphides formed from H2S and FeS (or other metal-sulfide) reactions carry thecombined mass-balanced sulphur isotopic composition without significant isotopic frac-tionation (Butler et al., 2004; Böttcher et al., 1998). These isotope ratios can then becomeincorporated and preserved in the geological record of authigenic sulphides. The sulphurisotopic composition of sedimentary sulphides can therefore be used to pinpoint the iso-topic fractionation between dissolved SO4

2−, and product H2S as an isotopic biosignatureto trace the early evolution of microbial sulphur metabolisms.

It has been experimentally verified that microbial sulphate reduction under limitingSO4

2− concentrations (i.e., lower than 200 µM) has insignificant effect on the δ34S valueof product H2S (Habicht et al., 2002). If the concentration of SO4

2− in the environment islow, microbial sulphate reduction produces H2S (and thence sulphide) with approximatelythe same δ34S value as the available δ34Ssulphate. The δ34S of sulphides from ancient sed-iments can also be used to trace the concentration of dissolved SO4

2− in seawater at thetime of sedimentation. Sedimentary sulphides with negative δ34S values (i.e., <−10�)are consistent with microbial sulphate reduction in high seawater SO4

2− concentrations.Variability in sulphur isotopic fractionations during MSR can also depend strongly on thesources of organic compounds consumed during growth (Kleikemper et al., 2004) andon the different lineages of sulphate reducers (Detmers et al., 2001). Some organisms

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 29aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

30 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43Fig.

7.5-

13.

Sim

plifi

edbi

oche

mis

try

ofsu

lpha

tere

duct

ion

show

ing

(lef

t)ke

yin

term

edia

teco

mpo

unds

prod

uced

duri

ngsu

lpha

tere

duct

ion

and

(atr

ight

)sc

hem

esof

assi

mila

tive

and

diss

imila

tive

sulp

hate

redu

ctio

n(m

odifi

edfr

omM

adig

anet

al.(

2000

)).

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 30aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-6. Sulphur and Early Life 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-14. Isotopic fractionation in the modern sulfur cycle showing the values for average sulfurfractionations (± standard deviations) associated either with reduction or oxidation. Each dispropor-tionation reaction couples the production of both H2S and SO4

2− (from Habicht et al., 1998).

can also disproportionate thiosulphate (S2O32−), SO3

2− and/or S0, and the disproportion-ation of sulphur-containing compounds produces different molar amounts of both H2Sand SO4

2− with isotopic fractionations characterized by enrichments of 34S in SO42−

and depletions of 34S in H2S (Böttcher, 2001; Habicht et al., 2002). Natural microbialcommunities are known to produce sulphide significantly more depleted in 34S than isexpected from microbial sulphate reduction alone. The disproportionation of intermedi-ate sulphur-compounds metabolized by sulphate reducers can recycle sulphur through yetgreater degrees of isotopic fractionation and this has been used to explain the observedlarge range of δ34S in modern sediments (Habicht and Canfield, 2001; Canfield and Tham-drup, 1994). A schematic representation of the different sulphur isotopic fractionationsis shown in Fig. 7.5-14. Sulphur oxidation does not significantly fractionate δ34S valuesbut returns oxidized sulphur compounds to the environment, which in the context of a hi-erarchical microbial community can then be recycled as electron acceptors for microbialsulphate reduction or disproportionation reactions.

7.5-6.4. Non-Authigenic Sulphur in Sediments

Because sulphur is so widely distributed in the Earth and occurs in oxidized forms(sulphate), neutral state (elemental S0) and reduced forms (sulphides), it readily travelsthroughout the rock cycle. Criteria used to distinguish sedimentary from hydrothermal sul-phides include the crystal habit, sulphur isotopic composition, and sometimes an unusualabundance of trace metals. Detrital sulphides, which can sometimes be identified fromtheir rounded appearance and occurrence with other characteristic detrital minerals, areolder than the depositional age of the sediment. Sulphide formation can postdate the origin

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 31aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

32 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

of host sedimentary rocks if they formed from the crystallization of remobilized sulphurfrom post-depositional circulating fluids. Hydrothermal fluids may assimilate sulphur fromhost sedimentary rocks during water-rock interactions and therefore carry the δ34S valueof the host rock. Pyrite in sediments may have the isotopic signature of microbial sulphatereduction, and subsequent hydrothermal circulation can transport Cu that will react withpyrite to form chalcopyrite with the same δ34S as the precursor pyrite (Ohmoto and Gold-haber, 1997; Papineau and Mojzsis, 2006). High concentrations of trace metals such as Co,Zn and Ni in sulphides may be used as an indicator of diagenetic conditions or interactionwith magmatic or other fluids. The δ34S value of sulphur in igneous rocks from the uppermantle is in the range of −0.7 ± 5.0� (Chaussidon and Lorand, 1990) and more generallyis in the range of −3.0 to +3.0� (Ohmoto, 1986).

Sulphur isotopes of Archaean magmas (Hattori and Cameron, 1986) have mass-dependently fractionated �33S values between −0.3 and +0.3�, unless the magma orig-inated primarily from recycled Archaean sediments with a nonzero �33S and the MIFsulphur isotopes were isolated from dilution by mantle sulphur (e.g., Farquhar et al., 2002;Mojzsis et al., 2003). Metamorphic effects only slightly fractionate sulphur isotopes, andthese minor effects are mass-dependent. Metamorphism can potentially modify the �33Svalue of sedimentary sulphides but it is thought that this can only be achieved by inter-action with sulphur-containing metamorphic fluids such that a pre-existing MIF signatureis either diluted or remobilized by the fluid. At 900–950 ◦C, the self-diffusion of S in sul-phides (pyrrhotite) is slow, (log D = 10−16 m2 s−1; Condit et al., 1974), which will tend topreserve mass-independent sulphur isotope signatures even in metamorphic sulphides, butan important caveat to this is that it must otherwise occur in the absence of massive S-richfluid infiltration and replacement (Papineau and Mojzsis, 2006).

Because of these competing factors, it must be noted that near-zero �33S values forArchaean sedimentary rocks may not necessarily imply high levels of atmospheric O2at time of deposition. Mass-independently fractionated sulphur isotopes can be dilutedby mass-dependently fractionated sulphur, especially if sulphate production is enhancedin local Archaean environments (Huston et al., 2001a). This point probably explains theobservation that some sulphides with nonzero �33S values from Archaean sediments co-exist in samples that also have mass-dependently fractionates sulphur isotopes (Mojzsis etal., 2003; Hu et al, 2003; Farquhar et al., 2000a; Whitehouse et al., 2005). The presence of amass-independently fractionated sulphur isotopic signature is consistent with sedimentarysulphur that cycled through the atmosphere. However, to propose that mass-independentsulphur isotopes were absent at time of deposition requires other lines of evidence such asδ34S, sulphide composition, morphology and petrogenesis to firmly assign a sedimentarysource of sulphur. In sum, without more data to support a sedimentary source, the near-zero �33S values of these samples cannot be used to constrain atmospheric O2 at time ofdeposition.

The crystal habit of the analysed sulphide crystals from metasedimentary rocks canvary from anhedral to euhedral and may be related to degree of recrystallization relatedto metamorphism. All Archaean sedimentary rocks experienced some degree of metamor-phism, which may have modified the original sulphide morphologies. However, analysis

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 32aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-6. Sulphur and Early Life 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-15. Sulphur multiple isotope data (expressed as �33S) for sedimentary sulphides and sul-phates as a function of age (replotted after Farquhar et al. (2000); see also Seal (2006)). A large rangein �33S values for samples older than 2.4 Ga most likely reflects a change in atmospheric oxygenconcentration past the pO2 = 10−6 PAL threshold (Pavlov and Kasting, 2002). Filled symbols aredata from sulphides, open symbols are sulphates.

of visible light and electron micrographs of sulphides thus far analysed in situ have failedto show any obvious correlations between sulphur isotopic composition and grain shapeand/or size (e.g., Papineau and Mojzsis, 2006). Papineau et al. (2005, 2007) have arguedthat the habit of a sulphide grain is a weak criterion to assess the sedimentary origin of thesulphur, unless specific features can be identified, such as sulphide nodules. Metamorphicrecrystallization is probably responsible for most of the large euhedral crystals observed insamples of various ages. Visible light, as well as electron micrograph images have so farfailed to show any evidence for sulphide overgrowths on pre-existing sulphide cores in thehundreds of analysed sulphides from various Archaean localities worldwide.

7.5-6.5. Tracking the Antiquity of Sulphur Metabolisms

A consequence of the model for anomalous �33S sulphur aerosol formation is that pyrite,forming via elemental sulphur reduction by organisms to H2S, would retain positive �33Ssignatures, while pyrite from sulphate reduction would be expected to preserve negative�33S values. The latter case may be seen in published �33S data for sedimentary rocks

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 33aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

34 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-16. Three-isotope plot of sulphur isotope data from sulphides analysed in Isua supracrustalbelt metasediments showing the MDF bands (grey lines) reported in Papineau and Mojzsis (2006).The separate MIF arrays in the data shows that effective homogenization of the S reservoirs bymixture with sulphate was suppressed in the anoxic Eoarchean oceans. Mojzsis et al. (2003) notedthat the paucity of negative �33S in early Archaean rocks argues against widespread MSR at thattime and could provide crucial clues about BIF origins.

�2.5 Ga where pyrites preserve both negative and positive mass-dependent fractionations(Fig. 7.5-15). In the majority of Archaean samples for which multiple sulphur isotope dataare available, most sulphides have strongly positive �33S values. Mojzsis et al. (2003)and Papineau and Mojzsis (2006) interpreted these data to be inconsistent with sulphatereduction and more in line with elemental sulphur reduction. The presence of such positive�33S values provides a strong case that the source of sulphur in these systems was cycledthrough the atmosphere and introduced to the oceans in the early Archaean, and separatelinear mass-dependent arrays in δ33S/δ34S space show that the sulphur was subsequentlyisolated there from re-homogenisation by volcanic and hydrothermal sources (Fig. 7.5-16).

Elemental sulphur (S0, S8) aerosols derived from mass-independent isotope fraction-ations from atmospheric reactions and implanted into the oceans would have provided aready source of sulphur to a plethora of environments at the global scale from the Hadeanonwards. In the absence of oxidative weathering of surface pyrite or other ready sources ofsulphate, anoxic waters contain no more than trace sulphate over HS− + H2S (Thorsten-son, 1970). Although far from representing a consensus view, the current paradigm holdsthat the Archaean oceans were generally poor in sulphate relative to present values (Hol-

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 34aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7. Sulphur Isotopes in Early Archaean Rocks 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

land, 1984) at least before the Paleoproterozoic oxygenation of the surface environment(Papineau et al., 2007).

7.5-7. SULPHUR ISOTOPES IN EARLY ARCHAEAN ROCKS

Sulphides are often preserved in ancient marine sediments but sedimentary sulphateminerals have yet to be reported in rocks older than about 3.5 Ga (Huston and Logan,2004). The oldest evidence of sedimentary sulphate occurs as ∼3.4–3.5 Ga barite fromWestern Australia, South Africa and India (reviewed in Van Kranendonk (2006)). It isbecause of the paucity of early Archaean multiple sulphur isotope data that the sulphurisotopic composition of seawater sulphate during the 3.5–3.2 Ga interval is not well es-tablished, and not established at all for before 3.5 Ga. However, it is not unreasonable tosuppose that seawater δ34Ssulphate at the time of deposition of Isua sedimentary protolithsat ca. 3.8 Ga (see below) was not significantly different from the 3.4–3.5 Ga seawaterδ34Ssulphate of between +2.7 and +8.7� (Strauss, 2003).

As opposed to the conventional 34S/32S measurements, an increasingly large body ofmultiple sulphur isotope data has been collected in the last few years for several of thekey metasedimentary units in Western Australia (ca. 3.5 Ga) and West Greenland (ca. 3.8Ga). These studies have brought to light several important features of the early Archaeansurface state.

7.5-7.1. Sulphides and Sulphates from the (ca. 3.49 Ga) Dresser Formation, WarrawoonaGroup, Western Australia

Microscopic sulphide (pyrite) grains in ca. 3.49 Ga barite beds from the Dresser Formation,Warrawoona Group at North Pole (Western Australia) have δ34S values up to 24� lighterthan co-existing sulphate (barite) from the same unit. These data were interpreted by Shenet al. (2001) as evidence of microbial sulphate reduction in the Paleoarchaean, an interpre-tation that could also be viewed consistent with phylogenetic arguments that suggest anearly evolution of microbial sulphate reduction (Fig. 7.5-12). However, to assign an actualtime of relative phylogenetic divergence episodes on the RNA phylogenetic tree (Pace,2001) should be attempted with extreme caution because changes per nucleotide/time havenot yet been established with confidence. Smaller ranges of δ34S values in pyrite fromMesoarchaean marine metasedimentary rocks of between −2.5 and +8.5� have been putforth as evidence for sulphate-rich Archaean oceans with concentrations >1 mM that ex-isted under 10−13 PAL O2 (Ohmoto and Felder, 1987; Ohmoto, 1997, 1999; Ohmotoet al., 1993). Such concentrations are about 5 times higher than what is expected fromexperiments that show similarly small sulphur isotopic fractionations when microbial sul-phate reduction occurs at seawater sulphate concentrations of less than 0.2 mM (Habichtet al., 2002). If the Archaean atmosphere was oxygen-rich and stabilised sufficient sul-phate in seawater to form the large barite deposits, it requires distinctive interpretations ofgeologic data and of thermodynamic arguments for oxidative weathering of siderite and

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 35aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

36 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-17. Evolution of 34S/32S sulphur isotope ratios in the geological record. The two upperlines represent the band of δ34Ssulfate values and the diamonds are compiled published δ34Ssulfidedata for sedimentary rocks. Before ∼1.7 Ga, constraints on δ34Ssulfate are scarce and the lower lineis a 55� fractionation from contemporaneous seawater sulphate (from Shen et al., 2001). Data forpre-3.5 Ga sediments are incomplete for this graph.

detrital heavy minerals (Ohmoto, 1999; cf. Rasmussen et al., 1999), a different explana-tion of BIF genesis, and alternative interpretations of δ13Corg, δ13Ccarb and δ34Ssulphidedata for Archaean sedimentary rocks (Ohmoto, 1997). The proposed evolution for sea-water δ34Ssulphate is illustrated as a continuous band in Fig. 7.5-17. The observation thatthe range of δ34Ssulphide values has increased over time – specifically during the Pale-oproterozoic and the Neoproterozoic – is instead most easily explained by significantaccumulations of atmospheric O2 after about 2.5 Ga which helped stabilise oceanic sul-phate at higher concentrations (Holland, 1984). The generally small ranges of δ34S valuesin Archaean metasedimentary rocks appear to indicate that either sulphate-reducing mi-crobes were frustrated by the generally low concentration of seawater sulphate and limitedto specific microenvironments where sulphate was present, or they had not yet evolved.

The data of Shen et al. (2001) were collected in cherty barite-containing rocks fromthe Dresser Formation. The rocks experienced low degrees of metamorphism and slightdeformation (Van Kranendonk, 2006), which argues against extensive post-diagenetic al-teration of the sulphur isotopes. Groves et al. (1981) interpreted the depositional settingfor these units as sedimentary deposits with precipitated gypsum (later replaced by barite)

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 36aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7. Sulphur Isotopes in Early Archaean Rocks 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

from brine ponds separated from the sea by a sand berm. Buick and Dunlop (1990) pos-tulated the origin of the precipitated sulphate from originally low sulphate sea water thathad seeped into briny lagoons and evaporated to concentrate sulphate. These authors alsosuggested that sulphate may have been locally supplemented by the phototrophic oxidationof volcanogenic sulphide.

In a series of papers, Van Kranendonk et al. (2001), Van Kranendonk and Pirajno (2004)and Van Kranendonk (2006) presented an alternative explanation for the origin of thesulphate with new high-resolution mapping and geochemical analyses of the North Polerocks. This work convincingly showed that the extensive bedded chert + barite units ofthe Dresser Formation formed during discrete episodes of volcanogenic hydrothermal cir-culation during exhalative cooling of a felsic magma chamber. A similar conclusion wasreached for the origin of sulphates in the 3.2–3.6 Ga Panorama volcanic-hosted sulphidedistrict, also in Western Australia (Huston et al., 2001a). Under conditions analogous tocontemporary S-rich volcanism at Mt. Pinatubo (Philippines), a silicic magma chamberwith associated caldera collapse and seawater incursions will evolve highly oxidized (Scail-let et al., 1998) volatile-laden saline fluids (Newton and Manning, 2005). Such conditionsstabilise SO2 and lead to the expulsion of oxidised fluids, which in the hydrolysis reaction(after Hattori and Cameron, 1986):

4H20 + 4SO2 ↔ H2S + 3H+ + 3HSO−4

leads to the highly localised enrichment of sulphate, without the intervention of oxygenicphotosynthesizers. In the case of the Dresser Formation barites, locally recharged subma-rine brine-pools with reactive Ba2+ leached from basalt would have formed barite (cf. VanKranendonk, 2006). Sulphate would have been rapidly scavenged by Ba2+; the solubilityof barite is low (�H ◦

r = 6.35 kcal mol−1, log K = −9.97; Stumm and Morgan (1996)),and Ba2+ leached from basalt (average Archaean basalt contains 569 ppm Ba; Condie(1993)) was precipitated as barite syndepositionally with pyrite.

Multiple S-isotope measurements of sulphate-sulphide pairs provide a crucial clue tothe origin of the sulphur in the Dresser rocks. Barites from Dresser sample GSWA 169711(A-I) reported in Farquhar et al. (2000a) have average �33S values = −0.98 ± 0.02� andaverage δ34SVCDT = +4.9� that form a well-defined (r2 = 0.977) linear array of MDFslope λ = 0.51 ± 0.04 (Fig. 7.5-18(a)). It is thus apparent from these data that the sulphurresponsible for this barite resided for some time in the Archaean atmosphere before it wasdeposited in the water and stabilised as sulphate. Core rock samples of black chert withfinely disseminated pyrite, also from the Dresser Formation (core sample GSWA 169729),have average �33S values = +3.67 ± 0.03� and average δ34SVCDT = +2.70 ± 0.01�(Table 7.5-3) that form a linear array (r2 = 0.893) of non-MDF slope λ = 0.837 ± 0.16(Fig. 7.5-18(b)). When these data are plotted in �33S vs δ34S space (Fig. 7.5-19), it isapparent that they are consistent with samples that experienced SO2 (or SO) photolysis atshort UV (e.g., 193 nm) wavelengths (compare with Fig. 7.5-6).

The differences in pyrite and barite multiple sulphur isotope compositions from theDresser rocks show that deposition of MIF sulphur as pyrite and barite was swift onceaerosols reached the water column. Because neither hydrothermal nor biological cycling

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 37aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

38 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-18. A. Plot of multiple S-isotope measurements of barites from Dresser sample GSWA169711 (A-I) reported in Farquhar et al. (2000a) shows a well-defined (r2 = 0.977) linear array ofMDF slope λ = 0.51 ± 0.04. B. Core samples of pyrite from black chert from the Dresser Forma-tion sample GSWA 169729 form a less well-defined linear array (r2 = 0.893) of non-MDF slopeλ = 0.837 ± 0.16.

of sulphate had sufficient time to homogenise the �33S values, it may be the case thatneither process was important at time of deposition.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 38aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7.Sulphur

Isotopesin

Early

Archaean

Rocks

39

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030

3131

3232

3333

3434

3535

3636

3737

3838

3939

4040

4141

4242

4343

Table 7.5-3. Sulphur isotope composition of sulphides in Dresser Mine core sample 169729-1B by in situ ion microprobe multicollection

spot 34S/32S ±1σ 33S/32S ±1σ δ34SVCDT ±1σ δ33S ±1σ �33S ±1σ

G1_s1 4.5135E–02 6.32E–07 8.0006E–03 1.67E–07 2.89 0.01 5.22 0.02 3.73 0.03G1_s2 4.5114E–02 5.63E–07 7.9969E–03 2.06E–07 2.44 0.01 4.76 0.03 3.50 0.03G1_s3 4.5110E–02 3.74E–07 7.9962E–03 1.98E–07 2.35 0.01 4.67 0.02 3.45 0.03G2_s1 4.5113E–02 6.50E–07 7.9986E–03 1.88E–07 2.41 0.01 4.97 0.02 3.72 0.03G2_s2 4.5134E–02 2.24E–07 8.0011E–03 2.53E–07 2.89 0.00 5.29 0.03 3.79 0.03G2_s3 4.5119E–02 5.82E–07 7.9993E–03 1.63E–07 2.53 0.01 5.07 0.02 3.75 0.02G3_s1 4.5134E–02 7.65E–07 8.0003E–03 1.63E–07 2.88 0.02 5.19 0.02 3.69 0.03G3_s2 4.5132E–02 3.42E–07 8.0005E–03 1.81E–07 2.84 0.01 5.21 0.02 3.74 0.02G3_s3 4.5128E–02 6.38E–07 7.9990E–03 1.33E–07 2.75 0.01 5.02 0.02 3.59 0.02G4-s1 4.5140E–02 6.76E–07 8.0014E–03 2.10E–07 3.00 0.01 5.32 0.03 3.76 0.03

Notes: Nomenclature is grain number + ion microprobe spot number. Error demagnification and corrections for instrumental mass bias were applied to the data.Details for these measurement conditions are reported in Papineau et al. (2005).

dpg15

v.2007/05/23

Prn:4/06/2007;

13:56

F:dpg15035.tex;

VTEX/JOL

p.39

aid:

15075

pii:

S0166-2635(07)15075-1

docsubty:

REV

40 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-19. Plot of �33S vs δ34S for sulphides and sulphates from the 3.46 Ga Dresser Fm. (sul-phate data from Farquhar et al. (2000)). The field of isotope compositions for barite and hydrothermalsulphide (volcanogenic massive sulphide ‘VMS’ deposits) is also labelled. The data for the sul-phide-sulphate pair tend to plot with an aspect ratio similar to the 193 nm photolysis array of SO2and SO (see Fig. 7.5-6).

7.5-7.2. Sulphides from the (3.8–3.7 Ga) Isua Supracrustal Belt, West Greenland

Amphibolites of dominantly basaltic composition from the ca. 3.77 Ga Isua supracrustalbelt (ISB), 150 km northeast of Nuuk, West Greenland, have δ34S values between −1.0 and+2.6� (Monster et al, 1979), consistent with a magmatic origin and an Archaean mantlewith near-zero δ34S values (Hattori and Cameron, 1986). Rocks of sedimentary protolith,such as banded iron-formations (BIF) and garnet-biotite schists of probable ferruginousclay-rich sedimentary origin are recognizable throughout the ISB (reviewed in Nutmanet al. (1984a)). Because these rocks are of marine sedimentary origin (Dymek and Klein,1988) they are important candidate materials to host information relevant to the sulphurgeochemistry of the Archaean oceans. In line with these observations, it was proposedsome time ago that sulphur isotopes in sulphides from the metamorphic equivalents of

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 40aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7. Sulphur Isotopes in Early Archaean Rocks 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 7.5-20. Comparison of published �34S values for various sulfide phases in Isua supracrustalbelt metasedimentary rocks (from Papineau and Mojzsis, 2006).

pelagic sedimentary rocks could preserve isotopic evidence of the early biosphere (Monsteret al., 1979; Schidlowski et al., 1983).

Bulk sulphides from Isua banded iron-formations have δ34S values in the range of −1.0to +2.0�, comparable to values measured from associated garnet-amphibolite rocks ofbasaltic composition noted above, which volumetrically dominate the lithotypes of the ISB.Similar δ34S values for pyrite in other BIF units from Isua range between −1.2 to +2.5�,and were interpreted by Strauss (2003) to reflect magmatic and hydrothermal processesin the sulphur cycle, with no apparent biological fractionation. The total range of δ34Svalues measured for metasedimentary rocks of the ISB extends over ∼9� and is cen-tred around +1� (Fig. 7.5-20). This δ34S range is similar to other sulphur isotope rangesthat characterize some Mesoarchaean marine sediments (Ohmoto et al., 1993; Ohmotoand Felder, 1987). A possible explanation is that the small variations in δ34S of sulphidesfrom Isua metasediments reflect mass-dependent fractionation processes during metamor-phism, which depend on temperature, sulphide phase, cooling time, etc. Alternatively, sucha range may be consistent with biological fractionation at the time of deposition, but therange in δ34S is small and as outlined previously, microbial sulphate reduction was eithersuppressed or absent at Isua time. More data are required to test the hypothesis that el-emental sulphur reduction or some other early metabolic cycling of sulphur was present

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 41aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

42 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

when the Isua sediments formed, especially if the range of δ34S for co-existing sulphurphases can be expanded further.

Published sulphur isotope analyses of anhedral pyrites that occur as interstitial blebsin biotite from various quartz-biotite schists (‘metapelites’ of clay-rich origin, as opposedto banded iron-formations) from the ISB showed positive �33S values between +1.06and +1.43�, and a range of δ34S between −2.82 and +5.44� (Mojzsis et al., 2003;Papineau and Mojzsis, 2006). Banded iron-formation samples have also been investigatedfor their multiple sulphur isotopes from the northeast sector of the ISB. Many of these rockscontain bands of large (<200 µm) pyrite grains within grunerite+magnetite and quartzbands. Published data for subhedral to anhedral sulphide for the ISB can be used to definemaximum ranges of δ34S data for sulphides (n = 161) as between −3.1 and +5.8�,and for reported �33S data (n = 99) between −0.87 and +3.41�. A compendium ofpublished and recent δ34S data from metasedimentary rocks from the ISB is presented inFig. 7.5-20.

From the standpoint of environmental chemistry, the multiple sulphur isotope data forthe Isua supracrustal belt provides evidence for an anoxic atmosphere at 3.8 Ga and lowconcentrations of dissolved seawater sulphate and atmospheric oxygen. Under these con-straints, it is interesting to consider whether the early Archaean oceans were severely lim-ited in many oxidants necessary for various microbial respiration pathways. The dominantbiome could have been carbon-fixing autotrophs as suggested by 13C-depleted graphiteparticles reported from Isua (Ueno et al., 2002; Rosing, 1999; Mojzsis et al., 1996).This conclusion would mean that the low abundance of oxidants in early Earth environ-ments was not conducive to an extensive biosphere nor to metabolically diverse microbialcommunities before the Paleoproterozoic transition from a globally anoxic world to thebeginnings of a oxygenated planet (Papineau and Mojzsis, 2006; Papineau et al., 2007).

7.5-7.3. Sulphides from the �3.83 Ga Akilia Association, Akilia Island, West Greenland

As outlined in Manning et al. (2006, and references therein), the supracrustal rocks ofthe Akilia association at the type locality of Akilia, an island ∼30 km S of Nuuk, WestGreenland, have undergone a complicated metamorphic history that led to recrystalliza-tion under granulite facies conditions (Griffin et al., 1980). The complexity of these rocks,compounded with a long history of ‘reconnaissance studies’ from this terrane, has beenthe principal reason for current debates in the interpretation of protoliths for the Akiliaenclaves. On the south-western peninsula of Akilia are two units of ferruginous quartz-pyroxene rocks sandwiched between amphibolites (Manning et al., 2006). The mineralcomposition of the units is dominated by quartz, clinopyroxene, magnetite, hornblende,sulphides and minor accessory phases including zircon and graphite (Nutman et al., 1997).The age of the quartz-pyroxene rock has been the subject of debate. One interpretationholds that the units are greater than the ca. 3.83 Ga zircon U-Pb ages for tonalitic or-thogneisses, some of which were shown to intersect the supracrustal enclave (Manninget al., 2006). Published U-Th-Pb depth-profiles from Akilia orthogneiss zircons by ionmicroprobe (Mojzsis and Harrison, 2002a) and Pb-Pb ages on apatite separates in the

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 42aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7. Sulphur Isotopes in Early Archaean Rocks 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

quartz-pyroxene rock (Sano et al., 1999b; cf. Mojzsis et al., 1999) indicate a complicatedmetamorphic history with regional major events at ∼3.73 Ga, ∼3.65 Ga, ∼2.65 Ga and∼1.50 Ga (reviewed in Cates and Mojzsis, 2006). The protolith of the quartz-pyroxenerocks was originally interpreted as banded-iron formation (BIF) by Nutman et al. (1997)and was used by them to earmark these particular samples for biosignatures analyses ofC-isotopes. Detailed geochemical results published in the last few years provide supportingevidence for a sedimentary for these rocks. These data include major, minor, trace elementand rare earth distributions (Mojzsis and Harrison, 2002b; Friend et al., 2002c; Nishizawaet al., 2005; Manning et al., 2006), δ56Fe and δ57Fe values3 (Dauphas et al., 2004), δ18Ovalues (Manning et al., 2006) and �33S values (Mojzsis et al., 2003). In an alternativeinterpretation, REE patterns and trace elements have been used to argue instead for a meta-somatized ultramafic igneous protolith for the Akilia quartz-pyroxene rocks (Fedo andWhitehouse, 2002; Bolhar et al., 2004; cf. Johannesson et al., 2006). Also, Whitehouse etal. (2005) were unable to corroborate previously reported mass-independent sulphur iso-topes values for these units (Mojzsis et al., 2003). Lastly, Manning et al. (2006) showed thatonly an origin as chemical sediment with minor detrital input satisfies all field, petrologicand geochemical tests, and because the Akilia quartz-pyroxene rocks represent a primarylithology that was deposited in the original volcanosedimentary succession, the rocks havethe same age as the enclave as a whole or �3825 Ma.

Whole-rock sulphur isotopic analyses of Akila quartz-pyroxene sample GR9707 re-ported in Farquhar et al., 2000) revealed �33S = +0.12�. Subsequent ion microprobemeasurements of sulphides in Akilia sample GR9707 reported in Mojzsis et al. (2003) re-vealed a large positive �33S anomaly at +1.47 ± 0.14� (2σ). The data also showed apopulation of positive �33S values that ranged between +0.84 to +0.30�. A relativelylarge range (∼12�) of δ34S was also observed (−6.7 to +5.2�) from this sample. Thesedata are not that different from reported values for various ISB metasedimentary rocks. Ina separate study on a different Akilia sample, Whitehouse et al. (2005) measured the multi-ple sulphur isotope composition of quartz-pyroxene sample G91-26 (Nutman et al., 1997)and found no clear evidence for mass-independently fractionated sulphur. Their �33S dataranged from −0.55 to +0.35� and they describe a range in δ34S of +0.02 to +2.45�,substantially smaller than that reported in Mojzsis et al. (2003). Based on their analysis,Whitehouse et al., 2005) concluded that multiple sulphur isotopes could not be used toinfer protolith for highly metamorphosed rocks.

It is likely that the complexity of the Akilia quartz-pyroxene rocks revealed by the vari-ous isotopic and trace element data cited above is manifest in heterogeneities in the sulphurisotopes at the outcrop scale. Further detailed work is needed on these rocks, but fortu-nately, Fe-rich chemical metasedimentary rocks with abundant sulphides turn out to berelatively common in Akilia association enclaves beyond the ‘type-locality’ on Akilia Is-land. Indeed, rocks of the ‘Akilia type’ in mineralogy, bulk composition and antiquity canfound throughout scattered throughout the southern limits of the Itsaq Gneiss Complex of

3The δ5xFe(�) = ((5xFe/54Fe)sample/(5xFe/54Fe)IRMM-014 − 1) × 1000 and IRMM-014 is the Fe-isotope

standard 014 of the Institute of Reference Materials and Measurements.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 43aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

44 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

West Greenland as well as in other early Archaean terranes of the North American Craton(Cates and Mojzsis, 2006, 2007a).

7.5-7.4. Sulphides from the �3.77 Ga Akilia Association Enclaves on InnersuartuutIsland, West Greenland

Finely-laminated quartz + magnetite ± garnet banded iron-formations from the main is-land of Innersuartuut (approximately 30 km south of Akilia at N63◦50.227′, W51◦41.173′)were sampled for sulphur isotope analysis and reported in Cates and Mojzsis (2006).This rock preserves quartz-magnetite bands that apparently escaped the pervasive strain/recrystallization/silica-mobility recorded by Akilia association units on Akilia Island. Inthis regard, it most resembles samples 119233 from Ugpik, and 119217 from an unspeci-fied field locality on Innersuartuut, as described in McGregor and Mason (1977).

Multiple sulphur isotope geochemistry of this rock, which apparently experienced thesame regional metamorphisms as other Akilia association samples, provides a useful andindependent (from Akilia Island) benchmark for the preservation of mass-independentsulphur in granulite-grade supracrustal enclaves (Fig. 7.5-21). Sulphides are present aspyrrhotite blebs in the quartz-magnetite matrix with fine intergrowths of SiO2. Theanalysed pyrrhotites preserve consistently large �33S values between +1.31 ± 0.19� and+1.49 ± 0.19� (2σ external errors) and record a small range in δ34S of ∼1.5�. Otherferruginous quartz-pyroxene rocks also reported in Cates and Mojzsis (2006) from the In-nersuartuut localities are similar in both mineralogy and gross geochemical composition tothe samples G91-26 of Mojzsis et al. (1996) and GR9707 of Mojzsis et al. (2003). Like theAkilia Island rocks, these samples contain abundant pyrrhotite and occasional chalcopyritewith subhedral habit in a dominantly quartz + hedenbergite matrix. All analysed pyrrhotitein the Innersuartuut samples preserve MIF S isotopes with large �33S values between+1.90 ± 0.25� and +3.15 ± 0.25� (2σ external errors) and range in δ34S by ∼2.5�(Cates and Mojzsis, 2006). Although they record a smaller total range in δ34S comparedto sample GR9707 (∼12�) from Akilia Island (Mojzsis et al., 2003), the Innersuartuutsamples preserve exceptionally large �33S values akin to those reported for ISB bandediron-formation sample 248474 (Baublys et al., 2004; ca. +3.3�) that was reanalysed byWhitehouse et al., 2005). The Innersuartuut rocks are also notable in that they preservea unit of quartz-biotite-garnet schist what contains abundant pyrrhotite (∼1 mode%). Allanalysed sulphides from this particular unit, which Cates and Mojzsis (2006) interpreted tobe a paragneiss of probable pelitic origin, contain MIS sulphur isotopes with well-resolved

Fig. 7.5-21. Compilation plot of �33S vs δ34S for sulphides and sulphates from pre-3.7 Ga metased-iments in the pre-3.77 Ga Isua supracrustal belt and the pre-3.83 Ga Akilia association rocks fromAkilia (island) and Innersuartuut (West Greenland). Data are from Farquhar et al. (2000), Mojzsiset al. (2003), Hu et al. (2003), Whitehouse et al. (2005), Cates and Mojzsis (2006), Papineau andMojzsis (2006), and unpublished data. Compare the different trends in multiple isotope end-membercompositions to the 193-nm results in Fig. 7.5-6.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 44aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-7. Sulphur Isotopes in Early Archaean Rocks 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 45aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

46 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

�33S values, between +0.67±0.21� and +0.98±0.12� (2σ external errors), and rangein δ34S by ∼3�.

These results for mass-independent sulphur isotopes in amphibolite- to granulite-gradesedimentary rocks from various early Archaean localities in West Greenland underscorethe observation that �33S values in a rock containing accessory sulphur minerals can bepreserved. The simplest explanation for the small spread of δ34S values in these data forthe oldest known rocks of marine sedimentary origin is by re-precipitation of sulphidesduring metamorphic processes. Dilution by invasive fluids (H2S etc.) which carried exoticsulphur does not appear to be an important process in rocks that contain no more than ∼1mode percent sulphur (Ohmoto, 1986). Scatter in �33S values is minimal for each theseunits, which suggests that no significant foreign component of sulphur was added to thesystem since formation as aqueous sediments in the early Archaean ocean.

7.5-8. SUMMARY: BANDED IRON-FORMATIONS, SULPHUR AND LIFE ON THEEARLY EARTH

The Archaean banded iron-formations are regarded solely as a chemical sediments thathave been enriched in metals from volcanic/hydrothermal sources (reviewed in Polat andFrei (2005)) and probably represent part of a relatively deep (>100 m) marine sedimentaryfacies derived from either the photo-oxidation of upwelled Fe(II)-rich seawater to ferro-ferri-oxyhydroxides (Braterman et al., 1983) or biological precipitation and/or oxidationof insoluble iron oxides (e.g., Konhauser et al., 2002). In either of these models, the Fe-precipitates subsequently underwent diagenetic transformation to magnetite. Models forbiological modulation of iron-formation deposition via anoxygenic photosynthetic Fe(II)oxidation, and the nature of microbially-mediated iron-oxide deposition and organic matterrecycling (Kappler et al., 2005), are still in their early stages of development. Cloud (1973)postulated that ferrous iron [Fe(II)aq] oxidation by molecular oxygen after cyanobacteriaevolved on Earth was responsible for the banded iron-formations. However, it has beenargued that the anoxygenic photoautotrophic bacteria are the most ancient type of photo-synthetic organisms (Xiong et al., 2000), and these can readily catalyse Fe(II) oxidationunder anoxic conditions (Widdel et al., 1993). The Fe isotope compositions of bandediron-formations are consistent with the possibility that anoxygenic photoautotrophs suchas purple bacteria played a role in their deposition. Calculations based on experimentallydetermined Fe(II) oxidation rates by anaerobic photoautotrophic bacteria under low-lightregimes representative of ocean depths of a few hundred meters suggest that, even in thepresence of cyanobacteria, anoxygenic phototrophs living beneath a wind-mixed surfacelayer provide the most likely explanation for BIF deposition in a stratified ancient oceanand the absence of Fe in Precambrian surface waters (Kappler et al., 2005). FollowingGross (1980), the Archaean BIFs such as those at Isua and in the Akilia association tendto resemble the ‘Algoma-type’ which are thought to have been deposited in small basinsaround island arcs (Jacobsen and Pimentel-Close, 1988). Enrichment of seawater in fer-rous iron and the transformation to abundant Fe3O4 in marine sediments is considered a

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 46aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

7.5-8. Summary: Banded Iron-Formations, Sulphur and Life on the Early Earth 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

signature style of sedimentation under anoxic conditions on the early Earth, when Fe(II)concentrations were high in seawater (Holland, 1984; Bjerrum and Canfield, 2002).

Banded iron-formations are strongly enriched in sulphur relative to average Archaeancrust and hydrothermal fluids; the average S composition of Isua iron-formation is takento be close to that of the international banded iron-formation standard IF-G (Govindaraju,1994) at 700 ppm. BIF sulphur was introduced to the water column from both atmosphericand magmatic exhalative sources at time of deposition (Huston and Logan, 2004), andthe major sulphide phases present in the Isua and Akilia rocks are pyrite and pyrrhotite(with minor chalcopyrite and cubanite). As noted by Farquhar and Wing (2003, and refer-ences therein), an important consequence of the model for MIF-carrying aerosol formationin the Archaean atmosphere is that sulphide formation via elemental sulphur reductionby microbial life – perhaps deposited as greigite: Fe3S4, or mackinawite: Fe1−xS (e.g.,Mann et al., 1990) which was later transformed to pyrite: FeS2 and metamorphosed topyrrhotite: ∼Fe7S8 – would be expected to retain positive �33S signatures (Mojzsis et al.,2003) with > 10� spread in δ34S (Canfield and Raiswell, 1999). Sulphide formed frommicrobial sulphate reduction would be expected to preserve negative �33S values with apotentially large spread in δ34S values. Sulphur aerosols provided a ready source of sul-phur to a plethora of microbial environments at the global scale on the early Earth, at issueof course is whether this oxidative chemistry was actually exploited by life, as perhapsFe(II)aq was by early microbial communities for an electron donor (Johnson et al., 2003;Dauphas et al., 2004). Could then the low abundance of oxidants in early Archaean envi-ronments globally have severely limited the early biosphere before the gradual build-up ofoxygen (Papineau and Mojzsis, 2006)? If the Archaean biosphere did in fact modulate BIFdeposition, it still remains to be seen whether it left traces of itself in the sulphur isotopes.

Of the principal elements involved in biological activity (C, N, O, H, S, P, Fe etc.),sulphur is probably the most versatile for geochemistry. As summarised by Goldschmidt(1954), chemists have long recognised that sulphur participates in many of the most im-portant processes in inorganic geochemistry, and serves as a bridge between the inorganicworld and the chemistry contained in the central metabolic machinery of all classes of or-ganisms. Because of its chemical reactivity, large mass difference between multiple stableisotopes (32S, 33S, 34S and 36S), diverse redox chemistry through eight valence states (2−to 6+), and tendency to form both ionic and covalent bonds in a wide variety of miner-als, sulphur and its isotopes have been used to trace igneous, sedimentary, metamorphic,hydrothermal, atmospheric and biological processes since the early days of geochemistry(Thode et al., 1949). New inroads in transition metal stable isotopic systems used to tracechanges in the surface state of the Earth with time, such as Mo (reviewed in Anbar andKnoll (2002)) and Fe (reviewed in Johnson et al. (2003)), also figure prominently in itsphase-space as the various metal-sulphides. How the chemistry of the ‘inorganic bridge’relates to the distribution of inorganic components in the cell (‘metallomics’) and in re-sponse to the evolution of the surface zone as traced by the multiple sulphur isotopes,represents an exciting new horizon that is ripe for exploration. Future work will unitetransition metal isotope systematics with the chemistry of the multiple sulphur isotopespreserved in sedimentary sulphides.

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 47aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

48 Chapter 7.5: Sulphur on the Early Earth

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

ACKNOWLEDGEMENTS

Discussions and debates over the years on the various topics presented herein withA.D. Anbar, G.L. Arnold, A. Bekker, P.S. Braterman, R. Buick, N.L. Cates, M. Chaus-sidon, R.N. Clayton, C.D. Coath, N. Dauphas, J. Farquhar, C. Fedo, R. Frei, C.R.L. Friend,J.P. Greenwood, T.M. Harrison, K. Hattori, H.D. Holland, B.S. Kamber, A.J. Kaufman,A. Kappler, J. Karhu, J.L. Kirschvink, M.J. Van Kranendonk, A. Lepland, D. Lowe,J.R. Lyons, C.E. Manning, B. Marty, K.D. McKeegan, S. Moorbath, A.P. Nutman,H. Ohmoto, S. Ono, N.R. Pace, D. Papineau, A.A. Pavlov, M. Rosing, D. Rumble,B. Runnegar, M. Schidlowski, A.K. Schmitt, J.W. Schopf, H. Strauss, M.H. Thiemens,M.J. Whitehouse, B. Wing, Y. Watanabe and M. Van Zuilen have helped to refine andfocus this work. N. Pace at the University of Colorado is thanked for access to his li-brary of Archaea and Bacteria molecular phylogenies. Constructive reviews by N.L. Cates,M.J. Van Kranendonk and two anonymous reviewers helped a great deal to improve themanuscript. Our work on the evolution of sulphur isotopes was supported by the NationalScience Foundation grants EAR9978241 and EAR0228999 to SJM, and since 2000 bythe University of Colorado Center for Astrobiology through a cooperative agreement withthe NASA Astrobiology Institute. Correspondence and request for material should be ad-dressed to [email protected].

dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 F:dpg15035.tex; VTEX/JOL p. 48aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

REFERENCES

Abbott, D.H., Hoffman, S.E., 1984. Archaean plate tectonics revisited 1. Heat flow, spread-ing rate, and the age of subducting oceanic lithosphere and their effects on the originand evolution of continents. Tectonics 3, 429–448.

Abbott, D.H., Isley, A.E. 2001. Oceanic upwelling and mantle plume activity: paleomag-netic tests of ideas on the source of the Fe in early Precambrian iron formations. In:Geological Society of America, Special Paper 352, 323–339.

Abbott, D.H., Isley, A.E., 2002. The intensity, occurrence and duration of superplumeevents and eras over geological time. Journal of Geodynamics 34, 265–307.

Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style.Geology 22, 937–940.

Abell, P.I., McClory, J., Martin, A., Nisbet, E.G., 1985a. Archaean stromatolites from theNgesi Group, Belingwe greenstone belt, Zimbabwe; preservation and stable isotopes;preliminary results. Precambrian Research 27 (4), 357–383.

Abell, P.I., McClory, J., Martin, A., Nesbit, E.G., Kyser, K.T., 1985b. Petrography andstable isotope ratios from Archaean stromatolites, Mushandike Formation, Zimbabwe.Precambrian Research 27, 385–398.

Abeysinghe, P.B., Fetherston, J.M., 1997. Barite and fluorite in Western Australia. WesternAustralia Geological Survey Mineral Resources Bulletin 17, 97 pp.

Abraham, A-C., Francis, D., Polvé, M. 2005. Origin of Recent alkaline lavas bylithospheric thinning beneath the northern Canadian Cordillera. Canadian Journal ofEarth Sciences 42, 1073–1095.

Addington, E.A., 2001. A Stratigraphic Study of Small Volcano Clusters on Venus. Icarus149, 16–36.

Ahmat, A.L., Ruddock, I., 1990. Windimurra and Narndee layered complexes. In: Geol-ogy and Mineral Resources of Western Australia. Western Australia Geological Survey,Memoir 3, pp. 119–126.

Alard, O., Griffin, W.L., Lorand, J.P., Jackson, S.E., O’Reilly, S.Y., 2000. Non-chondriticdistribution of the highly siderophile elements in mantle sulfides. Nature 407, 891–894.

Alard, O., Griffin, W.L., Pearson, N.J., Lorand, J.-P., O’Reilly, S.Y., 2002. New insightsinto the Re-Os systematics of subcontinental lithospheric mantle from in-situ analysisof sulfides. Earth and Planetary Science Letters 203, 651–663.

Albarède, F., Blichert-Toft, J., Vervoort, J.D., Gleason, J.D., Rosing, M., 2000. Hf-Nd iso-tope evidence for a transient dynamic regime in the early terrestrial mantle. Nature 404,488–490.

Aleinikoff, J.N., Williams, I.S., Compston, W., Stuckless, J.S., Worl, R.G., 1989. Evidencefor an Early Archean component in the Middle to Late Archean gneisses of the Wind

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 1aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

2 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

River Range, west-central Wyoming: conventional and ion microprobe U-Pb data. Con-tributions to Mineralogy and Petrology 101, 198–206.

Al-Jishi, R., Dresselhaus, G., 1982. Lattice-dynamical model for graphite. Physics ReviewB 26, 4514–4522.

Allaart, J.H., 1976. The pre-3760 m.y. old supracrustal rocks of the Isua area, Central WestGreenland, and the associated occurrence of quartz-banded ironstone. In: Windley, B.F.(Ed.), The Early History of the Earth. Wiley, London, pp. 177–189.

Allègre, C.J., 1982. Genesis of Archaean komatiites in a wet subducted plate. In: Arndt,N.T., Nisbet, E.G. (Eds.), Komatiites. Allen and Unwin, London, pp. 495–500.

Allègre, C.J., Birck, J-L., Fourcade, S., Semet, M.P., 1975. Rubidium-87/Strontium-87 ageof Juvinas basaltic achondrite and early igneous activity in the solar system. Science187, 436–438.

Allen, M.B., Windley, B.F., Chi, Z., 1992. Palaeozoic collisional tectonics and magmatismof the Chinese Tien Shan, Central Asia. Tectonophysics 220, 89–115.

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006a. Stromato-lite reef from the Early Archaean era of Australia. Nature 441, 714–717.

Allwood, A.C., Walter, M.R., Marshall, C.P., 2006b. Raman spectroscopy reveals thermalpalaeoenvironments of c. 3.5 billion-year-old organic matter. Vibrational Spectroscopy41, 190–197.

Alonso-Perez, R., Ulmer, P., Müntener, O., Thompson, A.B. (2003). Role of garnet frac-tionation in H2O undersaturated andesite liquids at high pressure. Lithos 73 (1–2),S116.

Alt, A.D., Sears, J.W., Hyndman, D.W., 1988. Terrestrial mare: The origins of large basaltplateaus, hotspot tracks and spreading ridges. Journal of Geology 96, 647–662.

Alt, J.C., 1995. Sulfur isotopic profile through the oceanic-crust – sulfur mobility andseawater-crustal sulfur exchange during hydrothermal alteration. Geology 23, 585–588.

Alvarez, W., 1986. Toward a theory of impact crises. Eos 67, 649–658.Amelin, Y.V., 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb iso-

tope dilution analysis of crystal fragments. Chemical Geology 146, 25–38.Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T., 1999. Nature of the Earth’s earliest

crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255.Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution de-

duced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica etCosmochimica Acta 64, 4205–4225.

Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A., 2002. Lead isotopic ages of chon-drules and calcium-aluminium-rich inclusions. Science 297, 1678–1683.

Amelin, Y., Krot, A.N., Twelker, E., 2004. Pb isotopic age of the CB chondrite Gujba andthe duration of the chondrule formation interval. Geochimica et Cosmochimica Acta68, E958.

Amelin, Y., Wadhwa, M., Lugmair, G.W., 2006. Pb-isotopic dating of meteorites using202Pb-205Pb double-spike: comparison with other high-resolution chronometers. Lunarand Planetary Science XXXVII, abstract 1970.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 2aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Anbar, A.D., Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: A bioinor-ganic bridge? Science 297, 1137–1142.

Anbar, A.D., Zahnle, K.J., Arnold, G.L., Mojzsis, S.J., 2001. Extraterrestrial iridium,sediment accumulation and the habitability of the early Earth’s surface. Journal of Geo-physical Research – Planets 106 (E2), 3219–3236.

Anders, E., 1964. Origin, age and composition of meteorites. Space Science Reviews 3,583–714.

Anders, E., Ebihara, M., 1982. Solar System abundances of the elements. Geochimica etCosmochimica Acta 53, 2363–2380.

Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar.Geochimica et Cosmochimica Acta 53, 197–214.

Anderson, R.B., 1956. Catalysts for Fischer-Tropsch synthesis. In: Emmett, P.H. (Ed.),Catalysis. Hydrocarbon Synthesis Hydrogeneation and Cyclization. Reinhold, NewYork, pp. 29–255.

André, L., Cardinal, D., Alleman, L.Y., Moorbath, S., 2006. Silicon isotopes in ∼ 3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth andPlanetary Science Letters 245, 162–173

Andreasen, R., Sharma, M., 2006. Solar nebula heterogeneity in p-process samarium andneodymium isotopes. Science 314, 806–809.

Anisimova, I.V., Kotov, A.B., Salnikova, E.B., Yakovleva, S.Z., Morozova, I.M., 2005. Ageand geodynamic settings of the Archean greenstone belts from western part of AldanShield. In: Archean Geology and Geodynamics. First Russian Conference on Problemsof Precambrian Geology and Geodynamics, Abstract Volume. Inst. Geol and Geochron.Precambr., St.-Petersburg, pp. 23–27 (in Russian).

Anhaeusser, C.R., 1972. The geology of the Jamestown Hills area of the Barberton Moun-tain Land, South Africa. Transactions of the Geological Society of South Africa 75,225–263.

Anhaeusser, CR., 1973. The evolution of the early Precambrian crust of southern Africa.Philosophical Transactions of the Royal Society of London Ser. A 273, 359–388.

Anhaeusser, C.R., 1976. The geology of the Sheba Hills area of the Barberton MountainLand, South Africa, with particular reference to the Eureka Syncline. Transactions ofthe Geological Society of South Africa 79, 253–280.

Anhaeusser, C.R., 1983. The geology of the Schapenburg greenstone remnant and sur-rounding Archaean granitic terrane south of Badplaas, eastern Transvaal. In: An-haeusser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land.In: Geological Society of South Africa, Special Publication 9, pp. 31–44.

Anhaeusser, C.R., 1985. Archean layered ultramafic complexes in the Barberton Moun-tain Land, South Africa. In: Ayres, L.D., Thurston, P.C., Card, K.D., Weber, W. (Eds.),Evolution of Archean Supracrustal Sequences. In: Geological Association of Canada,Special Paper 28, pp. 281–302.

Anhaeusser, C.R., 1986. Archaean gold mineralization in the Barberton Mountain Land.In: Anhaeusser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa. In: Geo-logical Society of South Africa Special Publications, pp. 113–154.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 3aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

4 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Anhaeusser, C.R., 2001. The anatomy of an extrusive-intrusive Archaean mafic-ultramaficsequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barber-ton greenstone belt, South Africa. South African Journal of Geology 104, 167–204.

Anhaeusser, C.R., 2006. A re-evaluation of Archean intracratonic terrane boundaries on theKaapvaal Craton, South Africa: Collisional suture zones? In: Reimold, W.U., Gibson,R.L. (Eds.), Processes on the Earth Earth. In: Geological Society of America, SpecialPaper 405, pp. 193–210.

Anhaeusser, C.R., Robb, L.J., 1980. Regional and detailed field and geochemical studiesof Archean trondhjemitic gneisses, migmatites and greenstone xenoliths in the southernpart of the Barberton mountain land, South Africa. Precambrian Research 11, 373–397.

Anhaeusser, C.R., Robb, L.J., 1981. Magmatic cycles and the evolution of the Archaeangranitic crust in the eastern Transvaal and Swaziland. In: Glover, J.E., Groves, D.E.(Eds.), Archaean Geology. In: Geological Society of Australia, Special Publication 7,pp. 457–467.

Anhaeusser, C.R., Robb, L.J., 1983. Chemical analyses of granitoid rocks from the Barbe-ton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp.189–219.

Anhauesser, C.R., Viljoen, M.J., 1965. The base of the Swaziland System in the Barberton-Nordkaap-Louws Creek area, Barberton Mountain Land. Information Circular, Eco-nomic Geology Research Unit, University of the Witwatersrand, Johannesburg, 25, 32pp.

Anhaeusser, C.R., Mason, R., Viljoen, M.J., Viljoen, R.P., 1969. A reappraisal of someaspects of Precambrian Shield geology. Bulletin of Geological Society of America 80,2175–2200.

Anhaeusser, C.R., Robb, L.J., Viljoen, M.J., 1981. Provisional geological map of the Bar-berton Greenstone Belt and surrounding granitic terrane, eastern Transvaal and Swazi-land scale 1:250,000. In: Anhaeusser, C.R. (Ed.), Contributions to the Geology of theBarberton Mountain Land. In: Geological Society of South Africa, Special Publication9, pp. 221–223 and insert map.

Anhaeusser, C.R., Robb, L.J., Viljoen, M.J., 1983. Notes on the provisionnal geologicalmap of the Barberton greenstone belt and surrounding granitic terrane, eastern Transvaaland Swaziland (1:250,000 color map). Transactions of the Geological Society of SouthAfrica 9, 221–223.

Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The genesis of intermediate and silicic mag-mas in deep crustal hot zones. Journal of Petrology 47, 505–539.

Ansdell, K.M., 2005. Tectonic evolution of the Manitoba–Saskatchewan segment of thePaleoproterozoic Trans-Hudson Orogen, Canada. Canadian Journal of Earth Sciences42, 741–759.

Appel, P.W., 1983. Rare earth elements in the early Archaean Isua iron-formation, WestGreenland. Precambrian Research 20, 243–258.

Appel, P.W.U., Fedo, C.M., Moorbath, S., Myers, J.S., 1998. Recognisable primary vol-canic and sedimentary features in a low-strain domain of the highly deformed, oldest-known (ca. 3.7–3.8 Gyr) greenstone belt, Isua, Greenland. Terra Nova 10, 57–62.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 4aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Appel, P.W.U., Rollinson, H.R., Touret, J.L.R., 2001. Remnants of an Early Archaean(>3.75 Ga) sea-floor, hydrothermal system in the Isua greenstone belt. PrecambrianResearch 112, 27–49.

Appel, P.W.U., Moorbath, S., Myers, J.S., 2003. Isuasphaeara isua (Pflug) revisited. Pre-cambrian Research 126, 309–313.

Arima, M., Barnett, R.L., 1984. Sapphirine-bearing granulites from the Sipiwesk Lakearea of the late Archean Pikwitonei granulite terrain, Manitoba, Canada. Contributionsto Mineralogy and Petrology 88, 102–112.

Armstrong, R.A., 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transaction of the Royal So-ciety of London 301, 443–472.

Armstrong, R., 1989. 1988 Annual Technical report of the Geological Survey of SouthAfrica. Department of Mineral and Energy Affairs, 27 pp.

Armstrong, R.A., Compston, W., de Wit M.J., Williams I.S., 1990. The stratigraphy of 3.5–3.2 Ga Barberton Greenstone Belt revisited: A single zircon microprobe study. Earthand Planetary Science Letters 101, 90–106.

Armstrong, R.A., Compston, W., Retief, E.A., Williams, I.S., Welke, H.J., 1991. Zirconion microprobe studies bearing on the age and evolution of the Witwatersrand triad.Precambrian Research 53, 243–266.

Armstrong, R.L., 1963. K-Ar dates from West Greenland. Bulletin of Geological Societyof America 74, 1189–1192.

Armstrong, R.L., 1968. A model for Sr and Pb isotope evolution in a dynamic Earth. Re-views of Geophysics 6, 175–199.

Armstrong, R.L., 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transaction of the Royal So-ciety of London A301, 443–472.

Armstrong, R.L., 1991. The persistent myth of crustal growth. Australian Journal of EarthSciences 38 (5), 613–630.

Arndt, N.T., Jenner, G.A., 1986. Crustally contaminated komatiites and basalts from Kam-balda, Western Australia. Chemical Geology 56, 229–255.

Arndt, N., Albarede, F., Nisbet, E.G., 1997. Mafic and Ultramafic Magmatism. In: de Wit,M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford University Press Oxford, UnitedKingdom, pp. 231–254.

Arndt, N., Ginibre, C., Chauval, C., Albarède, F., Cheadle, M., Herzberg, C., Jenner, G.,Lahaye, Y., 1998. Were komatiites wet? Geology 26, 739–742.

Arndt, N.T., Nelson, D.R., Compston, W., Trendall, A.F., Thorne, A.M., 1991. The age ofthe Fortescue Group, Hamersley Basin, Western Australia, from iron microprobe zirconU-Pb results. Australian Journal of Earth Sciences 38, 261–281.

Arndt, N., Bruzak, G., Reischmann, T., 2001. The oldest continental and oceanic plateaus:Geochemistry of basalts and komatiites of the Pilbara Craton, Australia. In: Ernst, R.E.,Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: GeologicalSociety of America, Special Paper 352, pp. 359–387.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 5aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

6 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Arriens, P.A., 1971. Archaean geochronology of Australia. In: Geological Society of Aus-tralia, Special Publication 3, pp. 1–23.

Arth, J.G., Hanson, G.N., 1975. Geochemistry and origin of the Early Precambrian crustof North-eastern Minnesota. Geochimica and Cosmochimica Acta 39, 325–362.

Arth, J.G., Barker, F., Peterman, Z.E., Frideman, I., 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of south-west Finland and its implications for theorigin of tonalitic and trondhjemitic magmas. Journal of Petrology 19, 289–316.

Ashton, K.E., Heaman, L.M., Lewry, J.F., Hartlaub, R.P., Shi, R., 1999. Age and originof the Jan Lake Complex: a glimpse at the buried Archean craton of the Trans-HudsonOrogen. Canadian Journal of Earth Sciences 36, 185–208.

Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly under-plated basaltic crust. Nature 362, 144–146.

Aubele, J., 1996. Akkruva small shield plains; definition of a significant regional plainsunit on Venus. In: Lunar and Planetary Science Conference XXVII, pp. 49–50.

Aulbach, S., Griffin, W.L., Pearson, N.J., O’Reilly, S.Y., Kivi, K., Doyle, B.J., 2004. Mantleformation and evolution, Slave Craton: constraints from HSE abundances and Re-Ossystematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208, 61–88.

Awramik, S.M., Schopf, J.W., Walter, M.R., 1983. Filamentous fossil bacteria from theArchean of Western Australia. Precambrian Research 20, 357–374.

Ayer, J., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K., Trowell, N., 2002.Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: au-tochthonous volcanic construction followed by plutonism, regional deformation andsedimentation. Precambrian Research 115, 63–95.

Baadsgaard, H., 1973. U-Th-Pb dates on zircons from the early Precambrian Amîtsoqgneisses, Godthaab district, West Greenland. Earth and Planet Science Letters 19, 22–28.

Baadsgaard, H., Nutman, A.P., Bridgwater, D., McGregor, V.R., Rosing, M., Allaart, J.H.,1984. The zircon geochronology of the Akilia association and the Isua supracrustal belt,West Greenland. Earth and Planetary Science Letters 68, 221–228.

Baadsgaard, H., Nutman, A.P., Bridgwater, D., 1986. Geochronology and isotopic variationof the early Archaean Amîtsoq gneisses of the Isukasia area, southern West Greenland.Geochimica et Cosmochimica Acta 50, 2173—2183.

Baadsgaard, H., Nutman, A.P., Samsonov, A.V., 1990. Geochronology of the Olondogreenstone belt. In: Fifth International Conference on Geochronology, Cosmochronol-ogy, and Isotope Geology, Abstract Volume. Geological Society of Australia, Publ. 6.

Bagas, L., 2005. Geological of the Nullagine 1:100,000 sheet. Western Australia Geologi-cal Survey, 1:100,000 Geological Series Explanatory Notes, 33 pp.

Bagas, L., Smithies, R.H., Champion, D.C., 2003. Geochemistry of the Corunna DownsGranitoid Complex, East Pilbara Granite–Greenstone Terrane, Western Australia. In:Western Australia Geological Survey, Annual Review 2001-02, pp. 61–69.

Bai, J., Huang, X.G., Wang, H.C., Guo, J.J., Yan, Y.Y., Xue, Q.Y., Dai, F.Y., Xu, W.Z.,Wang, G.F., 1996. The Precambrian Crustal Evolution of China. Beijing, GeologicalPublishing House, pp. 1–259 (in Chinese with English abstract).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 6aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bai, J., Li, S.X., He, G.P., Xu, C.L., 1986. The Early Precambrian Geology of Wutaishan.Tianjin, Tianjin Science and Technology Press, pp. 1–475 (in Chinese with Englishabstract).

Bailes, A.H., Percival, J.A., 2005. Geology of the Black Island area, Lake Winnipeg, Man-itoba (parts of NTS 62P1, 7 and 8). Manitoba Geological Survey Geoscientific ReportGR2005-2.

Baker, J., Bizzarro, M., Wittig, N., Connelly, J., Haack, H., 2005. Early planetesimal melt-ing from an age of 4.5662 Gyr for differentiated meteorites. Nature 436, 1127–1131.

Baker, V.R., Komatsu, G., Gulick, V.C., Parker, T.J., 1997. Channels and valleys. In:Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press,Tucson, AZ, pp. 757–798.

Baker, V.R., Komatsu, G., Parker, T.J., Gulick, V.C., Kargel, J.S., Lewis, J.S., 1992. Chan-nels and Valleys on Venus: Preliminary analysis of Magellan data. Journal of Geophys-ical Research 97, 13395–13420.

Banerdt, W.B., McGill, G.E., Zuber, M.T., 1997. Plains tectonics on Venus. In: Bouger,S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson,AZ, pp. 901–930.

Banerjee, N.R., Furnes, H., Muehlenbachs, K., Staudigel, H., de Wit, M., 2006. Preser-vation of ∼3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites fromthe Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters 241,707–722.

Banerjee, N.R., Simonnetti, A., Furnes, H., Staudigel, H., Muehlenbachs, K., Heaman, L.,Van Kranendonk, M., 2007. Direct dating of Archean microbial ichnofossils. Geology,in press.

Bannister, R.A., 2006. Geologic analysis of deformation in the interior region of Artemis(Venus, 34◦S 132◦E). M.S. thesis. University Minnesota Duluth, Duluth, 83 pp.

Bannister, R.A., Hansen, V.L., 2006a. Geologic analysis of deformation in the interiorregion of Artemis (Venus, 34◦S 132◦E). In: Lunar and Planetary Science ConferenceXXXVII, 1370.pdf.

Bannister, R.A., Hansen, V.L., 2006b. Geologic map of the Artemis quadrangle (V-48),Venus. In: U.S. Geological Survey Geologic Investigations Series, 1:5,000,000, submit-ted.

Barker, F., 1979. Trondhjemite: a definition, environment and hypotheses of origin. In:Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp.l-12.

Barker, F., Arth, J.G., 1976. Generation of trondhjemite-tonalite liquids and Archean bi-modal trondhjemite-basalt suites. Geology 4, 596–600.

Barker, F., Wones, D.R., Sharp, W.N., Desborough, G.A., 1975. The Pikes Peak batholith,Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenit-potassic granite suite. Precambrian Research 2, 97–160.

Barley, M.E., 1982. Porphyry-style mineralization associated with early Archean calc-alkaline igneous activity, eastern Pilbara, Western Australia. Economic Geology 77,1230–1236.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 7aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

8 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Barley, M.E., 1986. Incompatible-element enrichment in Archean basalts – A consequenceof contamination by older sialic crust rather than mantle heterogeneity. Geology 14,947–950.

Barley, M.E., 1993. Volcanic, sedimentary and tectonostratigraphic environments of the∼3.46 Ga Warrawoona Megasequence: a review. Precambrian Research 60, 47–67.

Barley, M.E., 1997. The Pilbara Craton. In: de Wit, M.J., Ashwal, L. (Eds.), GreenstoneBelts. In: Oxford University Monographs on Geology and Geophysics, vol. 35. Claren-don Press, Oxford, pp. 657–664.

Barley, M.E., Groves, D.I., 1992. Supercontinent cycles and the distribution of metal de-posits through time. Geology 20, 291–294.

Barley, M.E., Pickard, A.L., 1999. An extensive, crustally-derived, 3325 to 3310 Ma silicicvolcano-plutonic suite in the eastern Pilbara Craton: evidence from the Kelley Belt,McPhee Dome, and Corunna Downs Batholith. Precambrian Research 96, 41–62.

Barley, M.E., Dunlop, J.S.R., Glover, J.E., Groves, D.I., 1979. Sedimentary evidence foran Archean shallow-water volcanic-sedimentary facies, Eastern Pilbara Block, WesternAustralia. Earth and Planetary Science Letters 43, 74–84.

Barley, M.E., Sylvester, G.C., Groves, D.I., 1984. Archaean calc-alkaline volcanism in thePilbara Block, Western Australia. Precambrian Research 24, 285–319.

Barley, M.E., Eisenlohr, B.N., Groves, D.I., Perring, C.S., Vearncombe, J.R., 1989. LateArchaean convergent margin tectonics and gold mineralization: A new look at theNorseman–Wiluna Belt, Western Australia. Geology 17, 826–829.

Barley, M.E., Krapez, B., Groves, D.I., Kerrich, R., 1998a. The Late Archaean bo-nanza: metallogenic and environmental consequences of the interaction between mantleplumes, lithospheric tectonics and global cyclicity. Precambrian Research 91, 65–90.

Barley, M.E., Loader, S.E., McNaughton, N.J., 1998. 3430 to 3417 Ma calc-alkaline vol-canism in the McPhee Dome and Kelley Belt, and growth of the eastern Pilbara Craton.Precambrian Research 88, 3–24.

Barley, M.E., Bekker, A., Krapez, B., 2005. Late Archean to Early Proterozoic global tec-tonics, environmental change and the rise of atmospheric oxygen. Earth and PlanetaryScience Letters 238, 156–171.

Bally, R.C., 1999. Gravity-driven continental overflow and Archean tectonics. Nature 398,413–415.

Barovich, K.M., Patchett, P.J., Peterman, Z.E., Sims, P.K., 1991. Neodymium isotopic ev-idence for Early Proterozoic units in the Watersmeet gneiss dome, northern Michigan.In: U.S. Geological Survey, Bulletin 1904-G, 7 pp.

Barry, T.L., Kent, R.W., 1998. Cenzoic magmatism in Mongolia and the origin of centraland east Asian basalts. In: American Geophysical Union, Geodynamics Series, vol. 27.Washington, DC, pp. 347–364.

Barsukov, V.L. et al., 1984. Geology of Venus from the result of analysis of radar imagestaken by Venera 15/16 probes: Preliminary data. Geokhimiya 12, 1811–1820.

Barsukov, V.L., Surkov, Y.A., Dmitriev, L.V., Khodakovsky, I.L., 1986. Geochemical studyof Venus by landers of Vega-1 and Vega-2 probes. Geokhimiya 14, 275–288.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 8aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Barth, M.G., Foley, S.F., Horn, I., 2002. Partial melting in Archean subduction zones: con-straints from experimentally determined trace element partition coefficients betweeneclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Re-search 113, 323–340.

Barton, J.M., 1984. Timing of ore emplacement and deformation, Murchison and Suther-land greenstone belts, Kaapvaal Craton. In: Foster, R.P. (Ed.), Gold ’82, The Geology,Geochemistry and Genesis of Gold Deposits. In: Spec. Publ. Geol. Soc. Zimbabwe.A.A. Balkema, Rotterdam, pp. 629–644.

Barton, M.D., 1996. Granitic magmatism and metallogeny of southwestern North America.In: Geological Society of America, Special Paper 315, pp. 261–280.

Barton, J.M., Robb, J.R., Anhaeusser, C.R., Van Nierop, D.A., 1983. Geochronologic andSr-isotopic studies of certain units in the Barberton granite-greenstone terrane, SouthAfrica. In: Geological Society of South Africa, Special Publication 9, pp. 63–72.

Basilevsky, A.T., Head, J.W., 1988. The geology of Venus. Annual Review of Earth andPlanetary Sciences 16, 295–317.

Basilevsky, A.T., Head, J.W., 1996. Evidence for rapid and widespread emplacement ofvolcanic plains on Venus: Stratigraphic studies in the Baltis Vallis region. GeophysicalResearch Letters 23, 1497.

Basilevsky, A.T., Head, J.W., 1998. The geologic history of Venus: A stratigraphic view.Journal of Geophysical Research 103, 8531–8544.

Basilevsky, A.T., Head, J.W., 2002. Venus: Timing and rates of geological activity. Geology30, 1015–1018.

Batchelor, M.T., Burne, R.V., Henry, B.I., Jackson, M.J., 2004. A case for biogenic mor-phogenesis of coniform stromatolites. Physica A 337, 319–326.

Bateman, R., Hagemann, S.G., 2004. Gold mineralisation throughout about 45 Ma ofArchean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn craton, WesternAustralia. Mineralium Deposita 39, 536–559.

Bateman, R., Costa, S., Swe, T., Lambert, D., 2001. Archaean mafic magmatism in theKalgoorlie area of the Yilgarn Craton, Western Australia: a geochemical and Nd iso-topic study of the petrogenetic and tectonic evolution of a greenstone belt. PrecambrianResearch 108, 75–112.

Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic andaqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contribu-tions to Mineralogy and Petrology 123, 323–333.

Bau, M., Alexander, B., 2006. Preservation of primary REE patterns without Ce anom-aly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event”. SouthAfrican Journal of Geology 109, 81–86.

Bau, M., Moeller, P., 1993. Rare earth element systematics of the chemically precipitatedcomponent in Early Precambrian iron formations and the evolution of the terrestrialatmosphere–hydrosphere–lithosphere system. Geochimica et Cosmochimica Acta 57,2239–2249.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 9aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

10 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Baublys, K.A., Golding, S.D., Young, E., Kamber, B.S., 2004. Simultaneous determinationof δ33SV-CDT and δ34SV-CDT using masses 48, 49 and 50 in a continuous flow isotoperatio mass spectrometer. Rapid Communications in Mass Spectrometry 18, 2765–2769.

Bauer, R.L., 1980. Multiphase deformation in the Granite Falls-Montevideeo area, Min-nesota River Valley. In: Geological Society of America, Special Paper 182, pp. 1–18.

Baxter, J.L., Wilde, S.A., Pidgeon, R.T., Fletcher, I.R., 1984. The Jack Hills Metasedi-mentary Belt: an extension of the early Archaean terrain in the Yilgarn Block, WesternAustralia. In: Seventh Australian Geological Convention – Geoscience in the Develop-ment of Natural Resources. In: Geological Society of Australia Abstracts 12, pp. 56–57.

Baxter, J.L., Wilde, S.A., Pidgeon, R.T., Collins, L.B., 1986. A video presentation on thegeological setting of ancient detrital zircons within the Jack Hills Metamorphic Belt,W.A. In: Eighth Australian Geological Convention – Earth Resources in Time andSpace. In: Geological Society of Australia Abstracts 15, p. 220.

Beakhouse, G.P., 1991. Winnipeg River subprovince. In: Thurston, P.C., Williams, H.R.,Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey,Special Volume 4, Part 1, pp. 279–301.

Beakhouse, G.P., McNutt, R.H., 1991. Contrasting types of late Archean plutonic rocksin northwestern Ontario; implications for crustal evolution in the Superior Province.Precambrian Research 49, 141–165.

Beakhouse, G.P., McNutt, R.H., Krogh, T.E., 1988. Comparative Rb-Sr and U-Pbgeochronology of late to post tectonic plutons in the Winnipeg River belt, northwesternOntario, Canada. Chemical Geology 72, 283–291.

Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L., Sun, H., 2003. Applica-tion of Fe isotopes to tracing the geochemical and biological cycling of Fe. ChemicalGeology 196, 43–56.

Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting ofbasaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrol-ogy 32, 365–401.

Beaudoin, G., Taylor, B.E., Rumble, D., Thiemens, M., 1994. Variations in the sulfurisotope composition of troilite from the Cañon-Diable iron meteorite. Geochimica etCosmochimica Acta 58, 4253–4255.

Beckinsale, R.D., Drury, S.A., Holt, R.W., 1980. 3360 Myr gneisses from the South Indiancraton. Nature 283, 469–470.

Bédard, J.H., 2003. Evidence for regional-scale, pluton-driven, high-grade metamorphismin the Archaean Minto Block, northern Superior Province, Canada. Journal of Geology111, 183–205.

Bédard, J., 2005. Partitioning coefficients between olivine and silicate melts. Lithos 83,394–419.

Bédard, J., 2006. A catalytic delamination-driven model for coupled genesis of Archaeancrust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70,1188–1214.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 10aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bédard, J.H., Brouillette, P., Madore, L., Berclaz, A., 2003. Archaean cratonization anddeformation in the northern Superior Province, Canada: an evaluation of plate tectonicversus vertical tectonic models. Precambrian Research 127, 61–87.

Bédard, L.P., 1996. Archaean high-Mg monzodiorite plutonic suite: a reevaluation of theparentla magma and differenciation. Journal of Geology 104, 713–728.

Bédard, L.P., Ludden, J.N., 1997. Nd-isotope evolution of Archaean plutonic rocks insoutheastern Superior province. Canadian Journal of Earth Sciences 34 (3), 286–298.

Beichman, C.A., Bryden, G., Gautier, T.N., Stapelfeldt, K.R., Werner, M.W., Misselt, K.,Rieke, G., Stansberry, J., Trilling, D., 2005. An excess due to small grains around thenearby K0V star HD 69830: Asteroid or cometary debris? Astrophysical Journal 626,1061–1069.

Beinert, H., 2000. A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664.Bekker, A., Holland, H.D., Wang, P.L., Rumble, D., Stein, H.J., Hannah, J.L., Coetzee,

L.L., Beukes, N.J., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117–120.Belcher, R.W., Kisters, A.F.M., 2006a. Syntectonic emplacement and deformation of the

Heerenveen batholith: Conjectures on the structural setting of the 3.1 Ga granite mag-matism in the Barberton granite-greenstone terrain, South Africa. In: Reimold, W.U.,Gibson, R.L. (Eds.), Processes on the Earth Earth. In: Geological Society of America,Special Publication 405, pp. 211–231.

Belcher, R.W., Kisters, A.F.M., 2006b. Progressive adjustments of ascent and emplacementcontrols during incremental construction of the 3.1 Ga Heerenveen batholith, SouthAfrica. Journal of Structural Geology 28, 1406–1421.

Belcher, R.W., Kisters, A.F.M., Poujol, M., Stevens, G., 2005. Structural emplacement ofthe 3.2 Ga Nelshoogte pluton: implications for the origin of dome-and-keel structuresin the Barberton granite-greenstone terrain. In: Geocongress, Durban.

Belcher, R.W., Moyen, J.-F., Kisters, A.F.M., Stevens, G., submitted. Origin of compo-sitional and geochemical heterogeneity within the incrementally assembled 3.1 GaHeerenveen batholith, Barberton granitoid-greenstone terrain, South Africa. Lithos.

Bell, D.R., Gregoire, M., Grove, T.L., Chatterjee, N., Carlson, R.W., Buseck, P.R., 2005.Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale examplefrom the Kaapvaal Craton. Contributions to Mineralogy and Petrology 150, 251–267.

Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.I., 2002. Igneous zircon: traceelement composition as an indicator of source rock type. Contributions to Mineralogyand Petrology 143, 602–622.

Benedix, G.K., McCoy, T.J., Keil, K., Bogard, D.D., Garrison, D.H., 1998. A petrologicand isotopic study of winonaites: evidence for early partial melting, brecciation andmetamorphism. Geochimica et Cosmochimica Acta 62, 2535–2553.

Benedix, G.K., McCoy, T.J., Keil, K., Love, S.G., 2000. A petrologic study of the IAB ironmeteorites: constraints on the formation of the IAB-winonaite parent body. Meteoriticsand Planetary Science 35, 1127–1141.

Benn, K., Moyen, J.-F., submitted. Geodynamic origin and tectonomagmatic evolution ofthe Late Archean Abitibi–Opatica terrane, Superior Province: Magmatic modification of

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 11aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

12 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

a plateau-type crust and plume-subduction interaction In: Condie, K.C. (Ed.), PenroseSpecial Volume. Geological Society of America, Boulder, CO.

Benn, K., Sawyer, E.W., Bouchez, J.L., 1992. Orogen parallel and transverse shearing inthe Opatica belt, Quebec: implications for the structure of the Abitibi belt. CanadianJournal of Earth Sciences 29, 2429–2444.

Bennett, V.C., Nutman, A.P., McCulloch, M.T., 1993. Nd isotopic evidence for transient,highly depleted mantle reservoirs in the early history of the Earth. Earth and PlanetaryScience Letters 119, 299–317.

Benz, W., Slatterly, W.L., Cameron, A.G.W., 1988. Collisional stripping of Mercury’s man-tle. Icarus 74, 516–528.

Berclaz, A., Godin, L., David, J., Maurice, C., Parent, M., Francis, D., Stevenson, R.,Leclair, A., 2003. Geology of the Nuvvuagittuq Belt (3.8 Ga), northeastern SuperiorProvince: towards a multidisciplinary approach [abstract]. In: Québec Exploration 2003,Ministère des Ressources naturelles, Québec, DV 2003-10, 50 pp.

Berclaz, A., Leclair, A., David, J., Maurice, C., 2004. Structural evolution of the North-eastern Superior Province (NESP) over 1 billion years, with emphasis on greenstonebelts and their relation with enclosing granitoids [abstract]. In: Eos Transactions,CGU/AGU/SEG/EEGS Joint Assembly, Abstract no. V31A-03.

Beresford, S.W., Cas, R.A.F., Lambert, D.D., Stone, W.E., 2000. Vesicles in thick komatiitelava flows, Kambalda, Western Australia. Journal of the Geological Society 157, 11–14.

Beresford, S.W., Cas, R.A.F., Lahaye, Y., Jane, M., 2002. Facies architecture of an Archeankomatiite-hosted N-sulphide ore deposit, Victor, Kambalda, Western Australia: Implica-tions for komatiite lava emplacement. Journal of Volcanology and Geothermal Research118, 57–75.

Berger, M., Rollinson, H., 1997. Isotopic and geochemical evidence for crust-mantle inter-action during late Archaean crustal growth. Geochimica et Cosmochimica Acta 61 (22),4809–4829.

Berner, E.K., Berner, R.A., 1996. Global Environment. Water, Air and Geochemical Cy-cles. Prentice Hall, Upper Saddle River, NJ, 376 pp.

Bernstein, S., Kelemen, P.B., Brooks, C.K., 1998. Depleted spinel harzburgite xenolithsin Tertiary dikes from East Greenland: restites from degree melting. Earth and PlanetScience Letters 154, 221–235.

Bernstein, S., Hanghoi, K., Kelemen, P.B., Brooks, C.K., 2006. Ultra-depleted shallowcratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Con-tributions to Mineralogy and Petrology 152, 335–347.1

Beyer, E.E., Brueckner, H.K., Griffin W.L., O’Reilly, S.Y., Graham, S., 2004. Archeanmantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32,609–612.

Beyer, E.E., Griffin W.L., O’Reilly, S.Y., 2006. Transformation of Archean lithosphericmantle by refertilisation: evidence from exposed peridotites in the Western Gneiss Re-gion, Norway. Journal of Petrology 47, 1611–1636.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 12aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Beyssac, O., Rouzaud, J.-N., Goffe, B., Brunet, F., Chopin, C., 2002. Graphitization ina high-pressure, low-temperature metamorphic gradient: A Raman micro-spectroscopyand HRTEM study. Contributions to Mineralogy and Petrology 143, 19–31.

Bhattacharya, S., Kar, R., Misra, S., Teixeira, W., 2001. Early Archean continental crustin the Eastern Ghats granulite belt, India: isotopic evidence from a charnockite suite.Geological Magazine 138, 609–618.

Bibikova, E.V., Drugova, G.M., Kirnozova, T.I., Gracheva, T.V., Makarov, V.A., 1984. Ageof volcanism of the Olondo greenstone belt (Eastern Siberia). Doklady Earth Sciences279 (6), 1424–1428.

Bibikova, E.V., Belov, A.N., Rosen, O.M., 1988. Metamorphic rocks isotope dating in theAnabar shield. In: Markov, M.S. (Ed.), Archean of the Anabar Shield and Problems ofthe Early Earth’s Evolution. Nauka, Moscow, 122–133 (in Russian).

Bibikova, E.V., Morozova, I.M., Gacheva, T.V., Makarov, V.A., 1989. U-Pb age of gran-ulites from the Kurulta complex. In: Rudnik, V.A. (Ed.), The Oldest Rocks of the Aldan–Stanovik Shield, Eastern Siberia, USSR. Excursion Guide, IGCP 280, Lenningrad–Mainz, pp. 89–91.

Bibikova, E.V., Levitsky, V.I., Reznitsky, L.Z., Kirnozova, T.I., Gracheva, T.V., Makarov,V.A., 2001. Archean tonalite- trondhjemite assemblage in the Cis-Sayan salient of theSiberian platform basement: U-Pb, Sm-Nd and Sr isotope data. In: Letnikov, F.A. (Ed.),Geology, Geochemistry and Geophysics. Proceedings of the Russian Basic ResearchFoundation Conference. Institute of the Earth’s Crust, Irkutsk, pp. 175–176 (in Russian).

Bibikova, E.V., Petrova, A., Claesson, S., 2005. The temporal evolution of sanukitoidsin the Karelian Craton, Baltic Shield: an ion microprobe U-Th-Pb isotopic study ofzircons. Lithos 79, 129–145.

Bibikova, E.V., Turkina, O.M., Kirnozova, T.I., Fugzan, M.M., 2006. Ancient pla-giogneisses of the Onot block of the Sharyzhalgay metamorphic massif: isotopicgeochronology. Geochemistry International 44 (3), 310–316.

Bickford, M.E., Wooden, J.L., Bauer, R.L., 2004. New SHRIMP U-Pb zircon ages forthe Paleoarchean to Mesoarchean rocks of the Minnesota River Valley. In: GeologicalSociety of America Program with Abstracts, Colorado, p. 458.

Bickford, M.E., Wooden, J.L., Bauer, R.L., 2005. SHRIMP study of zircons from EarlyArchean rocks in the Minnesota River Valley: Implications for the tectonic history ofthe Superior Province. Bulletin of Geological Society of America 118, 94–108.

Bickle, M.J., 1978. Heat loss from the Earth: A constraint on Archaean tectonics fromthe relation between geothermal gradients and the rate of plate production. Earth andPlanetary Science Letters 40, 301–315.

Bickle, M.J., 1986. Implications of melting for stabilisation of the lithosphere and heat lossin the Archaean. Earth and Planetary Science Letters 80, 314–324.

Bickle, M.J., 1994. The role of metamorphic decarbonation reactions in returning stron-tium to the silicate sediment mass. Nature 367, 699–704

Bickle, M.J., Bettenay, L.F., Boulter, C.A., Groves, D.I., Morant, P., 1980. Horizontal tec-tonic intercalation of an Archaean gneiss belt and greenstones, Pilbara Block, WesternAustralia. Geology 8, 525–529.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 13aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

14 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bickle, M.J., Bettenay, L.F., Barley, M.E., Chapman, H.J., Groves, D.I., Campbell, I.H.,de Laeter, J.R., 1983. A 3500 Ma plutonic and volcanic calc-alkaline province in theArchaean East Pilbara Block. Contributions to Mineralogy and Petrology 84, 25–35.

Bickle, M.J., Morant, P., Bettenay, L.F., Boulter, C.A., Blake, T.S., Groves, D.I., 1985.Archaean tectonics of the Shaw Batholith, Pilbara Block, Western Australia: structuraland metamorphic tests of the batholith concept. In: Ayers, L.D., Thurston, P.C., Card,K.D., Weber, W. (Eds.), Evolution of Archean Supracrustal Sequences. In: GeologicalAssociation of Canada, Special Paper 28, pp. 325–341.

Bickle, M.J., Bettenay, L.F., Chapman, H.J, Groves, D.I., McNaughton, N.J., Campbell,I.H., de Laeter, J.R., 1989. The age and origin of younger granitic plutons in the Archeanof the Pilbara Block, Western Australia. Contributions to Mineralogy and Petrology 101,361–376.

Bickle, M.J., Bettenay, L.F., Chapman, H.J, Groves, D.I., McNaughton, N.J., Campbell,I.H., de Laeter, J.R., 1993. Origin of the 3500–3300 Ma calc-alkaline rocks in thePilbara Archaean: isotopic and geochemical constraints from the Shaw Batholith. Pre-cambrian Research 60, 117–149.

Bigeleisen, J., Mayer, M.G., 1947. Calculation of equilibrium constants for isotope ex-change reactions. Journal of Chemical Physics 15, 261–267.

Bigeleisen, J., Wolfsberg, M., 1958. Theoretical and experimental aspects of isotope effectsin chemical kinetics. Advances in Chemical Physics 1, 15–76.

Bild, R.W., 1977. Silicate inclusions in group IAB irons and a relation to the anomalousstones Winona and Mt. Morris (Wis.). Geochimica et Cosmochimica Acta 41, 1439–1456.

Bindschadler, D.L., 1995. Magellan-a new view of Venus geology and geophysics. Re-views in Geophysics 33, 459–467.

Bindschadler, D.L., Parmentier, E.M., 1990. Mantle flow tectonics: the influence of a duc-tile lower crust and implications for the formation of topographic uplands on Venus.Journal of Geophysical Research 95, 21329–21344.

Bindschadler, D.L., deCharon, A., Beratan, K.K., Head, J.W., 1992a. Magellan observa-tions of Alpha Regio: Implications for formation of complex ridged terrains on Venus.Journal of Geophysical Research 97, 13563–13577.

Bindschadler, D.L., Schubert, G., Kaula, W.M., 1992b. Coldspots and hotspots: Globaltectonics and mantle dynamic of Venus. Journal of Geophysical Research 97, 13495–13532.

Bird, P., 1978. Initiation of intracontinental subduction in the Himalaya. Journal of Geo-physical Research 83, 4975–4987.

Birk, J-L., Allegre, C.J., 1988. Manganese-chromium isotope systematics and the develop-ment of the early solar system. Nature 331, 579–584.

Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherrer, P., Bland, P., Clayton,R.N., Mayeda, T.K., Herpers, U., Michel, R., Dittrich-Hannen, B., 1994. Acfer 217 – anew member of the Rumuruti chondrite group (R). Meteoritics 29, 264–274.

Bischoff, A., 2000. Mineralogical characterization of primitive type-3 lithologies in Ru-muruti chondrites. Meteoritics and Planetary Science 35, 699–706.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 14aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bishop, J.W., Sumner, D.Y., Huerta, N.J., 2006. Molar tooth structures of the NeoarcheanMonteville Formation, Transvaal Group, South Africa. II: A wave-induced fluid model.Sedimentology 53, 1069–1082.

Bizzarro, E.A., Baker, J.A., Haack, H., Ulfbeck, D., Rosing, M., 2003. Early history of theEarth’s crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421,931–933.

Bizzarro, M., Baker, J.A., Haack, H., 2004. Mg isotope evidence for contemporaneousformation of chondrules and refractory inclusions. Nature 431, 275–278.

Bjerrum, C.J., Canfield, D.E., 2002. Ocean productivity before about 1.9 Gyr ago limitedby phosphorus adsorption onto iron oxides. Nature 417, 159–162.

Black, L.P., James, P.R., 1983. Geological history of the Archaean Napier Complex ofEnderby Land. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Geoscience.Australian Academy of Sciences, Canberra, pp. 11–15.

Black, L.P., McCulloch, M.T., 1987. Evidence for isotopic re-equilibration of Sm-Ndwhole-rock systems in early Archaean crust of Enderby Land, Antarctica. Earth andPlanetary Science Letters 82, 15–24.

Black, L.P., Gale, N.H., Moorbath, S., Pankhurst, R.J., McGregor, V.R., 1971. Isotopicdating of very early Precambrian amphibolite facies gneisses from the Godthaab district,West Greenland. Earth and Planetary Science Letters 12, 245–259.

Black, L.P., James, P.R., Harley, S.L., 1983a. The geochronology, structure and metamor-phism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica. PrecambrianResearch 21, 197–222.

Black, L.P., James, P.R., Harley, S.L., 1983b. Geochronology and geological evolution ofmetamorphic rocks in the Field Islands area, East Antarctica. Journal of MetamorphicGeology 1, 277–303.

Black, L.P., Williams, I.S., Compston, W., 1986. Four zircon ages from one rock: thehistory of a 3930 Ma old granulite from Mount Sones, Enderby Land, Antarctica. Con-tributions to Mineralogy and Petrology 94, 427–437.

Black, L.P., Harley, S.L., Sun, S.S., McCulloch, M.T., 1987. The Rayner Complex of EastAntarctica: complex isotopic systematics within a Proterozoic mobile belt. Journal ofMetamorphic Geology 5, 1–26.

Black, L.P., Kinny, P.D., Sheraton, J.W., Delor, C.P., 1991. Rapid production and evolu-tion of late Archaean felsic crust in the Vestfold Block of East Antarctica. PrecambrianResearch 50, 283–310.

Black, L.P., Sheraton, J.W., Tingey, R.J., McCulloch, M.T., 1992. New U-Pb zircon agesfrom the Denman Glacier area, East Antarctica, and their significance for Gondwanareconstruction. Antarctic Science 4, 447–460.

Blackburn, C.E., John, G.W., Ayer, J., Davis, D.W., 1991. Wabigoon Subprovince. In:Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario.In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 303–381.

Blake, T.S., Buick, R., Brown, S.J.A., Barley, M.E., 2004. Geochronology of a Late Ar-chaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolu-

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 15aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

16 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

tion, volcanic and sedimentary accumulations, and continental drift rates. PrecambrianResearch 133, 143–173.

Bland, P.A., 2005. The impact rate on Earth. Philosophical Transactions of the Royal So-ciety A – Mathematical, Physical and Engineering Sciences 363, 2793–2810.

Bleeker, W., 1990. New structural-metamorphic constraints on Early Proterozoic obliquecollision along the Thompson Nickel Belt, Manitoba, Canada. In: Lewry, J.F., Stauf-fer, M.R. (Eds.), The Early Proterozoic Trans-Hudson Orogen of North America. In:Geological Association of Canada, Special Paper 37, pp. 57–73.

Bleeker, W., 2003. The late Archaean record: a puzzle in ca. 35 pieces. Lithos 71, 99–134.Bleeker, W., 2004. Towards a ‘natural’ timescale for the Precambrian – A proposal. Lethaia

37, 219–222.Bleeker, W., Davis, W., 1999. The 1991–1996 NATMAP Slave Province Project: Introduc-

tion. Canadian Journal of Earth Sciences 36, 1033–1042.Bleeker, W., Stern, R., 1997. The Acasta gneisses: an imperfect sample of Earth’s oldest

crust. In: Cook, F., Erdmer, P. (Eds.), Slave-Northern Cordillera Lithospheric Evolution(SNORCLE) Transect and Cordilleran Tectonics Workshop Meeting. In: LithosphereReport 56, pp. 32–35.

Bleeker, W., Davis, W.J., Villeneuve, M.E., 1997. The Slave Province: evidence for con-trasting crustal domains and complex, multistage tectonic evolution. In: Cook, F., Erd-mer, P. (Eds.), Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) Transectand Cordilleran Tectonics Workshop Meeting. In: Lithosphere Report 56, pp. 36–37.

Bleeker, W., Ketchum, J.W.F., Jackson, V.A., Villeneuve, M.E., 1999. The Central SlaveBasement Complex, Part I. Its structural topology and autochthonous cover. CanadianJournal of Earth Sciences 36, 1083–1109.

Blewett, R., 2002. Archaean tectonic processes: a case for horizontal shortening in theNorth Pilbara granite-greenstone terrane, Western Australia. Precambrian Research 113,87–120.

Blewett, R.S., Champion, D.C., 2005. Geology of the Wodgina 1:100,000 sheet. Geologi-cal Survey of Western Australia, 1:100,000 Geological Series Explanatory Notes.

Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and theevolution of the crust-mantle system. Earth and Planetary Science Letters 148, 243–258.

Blichert-Toft, J., Albarede, F., Rosing, M., Frei, R., Bridgwater, D., 1999. The Nd and Hfisotope evolution of the mantle through the Archean; results from the Isua supracrustals,West Greenland, and from the Birimian terranes of West Africa. Geochimica et Cos-mochimica Acta 63, 3901–3914.

Bliss, N.W., Stidolph, P.A., 1969. A review of the Rhodesian basement complex. In: Trans-actions of the Geological Society of South Africa, Special Publication 2, pp. 305–333.

Bocklée-Morvan, D., Crovisier, J., Mumma, M.J., Weaver, H.A., 2004. The compositionof cometary volatiles. In: Festou, M., Keller, H.U., Weaver, H. (Eds.), Comets II. Uni-versity of Arizona Press, Tucson, AZ, pp. 391–423.

Bodinier, J.L., Burg, J-P., Leyreloup, A., Vidal, H., 1988. Reliques d’un bassin d’arrierearc subducté puis obducté dans la région de Marvejols (Massif Central). Bulletin de laSociété Géologique de France 8 (4), 20–34.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 16aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bodorkos, S., Sandiford, M., 2006. Thermal and mechanical controls on the evolu-tion of Archean crustal deformation: examples from Western Australia. In: Benn, K.,Mareschal, J.-M., Condie, K. (Eds.), Archean Geodynamics and Environments. In: Geo-physical Monograph Series, vol. 164. American Geophysical Union, pp. 131–147.

Boerner, D.E., Craven, J.A., Kurtz, R.D., Ross, G.M., Jones, F.W., 1998. The Great FallsTectonic Zone: suture or intracontinental shear zone? Canadian Journal of Earth Sci-ences 35, 175–183.

Bogard, D.D., 1995. Impact ages of meteorites: a synthesis. Meteoritics 30, 244–268.Bogard, D.D., Garrison, D.H., 1994. 39Ar-40Ar ages of four ureilites. Lunar and Planetary

Science XXV, 137–138.Bogard, D.D., Garrison, D.H., 1998. 39Ar-40Ar ages and thermal history of mesosiderites.

Geochimica et Cosmochimica Acta 62, 1459–1468.Bogard, D.D., Burnett, D.S., Eberhardt, P., Wasserburg, G.J., 1967. 87Rb-87Sr and 40K-

40Ar ages of the Norton County achondrite. Earth and Planetary Science Letters 3, 179–189.

Bogard, D.D., Garrison, D.H., Jordan, J.L., Mittlefehldt, D.W., 1990. 39Ar-40Ar datingof mesosiderites – evidence for major parent body disruption leass than 4 Ga ago.Geochimica et Cosmochimica Acta 54, 2549–2564.

Boger, S.D., Miller, J.M., 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of platemotions. Earth and Planet Science Letters 219, 35–48.

Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2001. Early Palaeozoic tectonism within theeast Antarctic craton: the final suture between east and west Gondwana? Geology 29,463–466.

Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2006. An Archaean province in the southernPrince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma graniteplutonism and c. 2780 Ma partial melting and orogenesis. Precambrian Research 145,207–228.

Böhm, C.O., 1997a. Geology of the Assean Lake area (parts of NTS 64A 1, 2, 3, 4). In:Report of Activities 1997, Manitoba Energy and Mines, Minerals Division, pp. 47–49.

Böhm, C.O., 1997b. Geology of the Assean Lake area. In: Manitoba Energy and Mines,Minerals Division, Preliminary Map 1997 S-3, scale 1:50,000.

Böhm, C.O., 1998. Geology of the Natawahunan Lake area (part of NTS 63P/11). In:Report of Activities 1998, Manitoba Energy and Mines, Geological Services, pp. 56–59.

Böhm, C.O., Heaman, L.M., Corkery, M.T., 1999a. Archean crustal evolution of the north-western Superior craton margin: U-Pb zircon results from the Split Lake Block. Cana-dian Journal of Earth Sciences 36, 1973–1987.

Böhm, C.O., Corkery, M.T., 1999b. Geology of the Waskaiowaka Lake area (part of64A7,8,9,10). In: Manitoba Industry, Trade and Mines, Geological Services, Prelimi-nary Map 1999T-1, scale 1:50,000.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 17aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

18 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Böhm, C.O., Heaman, L.M., Creaser, R.A., Corkery, M.T., 2000a. Discovery of pre-3.5Ga exotic crust at the northwestern Suprerior Province margin, Manitoba. Geology 28,75–78.

Böhm, C.O., Heaman, L.M., Creaser, R.A., Corkery, M.T., 2000b. The northwest SuperiorProvince margin in Manitoba: a single Archean-Proterozoic boundary or heterogeneoustransition zone? In: Harrap, R.M., Helmstaedt, H. (Eds.), 2000 Western Superior Tran-sect Sixth Annual Workshop. In: Lithoprobe Report 77, pp. 13–18.

Böhm, C.O., Heaman, L.M., Stern, R.A., Corkery, M.T., Creaser, R.A., 2003. Nature of As-sean Lake ancient crust, Manitoba: a combined SHRIMP-ID-TIMS U-Pb geochronol-ogy and Sm-Nd isotope study. Precambrian Research 126, 55–94.

Boily, M., Dion, C., 2002. Geochemistry of boninite-type volcanic rocks in the Frotet-Evans greenstone belt, Opatica Subprovince, Quebec; implications for the evolution ofArchaean greenstone belts. Precambrian Research 115, 349–371.

Boily, M., Leclair, A., Maurice, C., Berclaz, A., David, J., 2004. Étude lithogéochimiqueet isotopique du Nd des assemblages volcaniques et plutoniques de la région sud duGrand-Nord québecois. Ministère des Ressources naturelles, Faune et Parcs du Québec,RP 2004-01, 28 pp.

Boily, M., Leclair, A., Berclaz, A., Labbé, J-Y., Lacoste, P., Simard, M., Maurice, C.2006a. Terrane definition in the Northeastern Superior Province. Abstract in Joint An-nual Meeting; Geological Association of Canada, Mineralogical Association of Canadaand Society of Economic Geologists, Montreal, Qc., Canada, vol. 31.

Boily, M., Leclair, A., Maurice, C., Berclaz, A., David, J., 2006. Étude géochimiqueet isotopique du Nd des assemblages volcaniques et plutoniques du nord-est de laProvince du Supieur (NEPS). Ministère des Ressources naturelles, Québec, Ministèredes Ressources naturelles, Québec, GM 62031, 50 pp.

Bolhar, R., Woodhead, J.D., Hergt, J.M., 2002. Comment on: “Growth and recycling ofearly Archaean continental crust: geochemical evidence from the Coonterunah and War-rawoona Groups, Pilbara Craton, Australia” by Green, M.G. et al. (Tectonophysics 322,69–88). Tectonophysics 344, 289–292.

Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., 2004. Character-isation of early Archaean chemical sediments by trace element signatures. Earth andPlanetary Science Letters 222, 43–60.

Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J., Collerson, K.D., 2005. Chemi-cal characterization of earth’s most ancient clastic metasediments from the Isua Green-stone Belt, southern West Greenland. Geochimica et Cosmochimica Acta 69 (6), 1555–1573.

Bonin, B., Ethien, R., Gerbe, M.C., Cottin, J.Y., Feraud, G., Gagnevin, D., Giret, A., Mi-chon, G., Moine, B., 2004. The Neogen to recent Rallier-duBaty nested ring complex,Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications forcauldron subsidence mechanisms. In: Geological Society of London, Special Publica-tion 234, pp. 125–149.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 18aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bosch, D., Bruguier, O., Pidgeon, R.T., 1996. Evolution of an Archean metamorphic belt:a conventional and SHRIMP U–Pb study of accessory minerals from the Jimperdingmetamorphic belt, Yilgarn Craton, West Australia. Journal of Geology 104, 695–711.

Boss, A.P., 1990. Solar nebula models: implications for Earth origin. In: Newsome, H.E.,Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 3–15.

Boss, A.P., 1997. Giant planet formation by gravitational instability. Science 276, 1836–1839.

Boss, A.P., 2003. Rapid formation of outer giant planets by disk instability. AstrophysicalJournal 599, 577–581.

Böttcher, M.E., Smock, A.M., Cypionka, H., 1998. Sulfur isotope fractionation duringexperimental precipitation of iron (II) and manganese (II) sulfide at room temperature.Chemical Geology 146, 127–1343.

Böttcher, M.E., 2001. Sulfur isotope fractionation in the biogeochemical sulfur cycle ofmarine sediments. Isotopes in Environmental and Health Studies 37, 97–99.

Botz, R., Pokojski, H., Schmitt, M., Thomm, M., 1996. Carbon isotope fractionation duringbacterial methanogenesis by CO2 reduction. Organic Geochemistry 25, 255–262.

Boulter, C.A., Bickle, M.J., Gibson, B., Wright, R.K., 1987. Horizontal tectonics pre-dating upper Gorge Creek Group sedimentation, Pilbara Block, Western Australia.Precambrian Research 36, 241–258.

Bourassa, I., 2002. Geology, geochemistry, geochronology and metallogeny of the Cu-Zn-Au-Ag volcanogenic showings of the Archean Duquet Belt, Superior Province,Northern Québec. Thesis. Université du Québec à Montréal, 78 pp.

Bowerman, M.S., Böhm, C.O., Hartlaub, R.P, Heaman, L.M., Creaser, R.A., 2004. Prelim-inary geochemical and isotopic results from the Gull Rapids area of the eastern SplitLake Block, northwestern Superior Province, Manitoba (parts of NTS 54D5 and 6).In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines,Manitoba Geological Survey, pp. 156–170.

Bowring, S.A., 1990. The Acasta gneisses: Remnant of Earth’s early crust. In: Newsom,H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, Oxford, pp. 319–343.

Bowring, S.A., Housh, T.B., 1995. The Earth’s early evolution. Science 269, 1535–1540.Bowring, S.A., Van Schmus, W.R., 1984. U-Pb zircon constraints on evolution of Wop-

may Orogen, N.W.T. Geological Association of Canada/Mineralogical Association ofCanada, Abstract 9, 47 pp.

Bowring, S.A., Williams, I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from NWCanada. Contributions to Mineralogy and Petrology 134, 3–16.

Bowring, S.A., Williams, I.S., Compston, W., 1989a. 3.96 Ga gneisses from the SlaveProvince, NWT, Canada. Geology 17, 971–975.

Bowring, S.A., King, J.E., Housh, T.B., Isachsen, C.E., Podsek, F.A., 1989b. Neodymiumand lead isotope evidence for enriched early Archean crust in North America. Nature340, 222–225.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 19aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

20 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Bowring, S.A., Housh, T.B., Isachsen, C.E., 1990. The Acasta Gneisses: remnant of earth’searly crust. In: Newsom, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford UniversityPress, New York, pp. 319–343.

Boyd F.R., 1989. Composition and distinction between oceanic and cratonic lithosphere.Earth and Planetary Science Letters 96, 15–26.

Boyd, F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W.,1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotitexenoliths. Contributions to Mineralogy and Petrology 128, 228–246.

Boyet, M., Carlson, R.W., 2005. 142Nd isotope evidence for early (>4.53 Ga) global dif-ferentiation of the silicate Earth. Science 309, 576–578.

Boynton, W.V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Hen-derson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114.

Brandl, G., de Wit, M.J., 1997. The Kaapvaal Craton. In: de Wit, M.J., Ashwal, L.D. (Eds.),Greenstone Belts. Oxford Science Publications, Oxford, pp. 581–607.

Brandl, G., Kröner, A., 1993. Preliminary results of single zircon studies from various Ar-chaean rocks of the Northeastern Transvaal. In: Mines, G.S.A. (Ed.), 16th Colloquiumof African Geology, Mbabane, Swaziland, pp. 54–56.

Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lind-say, J.F., Steele, A., Grassineau, N., 2002. Questioning the evidence for Earth’s oldestfossils. Nature 416, 76–81.

Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A., Stokes, C., 2005.Critical testing of Earth’s oldest putative fossil assemblage from the ∼3.5 Ga Apexchert, Chinaman Creek, Western Australia. Precambrian Research 140, 55–102.

Brasier, M.D., McLoughlin, N., Green, O., Wacey, D., 2006. A fresh look at the fossil evi-dence for early Archaean cellular life. Philosophical Transactions of the Royal Societyof London Ser. B 361, 887–902.

Braterman, P.S., Cairns-Smith, A.G., Sloper, R.W., 1983. Photooxidation of hydrated Fe-2+ – significance for banded iron formations. Nature 303, 163–164.

Brauhart, C., 1999. Regional alteration systems associated with Archean volcanogenicmassive sulphide deposits at Panorama, Pilbara, Western Australia. Unpublished Ph.D.thesis. University of Western Australia, 194 pp.

Brauhart, C.W., Morant, P., 2000. Discussion on “Geochemistry and geodynamic settingof volcanic and plutonic rocks associated with early Archean volcanogenic massivesulphide mineralisation, Pilbara Craton” by Vearncombe, S.E., Kerrich, R., 1999. Pre-cambrian Research 98, 243–270. Precambrian Research 104, 95–99.

Brauhart, C.W., Groves, D.I., Morant, P., 1998. Regional alteration systems associated withvolcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia.Economic Geology 93, 292–302.

Brauhart, C.W., Huston, D.L., Groves, D.I, Mikucki, E.J., Gardoll, S.J, 2001. Geochemicalmass transfer patterns as indicators of the architecture of a complete volcanic-hostedmassive sulfide hydrothermal alteration system in the Panorama district, Pilbara, West-ern Australia. Economic Geology 96, 1263–1278.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 20aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Brazzle, R.H., Pravdivetseva, O.V., Meshik, A.P., Hohenburg, C.M., 1999. Verification andinterpretation of the I-Xe chronometer. Geochimica et Cosmochimica Acta 63, 739–760.

Brearley, A.J., 2003. Nebula versus parent-body processing. In: Davis, A.M. (Ed.), Me-teorites, Comets and Planets. Treatise on Geochemistry, vol. 1, Elsevier-Pergamon,Oxford, pp. 247–268.

Brearley, A.J., Hutcheon, I.D., Browning, L., 2001. Compositional zoning and Mn-Cr sys-tematics in carbonates from the Y791198 CM2 carbonaceous chondrite. In: Lunar andPlanetary Science XXXII, #1458. Lunar and Planetary Institute, Houston, TX (CD-ROM).

Brearley, A.J., Hutcheon, I.D., 2000. Carbonates in the CM1 chondrite ALH84034:mineralchemistry, zoning and Mn-Cr systematics. In: Lunar and Planetary Science XXXI,#1407. Lunar and Planetary Institute, Houston, TX (CD-ROM).

Brearly, A.J., Jones, R.H., 1998. Chondritic meteorites. In: Papike, J.J. (Ed.), PlanetaryMaterials. In: Reviews in Mineralogy, vol. 36. Mineralogical Society of America, Wash-ington, DC, pp. 3-1–3-398.

Bridges, N.T., 1995. Submarine analogs to Venusian pancake domes. Geophysical Re-search Letters 22, 2781.

Bridges, N.T., 1997. Ambient effects on basalt and rhyolite lavas under Venusian, subaerial,and subaqueous conditions. Journal of Geophysical Research 102, 9243.

Bridgwater, D., McGregor, V.R., 1974. Field work on the very early Precambrian rocks ofthe Isua area, southern West Greenland. Rapport Grønlands Geologiske Undersøgelse65, 49–54.

Bridgwater, D., Schiotte, L., 1990. The Archean gneiss complex of northern Labrador areview of current results, ideas and problems. Bulletin of the Geological Society ofDenmark 39, 153–166.

Bridgwater, D., McGregor, V.R., Myers, J.S., 1974. A horizontal tectonic regime in theArchaean of Greenland and its implications for early crustal thickening. PrecambrianResearch 1, 179–197.

Bridgwater, D., Allaart, J.H., Schopf, J.W., Klein, C., Walter, M.R., Barghoorn, E.S.,Strother, P., Knoll, A.H., Gorman, B.E. 1981. Microfossil-like objects from the Ar-chaean of Greenland: a cautionary note. Nature 289, 51–53.

Bridgwater, D., Jackson, G., Bostock, H., 1991. The Anabar shield, field conference,Siberia, 1990. Geoscience Canada 18 (1), 28–32.

Brocks, J.J., Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E., Buick, R., 2003. Re-lease of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogensvia hydropyrolysis. Geochimica et Cosmochimica Acta 67, 1521–1530.

Broecker, W.S., 1970. A boundary condition on the evolution of atmospheric oxygen. Jour-nal of Geophysical Research 75, 3553–3557.

Brown, C.D., Grimm, R.E., 1995. Tectonics of Artemis Chasma: a Venusian “plate” bound-ary. Icarus 117, 219–249.

Brown, C.D., Grimm, R.E., 1996. Lithospheric rheology and flexure at Artemis Chasma,Venus. Journal of Geophysical Research 101, 12697–12708.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 21aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

22 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Brown, J.L., 2002. Neoarchean evolution of the western – central Wabigoon boundaryzone, Brightsand Forest area, Ontario. Unpublished M.Sc. thesis. University of Ottawa,Ottawa, Ontario.

Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tec-tonics since the Neoarchean. Geology 34, 961–964.

Brueckner, H.K., Medaris, L.G., 1998. A tale of two orogens: the contrasting T-P-t his-tory and geochemical evolution of mantle in high- and ultrahigh-pressure metamorphicterranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Min-eralogische und Petrographische Mitteilungen 78, 293–307.

Brueckner, H.K., Medaris, L.G., 2000. A general model for the intrusion and evolutionof “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphicterranes. Journal of Metamorphic Geology 18, 123–133.

Bruguier, O., Dada, S., Lancelot, J.R., 1994. Early Archean component (>3.5 Ga) within a3.05-Ga orthogneiss from northern Nigeria, U-Pb zircon evidence. Earth and PlanetaryScience Letters 125, 89–103.

Bryan, W.B., Thompson, G., Ludden, J.N., 1981. Compositional variation in normalMORB from 22’-25’N: Mid-Atlantic Ridge and Kane Fracture Zone. Journal of Geo-physical Research 86, 11815–11836.

Bucher, K., Frey, M., 1994. Petrogenesis of Metamorphic Rocks. Springer-Verlag, NewYork, 318 pp.

Buick, R., 1984. Carbonaceous filaments from North Pole, Western Australia: are theyfossil bacteria in Archean stromatolites? Precambrian Research 24, 157–172.

Buick, R., 1988. Carbonaceous filaments from North Pole, Western Australia: are theyfossil bacteria in Archean stromatolites? A reply. Precambrian Research 39, 311–317.

Buick, R., 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids andfilaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia.Palaios 5, 441–491.

Buick, R., Barnes, K.R., 1984. Cherts in the Warrawoona Group: Early Archaean silicifiedsediments deposited in shallow-water environments. In: Muhling, J.R., Groves, D.I.,Blake, T.S. (Eds.), Archaean and Proterozoic Basins of the Pilbara, Western Australia:Evolution and mineralization potential. In: The Geology Department and UniversityExtension, Publication 9. University of Western Australia, pp. 37–53.

Buick, R., Doepel, M.G., 1999. Panorama VMS zinc-copper deposits. In: Ferguson, K.M.(Compiler), Lead, Zinc and Silver Deposits of Western Australia. In: Western AustraliaGeological Survey, Mineral Resources Bulletin 15, pp. 80–86.

Buick, R., Dunlop, J., 1990. Evaporitic sediments of early Archaean age from the Warra-woona Group, North Pole, Western Australia. Sedimentology 37, 247–277.

Buick, R., Dunlop, J.S.R., Groves, D.I., 1981. Stromatolite recognition in ancient rocks:An appraisal of irregularly laminated structures in an Early Archaean chert-barite unitfrom North Pole, Western Australia. Alcheringa 5, 161–181.

Buick, R., Thornett, J.R., McNaughton, N.J., Smith, J.B., Barley, M.E., Savage, M., 1995.Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton ofAustralia. Nature 375, 574–577.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 22aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Buick, R., Brauhart, C.W., Morant, P., Thornett, J.R., Maniw, J.G., Archibald, N.J.,Doepel, M.G., Fletcher, I.R., Pickard, A.L., Smith, J.B., Barley, M.E., McNaughton,N.J., Groves, D.I., 2002. Geochronology and stratigraphic relationships of the SulphurSprings Group and Strelley Granite: a temporally distinct igneous province in the Ar-chaean Pilbara Craton, Australia. Precambrian Research 114, 87–120.

Bullock, M.A., Grinspoon, G.H., 2001. The recent evolution of climate on Venus. Icarus150, 19–37.

Bullock, M.A., Grinspoon, D.H., 1996. The stability of climate on Venus. Journal of Geo-physical Research 101, 7521–7530.

Bunch, T.E., Keil, K., Olsen, E., 1970. Mineralogy and petrology of silicate inclusions iniron meteorites. Contributions to Mineralogy and Petrology 25, 297–240.

Bureau of Geology and Mineral Resources of Henan Province (BGMRHP), 1989. Re-gional Geology of Henan Province. People’s Republic of China, Ministry of Geologyand Mineral Resources, Geological Memoirs, Series 1, vol. 19. Geological PublishingHouse, Beijing, pp. 1–232 (in Chinese).

Burg, J-P., Ford, M., 1997. Orogeny through time: an overview. In: Geological Society ofLondon, Special Publication 121, pp. 1–17.

Burg, J-P., Leyreloup, A., Marchand., J., Matte, P., 1984. Inverted metamorphic zonationand large-scale thrusting in the Variscan Belt: an example in the French Massif Central.In: Geological Society Special Publication 14, pp. 47–61.

Burg, J-P., Delor, C.P., Leyreloup, A., Romney, F., 1989. Inverted metamorphic zonationand Variscan thrust tectonics in the Rouergue area (Massif Central, France): P-T-t recordfrom mineral to regional scale. In: Daly, R.A.C.J.S., Yardley, B.W.D. (Eds.), Evolutionof Metamorphic Belts. In: Geological Society Special Publication, vol. 43, pp. 423–439.

Busfield, A., Gilmour, J.D., Whitby, J.A., Simon, S.B., Grossman, L., Tang, C.C., Turner,G., 2001. I-Xe analyses of Tagish Lake magnetite and Monahans halite. Meteoritics andPlanetary Science 36 (Supplement), A34–35.

Busfield, A., Gilmour, J.D., Whitby, J.A., Turner, G., 2004. Iodine-Xenon analysis ofordinary chondrite halide: implications for early solar system water. Geochimica et Cos-mochimica Acta 68, 195–202.

Bussey, D.B.J., Sorensen, S.-A., Guest, J.E., 1995. Factors influencing the capability oflava to erode its substrate: Application to Venus. Journal of Geophysical Research 100,6941–6949.

Butler, I.B., Bottcher, M.E., Rickard, D., Oldroyd, A., 2004. Sulfur isotope partitioningduring experimental formation of pyrite via the polysulfide and hydrogen sulfide path-ways: Implications for the interpretation of sedimentary and hydrothermal pyrite isotoperecords. Earth and Planetary Science Letters 228, 495–509.

Butler, I.B., Archer, C., Vance, D., Oldroyd, A., Rickard, D., 2005. Fe isotope fractionationon FeS formation in ambient aqueous solution. Earth and Planetary Science Letters 236,430–442.

BVTP – Basaltic Volcanism of the Terrestrial Planets (BVTP). Basaltic Volcanism StudyProject, 1981. Pergamon Press Inc., New York, 1286 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 23aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

24 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Byerly, G.R., 1999. Komatiites of the Mendon Formation: Late-stage ultramafic volcanismin the Barberton Greenstone Belt, In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolu-tion of the Barberton Greenstone Belt, South Africa. In: Geological Society of America,Special Paper 329, pp. 189–212.

Byerly, G.R., Lowe, D.R., 1994. Spinels from Archaean impact spherules. Geochimica etCosmochimica Acta 58, 3469–3486.

Byerly, G.R., Kröner, A., Lowe, D.R., Todt, W., Walsh, M.M., 1996. Prolonged magmatismand time constraints for sediments deposition in the early Archaean Barberton green-stone belt: evidence from the Upper Onverwacht and Fig Tree Groups. PrecambrianResearch 78, 125–138.

Byerly, G.R., Lowe, D.R., Wooden, J.L., Xie, X., 2002. An Archean impact layer from thePilbara and Kaapvaal cratons. Science 297, 1325–1327.

Cagnard, F., Brun, J.P., Gapais, D., 2006. Modes of thickening of analogue weaklithospheres. Tectonophysics 421, 145–160.

Cairns-Smith, A.G., 1978. Precambrian solution photochemistry, inverse segregation, andbanded iron formations. Nature 276, 807–808.

Calais, E., Ebinger, C., Hartnady, C., Nocquet, J.M., 2006. Kinematics of the East AfricanRift from GPS and earthquake slip vector data. In: Geological Society of London, Spe-cial Publication 259, pp. 9–22.

Calvert, A., Ludden, J.N., 1999. Archean continental assembly in the southeastern SuperiorProvince of Canada. Tectonics 18, 412–429.

Cameron, A.G.W., 1979. Neutron-rich silicon-burning and equilibrium processes of nucle-osynthesis. Astrophysical Journal 230, L53-L57.

Cameron, W.E., Nisbet, E.G., Dietrich, V.J., 1979. Boninites, komatiites and ophioliticbasalts. Nature 280 (16), 550–553.

Campbell, B.A., 1999. Surface formation rates and impact crater densities on Venus. Jour-nal of Geophysical Research 104, 21,951–21,955.

Campbell, B.A., Arvidson, R.E., Shepard, M.K., Brackett, R.A., 1997. Remote sensingof surface processes. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II.University of Arizona Press, pp. 503–526.

Campbell, I.H., 1998. The mantle’s chemical structure: insights from the melting productsof mantle plumes. In: Jackson, I.N.S. (Ed.), The Earth’s Mantle: Composition, Structureand Evolution. Cambridge University Press, Cambridge, pp. 259–310.

Campbell, I.H., 2003. Constraints on continental growth models from Nb/U ratios in the 3.5Ga Barberton and other Archaean basalt-komatiite suites. American Journal of Science303, 319–351.

Campbell, I.H., Davies, G.F., 2006. Do mantle plumes exist? Episodes 29, 162–168.Campbell, I.H., Hill, R.I. 1988. A two-stage model for the formation of the granite-

greenstone terrains of the Kalgoorlie–Norseman area, Western Australia. Earth andPlanetary Science Letters 90, 11–25.

Campbell, I.H., Griffiths, R.W., Hill, R.I., 1989. Melting in an Archaean mantle plume:heads it’s basalts, tails it’s komatiites. Nature 339, 697–699.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 24aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Candela, P.A., Picolli, P.M., 2005. Magmatic processes in the development of porphyry-type ore systems. Economic Geology, 100th Anniversary Volume, 25–38.

Canfield, D.E., 2001. Biogeochemistry of sulphur isotopes. In: Valley, J.W., Cole, D.R.(Eds.), Stable Isotope Geochemistry. In: Reviews in Mineralogy and Geochemistry, vol.43, pp. 607–636.

Canfield, D.E., 2004. The evolution of the Earth surface sulfur reservoir. American Journalof Science 304, 839–861.

Canfield, D.E., 2005. The early history of atmospheric oxygen: Homage to Robert M.Garrels. Annual Review of Earth and Planetary Sciences 33, 1–36.

Canfield. D.E., Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal ofScience 299, 697–723.

Canfield, D.E., Thamdrup, B., 1994. The production of S-34-depleted sulfide during bac-terial disproportionation of elemental sulfur. Science 266, 1973–1975.

Canup, R.N., 2004. Simulations of a late lunar-forming impact. Icarus 168, 433–456.Canup, R., Agnor, C.B., 2000. Accretion of the terrestrial planets and the Earth-Moon sys-

tem. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. Arizona UniversityPress, Tucson, AZ, pp. 113–129.

Canup, R., Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of theEarth’s formation. Nature 412, 708–712.

Cao, G.Q., Wang, Z.P., Zhang, C.J., 1996. Early Precambrian Geology of Western Shan-dong. Geological Publishing House, Beijing, pp. 1–193 (in Chinese).

Card, K.D., 1990. A review of the Superior Province of the Canadian Shield, a product ofArchean accretion. Precambrian Research 48, 99–156.

Card, K.D., Ciesielski, A., 1986. Subdivisions of the Superior Province of the CanadianShield. Geoscience Canada 13, 5–13.

Card, K.D., Poulsen, K.H., 1998. Geology and mineral deposits of the Superior Provinceof the Canadian shield. In: Lucas, S. (Coordinator), Geology of the Precambrian Supe-rior and Grenville Provinces and Precambrian Fossils in North America. In: GeologicalSurvey of Canada Geology of Canada, vol. 7, pp. 13–194 (Chapter 2).

Carlson, R.W., Hauri, E.H., 2001. Extending the 107Pd-107Ag chronometer to low Pd/Agmeteorites with the MC-ICPMS. Geochimica et Cosmochimica Acta 65, 1839–1848.

Carlson, R.W., Lugmair, G.W., 2000. Timescales of planetesimal formation and differenti-ation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Originof the Earth and Moon. Arizona University Press, Tucson, AZ, pp. 25–44.

Carlson, R.W., Hunter, D.R., Barker, F., 1983. Sm-Nd age and isotopic systematics of thebimodal suite, ancient gneiss complex, Swaziland. Nature 305, 701–704.

Carlson, R.W., Pearson, D.G., Boyd, F.R., Shirey, S.H., Irvine, G., Menzies, A.H., Gurney,J.J., 1999. Re-Os systematics of lithospheric peridotites: Implications for lithosphereformation and preservation. In: Proceedings of the 7th International Kimberlite Confer-ence. Red Roof Design, Cape Town, pp. 99–108.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 25aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

26 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Carlson, R.W., Irving, A.J., Schulze, D.J., Hearn, B.C., Jr., 2004. Timing of Precambrianmelt depletion and Phanerozoic refertilization events in the lithospheric mantle of theWyoming craton and adjacent Central Plains Orogen. Lithos 77, 453–472.

Carpenter, J.M., Wolf, S., Schreyer, K., Launhardt, R., Henning, T., 2005. Evolution ofcold circumstellar dust around solar-type stars. Astronomical Journal 129, 1049–1062.

Carson, C.J., Ague, J.J., Coath, C.D., 2002. U-Pb geochronology from Tonagh Island, EastAntarctica: implications for the timing of ultra-high temperature metamorphism of theNapier Complex. Precambrian Research 116, 237–263.

Caro, G., Bourdon, B., Wood, B.J., Corgne, A., 2005. Trace element fractionation inHadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249.

Caro, G., Bourdon, B., Birck, J L., Moorbath, S., 2006. High-precision Nd-142/Nd-144measurements in terrestrial rocks: Constraints on the early differentiation of the Earth’smantle. Geochimica et Cosmochimica Acta 70 (1), 164–191.

Cas, R., Self, S., Beresford, S., 1999. The behavior of the fronts of komatiite lavas in medialto distal settings. Earth and Planetary Science Letters 172, 127–139.

Casey, J.F., 1997. Comparison of major and trace element geochemistry of abyssal peri-dotites and mafic plutonic rocks with basalts from the MARK region of the mid-AtlanticRidge. In: Proceedings of the Ocean Drilling Program, Scientific Results, vol. 153, pp.181–240.

Cassidy, K.F., Champion, D.C., McNaughton, N.J., Fletcher, I.R., Whitaker, A.J., Bas-trakova, I.V., Budd, A.R., 2002. Characterization and metallogenic significance ofArchaean granitoids of the Yilgarn Craton, Western Australia. Amira International Lim-ited, AMIRA Project no. P482 / MERIWA Project M281 (unpublished report no. 222).

Cassidy, K.F., Champion, D.C., Krapež, B., Barley, M.E., Brown, S.J.A., Blewett, R.S.,Groenewald, P.B., Tyler, I.M., 2006. A revised geological framework for the YilgarnCraton, Western Australia. Western Australia Geological Survey, Record 2006/8, 8 pp.

Cassidy, K.F., Champion, D.C., Krapez, B., Barley, M.E., Brown, S.J.A., Blewett, R.S.,Groenwald, N.B., Tyler, I.M., 2006, A revised geological framework for the YilgarnCraton. Geological Survey of Western Australia, Record 2006/8.

Catanzaro, E.J., 1963. Zircon ages in southwestern Minnesota. Journal of GeophysicalResearch 68, 2045–2048.

Cates, N.L., Mojzsis, S.J., 2006. Chemical and isotopic evidence for widespread Eoarchean(� 3750 Ma) metasedimentary enclaves in southern West Greenland. Geochimica etCosmochimica Acta 70, 4229–4257.

Cates, N.L., Mojzsis, S.J., 2007a. Pre-3770 Ma supracrustal rocks from the Nuvvuagittuqsupracrustal belt, northern Québec. Earth and Planetary Science Letters, in press.

Cates, N.L., Mojzsis, S.J., 2007b. Rare or prevalent Earth? Conditions suitable for life wereestablished rapidly on the young Earth. In: Lunar and Planetary Science ConferenceXXXVIII, Houston, TX.

Cavosie, A.J., Wilde, S.A., Liu, D., Weiblen, P.W., Valley, J.W., 2004. Internal zoning andU-Th-Pb chemistry of jack Hills detrital zircons: a mineral record of early Archean toMesoproterozoic (4348–1576 Ma) magmatism. Precambrian Research 135, 251–279.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 26aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Cavosie, A.J., Valley, J.W., Wilde, S.A., 2005a. Magmatic δ18O in 4400–3900 Ma detritalzircons: A record of the alteration and recycling of crust in the Early Archean. Earthand Planetary Science Letters 235, 663–681.

Cavosie, A.J., Wilde, S.A., Valley, J.W., 2005b. A lower age limit for the Archean basedon δ18O of detrital zircons. Geochimica et Cosmochimica Acta 69, A391.

Cavosie, A.J., Valley, J.W., Wilde, S.A., 2006. Correlated microanalysis of zircon: Traceelement, delta O-18, and U-Th-Pb isotopic constraints on the igneous origin of complex>3900 Ma detrital grains. Geochimica et Cosmochimica Acta 70, 5601–5616.

Cawood, P.A., 2005. Terra Austaris Orogen: Rodinia breakup and the development of thePacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic.Earth Science Reviews 69, 249–279.

Cawood, P.A., Kröner, A., Pisarevsky, S., 2006. Precambrian plate tectonics: Criteria andevidence. GSA Today 16 (7), 4–11.

Chamberlain, K.R., 1998. Medicine Bow Orogeny: Timing of deformation and modelof crustal structure produced during continent-arc collision, ca. 1.78 Ga, southeasternWyoming. Rocky Mountain Geology 33 (2), 259–278.

Chamberlain, K.R., Bowring, S.A. 2001. Apatite-feldspar U-Pb thermochronometer: areliable, mid-range (450 ◦C), diffusion-controlled system. Chemical Geology 172, 173–200.

Chamberlain, K.R., Bauer, R.L., Frost, B.R., Frost, C.D., 2002. Dakotan Orogen: Continu-ation of Trans-Hudson Orogen or younger, separate suturing of Wyoming and Superiorcratons. Geological Association of Canada – Mineralogical Association of Canada Ab-stracts 27, 18.

Chamberlain, K.R., Frost, C.D., Frost, B.R., 2003. Early Archean to Mesoproterozoic evo-lution of the Wyoming Province: Archean origins to modern lithospheric architecture.Canadian Journal of Earth Sciences 40, 1357–1374.

Chamberlin, T.C., 1897. The method of multiple working hypotheses. Journal of Geology5, 837–848.

Champion, D.C., Sheraton, J.W., 1997. Geochemistry and Nd isotope systematics of Ar-chaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications forcrustal growth processes. Precambrian Research 83, 109–132.

Champion, D.C., Smithies, R.H., 2000. The geochemistry of the Yule Granitoid Complex,East Pilbara Granite-Greenstone Terrane; evidence for early felsic crust. In: WesternAustralia Geological Survey, Annual Review 1999–2000, pp. 42–48.

Champion, D.C., Smithies, R.H., 2001. Archean granites of the Yilgarn and Pilbara Cra-tons, Western Australia. In: Cassidy, K.F., Dunphy, J.M., Van Kranendonk, M.J. (Eds.),4th International Archean Symposium 2001, Extended Abstracts, AGSO – GeoscienceAustralia, Record 2001/37, pp. 134–136.

Chandler, V.W., 1987. Aeromagnetic map of Minnesota, west-central region, magneticintensity anomaly. Scale 1:250,000, 2 pls. Map A-6. Minnesota Geological Survey, Min-neapolis, MN.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 27aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

28 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Chandler, V.W., 1989. Aeromagnetic map of Minnesota, southwestern region, magneticintensity anomaly: Scale 1:250,000, 2 pls. Map A-8. Minnesota Geological Survey,Minneapolis, MN.

Chandler, V.W., 1991. Aeromagnetic map of Minnesota, southeastern region, magneticintensity anomaly: Scale 1:250,000, 2 pls. Map A-9. Minnesota Geological Survey,Minneapolis, MN.

Chapman, M.G., 1999. Geologic/Geomorphic Map of the Galindo Quadrangle (V–40),Venus Geologic Investigations Series I-2613. U.S. Geological Survey, 1:5,000,000.

Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8,173–174.

Chardon, D.H., Choukroune, P., Jayananda, M., 1996. Strain patterns, decollement andincipient sagducted greenstone terrains in the Archaean Dharwar craton (South India).Journal of Structural Geology 18, 991–1004.

Chardon, D.H., Choukroune, P., Jayananda, M., 1998. Sinking of the Dharwar Basin (SouthIndia); implications for Archaean tectonics. Precambrian Research 91, 15–39.

Chardon, D., Peucat, J.-J., Jayananda, M., Choukroune, P., Fanning, M., 2002. Archeangranite-greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk in-homogeneous contraction during juvenile magmatic accretion. Tectonics 21,10.1029/2001TC901032.

Chaussidon, M., Lorand, J.P., 1990. Sulfur isotope composition of orogenic spinel lherzo-lite massifs from Ariege (north-eastern Pyrenees, France) – an ion microprobe study.Geochimica et Cosmochimica Acta 54, 2835–2846.

Chaussidon, M., Albarède, F., Sheppard, S.M.F., 1987. Sulfur isotope heterogeneity in themantle from ion microprobe measurements of sulfide inclusions in diamonds. Nature330, 242–244.

Chen, H.-L., Yang, S.-F., Wang, Q.-H., Luo, J.-C., Jia, C.-Z., Wei, G.-Q., Li, Z.-L., He,G.-Y., Hu, A.-P., 2006. Tarim platform, Early to Middle Permian basalt magmatism andinteraction with sedimentary rocks (title translated from Chinese). Geology in China 33,544–551 (in Chinese).

Chen, J.H., Wasserburg, G.J., 1981. The isotopic composition of uranium and lead in Al-lende inclusions and meteoritic phosphates. Earth and Planetary Science Letters 52,1–15.

Chen, J.H., Wasserburg, G.J., 1990. The isotopic composition of Ag in meteorites and thepresence of 107Pd in protoplanets. Geochimica et Cosmochimica Acta 54, 1729–1743.

Chen, J.H., Papanastassiou, D.A., Wasserburg, G.J., 2002. Re-Os and Pd-Ag systematics ingroup IIIAB irons and in pallasites. Geochimica et Cosmochimica Acta 66, 3793–3810.

Chen, S.F., Riganti, A., Wyche, S., Greenfield, J.E., Nelson, D.R., 2003. Lithostratigra-phy and tectonic evolution of contrasting greenstone successions in the central YilgarnCraton, Western Australia. Precambrian Research 127, 249–266.

Chen, S.F., Libby, J.W., Wyche, S., Riganti, A., 2004. Kinematic nature and origin ofregional-scale ductile shear zones in the central Yilgarn Craton, Western Australia.Tectonophysics 394, 139–153.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 28aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Chen, Y.Q., Yang, C.H., Wan, Y.S., Liu, Z.X, Zhang, X.P., Du, L.L., Zhang, S.G., Wu, J.S.,Gao, J.F., 2005. Early Precambrian Geological Characters and Anatectic Reconstruc-tion of Crust in North Part of Middle Taihang Mountain. Geological Publishing House,Beijing, pp. 1–191 (in Chinese).

Chin, R.J., Smith, R.A., 1983. Jackson, W.A. Western Australia Geological Survey,1:250,000 Geological Series Explanatory Notes, 30 pp.

Choblet, G., Sotin, C., 2001. Early transient cooling of Mars. Geophysical Research Letters28, 3035–3038.

Choi, S.H., Mukasa, S.B., Andronikov, A.V., Osanai, Y., Harley, S.L., Kelly, N.M., 2006.Lu-Hf systematics of the earliest crust in Antarctica: The ultra-high temperature (UHT)Napier Metamorphic Complex of Enderby Land. Earth and Planetary Science Letters246, 305–316.

Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of western Alps: afirst record and some consequences. Contributions to Mineralogy and Petrology 86,107–118.

Chopin, C., Henry, C., Michard, A., 1991. Geology and petrology of the coesite-bearingterrain, Dora Maira massif, Western Alps. European Journal of Mineralogy 3, 263–291.

Choukroune, P., Bouhallier, H., Arndt, N.T., 1995. Soft lithosphere during periods of Ar-chaean crustal growth or crustal reworking. In: Coward, M.P., Ries, A.C. (Eds.), EarlyPrecambrian Processes. In: Geological Society of London, Special Publication 95, pp.67–86.

Choukroune, P., Ludden, J.N., Chardon, D., Calvert, A.J., Bouhallier, H., 1997. Archaeancrustal growth and tectonic processes: a comparison of the Superior Province, Canadaand the Dharwar Craton, India. In: Burg, J.-P., Ford, M. (Eds.), Orogeny Through Time.In: Geological Society of London, Special Publication 121, pp. 63–98.

Chown, E.H., Harrap, R., Mouksil, A., 2002. The role of granitic intrusions in the evolutionof the Abitibi belt, Canada. Precambrian Research 115, 291–310.

Chung, S.L., Jahn, B.M., Wu, G.Y., Lo, C.H., Bolin, C. 1998. The Emeishan flood basaltsin SW China: a mantle plume initiation model and its connection with continentalbreakup and mass extinction at the Permian–Triassic boundary. In: American Geophys-ical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 47–58.

Ciesielski, A., 2000. Géologie et lithogéochimie de la partie occidentale de la sous-province de Bienville et des zones adjacentes dans l’est de la Province du Supérieur,Québec. Commission géologique du Canada, Open File 3550, 90 pp.

Class, C., Miller, D.M., Goldstein, S.L., Langmuir, C.H., 2000. Distinguishing melt andfluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geo-physics Geosystems 1, paper number 1999GC000010.

Claoué-Long, J.C., Thirlwall, M.F., Nesbitt, R.W., 1984. Revised Sm-Nd systematics ofKambalda greenstones, Western Australia. Nature 307, 697–701.

Claoué–Long, J.C., Compston, W., Cowden, A., 1988. The age of the Kambalda green-stones resolved by ion-microprobe – implications for Archaean dating methods. Earthand Planetary Science Letters 89, 239–259.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 29aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

30 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Clayton, R.N., 2003. Oxygen isotopes in meteorites. In: Davis, A.M. (Ed.), Meteorites,Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford,pp. 129–142.

Clayton, R.N., Mayeda, T.K., 1996. Oxygen isotope studies of achondrites. Geochimica etCosmochimica Acta 60, 1999-2017.

Clayton, R.N., Grossman, L., Mayeda, T.K., 1973. A component of primitive nuclear com-position in carbonaceous meteorites. Science 182, 485-488.

Clemens, J.D., Yearron, L.M., Stevens, G., 2006. Barberton (South Africa) TTG magmas:Geochemical and experimental constraints on source-rock petrology, pressure of forma-tion and tectonic setting. Precambrian Research 151, 53–78.

Cloete, M., 1999. Aspects of Volcanism and Metamorphism of the Onverwacht GroupLavas in the Southwestern Portion of the Barberton Greenstone Belt. Memoir of theGeological Society of South Africa 84, 232 pp.

Cloud, P., 1968. Atmospheric and hydrospheric evolution of primitive Earth. Science 160,729.

Cloud, P. 1972. A working model of the primitive Earth. American Journal of Science 272,537–548.

Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Economic Ge-ology 68, 1135–1143.

Cody, G.D., Boctor, N.Z., Filley, T.R., Hazen, R.M., Scott, J.H., Sharma, A., Yoder, H.S.,2000. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate.Science 289, 1337–1340.

Cohen, B.A., Swindle, T.D., King, D.A., 2000. Support for the lunar cataclysm hypothesisfrom lunar meteorite impact melt ages. Science 290, 1754–1756.

Coleman, R.G. 1989. Continental growth of north-west China. Tectonics 8, 621–635.Collerson, K.D., Bridgwater, D., 1979. Metamorphic development of early Archaean

tonalitic and trondhjemitic gneisses: Saglek area, Labrador. In: Barker, F. (Ed.), Trond-hjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 205–273.

Collerson, K.D., Kamber, B.S., 1999. Evolution of the continents and the atmosphere in-ferred from Th-U-Nb systematics of the depleted mantle. Science 283, 1519–1522.

Collerson, K.D., Campbell, L.M., Weaver, B.L., Palacz, Z.A., 1991. Evidence for extremefractionation in early Archean ultramafic rocks from northern Labrador. Nature 349,209–214.

Collins, W.J., 1983. Geological Evolution of an Archean Batholith. Unpublished PhD the-sis. La Trobe University, Melbourne.

Collins, W.J., 1989. Polydiapirism of the Archaean Mt. Edgar batholith, Pilbara Block,Western Australia. Precambrian Research 43, 41–62.

Collins, W.J., 1993. Melting of Archaean sialic crust under high aH2O conditions: genesisof 3300 Ma Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, WesternAustralia. Precambrian Research 60, 151–174.

Collins, W.J., 2003. Slab pull, mantle convection, and Pangaean assembly and dispersal.Earth and Planetary Science Letters 205, 225–237.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 30aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Collins, W.J., Gray, C.M., 1990. Rb-Sr isotopic systematics of an Archaean granite-gneissterrain: The Mount Edgar batholith, Pilbara Block, Western Australia. Australian Jour-nal of Earth Sciences 37, 9–22.

Collins, W.J., Van Kranendonk, M.J., 1999. Model for the development of kyanite duringpartial convective overturn of Archaean granite-greenstone terranes: the Pilbara Craton,Australia. Journal of Metamorphic Geology 17, 145–156.

Collins, W.J., Van Kranendonk, M.J., Teyssier, C., 1998. Partial convective overturn ofArchaean crust in the east Pilbara Craton, Western Australia: Driving mechanisms andtectonic implications. Journal of Structural Geology 20, 1405–1424.

Compston, W., Kröner, A., 1988. Multiple zircon growth within early Archean Tonaliticgneiss from the Ancient Gneiss complex, Swaziland. Earth and Planetary Sciences Let-ters 87, 13–28.

Compston, W., Pidgeon, R.T., 1986. Jack Hills, evidence of more very old detrital zirconsin Western Australia. Nature 321, 766–769.

Compston, W., Lovering, J.F., Vernon, M.J., 1965. Rubidium-strontium age of the Bish-opville aubrite and its component enstatite and feldspar. Geochimica et CosmochimicaActa 29, 1085–1099.

Compston, W., Williams, I.S., Froude, D.O., Kinny, P.D., Ireland, T.R., 1984a. Zircon U-Pbage determinations by ion microprobe on pre-greenstone rocks from the north-west andcentral Yilgarn Block, West Australia. In: Terra Cognita, Abstracts. European Union ofGeosciences, 4 (2), p. 208.

Compston, W., Williams, I.S., Meyer, C., 1984b. U-Pb geochronology of zircons fromLunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal ofGeophysical Research 89, B525-B534.

Compston, W., Kinny, P.D., Williams, I.S., Foster, J.J., 1986a. The age and lead loss behav-iour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earthand Planetary Science Letters 80, 71–81.

Compston, W., Williams, I.S., Campbell, I.H., Gresham, J.J., 1986b. Zircon xenocrystsfrom the Kambalda volcanics: age constraints and direct evidence for older continentalcrust below the Kambalda–Norseman greenstones. Earth and Planetary Science Letters76, 299–301.

Condie, K.C., 1981. Archean Greenstone Belts. Amsterdam, Elsevier.Condie, K.C., 1986. Origin and early growth rate of continents. Precambrian Research 32,

261–278.Condie, K.C., 1989. Geochemical changes in basalts and andesites across the Archean-

Proterozoic boundary: Identification and significance. Lithos 23, 1–18.Condie, K., 1993. Chemical composition and evolution of the upper continental crust: Con-

trasting results from surface samples and shales. Chemical Geology 104, 1–37.Condie, K.C., 1994. Greenstones through time. In: Condie, K.C. (Ed.), Archean Crustal

Evolution. Elsevier, Amsterdam, pp. 85–120.Condie, K.C., 1997. Plate Tectonics and Crustal Evolution, 4th ed. Butterworth Heine-

mann, Oxford, 282 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 31aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

32 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalancheconnection? Earth and Planetary Science Letters 163, 97–108.

Condie, K.C., 2005. Earth as an Evolving Planetary System. Elsevier-Academic Press,Amsterdam, 447 pp.

Condie, K.C., 2000. Episodic crustal growth models: afterthoughts and extensions.Tectonophysics 322, 153–162.

Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge Uni-versity Press, Cambridge, 306 pp.

Condie, K.C., 2004. Supercontinents and superplume events: distinguishing signals in thegeologic record. Physics of the Earth and Planetary Interiors 146, 319–332.

Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window toevolving sources of mantle plumes? Lithos 79, 491–504.

Condie, K.C., Wronkiewicz, D.J., 1990. The Cr/Th ratio in Precambrian pelites from theKaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters97, 256–267.

Condie, K.C., Macke, J.E., Reimer, T.O., 1970. Petrology and geochemistry of early Pre-cambrian graywackes from the Fig Tree Group, South Africa. Bulletin of GeologicalSociety of America 81, 2759–2776.

Condie, K.C., Kröner, A., Milisenda, C.C., 1996. Geochemistry and geochronology of theMkhondo suite, Swaziland: evidence for passive-margin deposition and granulite faciesmetamorphism in the late Archean of southern Africa. Journal of African Earth Science21, 483–506.

Condie, K.C., Belousova, E., Griffin, W.L., 2007. Granitic Events in Space and Time: Con-straints from Igneous and Detrital Zircon Age Spectra. In press

Condit, R.H., Hobbins, R.R., Birchenall, C.E., 1974. Self-diffusion of iron and sulfur inferrous sulfide. Oxidation of Metals 8, 409–455.

Coney, P.J., Jones, D.L., Monger, J.W.H., 1980. Cordilleran suspect terranes. Nature 288,329–333.

Conrad, R., 2005. Quantification of methanogenic pathways using stable carbon isotopicsignatures: a review and a proposal. Organic Geochemistry 36, 739–752.

Coogan, L., Hinton, R.W., 2006. Do the trace element compositions of detrital zirconsreuqire Hadean continental crust? Geology 34, 633–636.

Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant porphyry deposits: characteristics,distribution, and tectonic controls. Economic Geology 100, 801–818.

Cooper, G.W., Thiemens, M.H., Jackson, T.L., Chang, S., 1997. Sulfur and hydrogen iso-tope anomalies in meteorite sulfonic acids. Science 277, 1072–1074.

Copp, D.L., Guest, J.E., Stofan, E.R., 1998. New insights into corona evolution: Mappingon Venus. Journal of Geophysical Research 103, 19,401–19,410.

Corfu, F., 1988. Differential response of U-Pb systems in coexisting accessory minerals,Winnipeg River Subprovince, Canadian Shield: Implications for Archean growth andstabilization. Contributions to Mineralogy and Petrology 98, 312–325.

Corfu, F., 1993. The evolution of the southern Abitibi greenstone belt in light of preciseU-Pb geochronology. Economic Geology 88, 1323–1340.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 32aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Corfu, F., Ayres, L.D., 1991. Unscrambling the stratigraphy of an Archaean greenstonebelt: A U-Pb geochronological study of the Favourable Lake belt, northwestern Ontario.Precambrian Research 50, 201–220.

Corfu, F., Davis, D.W., 1992. A U-Pb geochronological framework for the western Su-perior Province. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.),Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 2, pp. 1335–1346.

Corfu, F., Lin, S., 2000. Geology and U-Pb geochronology of the Island Lake greenstonebelt, northwestern Superior Province, Manitoba. Canadian Journal of Earth Sciences 37,1275–1286.

Corfu, F., Noble, S.R., 1992. Genesis of the southern Abitibi greenstone belt, SuperiorProvince, Canada: Evidence from zircon Hf isotope analyses using a single filamenttechnique. Geochimica et Cosmochimica Acta 56, 2081–2097.

Corfu, F., Stone, D., 1998. Age structure and orogenic significance of the Berens Rivercomposite batholiths, western Superior Province. Canadian Journal of Earth Sciences35, 1089–1109.

Corfu, F., Stott, G.M., 1986. U-Pb ages for late magmatism and regional deformation inthe Shebandowan belt, Superior Province, Canada. Canadian Journal of Earth Sciences23, 1075–1082.

Corfu, F., Stott, G.M., 1993a. Age and petrogenesis of two late Archean magmatic suites,northwestern Superior Province, Canada: zircon U-Pb and Lu-Hf isotopic relations.Journal of Petrology 34, 817–838.

Corfu, F., Stott, G.M., 1993b. U-Pb geochronology of the central Uchi Subprovince, Supe-rior Province. Canadian Journal of Earth Sciences 30, 1179–1196.

Corfu, F., Stott, G.M., 1996. Hf isotopic composition and age constraints on the evolutionof the Archean central Uchi Subprovince, Ontario, Canada. Precambrian Research 78,53–63.

Corfu, F., Stott, G.M., 1998. Shebandowan greenstone belt, western Superior Province;U-Pb ages, tectonic implications and correlations. Bulletin of Geological Society ofAmerica 110, 1467–1484.

Corfu, F., Wood, J., 1986. U-Pb zircon ages in supracrustal and plutonic rocks; North SpiritLake area, northwestern Ontario. Canadian Journal of Earth Sciences 23, 967–977.

Corfu, F., Stott, G.M., Breaks, F.W., 1995. U-Pb geochronology and evolution of the Eng-lish River subprovince, an Archean low P - high T metasedimentary belt in the SuperiorProvince. Tectonics 14, 1220–1233.

Corfu, F., Davis, D.W., Stone, D., Moore, M., 1998. Chronostratigraphic constraints on thegenesis of Archean greenstone belts, northwestern Superior Province, Ontario, Canada.Precambrian Research 92, 277–295.

Corkery, M.T., 1977. Geology of the Waskaiowaka Lake area (part of 64A7,8,9,10). Man-itoba Mineral Resources Division, Preliminary Map Series 1977H-4, scale 1:50,000.

Corkery, M.T., 1985. Geology of the Lower Nelson River Project area, Manitoba. ManitobaEnergy and Mines, Geological Report, Geological Services/Mines Branch, GR82-1, 66pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 33aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

34 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Corkery, M.T., Lenton, P.G., 1990. Geology of the Lower Churchill River region. Man-itoba Energy and Mines, Geological Services, Geological Report GR85-1 (includingGeological Maps GR85-1-1 to GR85-1-9, scale 1:100,000 and 1:250,000).

Corkery, M.T., Böhm, C.O., Heaman, L.M., 1999. Progress report on the northwest Su-perior Province boundary project. In: Manitoba Industry, Trade and Mines, GeologicalServices, Report of Activities 1999, pp. 41–43.

Corkery, M.T., Cameron, H.D.M., Lin, S., Skulski, T., Whalen, J.B., Stern, R.A., 2000.Geological investigations in the Knee Lake belt (Parts of NTS 53L). In: Report of Ac-tivities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp.129–136.

Corliss, J.B., 1990. Hot springs and the origin of life. Nature 347, 624.Corrigan, D, Hajnal, Z., Nemeth, B., Lucas, S.B., 2005. Tectonic framework of a Paleopro-

terozoic arc-continent to continent-continent collisional zone, Trans-Hudson Orogen,from geological and seismic reflection studies. Canadian Journal of Earth Sciences 42,421–434.

Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots inthe Earth’s mantle. Earth and Planetary Science Letters 205, 295–308

Coward, M.P., Lintern, B.C., Wright, L.I., 1976. The pre-cleavage deformation of the sed-iments and gneisses of the northern part of the Limpopo belt. In: Windley, B.F. (Ed.),The Early History of the Earth. Wiley, London, pp. 323–330.

Cox, K.G., Smith, M.R., Beswetherick, S., 1987. Textural studies of garnet lherzolites:evidence of exsolution origin from high-temperature harzburgites. In: Nixon, P.H. (Ed.),Mantle Xenoliths. Wiley, New York, pp. 537–550.

Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. London,George Allen & Unwin.

Coyle, M., Kiss, F., Oneschuk D., 2004. First vertical derivative of the magnetic fieldand residual total magnetic field, various map sheets, Manitoba. In: Geological Sur-vey of Canada, Open File 4764 to 4785. Manitoba Industry, Economic Developmentand Mines, Manitoba Geological Survey, Open File Reports OF2004-3 to -24, scale1:50,000.

Craven, J.A., Kurtz, R.D., Boerner, D.E., Skulski, T., Spratt, J., Ferguson, I.J., Wu, X.,Bailey, R.C., 2001. Conductivity of western Superior Province upper mantle in north-western Ontario. Geological Survey of Canada, Current Research 2001-E6, 6 pp.

Craven, J.A., Skulski, T., White, D.W., 2004. Lateral and vertical growth of cratons: seis-mic and magnetotelluric evidence from the western Superior transect. In: LithoprobeCelebratory Conference. In: Lithoprobe Report 86, Lithoprobe Secretariat, Universityof British Columbia.

Crowley, J.L., 2003. U-Pb geochronology of 3810–3630 Ma granitoid rocks south of theIsua greenstone belt, southern West Greenland. Precambrian Research 126, 235–257.

Crowley, J.L., Myers, J.S., Dunning, G.R., 2002. Timing and nature of multiple 3700–3600Ma tectonic events in intrusive rocks north of the Isua greenstone belt, southern WestGreenland. Bulletin of Geological Society of America 114, 1311–1325.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 34aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Crowley, J.L., Myers, J.S., Sylvester, P.J., Cox, R.A., 2005. Detrital zircons from the JackHills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga sourcerocks. Journal of Geology 113, 239–263.

Crumpler, L.S., Aubele, J.C., Senske, D.A., Keddie, S.T., Magee, K.P., Head, J.W., 1997.Volcanoes and centers of volcanism on Venus. In: Bouger, S.W., Hunten, D.M., Phillips,R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment.The University of Arizona Press, Tucson, AZ, pp. 697–756.

Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascon J.M.D., 1994.Raman microprobe studies on carbon materials. Carbon 32, 1523–1532.

Cullers, R.L., Di Marco, M.J., Lowe, D.R., Stone, J., 1993. Geochemistry of a silicified,felsic volcaniclastic suite from the early Archaean Panorama Formation, Pilbara Block,Western Australia: an evaluation of depositional and post-depositional processes withspecial emphasis on the rare-earth elements. Precambrian Research 60, 99–116.

Cumming, G.L., Richards, J.R., 1975. Ore leads in a continuously changing Earth. Earthand Planetary Science Letters 28, 155–171.

Dada, S.S., 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reap-praisal of current interpretations. Precambrian Research 87, 65–74.

Dahl, P.S., Holm, D.K., Gardner, E.T., Hubacher, F.A., Foland, K.A., 1999. New con-straints on the timing of Early Proterozoic tectonism in the Black Hills (South Dakota),with implications for docking of the Wyoming province with Laurentia. Bulletin of Ge-ological Society of America 111 (9), 1335–1349.

Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica–Australia as a con-jugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology19, 598–601.

Daniel, R.M., Danson, M.J., 1995. Did primitive microorganisms use nonheme iron pro-teins in place of NAD/P? Journal of Molecular Evolution 40, 559–563.

Dann, J.C., 2000. The Komati Formation, Barberton Greenstone Belt, South Africa, PartI: New map and magmatic architecture. South African Journal of Earth Science 103,47–68.

Dann, J.C., 2001. Vesicular komatiites, ca. 3.5 Ga Komati Formation, Barberton Green-stone Belt, South Africa: Inflation of submarine lavas and origin of spinifex zones.Bulletin of Volcanology 63, 462–481.

Dann, J.C., 2004. The 1.73 Ga Payson Ophiolite, Arizona USA. In: Kusky, T.M. (Ed.),Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology,vol. 13. Elsevier, Amsterdam, pp. 73–94.

Dann, J.C., Wilson, A.H., Cloete, M., 1998. Field excursion C1: Komatiites in the Barber-ton and Nondweni Greenstone Belts. In: IAVCEI – Magmatic Diversity: Volcanoes andTheir Roots. Cape Town, p. 61.

Dantas, E.L., Van Schmus, W.R., Hackspacher, P.C., Fetter, A.H., de Brito Neves, B.B.,Cordani, U., Nutman, A.P., Williams, I.S., 2004. The 3.4–3.5 Ga Sao do Campestremassif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research130, 113–138.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 35aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

36 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

D’Arcy, K.A. & Mueller, P.A., 1992. Archean metasupracrustal rocks from the westernmargin of the Wyoming Province. In: 29th International Geological Congress, Ab-stracts. International Geological Congress, Abstracts – Congres Geologique Interna-tionale, Resumes, vol. 29, p. 590.

Dauphas, N., Rouxel, O., 2006. Mass spectrometry and natural variations of iron isotopes.Mass Spectrometry Reviews 25, 515–550.

Dauphas, N., Janney, P.E., Mendybaev, R.A., Wadhwa, M., Richter, F.M., Davis, A.M.,VanZuillen, M., Hines, R., Foley, C.N., 2004a. Chromatographic separation andmulticollection-ICPMS analysis of Iron: investigating mass-dependent and -independentisotope effects. Analytical Chemistry 76, 5855–5863.

Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A.M., Martey, B., Janney, P.E., 2004b.Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.Science 302, 2077–2080.

Dauphas, N., Cates, N.L., Mojzsis, S.J., Busigny, V., 2007. Identification of chemical sedi-mentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt,Canada. Earth and Planetary Science Letters 254, 358–376

David, J., Parent, M., Stevenson, R., Nadeau, P., Godin, L., 2003. The Porpoise Covesupracrustal sequence, Inukjuak area: a unique example of Paleoarchean crust (ca. 3.8Ga) in the Superior Province. Geological Association of Canada Program with Abstracts28 (http://gac.esd.mun.ca/gac_2003/search_abs/sub_program.asp?sess=98&form=10&abs_no=355)

David, J., Godin, L., Berclaz, A., Maurice, C., Parent, M., Francis, D., Stevenson, R.K.,2004. Geology and Geochronology of the Nuvvuagittuq Supracrustal Sequence: AnExample of Paleoarchean Crust (ca. 3.8 Ga) in the Northeastern Superior Province. EosTransactions, American Geophysical Union 85 (17), Abstract V23D-03.

David, J., in press. Compilation des données géochronologiques de la partie Nord-Est de laProvince du Supérieur. Ministère des Ressources naturelles, Québec, Séries GM 2006.

David, J., Parent, M., Stevenson, R., Nadeau, P., Godin, L., 2002. La séquence supracrustalede Porpoise Cove, région d’Inukjuak; un exemple unique de croûte paléo-archéenne (ca.3.8 Ga) dans la Province du Supérieur. Ministère des Ressources naturelles, Québec, DV2002-10:17.

David, J., Godin, L., Stevenson, R.K., Parent, M., 2007. The 3.8 Ga Nuvvuaggituq se-quence, Superior Craton: New insights on the preservation of Eoarchean crust. Geology,in press.

Davidek, K., Martin, M.W., Bowring, S.A., Williams, I.S., 1997. Conventional U-Pbgeochronology of the Acasta gneisses using single crystal fragmentation technique. In:Abstracts of GAC/MAC Annual Meeting, p. A-75.

Davids, C., Wijbrans, J.R., White, S.H., 1997. 40Ar/39Ar laserprobe ages of metamorphichornblendes from the Coongan Belt, Pilbara, Western Australia. Precambrian Research83, 221–242.

Davies, G.F., 1980, Exploratory models of the earth’s thermal regime during segregationof the core. Journal of Geophysical Research 85, 7108–7114.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 36aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Davies, G.F., 1990. Heat and mass transport in the early earth. In: Newsome, H.E., Jones,J.H. (Eds.), Origin of the Earth. Oxford University Press, pp. 175–194.

Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963–966.Davies, G.F., 1993. Cooling the core and mantle by plume and plate flows. Geophysical

Journal International 115, 132–146.Davies, G.F., 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science

Letters 36, 363–380.Davies, G.F., 1999. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge

University Press, Cambridge, 460 pp.Davies, G.F., 2002. Stirring geochemistry in mantle convection models with stiff plates and

slabs. Geochimica et Cosmochimica Acta 66, 3125–3142.Davies, G.F., 2006a. Controls on density stratification in the early Earth. Geochemistry,

Geophysics, Geosystems, in press.Davies, G.F., 2006b. Gravitational depletion of the early Earth’s upper mantle and the

viability of early plate tectonics. Earth and Planetary Science Letters 243, 376–382.Davies, R., Griffin, W.L., Pearson, N.J., Andrew, A., Doyle, B.J., O’Reilly, S.Y., 1999.

Diamonds from the Deep: Pipe DO-27, Slave Craton, Canada. In: Proceedings of the7th International Kimberlite Conference. Red Roof Design, Cape Town, pp. 148–155.

Davis, A.M., Ganapathy, R., Grossman, L., 1977. Pontlyfni: a differentiated meteorite re-lated to the group IAB irons. Earth and Planetary Science Letters 35, 19–24.

Davis, D.W., 1996. Provenance and depositional age constraints on sedimentation in thewestern Superior transect area from U-Pb ages of zircons. In: Harrap, R.M., Helmstaedt,H. (Eds.), Western Superior Transect Second Annual Workshop. In: Lithoprobe Report53, pp. 18–23.

Davis, D.W., 1998. Speculations on the formation and crustal structure of the Superiorprovince from U-Pb geochronology. In: Harrap, R.M., Helmstaedt, H. (Eds.), WesternSuperior Transect Fourth Annual Workshop. In: Lithoprobe Report 65, pp. 21–28.

Davis, D.W., 2002. U-Pb geochronology of Archean metasedimentary rocks in the Pon-tiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regionaltectonics. Precambrian Research 115, 97–117.

Davis, D.W., Amelin, Y., 2000. Constraints on crustal development in the Western Supe-rior Lithoprobe Transect from Hf isotopes in zircons. In: Harrap, R.M., Helmstaedt, H.(Eds.), Western Superior Transect Sixth Annual Workshop. In: Lithoprobe Report 77,pp. 38–44.

Davis, D.W., Jackson, M., 1988. Geochronology of the Lumby Lake greenstone belt: a 3 Gacomplex within the Wabigoon Subprovince, northwest Ontario. Bulletin of GeologicalSociety of America 100, 818–824.

Davis, D.W., Smith, P.M., 1991. Archean gold mineralization in the Wabigoon Sub-province, a product of crustal accretion: evidence from U-Pb geochronology in the Lakeof the Woods area, Superior Province, Canada. Journal of Geology 99, 337–353.

Davis, D.W., Sutcliffe, R.H., Trowell, N.F., 1988. Geochronological constraints on thetectonic evolution of a late Archean greenstone belt, Wabigoon Subprovince, northernOntario, Canada. Precambrian Research 39, 171–191.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 37aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

38 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Davis, D.W., Amelin, Y., Nowell, G.M., Parrish, R.R., 2005. Hf isotopes in zircon from thewestern Superior province, Canada: Implications for Archean crustal development andevolution of the depleted mantle reservoir. Precambrian Research 140 (3–4), 132–156.

Davis, W.J., Machado, N., Gariépy, C., Sawyer, E.W., Benn, K., 1995. U-Pb geochronologyof the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt,Superior Province, Quebec. Canadian Journal of Earth Sciences 32, 113–127.

Davis, W.J., Gariépy C., van Breeman, O., 1996. Pb isotopic composition of late Archaeangranites and the extent of recycling early Archaean crust in the Slave Province, north-west Canada. Chemical Geology 130, 255–269.

Davy, R. 1988. Geochemical patterns in granitoids of the Corunna Downs Batholith, West-ern Australia. In: Geological Survey of Western Australia Professional Paper 23, pp.51–84.

Davy, R., Lewis, J.D., 1986. Geochemistry and petrography of the Mount Edgar Batholith,Pilbara area, Western Australia. Western Australia Geological Survey Report 17.

Dawson, A.S., 1941. Assean-Split Lakes area. Manitoba Mines Branch, Publ. 39-1.de Beer, J.H., Stettler, E.H., du Plessis, J.G., Blume, J., 1988. The deep structure of the

Barberton greenstone belt: a geophysical study. South African Journal of Geology 91,184–197.

DeDuve, C., 2005. Singularities – Landmarks on the Pathways to Life. Cambridge Univer-sity Press, Cambridge, UK, 258 pp.

Deen, T., Griffin, W.L., Begg, G., O’Reilly, S.Y., Natapov, L.M., 2006. Thermal and com-positional structure of the subcontinental lithospheric mantle: Derivation from shear-wave seismic tomography. Geochemistry, Geophysics and Geosystems, doi:10.1029/2005GC001164.

Deines, P., 2003. A note on the intra-elemental isotope effects and the interpretation ofnon-mass-dependent isotope variations. Chemical Geology 199, 179–182.

de Laeter, R.R., Martyn, J.E., 1986. Age of molybdenum-copper mineralization at CoppinGap, Western Australia. Australian Journal of Earth Sciences 33, 65–72.

de Laeter, J.R., Williams, I.R., Rosman, K.J.R., Libby, W.G., 1981a. A definitive 3350m.y. age from banded gneiss, Mount Narryer area, Western Gneiss Terrain. In: WesternAustralia Geological Survey Annual Report 1980, pp. 94–98.

de Laeter, J.R, Fletcher, I.R., Rosman, K.J.R., Williams, I.R., Gee, R.D., Libby, W.G.,1981b. Early Archaean gneisses from the Yilgarn Block, Western Australia. Nature 292,322–324.

de Laeter, J.R., Fletcher, I.R., Bickle, M.J., Myers, J.S., Libby, W.G., Williams, I.R., 1985.Rb-Sr, Sm-Nd and Pb-Pb geochronology of ancient gneisses from Mount Narryer, West-ern Australia. Australian Journal of Earth Sciences 32, 349–358.

de la Roche, A., Leterrier, J., Grandclaude, P., Marchal, M. 1980. A classification ofvolcanic and plutonic rocks using R1−R2 diagram and major elment analyses – itsrelationships with current nomenclature. Chemical Geology 29, 183–210.

DeLaughter, J.E., Jurdy, D.M. 1999. Corona classification by evolutionary stage. Icarus139, 81–95.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 38aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Delor, C., Burg, J-P., Clarke, G., 1991. Relations diapirisme-metamorphisme dans laProvince du Pilbara (Australie-occidentale): implications pour les régimes thermiqueset tectoniques à la Archéen. Comptes Rendus de l’Academie des Sciences Paris 312,257–263.

DePaolo, D.J., 1981. Neodymium isotopes in the Colorado front range and crust-mantleevolution in the Proterozoic. Nature 291, 193–196.

DePaolo, D.J., Manton, W.I., Grew, E.S., Halpern, M., 1982. Sm-Nd, Rb-Sr and U-Th-Pbsystematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica. Nature298, 614–618.

Derenne, S., Skrzypczak, A., Robert, F., Binet, L., Gourier, D., Rouzaud, J.-N., Clinard,C., 2004. Characterization of the organic matter in an Archaean Chert (Warrawoona,Australia). European geosciences Union. Geophysical Research Abstracts 6, 03612.

de Ronde, C.E.J., 1991. Structural and geochronological relationships and fluid/rock inter-action in the central part of the ∼3.2–3.5 Ga Barberton greenstone belt, South Africa.Ph.D. thesis. University of Toronto, 370 pp.

de Ronde, C.E.J., de Wit M.J., 1994. Tectonic history of the Barberton Greenstone Belt,South Africa: 490 million years of Archean crustal evolution. Tectonics 13, 983–1005.

de Ronde, C.E.J., Kamo, S.L., 2000. An Archaean Arc-Arc collisional event: a short-lived(ca 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. Journalof African Earth Sciences 30 (2), 219–248.

de Ronde, C.E.J., Hall, C.M., York, D., Spooner, E.T.C., 1991a. Laser step-heating40Ar/39Ar age spectra from early Archean (∼3.5 Ga) Barberton greenstone belt sed-iments: a technique for detecting cryptic tectono-thermal events. Geochimica et Cos-mochimica Acta 55, 1933–1951.

de Ronde, C.E.J., Kamo, S., Davis, D.W., de Wit, M.J., Spooner, E.T.C., 1991b. Field,geochemical and U-Pb isotopic constraints from hypabyssal felsic intrusions within theBarberton greenstone belt, South Africa: implications for tectonics and the timing ofgold mineralization. Precambrian Research 49, 261–280.

de Ronde, C.E.J., Spooner, E.T.C., de Wit, M.J., Bray, C.J., 1992. Shear zone-related,Au quartz vein deposits in the Barberton greenstone belt, South Africa; field and pet-rographic characteristics, fluid properties, and light stable isotope geochemistry. Eco-nomic Geology 87, 366–402.

Des Marais, D.J., Strauss, H., Summons, R.E., Hayes, J.M., 1992. Carbon isotope evidencefor the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609.

Des Marais, D.J., 2001. Isotopic evolution of the biogeochemical carbon cycle during thePrecambrian. In: Valley, J.W., Cole, D.R. (Eds.), Stable Isotope Geochemistry. In: Re-views in Mineralogy and Geochemistry, vol. 43, pp. 555–578.

Detmers, J., Bruchert, V., Habicht, K.S., Kuever, J., 2001. Diversity of sulfur isotope frac-tionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology67, 888–894.

de Vries, S.T., 2004. Early Archean sedimentary basins: Depositional environment andhydrothermal systems, examples from the Barberton and Coppin Gap greenstone belts.Ph.D. dissertation. University of Utrecht, Netherlands, 160 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 39aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

40 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

de Vries, S.T., Nijman, W., Armstrong, R.A., 2006. Growth-fault structure and stratigraphicarchitecture of the Buck Ridge volcano-sedimentary complex, upper Hooggenoeg For-mation, Barberton Greenstone Belt, South Africa. Precambrian Research 149, 77–98.

de Wit, M.J., 1982. Gliding and overthrust nappe tectonics in the Barberton greenstonebelt. Journal of Structural Geology 4, 117–136.

de Wit, M.J., 1983. Notes on a preliminary 1:25,000 geological map of the southern partof the Barberton Greenstone Belt. In: Anhaeusser, C.R. (Ed.), Contributions to the ge-ology of the Barberton Mountain Land. In: Geological Society of South Africa, SpecialPublication 9, pp. 185–187.

de Wit, M.J., 1998. On Archean granites, greenstones, cratons and tectonics: does the evi-dence demand a verdict? Precambrian Research 91, 181–226.

de Wit, M.J., 2004. Archean Greenstone Belts do contain fragments of ophiolites. In:Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments inPrecambrian Geology, vol. 13. Elsevier, Amsterdam, 599–614.

de Wit, M.J., Ashwal, L.D. (Eds.), 1997. Greenstone Belts. Clarendon Press, Oxford, 809pp.

de Wit, M.J., Ashwall, L.D., 1997. Preface: Convergence towards divergent models ofgreenstone belts. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford Uni-versity Press, Oxford, UK, pp. i–xvii.

de Wit, M.J., Hart, R.A., 1993. Earth’s earliest continental lithosphere, hydrothermal fluxand crustal recycling. Lithos 30, 309–335.

de Wit, M.J., Hart, R., Martin, A., Abbott, P., 1982. Archean abiogenic and probable bio-genic structures associated with mineralized hydrothermal vent systems and regionalmetasomatism, with implications for greenstone belt studies. Economic Geology 77,1783–1802.

de Wit, M.J., Fripp, R.E.P., Stanistreet, I.G., 1983. Tectonic and stratigraphic implicationsof new field observations along the southern part of the Barberton greenstone belt. In:Anhaeusser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land.In: Geological Society of South Africa, Special Publication 9, pp. 21–29.

de Wit, M.J., Armstrong, R., Hart, R.J., Wilson, A.H., 1987a. Felsic igneous rocks withinthe 3.3- to 3.5Ga Barberton greenstone belt: high crustal level equivalents of the sur-rounding tonalite-trondhjemite terrain, emplaced during thrusting. Tectonics 6, 529–549.

de Wit, M.J., Hart, R.A., Hart, R.J., 1987b. The Jamestown ophiolite complex, Barbertonmountain belt: a section through 3.5 Ga oceanic crust. Journal of African Earth Science6, 681–730.

de Wit, M.J., Roering, C., Hart, R.J., Armstrong, R.A., de Ronde, C.E.J., Green, R.W.E.,Tredoux, M., Peberdy, E., Hart, R.A., 1992. Formation of an Archaean continent. Nature357, 553–562.

Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Amsterdam, Elsevier.Diener, J.F.A., Stevens, G., Kisters, A.F.M., Poujol, M., 2005. Metamorphism and exhuma-

tion of the basal parts of the Barberton greenstone belt, South Africa: Constraining therates of Mesoarchaean tectonism. Precambrian Research 143 (1–4), 87–112.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 40aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Diener, J.G, Stevens, G., Kisters, A.F.M., 2006. High-pressure, low–temperature metamor-phism in the southern Barberton granitoid greenstone terrain, South Africa: a record ofoverthickening and collapse of Mid-Archean continental crust. In: Benn, K., Mareschal,J.-C., Condie, K.C. (Eds.), Archean Geodynamic Processes. American GeophysicalUnion, Monograph 164, pp. 239–254.

DiMarco, M.J., Lowe, D.R., 1989a. Shallow-water volcaniclastic deposition in the EarlyArchean Panorama Formation, Warrawoona Group, eastern Pilbara Block, WesternAustralia. Sedimentary Geology 64, 43–63.

DiMarco, M.J., Lowe, D.R., 1989b. Stratigraphy and sedimentology of an Early Archeanfelsic volcanic sequence, eastern Pilbara Block, Western Australia, with special ref-erence to the Duffer Formation and implications for crustal evolution. PrecambrianResearch 44, 147–169.

Dimroth, E., Kimberley, M.M., 1976. Precambrian atmospheric oxygen – evidence in sed-imentary distributions of carbon, sulfur, uranium, and iron. Canadian Journal of EarthSciences 13, 1161–1185.

Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P.D.P., Gonfiantini, R., Krouse,R., 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope refer-ence materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim-ica et Cosmochimica Acta 65, 2433–2437.

Dirks, P., Jelsma, H.A., 1998. Horizontal accretion and the stabilization of the ArchaeanZimbabwe craton. Geology 26, 11–14.

Dixon, E.T., Bogard, D.D., Garrison, D.H., 2003. 39Ar-40Ar chronology of R chondrites.Meteoritics and Planetary Science 38, 341–355.

Dobos, S.K., Jacobsen, S.B., Derry, L.A., Goldstein, S.J., 1986. A Nd and Sr isotopic studyof metasediments from the Western Gneiss Belt (WGB) of Western Australia. Eos 67,1265.

Doe, B.R., Delevaux, M.H., 1980. Lead-isotope investigations in the Minnesota RiverValley – Late-tectonic and post-tectonic granites. In: Geological Society of America,Special Paper 182, pp. 105–112.

Donaldson, J.A., De Kemp, E.A., 1998. Archaean quartz arenites in the Canadian Shield:examples from the Superior and Churchill Provinces. Sedimentary Geology 120, 153–176.

Donskaya, T.V., Salnikova, E.B., Sklyarov, E.V., 2002. Early Proterozoic postcollisionmagmatism at the southern flank of the Siberian Craton: new geochronological dataand geodynamic implication. Doklady Earth Sciences 383 (2), 125–128.

Drake, M.J., 2001. The eucrite/Vesta story. Meteoritics and Planetary Science 36, 501–513.Drake M.J., Righter K., 2002. Determining the composition of the Earth. Nature 416, 39–

43.Dreibus, G., Palme, H., Spettel, B., Zipfel, J., Wänke, H., 1995. Sulfur and selenium in

chondritic meteorites. Meteoritics 30, 439–445.Drennan, G.R., Robb, L.J., Meyer, F.M., Armstrong, R.A., de Bruiyn, H., 1990. The nature

of the Archaean basement in the hinterland of the Witwatersrand Basin: II. A crustal

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 41aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

42 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

profile west of the Welkom Goldfield and comparisons with the Vredefort crustal pro-file. South African Journal of Geology 93, 41–53.

Dresselhaus, M.S., Dresselhaus, G., 1981. Intercalation compounds of graphite. AdvancesIn Physics 30, 290–298.

Dresselhaus, M.S., Dresselhaus, G., 1982. In: Cardona, M., Guntherodt, G. (Eds.), LightScattering in Solids, vol. III. Springer, Berlin, 187 pp.

Drieberg, S.L., 2004. The magmatic-hydrothermal architecture of the Archean volcanicmassive sulfide (VMS) system at Panorama, Pilbara, Western Australia. UnpublishedPh.D. thesis. University of Western Australia, 327 pp.

Drummond, B.J., 1988. A review of crust/upper mantle structure in the Precambrian areasof Australia and implications for Precambrian crustal evolution. Precambrian Research40–41, 101–116.

Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesisand crustal growth via slab melting: Archean to modern comparisons. Journal of Geo-physical Research 95, 21503–21521.

Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of slab-derivedtrondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Ed-inburgh: Earth Sciences 87, 205–215.

Drury, S.A., Holt, R.W., 1980. The tectonic framework of the South Indian craton: a re-connaissance involving LANDSAT imagery. Tectonophysics 65, 71–75.

Dobretsov, N.L., 2005. 250 Ma large igneous provinces of Asia: Siberian and Emeishantraps (plateau basalts) and associated granitoids. Russian Geology and Geophysics 46(9), 870–890.

Dodson, M.H., Compston, W., Williams, I.S., Wilson, J.F., 1988. A search for ancientdetrital zircons in Zibabwean sediments. Journal of the Geological Society of London145, 977–983.

Donahue, T.M. 1999. New analysis of hydrogen and deuterium escape from Venus. Icarus141–156, 226.

Donahue, T.M., Grinspoon, D.H., Hartle, R.E., Hodges, R.R., 1997. Ion/neutral escape ofhydrogen and deuterium: Evolution of water. In: Bouger, S.W., Hunten, D.M., Phillips,R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment.University of Arizona Press, Tucson, AZ, pp. 385–414.

Donahue, T.M., Russell, C.T., 1997. The Venus atmosphere and ionosphere and their inter-action with the solar wind: An overview. In: Bouger, S.W., Hunten, D.M., Phillips, R.J.(Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment. TheUniversity of Arizona Press, Tucson, AZ, pp. 3–31.

Downes, H., MacDonald, R., Upton, B.G.J., Cox, K.G., Bodinier, J.L., Mason, P.R.D.,James, D., Hill, P.G., Hearn, B.C., Jr., 2004. Ultramafic xenoliths from the BearpawMountains, Montana, USA; evidence for multiple metasomatic events in the lithosphericmantle beneath the Wyoming Craton. Journal of Petrology 45, 1631–1662.

Duchac, K.C., Hanor, J.S., 1987, Origin and timing of the metasomatic silicification of anearly Archean komatiite sequence, Barberton Mountain Land, South Africa. Precam-brian Research 37, 125–146.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 42aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Dunlop, J.S.R., Muir, M.D., Milne, V.A., Groves, D.I., 1978. A new microfossil assem-blage from the Archaean of Western Australia. Nature 274, 676–678.

Dunn, S.J., Nemchin, A.A., Cawood, P.A., Pidgeon, R.T., 2005. Provenance record of theJack Hills Metasedimentary Belt: Source of the Earth’s oldest zircons. PrecambrianResearch 138, 235–254.

Dymek, R.F., Klein, C., 1988. Chemistry, petrology and origin of banded iron-formationlithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Re-search 37, 247–302

Dziggel, A., Stevens, G., Poujol, M., Anhaeusser, C.R., Armstrong, R.A., 2002. Metamor-phism of the granite-greenstone terrane south of the Barberton greenstone belt, SouthAfrica: an insight into the tectono-thermal evolution of the ‘lower’ portions of the On-verwacht Group. Precambrian Research 114, 221–247.

Dziggel, A., Armstrong, R.A., Stevens, G., Nasdala, L., 2005. Growth of zircon and titaniteduring metamorphism in the granitoid-gneiss terrane south of the Barberton greenstonebelt, South Africa. Mineralogical Magazine 69 (6), 1019–1036.

Dziggel, A., Stevens, G., Poujol, M., Armstrong, R.A., 2006a. Contrasting source compo-nents of clastic metasedimentary rocks in the lowermost formations of the Barbertongreenstone belt. In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on the Earth Earth.In: Geological Society of America, Special Paper 405, pp. 157–172.

Dziggel, A., Knipfer, S., Kisters, A.F.M., Meyer, F.M., 2006b. P-T and structural evolutionof high-T, medium-P basement rocks in the Barberton Mountain Land, South Africa.Journal of Metamorphic Geology 24, 535–551.

Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonicimplications. Geology 20, 641–644.

Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch,M.T., Hergt, J.M., Handler, M.R., 1997. A simple method for the precise determinationof >40 trace elements in geological samples by ICPMS using enriched isotope internalstandardisation. Chemical Geology 134, 311–326.

Eglington, B.M., Armstrong, R.A., 2004. The Kaapvaal Craton and adjacent orogens,southern Africa: a geochronological database and overview of the geological devel-opment of the craton. South African Journal of Geology 107, 13–32.

Eiler, J.M., Farley, K.A., Valley, J.Q., Hauri, E., Craig, H., Hart, S.R., Stolper, E.M.,1997. Oxygen isotope variation in ocean island basalt phenocrysts. Geochimica et Cos-mochimica Acta 61, 2281–2293.

Elias, M., 1982. Belele, W.A.: Western Australia Geological Survey, 1:250,000 GeologicalSeries Explanatory Notes, 1st ed., 22 pp.

Eldridge, C.S., Barton Jr., P.B., Ohmoto, H., 1983. Mineral textures and their bearing onformation of the kuroko orebodies. In: Economic Geology, Monograph 5, pp. 241–281.

Elias, M., 1982. Explanatory notes of the Belele geological sheet. In: Geological Surveyof Western Australia, Perth, WA, pp. 1–22.

Elkins-Tanton, L.T., 2005. Continental mechanism caused by lithosphere delamination. In:Geological Society of America, Special Paper 388, pp. 449–461.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 43aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

44 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Elkins-Tanton, L., Hager, B., 2005. Giant meteoroid impacts can cause volcanism. Earthand Planetary Science Letters 239, 219–232.

Elkins-Tanton, L.T., Hager, B.H., Grove, T.L., 2004. Magmatic effects of the lunar lateheavy bombardment. Earth and Planetary Science Letters 222, 17–27

Elliot, T.T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport fromslab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991–15019.

Endress, M., Bischoff, A., 1993. Mineralogy, degree of brecciation, and aqueous alterationof CI chondrites Orgueil, Ivuna and Alais. Meteoritics 28, 345–346.

Endress, M., Bischoff, A., 1996. Carbonates in CI chondrites: clues to parent body evolu-tion. Geochimica et Cosmochimica Acta 60, 489–507.

Endress, M., Zinner, E., Bischoff, A., 1996. Early aqueous activity on primitive meteoriteparent bodies. Nature 379, 701–703.

England, P.C., Thompson, B., 1984. Pressure–temperature–time paths of regional meta-morphism. Journal of Petrology 25 (4), 894–955.

Eriksson, K.A., 1978. Alluvial and destructive beach facies from the Archaean MoodiesGroup, Barberton Mountain Land, South Africa and Swaziland. In: Miall, A.D. (Ed.),Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, pp. 287–311.

Eriksson, K.A., 1979. Marginal marine depositional processes from the Archean MoodiesGroup, Barberton Mountain Land, South Africa: Evidence and significance. Precam-brian Research 8, 153–182.

Eriksson, K.A., 1980. Transitional sedimentation styles in the Moodies and Fig TreeGroups, Barberton Mountain Land, South Africa: evidence favouring an Archaean con-tinental margin. Precambrian Research 12, 141–160.

Eriksson, P.G., Catuneanu, O., 2004. In: Eriksson, P.G., Altermann, W., Nelson, D.R.,Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. El-sevier, Amsterdam, pp. 161–163 and pp. 267–270 (Chapter 3).

Ernst, R.E., Buchan, K.L., 2002. Maximum size and distribution in time and space ofmantle plumes: evidence from large igneous provinces. Journal of Geodynamics 34,309–342.

Ernst, R.E., Buchan, K. 2003. Recognising mantle plumes in the geological record. AnnualReview Earth and Planetary Sciences 31, 469–523.

Ernst, R.E., Grosfils, E.B., Mége, D., 2001. Giant dyke swarms on Earth, Venus and Mars.Annual Review of Earth and Planetary Sciences 29, 489–534.

Ernst, R.E., Desnoyers, D.W., Head, J.W., Grosfils, E.B., 2003. Graben-fissure systems inGuinevere Planitia and Beta Regio (264 degrees-312 degrees E, 24 degrees-60 degreesN), Venus, and implications for regional stratigraphy and mantle plumes. Icarus 164,282–316.

Ernst R.E., Buchan, K.L., Campbell, I.H., 2005. Frontiers in large igneous province re-search. Lithos 79, 271–297.

Ernst, W.G., 1988. Tectonic history of subduction zones inferred from retrograde blueschistP-T paths. Geology 16, 1081–1084.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 44aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Facer, J., Downes, H., 2005. Has the Wyoming craton lost its keel? In: Abstracts of Earth-scope in the Northern Rockies Workshop, MSU, Bozeman MT, Sept. 2005.

Fanning, C.M., Moore, D.H., Bennett, V.C., Daly, S.J., Menot, R.P., Peucat, J.J., Oliver,R.L., 1999. The “Mawson Continent”: The East Antarctic shield and Gawler Craton,Australia. In: Programme and Abstracts, 8th International Symposium Antarctic EarthSciences, Wellington, p. 103 (abstract).

Farhat, J.S., Wetherilll, G.W., 1975. Interpretation of apparent ages in Minnesota. Nature257, 721–722.

Farmer, G.L., DePaolo, D.J., 1983. Origin of Mesozoic and Tertiary granite in the west-ern United States and implications for the pre-Mesozoic crustal structure 1. Nd and Srisotopic studies in the geocline of the northern Great Basin. Journal of GeophysicalResearch 88, 3379–3401.

Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the at-mosphere. Earth and Planetary Science Letters 213, 1–13.

Farquhar, J., Bao, H.M., Thiemens, M., 2000a. Atmospheric influence of Earth’s earliestsulfur cycle. Science 289, 756–758.

Farquhar, J., Jackson, T.L., Thiemens, M.H., 2000b. A S-33 enrichment in ureilite mete-orites: Evidence for a nebular sulfur component. Geochimica et Cosmochimica Acta64, 1819–1825.

Farquhar, J., Savarino, J., Aireau, S., Thiemens, M.H., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implicationsfor the early atmosphere. Journal of Geophysical Research – Planets 106 (E12), 32,829–32,839.

Farquhar, J., Wing, B.A., McKeegan, K.D., Harris, J.W., Cartigny, P., Thiemens, M.H.,2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on earlyEarth. Science 298, 2369–2372.

Farrell, T., 2006. Geology of the Eastern Creek 1:100,000 sheet. Western Australia Geo-logical Survey, 1:100,000 Geological Series Explanatory Notes, 39 pp.

Farrow, D.J., Harmer, R.E., Hunter, D.R., Eglington, B.M., 1990. Rb-Sr and Pb-Pb datingof the Anhalt leucotonalite, northern Natal. South African Journal of Geology 93, 696–701.

Faure, G., 1986. Principles of Isotope Geology. John Wiley and Sons, New York, 589 pp.Fedo, C.M., 2000. Setting and origin of problematic rocks from the >3.7 Ga Isua green-

stone belt, southern West Greenland: Earth’s oldest coarse clastic sediments. Precam-brian Research 101, 69–78.

Fedo, C.M., Whitehouse, M.J., 2002b. Origin and significance of Archean quartzose rocksat Akilia, Greenland. Science 298, 917a.

Fedo, C.M., Whitehouse, M.J., 2002a. Metasomatic origin of quartz-pyroxene rock, Akilia,Greenland, and implications for Earth’s earliest life. Science 296, 1449–1452.

Fedo, C.M., Eriksson, K.A., Krogstad, E.J., 1996. Geochemistry of shales from Archean(∼3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta 60, 1751–1763.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 45aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

46 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fedo, C.M., Myers, J.S., Appel, P.W.U., 2001. Depositional setting and paleogeographicimplications of Earth’s oldest supracrustal rocks, the >3.7 Ga Isua greenstone belt, WestGreenland. Sedimentary Geology 141–142, 61–77.

Fedo, C.M., Whitehouse, M.J., Kamber, B.S., 2006. Geological Constraints in Assessingthe Earliest Life on Earth: A Perspective from the Early Archaean (>3.7 Ga) of South-west Greenland. Philosophical Transactions of the Royal Society of London, Ser. B 361,851–867.

Fehr, M.A., Rehkämper, M., Halliday, A.N., Wiechert, U., Hattendorf, B., Gunter, D.,Ono, S., Eigenbrode, J.L., Rumble, D., 2005. Tellurium isotopic composition of theearly solar system – A search for effects resulting from stellar nucleosynthesis, Sn-126 decay, and mass-independent fractionation. Geochimica et Cosmochimica Acta 69,5099–5112.

Feng, R., Kerrich, R., 1990. Geochemistry of fine-grained elastic sediments in the ArcheanAbitibi greenstone belt, Canada: Implications for provenance and tectonic setting.Geochimica et Cosmochimica Acta 54, 1061–1081.

Feng, R., Kerrich, R., 1991. Single zircon age constraints on the tectonic juxtapositon of theArchean Abitibi greenstone belt and Pontiac Subprovince, Quebec, Canada. Geochim-ica et Cosmochimica Acta 55, 3437–3441.

Feng, R., Kerrich, R., 1992. Geochemical evolution of granitoids from the Archean Abitibisouthern volcanic zone and the Pontiac subprovince, Superior Province, Canada: impli-cations for tectonic history and source regions. Chemical Geology 98, 23–70.

Fergusson, K.M., 1999. Lead, Zinc and Silver Deposits of Western Australia. In: WesternAustralia Geological Survey, Mineral Resources Bulletin 15, 314 pp.

Fergusson, K.M., Ruddock, I., 2001. Mineral occurrences and exploration potential of theEast Pilbara. Geological Survey of Western Australia, Report 81, 114 pp.

Finucane, K.J., 1936. Marble Bar mining centre, Pilbara goldfield. Aerial Geology andGeophysical Survey of Northern Australia, Western Australia Report 8.

Finucane, K.J., 1937. Halley’s Comet centre, Pilbara goldfield. Aerial Geology and Geo-physical Survey of Northern Australia, Western Australia Report 10.

Fisher, L.B., Stacey, J.S., 1986. Uranium-lead zircon ages and common lead measure-ments for the Archean gneisses of the Granite Mountains, Wyoming. In: Peterman, Z.E.,Schnable, D.C. (Eds.), Shorter Contributions to Isotopic Research. In: U.S. GeologicalSurvey, Bulletin 1622, pp. 13–24.

Fisher-Worrell, G.F., 1985. Sedimentology and mineralogy of silicified evaporites in thebasal Kromberg Formation, South Africa. Masters thesis. Baton Rouge, Louisiana StateUniversity, 152 pp.

Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson B.S., Taylor, R.N., 1997. Thermaland chemical structure of the Iceland plume. Earth and Planetary Science Letters 153,197–208.

Fitzsimons, I.C.W., 2000a. Grenville-age basement provinces in East Antarctica: Evidencefor three separate collisional orogens. Geology 28, 879–882.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 46aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fitzsimons, I.C.W., 2000b. A review of tectonic events in the East Antarctic Shield andtheir implications for Gondwana and earlier supercontinents. Journal of African EarthScience 31, 3–23.

Fitzsimons, I.C.W., 2003. Proterozoic basement provinces of southern and southwest-ern Australia, and their correlation with Antarctica. In: Yoshida, M., Windley, B.W.,Dasgupta, S., Powell, C.McA. (Eds.), Proterozoic East Gondwana: Supercontinent As-sembly and Breakup. In: Geological Society of London, Special Publication 206, pp.93–130.

Fitzsimons, I.C.W., Kinny, P.D., Harley, S.L., 1997. Two stages of zircon and monazitegrowth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity ofPan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova 9, 47–51.

Flasar, F.M., Birch, F., 1973. Energetics of core formation: a correction. Journal of Geo-physical Research 78, 6101–6103.

Fleet, M.E., 1987. Partition of Ni between olivine and sulfide – the effect of temperature,fO2 and fS2. Contributions to Mineralogy and Petrology 95, 336–342.

Frei, R., Rosing, M.T., 2005. Search for traces of the late heavy bombardment on Earth– Results from high precision chromium isotopes. Earth and Planetary Science Letters236, 28–40.

Fletcher, J.A., 2003. The Geology, Geochemistry and Fluid Inclusion Characteristics ofthe Wyldsdale Gold-Bearing Pluton, Northwest Swaziland. University of the Witwater-srand, Johannesburg, 215 pp.

Fletcher, I.R., Williams, S.J., Gee, R.D., Rosman, K.J.R., 1983. Sm-Nd model ages acrossthe margins of the Archaean Yilgarn Block, Western Australia – northwest transect intothe Proterozoic Gascoyne Province. Journal of the Geological Society of Australia 30,167–174.

Fletcher, I.R., Rosman, K.J.R., Libby, W.G., 1988. Sm-Nd, Pb-Pb and Rb-Sr geochronol-ogy of the Manfred Complex, Western Australia. Precambrian Research 38, 343–354.

Fletcher, I.R., Libby, W.G., Rosman, K.J.R., 1994. Sm–Nd model ages of granitoid rocksin the Yilgarn Craton. In: Western Australia Geological Survey, Report 37, pp. 61–73.

Fletcher, I.R., McNaughton, N.J., Pidgeon, R.T., Rosman, K.J.R., 1997. Sequential closureof K-Ca and Rb-Sr isotopic systems in Archaean micas. Chemical Geology 138, 289–301.

Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for traceelements and an assessment of the influence of rutile on the trace element characteristicsof subduction zone magmas. Geochimica et Cosmochimica Acta 64, 933–938

Foley, S.F., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlledby melting of amphibolite in subduction zones. Nature 417, 637–640.

Folinsbee, R.E., Baadsgaard, H., Cumming, G.L., Green, D.C., 1968. A very ancient islandarc. In: Knopoff, L., Drake, C.L., Hart, P.J. (Eds.), The Crust and Upper Mantle of thePacific Area. American Geophysical Union, Geophysical Monograph 12, pp. 441–448.

Ford, J.P., Plaut, J.J., Weitz, C.M., Farr, T.G., Senske, D.A., Stofan, E.R., Michaels, G.,Parker, T.J., 1993. Guide to Magellan Image Interpretation. NASA-JPL Publication,93–24.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 47aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

48 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Ford, P.G., Pettengill, G.H., 1992. Venus topography and kilometer-scale slopes. Journalof Geophysical Research 97, 13103–13114.

Foriel, J. et al., 2004. Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth and Planetary ScienceLetters 228, 451–463.

Foster, D., Mueller, P.A., Vogl, J., Mogk, D., Wooden, J.L., Heatherington, A., 2006. Pro-terozoic evolution of the western margin of the Wyoming craton: implications for thetectonic and magmatic evolution of the northern Rocky Mountains. Canadian Journalof Earth Sciences 43, in press.

Foulger, G.R., Natalnd, J.H., Presnell, D.C., Anderson, D.L. (Eds.), 2005. Plates, Plumesand Paradigms. In: Geological Society of America, Special Paper 388, 593 pp.

Franck, S., 1998. Evolution of the global mean heat flow over 4.6 Gyr. Tectonophysics 291,9–18.

Francis, D., 2003, Mafic cratonic mantle roots, remnants of a more chondritic Archeanmantle? Lithos 71, 135–152.

Francis, D., 2004. Mafic magmas of the 3.8 Ga Nuvvuagittuq greenstone belt, Ungava,Québec. American Geophysical Union, Spring Meeting 2004, abstract #V12B-06.

Frank, S.L., Head, J.W., 1990. Ridge belts on Venus: Morphology and origin. Earth MoonPlanets 50–51, 421–470.

Frei, R., Polat, A., 2006. Source heterogeneity for the major components of >3.7 GaBanded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the na-ture of interacting water masses in BIF formation. Earth and Planetary Science Letters253, 266–281.

Frei, R., Rosing, M.T., 2001. The least radiogenic terrestrial leads: implications for theearly Archaean crustal evolution and hydrothermal-metasomatic processes in the IsuaSupracrustal Belt (West Greenland). Chemical Geology 181, 47–66.

Frei, R., Rosing, M.T., 2005. Search for traces of the late heavy bombardment on Earth– Results from high precision chromium isotopes. Earth and Planetary Science Letters236 (1–2), 28–40.

Frei, R., Bridgwater, D., Rosing, M., Stecher, O., 1999. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation:Preservation of primary signatures versus secondary disturbances. Geochimica et Cos-mochimica Acta 63, 473–488.

Frei, R., Polat, A., Meibom, A., 2004. The Hadean upper mantle conundrum; evidence forsource depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in3.71 Gy boninite-like metabasalts from the Isua supracrustal belt, Greenland. Geochim-ica et Cosmochimica Acta 68, 1645–1660.

French, B.M., 1998. Traces of Catastrophe. Lunar Planetary Science Contributions 954.Lunar and Planetary Institute, Houston, TX, 120 pp.

Friend, C.R.L., Nutman, A.P., 2005a. New pieces to the Archaean terrane jigsaw puzzle inthe Nuuk region, southern West Greenland: Steps in transforming a simple insight intoa complex regional tectonothermal model. Journal of the Geological Society London162, 147–163.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 48aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Friend, C.R.L., Nutman, A.P. 2005b. Complex 3670–3500 Ma orogenic episodes super-imposed on juvenile crust accreted between 3850–3690 Ma, Itsaq Gneiss Complex,southern West Greenland. Journal of Geology 113, 375–398.

Friend, C.R.L., Nutman, A.P., McGregor, V.R., 1987. Late Archaean tectonics in theFaeringehavn-Tre Brodre area, south of Buksefjorden, southern west Greenland. Jour-nal of the Geological Society London 144, 369–376.

Friend, C.R.L., Nutman, A.P., McGregor, V.R., 1988. Late Archean terrane accretion in theGodthab region, southern West Greenland. Nature 335, 535–538.

Friend, C.R.L., Bennett, V.C., Nutman, A.P., 2002a. Abyssal peridotites >3800 Ma fromsouthern West Greenland: field relationships, petrography, geochronology, whole-rockand mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex.Contributions to Mineralogy and Petrology 143, 71–92.

Friend, C.R.L., Nutman, A.P., Bennett, V.C., 2002b. Technical comment on: Origin andsignificance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917a.

Friend, C.R.L., Nutman, A.P., Bennett, V.C., 2002c. Origin and significance of Archeanquartzose rocks at Akilia, Greenland. Science 298, 917a.

Fritts, C.E., 1969. Bedrock geologic map of the Marenisco-Watersmeet area, Gogebic andOntonagon Counties, Michigan. U.S. Geological Survey, Miscellaneous Geologic In-vestigations Map I-576, scale 1:48,000.

Frost, B.R., Avchenko, O.V., Chamberlain, K.R., Frost, C.D., 1998. Evidence for extensiveProterozoic remobilization of the Aldan shield and implications for Proterozoic platetectonic reconstructions of Siberia and Laurentia. Precambrian Research 89, 1–23.

Frost, B.R., Frost, C.D., Cornia, M.E., Chamberlain, K.R., Kirkwood, R., 2006. The Teton-Wind River domain: a 2.68–2.67 Ga active margin in the western Wyoming Province.Canadian Journal of Earth Sciences 43, xxx-xxx, in press.

Frost, C.D., 1993. Nd isotopic evidence for the antiquity of the Wyoming province. Geol-ogy 21, 351–354.

Frost, C.D., Fanning, C.M., 2006. Archean geochronological framework of the BighornMountains, Wyoming. Canadian Journal of Earth Sciences 43, xxx-xxx, in press.

Frost, C.D., Frost, B.R., 1993. The Archean history of the Wyoming province. In: Snoke,A.W., Steidtmann, J.R., Roberts, S.M. (Eds.), Geology of Wyoming. In: Geologic Sur-vey of Wyoming Memoir 5, pp. 58–77.

Frost, C.D., Frost, B.R., Chamberlain, K.R., Hulsebosch, T.P., 1998. The Late Archeanhistory of the Wyoming province as recorded by granitic magmatism in the Wind RiverRange, Wyoming. Precambrian Research 89, 145–173.

Frost, C.D., Frost, B.R., Kirkwood, R., Chamberlain, K.R., 2006a. The tonalite-trondhjemite-grandiorite (TTG) to granodiorite-granite (GG) transition in the Late Archean plutonicrocks of the central Wyoming province. Canadian Journal of Earth Sciences 43, 1419–1444.

Frost, C.D., Fruchey, B.L., Chamberlain, K.R., Frost, B.R., 2006b. Archean crustal growthby lateral accretion of juvenile supracrustal belts in the southern Wyoming province.Canadian Journal of Earth Sciences 43, in press.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 49aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

50 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Froude, C.F., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R., My-ers, J.S., 1983. Ion-microprobe identification of 4100–4200 Myr old terrestrial zircons.Nature 304, 616–618.

Froude, D.O., Compston, W., Williams, I.S., 1983. Early Archaean zircon analyses fromthe central Yilgarn Block. In: Australian National University, Canberra, ResearchSchool of Earth Sciences (RSES), Annual Report 1983, pp. 124–126.

Fruchey, B.L., 2002. Archean supracrustal sequences of contrasting origin: the Archeanhistory of the Barlow Gap area, northern Granite Mountains, Wyoming. UnpublishedM.Sc. thesis. University of Wyoming, Laramie, 178 pp.

Fryer, B.J., 1977. Rare earth evidence in iron-formations for changing Precambrian oxida-tion states. Geochimica et Cosmochimica Acta 41, 361–367.

Fryer, B.J., Fyfe, W.S., Kerrich, R., 1979. Archaean volcanogenic oceans. Chemical Geol-ogy 24, 25–33.

Fu, B., Page, F.Z., Cavosie, A.J., Clechenko, C.C., Fournelle, J., Kita, N.T., Lackey, J.S.,Wilde, S.A., Valley, J.W., in press. Ti-in-zircon thermometry. Contributions to Miner-alogy and Petrology.

Fuchs, G., Thauer, R., Ziegler, H., Stichler, W., 1979. Carbon isotope fractionation byMethanobacterium thermoautotrophicum. Archives of Microbiology 120, 135–139.

Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigal, H., de Wit, M., 2004. Early liferecorded in Archean pillow lavas. Science 304, 578–581.

Furnes. H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., de Wit, M., Van Kranen-donk, M., in press. Bioalteration textures in Recent to Paleoarchean pillow lavas: Apetrographic signature of subsurface life on Earth. Precambrian Research.

Gafarov, R.A., Leites, A.M., Fedorovsky, V.S., Prozorov, I.P., Savinskaya, M.S., Savinsky,K.A., 1978. Tectonic zones in the basement of the Siberian craton and its continentalcrust formation stages. Geotectonics 1, 43–58.

Ganapathy, R., Anders, E., 1974. Bulk compositions of the Moon and Earth, estimatedfrom meteorites. In: Proceedings of the 5th Lunar Science Conference, pp. 1181–1206.

Gao, L.Z., Zhao, T., Wan, Y.S., Zhao, X., Ma, Y.S., Yang, S.Z., 2006. Report on 3.4 GaSHRIMP zircon age from the Yuntaishan Geopark in Jiaozuo, Henan Province. ActaGeologica Sinica 80, 52–57.

Gao, X., Thiemens, M.H., 1989. Multi-isotope sulfur isotope ratios (δ33S, δ34S, δ36S) inmeteorites. Meteoritics 24, 269.

Gao, X., Thiemens, M.H., 1993a. Isotopic composition and concentration of sulfur in car-bonaceous chondrites. Geochimica et Cosmochimica Acta 57, 3159–3169.

Gao, X., Thiemens, M.H., 1993b. Variations of the isotopic composition of sulfur in ensta-tite and ordinary chondrites. Geochimica et Cosmochimica Acta 57, 3171–3176.

Gao, Y.Q., Marcus, R.A., 2001. Strange and unconventional isotope effects in ozone for-mation. Science 293, 259–263.

Garcia-Ruiz, J.M., Hyde, S.T., Carnerup, A.M., Christy, A.G., Van Kranendonk, M.J., Wel-ham, N.J., 2003. Self-assembled silica-carbonate structures and detection of ancientmicrofossils. Science 302, 1194–1197.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 50aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Gardien, V., Thompson, A.B., Grujic, D., Ulmer, P. 1995. Experimental melting of biotite+ plagioclase + quartz + or − muscovite assemblages and implications for crustalmelting. Journal of Geophysical Research, B, Solid Earth and Planets 100 (8), 15,581–15,591.

Gauthier, L., Hagemann, S., Robert, F., Pickens, G., 2004. New constraints on the architec-ture and timing of the giant Golden Mile gold deposit, Kalgoorlie, Western Australia.In: Muhling, J., et al. (Eds.), SEG Extended abstracts, Perth, pp. 353–356.

Gay, N.C., 1969. The analysis of strain in the Barberton Mountain Land, eastern Transvaal,using deformed pebbles. Journal of Geology 77, 377–396.

Gee, R.D., 1982. Southern Cross, W.A. Western Australia Geological Survey, 1:250,000Geological Series Explanatory Notes, 25 pp.

Gee, R.D., Baxter, J.L., Wilde, S.A., Williams, I.R., 1981. Crustal development in the Ar-chaean Yilgarn Block, Western Australia. In: Glover, J.A., Groves, D.I. (Eds,), ArchaeanGeology. In: Geological Society of Australia, Special Publication 7, pp. 43–56.

Geng, Y.S., Yang, C.H., Wan, Y.S., 2006. Palaeoproterozoic granitic magmatism in theLuliang area, NCC: constraints from isotopic geochronology. Acta Petrologica Sinica22, 305–314 (in Chinese with English abstract).

Genshaft, N.S., 1996. Intrinsic factors of the tectonic mobility of cratons. Geotectonics 4,13–24.

Geological Map of Swaziland, 1:250,000, 1982. Geol. Surv. Mines Dept., Swaziland.German, C.R., von Damm, K.L., 2003. Hydrothermal processes. Treatise on Geochemistry

6, pp. 181–222.Ghent, R.R., Hansen, V.L., 1999. Structural and kinematic analysis of eastern Ovda Regio,

Venus: Implications for crustal plateau formation. Icarus 139, 116–136.Ghent, R.R., Phillips, R.J., Hansen, V.L., Nunes, D.C., 2005. Finite element modeling of

short-wavelength folding on Venus: Implications for the plume hypothesis for crustalplateau formation. Journal of Geophysical Research, 110, doi:10.1029/2005JE002522.

Ghent, R.R., Tibuleac, I.M., 2000. Ribbon spacing in Venusian tessera: Implications forlayer thickness and thermal state. Geophysical Research Letters 29, 994–997.

Gibbs, A.K., Payne, B., Setzer, T., Brown, L.D., Oliver, J.E., Kaufman, S., 1984. SeismicReflection Study of the Precambrian Crust of Central Minnesota. Bulletin of GeologicalSociety of America 95, 280–294.

Gibson, H.L., Watkinson, D.H., Comba, C.D.A., 1983. Silicification: Hydrothermal alter-ation in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda,Quebec. Economic Geology 78, 954–971.

Gilbert, G.K., 1886. Inculcation of the scientific method. American Journal of Science 31,284–299.

Giles, C.W., Hallberg, J.A., 1982. The genesis of the Archaean Welcome Wells volcanicprovince, Western Australia. Contributions to Mineralogy and Petrology 80, 307–318.

Gilmour, J.D., Saxton, J.M., 2001. A time-scale for the formation of the first solids. Philo-sophical Transactions of the Royal Society of London A359, 2037–2048.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 51aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

52 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Gilmour, J.D., Whitby, J.A., Turner, G., Bridges, J.C., Hutchison, R., 2000. The iodine-xenon system in clasts and chondrules from ordinary chondrites: Implications for earlysolar system chronology. Meteoritics and Planetary Science 35, 445–455.

Gilmore, M.S., Collins, G.C., Ivanov, M.A., Marinangeli, L., Head, J.W., 1998. Style andsequence of extensional structures in tessera terrain, Venus. Journal of Geophysical Re-search 103, 16813–16840.

Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Salnikova, E.B., Sklyarov, E.V.,Yakovleva, S.Z., 2005. The age and geodynamic interpretation of the Kitoi granitoidcomplex (southern Siberian craton). Russian Geology and Geophysics 46 (11), 1121–1133.

Gladkochub, D.P., Sklyarov, E.V., Menshagin, Yu.V., Mazukabzov, A.M., 2001. Geochem-istry of ancient ophiolites of the Sharyzhalgay uplift. Geochemistry International 39(10), 947–958.

???? Glass, B.P., Burns, C.A., 1988. Microkrystites: a new term for impact-produced glassyspherules containing primary crystallites. In: Proceedings Lunar and Planetary Science18th, pp. 455–458.

Glavin, D.P., Kubny, A., Jagoutz, G.W., Lugmair, G.W., 2004. Mn-Cr isotope systematicsof the D’Orbigny angrite. Meteoritics and Planetary Science 39, 693–700.

Glikson, A.Y., 1970. Geosynclinal evolution and geochemical affinities of early Precam-brian systems. Tectonophysics 9, 397–433.

Glikson, A.Y., 1972. Early Precambrian evidence of a primitive ocean crust and island arcnuclei of sodic granite. Bulletin of Geological Society of America 83, 3323–3344.

Glikson, A.Y., 1976. Stratigraphy and evolution of primary and secondary greenstones:significance of data from Shields of the southern hemisphere. In: Windley, B.F. (Ed.),The Early History of the Earth. Wiley, London, pp. 257–277.

Glikson, A.Y., 1979. Early Precambrian tonalite-trondhjemite sialic nuclei. Earth ScienceReviews 15, 1–73.

Glikson, A.Y., 1980. Uniformitarian assumptions, plate tectonics and the PrecambrianEarth. In: Kröner, A. (Ed.), Precambrian Plate Tectonics. Elsevier, Amsterdam, pp. 91–104.

Glikson, A.Y., 2001. The astronomical connection of terrestrial evolution: crustal effectsof post-3.8 Ga mega-impact clusters and evidence for major 3.2±0.1 Ga bombardmentof the Earth–Moon system. Journal of Geodynamics 32, 205–229.

Glikson, A.Y., 2005a. Asteroid/comet impact clusters, flood basalts and mass extinctions:significance of isotopic age overlaps. Earth and Planetary Science Letters 236, 933–937.

Glikson, A.Y., 2005b. Geochemical and isotopic signatures of Archaean to Palaeoprotero-zoic extraterrestrial impact ejecta/fallout units. Australian Journal of Earth Science 52(4–5), 785–798.

Glikson A.Y., 2005c. Geochemical signatures of Archean to Early Proterozoic mare-scaleoceanic impact basins. Geology 133, 125–128.

Glikson, A.Y, 2006. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara and Kaapvaal cratons: accidental or cause-effect relationships?Earth and Planetary Science Letters 246, 149–160.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 52aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Glikson, A., 2006. Comment on “Zircon thermometer reveals minimum melting conditionson earliest Earth” I. Science, 311(5762).

Glikson, A.Y., Allen, C., 2004. Iridium anomalies and fractionated siderophile element pat-terns in impact ejecta, Brockman Iron-formation, Hamersley Basin, Western Australia:evidence for a major asteroid impact in simatic crustal regions of the early Proterozoicearth. Earth and Planetary Science Letters 220, 247–264

Glikson, A.Y., Hickman, A.H., 1981. Geochemistry of Archaean volcanic successions,eastern Pilbara Block, Western Australia. Australian Bureau of Mineral Resources, Ge-ology and Geophysics, Record 1981/36, 56 pp.

Glikson, A.Y., Vickers, J., 2005. The 3.26–3.24 Ga Barberton asteroid impact cluster: testsof tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth andPlanetary Science Letters 241, 11–20.

Glikson, A.Y., Davy, R., Hickman, A.H., Pride, C., Jahn, B., 1987. Trace elements geo-chemistry and petrogenesis of Archaean felsic igneous units, Pilbara Block, WesternAustralia. Bureau of Mineral Resources, Record 1987/30, 63 pp.

Glikson, A.Y., Ivanov, B., Melosh, H.J., 2004. Impacts do not initiate volcanic eruptionsclose to the crater: comment and reply. Geology Online Forum, e47-e48.

Glukhovsky, M.Z., Moralev, V.M., 2001. Reconstruction of the tectonic evolution of theGonam enderbite dome in the Aldan shield. Geotectonics 5, 10–25.

Goddéris Y., Veizer J., 2000 Tectonic control of chemical and isotopic composition ofancient oceans: the impact of continental growth. American Journal of Science 300,434–461.

Goellnicht, N.M., Groves, I.M., Groves, D.I., Ho, S.E., McNaughton, N.J., 1988. A com-parison between mesothermal gold deposits of the Yilgarn Block and gold mineral-ization at Telfer and Miralga Creek, Western Australia: indirect evidence for a non-magmatic origin for greenstone-hosted gold deposits. In: Geology Department andExtension Service, University of Western Australia, Publication No. 12, pp. 23–40.

Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time: a globalsynthesis. Ore Geology Reviews 18, 1–75.

Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R., Gosselin, P., 2005. Dis-tribution, character, and genesis of gold deposits in metamorphic terranes. EconomicGeology, 100th Anniversary Volume, 407–450.

Goldich, S.S., Hedge, C.E., 1974. 3,800-Myr granitic gneisses in south-western Minnesota.Nature 252, 467–468.

Goldich, S.S., Wooden, J.L., 1980. Origin of the Morton gneiss, southwestern Minnesota:Part 3. Geochronology. In: Geological Society of America, Special Paper 182, pp. 77–94.

Goldich, S.S., Nier, A.O., Baadsgaard, H., Hoffman, J.H., Krueger, H.W., 1961. The Pre-cambrian Geology and Geochronology of Minnesota. Minnesota Geological Survey,Bulletin 41, 193 pp.

Goldich, S.S., Hedge, C.E., Stern, T.W., 1970. Age of the Morton and Montevideo Gneissesand related rocks, southwestern Minnesota. Bulletin of Geological Society of America81, 3671–3696.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 53aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

54 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Goldich, S.S., Hedge, C.E., Stern, T.W., Wooden, J.L., Bodkin, J.B., North, R.M., 1980.Archean rocks of the Granite Falls area, southwestern Minnesota. In: Geological Societyof America, Special Paper 182, pp. 19–43.

Goldich, S.S., Wooden, J.L., Ankenbauer, G.A., Levy, T.M., Suda, R.U., 1984. Origin ofthe Morton Gneiss, southwestern Minnesota; Part I, Lithology. In: Morey, G.B., Han-son, G.N. (Eds.), Selected Studies of Archean Gneisses and Lower Proterozoic Rocks,Southern Canadian Shield. In: Geological Society of America, Special Paper 182, pp.45–50.

Golding, L.Y., Walter, M.R., 1979. Evidence of evaporite minerals in the Archaean BlackFlag beds, Kalgoorlie, Western Australia. BMR Journal of Geology and Geophysics 4,67–71.

Golding, S.D., Young, E., 2005. Multiple sulfur isotope evidence for dual sulfur sourcesin the 3.24 Ga Sulphur Springs VHMS deposit. Geochimica et Cosmochimica Acta 69(Suppl.), A449.

Goldschmidt, V.M., 1954. Geochemistry. Clarendon Press, Oxford, UK, 730 pp.Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sm isotopic systematics of rivers water sus-

pended material: implications for crustal evolution. Earth and Planetary Science Letters87, 249–265.

Goldstein, S.L., 1988. Decoupled evolution of Sr and Nd isotopes in the continental crustand mantle. Nature 336, 733–738.

Goldstein, S.L., O’Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of at-mospheric dusts and particulates from major river systems. Earth and Planetary ScienceLetters 70, 221–236.

Goodge, J.W., Fanning, C.M., 1995. 2.5 b.y. of punctuated earth history as recorded in asingle rock. Geology 27, 1007–1010.

Goodge, J.W., Fanning, C.M., Bennett, V.C., 2001. U-Pb evidence of ∼ 1.7 Ga crustaltectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: im-plications for Proterozoic plate reconstructions. Precambrian Research 112, 261–288.

Goodrich, C.A., 1992. Ureilites, a critical overview. Meteoritics 27, 227–252.Goodwin, A.M., 1968. Archean protocontinental growth and early crustal history of the

Canadian shield. In: 23rd International Geological Congress, Prague, vol. 1, pp. 69–89.Goodwin, A.M., 1981. Precambrian perspectives. Science 213, 55–61.Goodwin, A.M., Ridler, R.H., 1970. The Abitibi orogenic belt. In: Baer, A.J. (Ed.) Sympo-

sium on Basins and Geosynclines of the Canadian Shield. Geological Survey of Canada,Paper 70–40, pp. 1–30.

Göpel, C., Manhes, G., Allegre, C.J., 1992. U-Pb study of the Acapulco meteorite. Mete-oritics 27, 226.

Göpel, C., Manhes, G., Allegre, C.J., 1994. U-Pb systematics of phosphates from equili-brated ordinary chondrites. Earth and Planetary Science Letters 121, 153–171.

Gorman, A.R., Clowes, R.M., Ellis, R.M., Henstock, T.J., Spence, G.D., Keller, G.R.,Levander, A., Snelson, C.M., Burianyk, M.J.A., Kanasewich, E.R., Asuden, I., Haj-nal, Z., Miller, K.C., 2002. Deep Probe: imaging the roots of western North America.Canadian Journal of Earth Sciences 39 (3), 375–398.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 54aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 55

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Gornostayev, S.S., Walker, R.J., Hanski, E.J., Popovchenko, S.E., 2004. Evidence for theemplacement of ca. 3.0 Ga mantle-derived mafic-ultramafic bodies in the UkrainianShield. Precambrian Research 132 (4), 349–362.

Gosselin, C., Simard, M., 2001. Geology of the Lac Gayot Area (NTS 23M). Ministère desRessources naturelles, Québec, RG 2000-03, 28 pp.

Goswami, J.N., Misra, S., Wiedenback, M., Ray. S.L., Saha, A.K., 1995. 3.55 Ga old zirconfrom Singhbhum-Orissa iron Ore craton, eastern India. Current Science 6, 1008–1011.

Gounelle, M., Zolensky, M.E., 2001. A terrestrial origin for sulfate veins in CI1 chondrites.Meteoritics and Planetary Science 36, 1321–1329.

Gounelle, M., Spurny, P., Bland, P.A., 2006. The orbit and atmospheric trajectory of theOrgueil meteorite from historical records. Meteoritics and Planetary Science 41, 135–150.

Goutier, J., Dion, C., 2004. Géologie et minéralisation de la Sous-province de La Grande,Baie-James. Québec Exploration 2004. Ministère des Ressources naturelles, de la Fauneet des Parcs, Québec, DV 2004-06, p. 21.

Govindaraju, K., 1994. 1994 compilation of working values and sample description for383 geostandards. Geostandards Newsletter 18, 1–158.

Grace, R.L.B., 2004. The oldest fragments of the central Wyoming province: evidence fromthe Beulah Belle Lake area, northern Granite Mountains. Unpublished M.Sc. thesis.University of Wyoming, Laramie, Wyo., 172 pp.

Grace, R.L.B., Rashmi L.B., Chamberlain, Kevin R., Frost, B.R., Frost, C.D., 2006. Tec-tonic histories of the Paleo- to Mesoarchean Sacawee Block and Neoarchean OregonTrail structural belt of the south-central Wyoming province. Canadian Journal of EarthSciences 43, 1445–1466.

Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A.,Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.P.,McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R.,Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J.,Monechi, S., Plumb, K.A., Powell, J., Raffi, I., Röhl, U., Sadler, P., Sanfilippo, A.,Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., van Kolfschoten,T., Veizer, J., Wilson, D., 2004. A Geologic Time Scale 2004. Cambridge UniversityPress, 589p.

Graf Jr., J.L., 1978. Rare earth elements, iron formations and sea water. Geochimica etCosmochimica Acta 42, 1845–1850.

Graham, C.M., Powell, R., 1984. A garnet-hornblende geothermometer: calibration, test-ing, and application to the Pelona Schist, Southern California. Journal of MetamorphicGeology 3, 13–21.

Graham, S., Pearson, N., Jackson, S., Griffin, W., O’Reilly, S.Y., 2004. Tracing Cu and Fefrom source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfidesfrom the Grasberg Cu–Au deposit. Chemical Geology 207, 147–169.

Grand, S.P., van der Hilst, R.D., Widjyantoro, S., 1997. Global seismic tomography: asnapshot of convection in the Earth. GSA Today 7, 1–7.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 55aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

56 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Grant, J.A., 1972. Minnesota River Valley, southwestern Minnesota. In: Sims, P.K., Morey,G.B. (Eds.), Geology of Minnesota – A centennial volume. Minnesota Geological Sur-vey, pp. 177–196.

Grant, J.A. 1986. The isocon diagram: a simple solution to Gresen’s equation for metaso-matic alteration. Economic Geology 81, 1976–1982

Grant, J.A., 2005. Isocon analysis: A brief review of the method and applications. Physicsand Chemistry of the Earth 30, 997–1004.

Grant, J.A., Weiblen, P.W., 1971. Retrograde zoning in garnet near the second sillimaniteisograd. American Journal of Science 270, 281–296.

Grantham, G.H., Jackson, C., Moyes, A.B., Harris, P.D., Groenewald, P.B., Ferrar andG., Krynauw, J.R., 1995. P-T evolution of the H.U. Sverdrupfjella and Kirwanveggan,Dronning Maud Land, Antarctica. Precambrian Research 75, 209–229.

Gray, C.M., Compston, W., 1974. Excess 26Mg in the Allende meteorite. Nature 251, 495–497.

Greeley, R., 1987. Planetary Landscapes. Allen & Unwin, London.Green, A.G., Hajnal, Z., Weber, W., 1985. An evolutionary model of the western Churchill

Province and the western margin of the Superior Province in Canada and north-centralUnited States. Tectonophysics 116, 281–322.

Green, D.H., 1972. Archaean greenstone belts may include terrestrial equivalents of lunarmare? Earth and Planetary Science Letters 15, 263–270.

Green, D.H., 1976. Experimental testing of equilibrium partial melting of peridotite underwater-saturated, high pressure conditions. Canadian Mineralogist 14, 255–268.

Green, D.H., 1981. Petrogenesis of Archaean ultramafic magmas and implications forArchaean tectonics. In: A. Kröner (Ed.), Precambrian Plate Tectonics. Elsevier, Am-sterdam, pp. 469–489.

Green, M.G., Sylvester, P.J., Buick, R., 2000. Growth and recycling of early Archaean con-tinental crust: geochemical evidence from the Coonterunah and Warrawoona Groups,Pilbara Craton, Australia. Tectonophysics 322, 69–88.

Green, T.H., Pearson, N.J., 1986. Ti-rich accessory phase saturation in hydrous mafic felsiccompositions at high P, T. Chemical Geology 54, 185–201.

Green, T.H., Ringwood, A.E., 1977. Genesis of the calc-alkaline igneous rock suite. Con-tribution to Mineralogy and Petrology 18, 105–162.

Greenwood, J.P., Mojzsis, S.J., Coath, C.D., 2000a. Sulfur isotopic compositions of in-dividual sulfides in martian meteorites ALH84001 and Nakhla: Implications for crust-regolith exchange on Mars. Earth and Planetary Science Letters 184, 23–35.

Greenwood, J.P., Rubin, A E., Wasson, J.T., 2000. Oxygen isotopes in R chondrite mag-netite and olivine; links between R chondrites and ordinary chondrites. Geochimica etCosmochimica Acta 64, 3897–3911.

Gregg, T.K.P., Greeley, R., 1993. Formation of Venusian canali: Consideration of lava typesand their thermal behaviors. Journal Geophysical Research 98, 10,873–10,882.

Grégoire, M., Cottin, J.Y., Giret, A., Mattielli, N., Weis, D., 1998, The meta-igneous gran-ulite xenoliths from Kerguelen Archipelago: evidence of a continent nucleation in anoceanic setting. Contributions to Mineralogy and Petrology 133, 259–283.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 56aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 57

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Gregory, R.T., 1991. Oxygen isotope history of seawater revisited: composition of seawa-ter. In: Taylor, H.P., Jr., O’Neil, J.R., Kaplan, I.R. (Eds.), Stable Isotope Geochemistry:A Tribute to Samuel Epstein. In: Geochemical Society, Special Publication 3. Miner-alogical Society of America, Washington, DC, pp. 65–76.

Grew, E.S., 1998. Boron and beryllium minerals in granulite-facies pegmatites and impli-cations of beryllium pegmatites for the origin and evolution of the Archaean NapierComplex of East Antarctica. In: Motoyoshi, Y., Shiraishi, K. (Eds.), Origin and Evolu-tion of Continents. In: Memoir National Institute of Polar Research, Special Issue 53,pp. 74–92.

Grew, E.S., Manton, W., 1979. Archaean rocks in Antarctica: 2.5 billion year uranium-leadages of pegmatites in Enderby Land. Science 206, 443–445.

Grieve, R.A.F., 1980. Impact bombardment and its role in proto-continental growth of theearly Earth. Precambrian Research 10, 217–248.

Grieve, R.A.F., 1998. Extraterrestrial impacts on Earth – The evidence and the conse-quences. In: Grady, M.M. et al. (Eds.), Meteorites: Flux with Time and Impact Effects.In: Geological Society of London, Special Publication 140, pp. 105–131.

Grieve, R.A.F., Pesonen, L.J., 1996. Terrestrial impact craters: their spatial and temporaldistribution and impacting bodies. Earth, Moon and Planets 72, 357–376.

Grieve, R.A.F., Pilkington, M., 1996. The signature of terrestrial impacts. Australian Geo-logical Survey Organisation Journal, Australian Geology and Geophysics 16, 399–420.

Grieve, R.A.F., Shoemaker, E.M., 1994. The Record of Past Impacts on Earth. The Uni-versity of Arizona Press, Tucson, AZ, pp. 417–462.

Griffin, W.L., Brueckner, H.K., 1980: Caledonian Sm-Nd ages and a crustal origin forNorwegian eclogites. Nature 285, 319–320.

Griffin, W.L., O’Reilly, S.Y., 1987. Is the continental Moho the crust-mantle boundary?Geology 15, 241–244.

Griffin, W.L., McGregor, V.R., Nutman, A.P., Taylor, P.N., Bridgwater, D., 1980. Early Ar-chaean granulite-facies metamorphism south of Ameralik. Earth and Planetary ScienceLetters 50, 59–74.

Griffin, W.L., O’Reilly, S.Y., Ryan, C.G., Gaul, O., Ionov, D., 1998a. Secular variationin the composition of subcontinental lithospheric mantle. In: Braun, J., Dooley, J.C.,Goleby, B.R., van der Hilst, R.D., Klootwijk, C.T. (Eds.), Structure and Evolution ofthe Australian Continent. In: American Geophysical Union, Geodynamics Series, vol.26. Washington, DC, pp. 1–26.

Griffin, W.L., Zhang, A.D., O’Reilly, S.Y., Ryan, G., 1998b. Phanerozoic evolution of thelithosphere beneath the Sino-Korean Craton. In: Flower, M., Chang, S.L., Lo, C.H.,Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia. In: AmericanGeophysical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 107–126.

Griffin, W.L., O’Reilly, S.Y., Ryan, C.G., 1999a. The composition and origin of sub-continental lithospheric mantle. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), MantlePetrology: Field Observations and High Pressure Experimentation: A Tribute to FrancisF. (Joe) Boyd. The Geochemical Society, pp. 13–45.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 57aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

58 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O’Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny,P.D., Ilupin, I.P., 1999b. The Siberian lithosphere traverse: mantle terranes and the as-sembly of the Siberian Craton. Tectonophysics 310, 1–35.

Griffin, W.L., Doyle, B.J., Ryan, C.G., Pearson, N.J., O’Reilly, S.Y., Davies, R.M., Kivi,K., van Achterbergh, E., Natapov, L.M., 1999c. Layered mantle lithosphere in the Lacde Gras Area, Slave Craton: Composition, structure and origin. Journal of Petrology 40,705–727.

Griffin, W.L., O’Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., Pearson, N.J., Doyle,B.J., Kivi, K., 2003a. The origin and evolution of Archean lithospheric mantle. Precam-brian Research 127, 19–41

Griffin, W.L., O’Reilly, S.Y., Natapov, L.M., Ryan, C.G., 2003b. The evolution oflithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71, 215–242.

Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O’Reilly, S.Y.O., 2004a. Archeancrustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence fromdetrital zircons. Precambrian Research 131, 231–282.

Griffin, W.L., Graham, S., O’Reilly, S.Y., Pearson, N.J., 2004. Lithosphere evolution be-neath the Kaapvaal Craton. Re-Os systematics of sulfides in mantle-derived peridotites.Chemical Geology 208, 89–118.

Griffiths, R.W., Campbell, I.H., 1990. Stirring and structure in mantle plumes. Earth andPlanetary Science Letters 99, 66–78.

Griffiths, R.W., Campbell, I.H., 1991. Interaction of mantle plume heads with the Earth’ssurface and onset of small-scale convection. Journal of Geophysical Research 96,18,295–18,310.

Grimm, R.E., 1994. The deep structure of Venusian plateau highlands. Icarus 112, 89–103.Grimm, R.E., Hess, P.C., 1997. The crust of Venus. In: Bouger, S.W., Hunten, D.M.,

Phillips, R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind En-vironment. The University of Arizona Press, Tucson, AZ, pp. 1205–1244.

Grimm, R.E., Solomon, S.C., 1988. Viscous relaxation of impact crater relief on Venus:Constraints on crustal thickness and thermal gradient. Journal of Geophysical Research93, 11911–11929.

Grinenko, V.A., Thode, H.G., 1970. Sulfur isotope effects in volcanic gas mixtures. Cana-dian Journal of Earth Sciences 7, 1402–1409.

Gromet, L.P., Silver, L.T., 1983. Rare earth element distributions among minerals in agranodiorite and their petrogenetic implications. Geochimica et Cosmochimica Acta 47(5), 925–939.

Gromet, L.P., Silver, L.T., 1987. REE variations across the Peninsular Ranges Batholith:implications for batholithic petrogenesis and crustal growth in magmatic arcs. Journalof Petrology, 28, 75–125.

Gross, G.A., 1965. Geology of iron deposits in Canada. I. General geology and evaluationof iron deposits. Geological Survey of Canada, Economic Geology Report 22, 181 pp.

Gross, G.A., 1980. A classification of iron formations based on depositional environments.Canadian Mineralogist 18, 215–222.

Gross, G.M., 1983. Ocean sciences review and forecast. Sea Technology 24, 21.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 58aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 59

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Grotzinger, J.P., Rothman, D.H., 1996. An abiotic model for stromatolite morphogenesis.Nature 383, 423–425.

Grove, D.I., Barrett, F.M., Binns, R.A., McQueen, K.G., 1977. Spinel phases associatedwith metamorphosed volcanic-type iron-nickel sulphide ores from Western Australia.Economic Geology 72, 1224–1244.

Grove, T.L., de Wit, M.J., Dann, J.C., 1997. Komatiites from the Komati Type Section,South Africa. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford Univer-sity Press, Oxford, UK, pp. 438–456.

Grove, T.L., Elkins, L.T., Parman, S.W., Chatterjee, N., Müntener, O., Gaetani, G.A., 2003.Fractional crystallization and mantle-melting controls on calc-alkaline differentiationtrends. Contribution to Mineralogy and Petrology 145, 515–533.

Groves, D.I., Dunlop, J.S.R., Buick, R., 1981. An early habitat of life. Scientific American245, 64–73.

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, H., Hagemann, S.G., Robert, F., 1998. Oro-genic gold deposits: a proposed classification in the context of their crustal distributionand relationship to other ore deposit type. Ore Geology Reviews 13, 7–27.

Groves, D.I., Goldfarb, R.J., Robert, F., Hart, C.J.R., 2003. Gold deposits in metamorphicbelts: overview of current understanding, outstanding problems, future research, andexploration significance. Economic Geology 98, 1–29.

Groves, D.I., Vielreicher, R.M., Goldfarb, R.J., Condie, K.C., 2005. Controls on the het-erogeneous distribution of mineral deposits through time. In: Geological Society ofLondon, Special Publication 248, pp. 71–101.

Groves, I.M., 1987. Epithermal/porphyry style base- and precious-metal mineralizationin the Miralga Creek area, eastern Pilbara Block. Unpublished B.Sc. Honours thesis.University of Western Australia, 82 pp.

Gruau, G., Jahn, B., Glikson, A.Y., Davy, R., Hickman, A.H., Chauvel, C., 1987. Age of theArchaean Talga-Talga Subgroup, Pilbara Block, Western Australia, and early evolutionof the mantle: new Sm-Nd evidence. Earth and Planetary Science Letters 85, 105–116.

GSWA, 2006. Compilation of geochronology data, June 2006 update. Geological Surveyof Western Australia, on compact disc.

Guan, H., Sun, M., Wilde, S.A., Zhou, X.H., Zhai, M.G., 2002. SHRIMP U-Pb zircongeochronology of the Fuping Complex: Implications for formation and assembly of theNCC. Precambrian Research 113, 1–18.

Guest, J.E., Bulmer, M.H., Aubele, J.C., Beratan, K., Greeley, R., Head, J.W., Micheals,G., Weitz, C., Wiles, C., 1992. Small volcanic edifices and volcanism in the plains onVenus. Journal of Geophysical Research 97, 15,949–15,966.

Guillot, T., Stevenson, D.J., Hubbard, W.B., Saumon, D., 2004. The interior of Jupiter.In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter. Cambridge UniversityPress, pp. 35–57.

Guimon, R.K., Symes, S.J.K., Sears, D.W.G., Beniot, P.H., 1995. Chemical and Physicalstudies of type 3 chondrites XII: the metamorphic history of CV chondrites and theircomponents. Meteoritics 30, 704–714.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 59aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

60 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Guo, J.H., Sun, M., Chen, F.K., Zhai, M.G., 2005. Sm–Nd and SHRIMP zircon geochronol-ogy of high-pressure granulites in the Sanggan area. North China Craton: timing ofPaleoproterozoic continental collision. Journal of Asian Earth Sciences 24, 629–642.

Gupta, N.S., Briggs, D.E.G., Collinson, M.E., Evershed, R.P., Michels, R., Pancost, R.D.,2004. In situ polymerisation of labile lipids as a source for the aliphatic component ofrecalcitrant macromolecules in sedimentary materials. Geochimica et CosmochimicaActa 68, A241–A241 suppl.

Gurnis, M., 1998. Large scale mantle convection and the aggregation and dispersal of su-percontinents. Nature 332, 695–699.

Gutscher, M.A., Maury, R., Eissen, J-P., Bourdon, R., 2000a. Can slab melting be causedby flat subduction? Geology 28, 535–538

Gutscher, M.-A., Spakman, W., Bijwaard, H., Engdahl, E.R., 2000. Geodynamics of flatsubduction: seismicity and tomographic constraints from the Andean margin. Tectonics19, 814–833.

Habicht, K.S., Canfield, D.E., 2001. Isotope fractionation by sulfate-reducing natural pop-ulations and the isotopic composition of sulfide in marine sediments. Geology 29,555–558.

Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., 2002. Calibration ofsulfate levels in the Archean ocean. Science 298, 2372–2374.

Habing, H.J., Dominik, C., de Muizon, M.J., Laureijs, R.J., Kessler, M.F., Leech, K., Met-calfe, L., Salama, A., Siebenmorgen, R., Trams, N., Bouchet, P., 2001. Incidence andsurvival of remnant disks around main-sequence stars. Astronomy and Astrophysics365, 545–561.

Hacker, B.R., Abers, G.A., 2004. Subduction Factory 3: An Excel worksheet and macrofor calculating the densities, seismic waver speeds and H2O contents of mineralsand rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, doi:10.1029/2003GC000614.

Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clus-ters. Astrophysical Journal 533, L131-L136.

Hall, A.L., 1918. The Geology of the Barberton Gold Mining District. Geological Surveyof South Africa, Memoir 9, 347 pp.

Halliday, A.N., 2000. Terrestrial accretion rates and the origin of the Moon. Earth andPlanetary Science Letters 176, 17–30.

Halliday, A.N., 2003. The origin and earliest history of the Earth. In: Davis, A.M.(Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 509–557.

Halliday, A.N., Lee, D-C., 1999. Tungsten isotopes and the early development of the Earthand Moon. Geochimica et Cosmochimica Acta 63, 4157–4179.

Halliday, A.N., Porcelli, D., 2001. In search of lost planets – the palaeocosmochemistry ofthe inner solar system. Earth and Planetary Science Letters 192, 545–559.

Halliday, A.N., Lee, D-C., Jacobsen, S.B., 2000. Tungsten isotopes, the timing of metal-silicate fractionation, and the origin of the Earth 1and Moon. In: Canup, R., Righter, K.(Eds.), Origin of the Earth and Moon. Arizona University Press, Tucson AZ, pp. 45–62.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 60aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 61

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Halpin, J.A., Geratikeys, C.L., Clarke, G.L., Belousova, E.A., Griffin, W.L., 2005. In-situU-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica.Contributions to Mineralogy and Petrology 148, 689–706.

Hamilton, P.J., Evensen, N.M., O’Nions, R.K., 1979. Sm-Nd dating of Onverwacht Groupvolcanics, southern Africa. Nature 279, 298–300.

Hamilton, P.J., O’Nions, R.K., Bridgwater, D., Nutman, A., 1983. Sm-Nd studies of Ar-chaean metasediments and metavolcanics from West Greenland and their implicationsfor the Earth’s early history. Earth and Planetary Science Letters 62, 263–272.

Hamilton, V.E., Stofan, E.R., 1996. The Geomorphology and Evolution of Hecate Chasma,Venus. Icarus 121, 171–189.

Hamilton, W.B., 1993. Evolution of Archean mantle and crust. In: Reed, J.C., Jr., et al.(Eds.), Precambrian – Conterminous United States. In: Geological Society of America,Geology of North America, vol. C-2, pp. 597–614, 630–636.

Hamilton, W.B., 1998. Archean magmatism and deformation were not the products of platetectonics. Precambrian Research 91, 143–180.

Hamilton, W.B., 2003. An alternative Earth. GSA Today 13, 4–12.Hamilton, W.B., 2005. Plumeless Venus has ancient impact-accretionary surface. In: Foul-

ger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes, andParadigms. In: Geological Society of America, Special Paper 388, pp. 781–814.

Han B-F, Wang, S-H., Jahn, B-M., Hong, D-W., Kagami, H., Sun, Y-L., 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustalgrowth. Chemical Geology 138, 135–59.

Hanmer, S., Greene, D.C., 2002. A modern structural regime in the Paleoarchean (∼ 3.64Ga); Isua Greenstone Belt, southern West Greenland. Tectonophysics 346, 201–222.

Hanor, J.S., Duchac, K., 1990. Isovolumetric silicification of Early Archean komatiites:geochemical mass balances and constraints on origin. Journal of Geology 98, 863–877.

Hansen, V.L., 2000. Geologic mapping of tectonic planets. Earth and Planetary ScienceLetters 176, 527–542.

Hansen, V.L., 2002. Artemis: signature of a deep Venusian mantle plume. Bulletin of Ge-ological Society of America 114, 839–848.

Hansen, V.L., 2003. Venus diapirs: thermal or compositional? Bulletin of Geological Soci-ety of America 115, 1040–1052.

Hansen, V.L., 2005. Venus’s shield-terrain. Bulletin of Geological Society of America 117,808–822.

Hansen, V.L., 2006. Geologic constraints on crustal plateau surface histories, Venus:The lava pond and bolide impact hypotheses. Journal of Geophysical Research, 111:doi:10.1029/2006JE002714.

Hansen, V.L., Banks, B.K., Ghent, R.R., 1999. Tessera terrain and crustal plateaus, Venus.Geology 27, 1071–1074.

Hansen, V.L., DeShon, H.R., 2002. Geologic map of the Diana Chasma quadrangle (V-37).Venus U.S. Geological Survey Geologic Investigations Series I-2752, U.S. GeologicalSurvey, 1:5,000,000.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 61aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

62 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Hansen, V.L., Phillips, R.J., Willis, J.J., Ghent, R.R., 2000. Structures in tessera terrain,Venus: Issues and answers. Journal of Geophysical Research 105, 4135–4152.

Hansen, V.L., Willis, J.J., 1996. Structural analysis of a sampling of tesserae: Implicationsfor Venus geodynamics. Icarus 123, 296–312.

Hansen, V.L., Willis, J.J., 1998. Ribbon terrain formation, southwestern Fortuna Tessera,Venus: Implications for lithosphere evolution. Icarus 132, 321–343.

Hansen, V.L., Willis, J.J., Banerdt, W.B., 1997. Tectonic overview and synthesis. In:Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press,Tucson, AZ, pp. 797–844.

Hansen, V.L., Young, D.A., 2007. Venus’s evolution: A synthesis. In: Cloos, M., Carlson,W., Gilbert, M.C., Liou, J.G., Sorenson, S.S. (Eds.), Convergent Margin Terranes and 6Associated Regions. In: Geological Society of America, Special Paper 419, in press.

Hanson, G.N., Himmelberg, G.R., 1967. Ages of mafic dikes near Granite Falls, Min-nesota. Bulletin of Geological Society of America 78, 1429–1432.

Harley, S.L., 1986. A sapphirine-cordierite-garnet-sillimanite granulite from EnderbyLand, Antarctica: implications for FMAS petrogenetic grids in the granulite facies. Con-tributions to Mineralogy and Petrology 94, 452–460.

Harley, S.L., 1993. Sapphrine granulites from the Vestfold Hills, East Antarctica: geochem-ical and metamorphic evolution. Antarctic Science 5, 349–402.

Harley, S.L., 1998. On the occurrence and characterisation of ultrahigh temperature crustalmetamorphism. In: Treloar, P.J., O’Brien, P. (Eds.), What Drives Metamorphism andMetamorphic Reactions? In: Geological Society of London, Special Publication 138,pp. 75–101.

Harley, S.L., 2003. Archaean to Pan-African crustal development and assembly of EastAntarctica: metamorphic characteristics and tectonic implications. In: Yoshida, M.,Windley, B.F. (Eds.), Proterozoic East Gondwana: Supercontinent Assembly andBreakup. In: Geological Society of London, Special Publication 206, pp. 203–230.

Harley, S.L., Black, L.P., 1997. A revised Archaean chronology for the Napier Complex,Enderby Land, from SHRIMP ion-microprobe studies. Antarctic Science 9, 74–91.

Harley, S.L., Fitzsimons, I.C.W., Buick, I.S., Watt, G., 1992. The significance of reworking,fluids and partial melting in granulite metamorphism, East Prydz Bay, Antarctica. In:Yoshida, Y. Kaminuma, K., Shiraishi, K. (Eds,), Recent Progress in Antarctic EarthScience. Terrapub, Tokyo, pp. 119–127.

Harley, S.L., Snape, I., Black, L.P., 1998. The early evolution of a layered metaigneouscomplex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane.Precambrian Research 89, 175–205.

Harper, C.L., Jacobsen, S.B., 1992. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5 Ga) differentiation of the Earth’s mantle. Nature360, 728–732.

Harper, K.M., 1997. U-Pb age constraints on the timing and duration of Proterozoic andArchean metamorphism along the southern margin of the Archean Wyoming craton.Unpublished Ph.D thesis. University of Wyoming, Laramie, 176 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 62aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 63

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Harris, P.D., Smith, C.B., Hart, R.J., Robb, L.J., 1993. Sm-Nd and Rb-Sr isotope systemat-ics of rare-element pegmatites from the New Consort gold mines, Barberton MountainLand, South Africa. Information Circular, Economic Geology Research Unit, Univer-sity of the Witwatersrand, Johannesburg, 265, 20 pp.

Harris, P.D., Robb, L.J., Tomkinson, M.J., 1995. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, SouthAfrica. South African Journal of Geology 98, 82–94.

Harrison, T.M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., Mojzsis, S.J., 2005.Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science310, 1947–1950.

Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2006.Response to Comment on “Heterogeneous Hadean hafnium: Evidence of continentalcrust at 4.4 to 4.5 Ga”. Science 312, doi:10.1126/science.1123408.

Harrison, T.M., McCulloch, M.T., Blichert-Toft, J., Albarede, F., Holden, P., Mojzsis, S.J.,2006. Further Hf isotope evidence for Hadean continental crust. Geochimica et Cos-mochimica Acta 70 (18) Suppl. 1, A234.

Hart, R., Moser, D., Andreoli, M., 1999. Archaean age for the granulite facies meta-morphism near the center of the Vredefort structure, South Africa. Geology 27 (12),1091–1094.

Harte, B., Harris, J.W., Hutchinson, M.T., Watt, G.R., Wilding, M.C., 1999. Lower mantlemineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., My-sen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimen-tation: A Tribute to Francis F. (Joe) Boyd. In: Geochemical Society Special Publication#6. The Geochemical Society, Houston, pp. 125–154.

Hartlaub, R.P., Heaman, L.M., Böhm, C.O., Corkery, M.T., 2003. The Split Lake Blockrevisited: new geological constraints from the Birthday to Gull rapids corridor of theLower Nelson River (NTS 54D5 and 6). In: Report of Activities 2003, Manitoba Indus-try, Trade and Mines, Manitoba Geological Survey, pp. 114–117.

Hartlaub, R.P., Heaman, L.M., Ashton, K.E., Chacko, T., 2004. The Archean Murmac Baygroup: evidence for a giant Archean rift in the Rae Province, Canada. PrecambrianResearch 131, 345–372.

Hartlaub, R.P., Böhm, C.O., Kuiper, Y.D., Bowerman, M.S., Heaman, L.M., 2004. Archeanand Paleoproterozoic Geology of the northwestern Split Lake Block, Superior Province,Manitoba (parts of NTS54D4, 5, 6 and NTS64A1). In: Report of Activities 2004, Man-itoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp.187–194.

Hartlaub, R.P., Böhm, C.O., Heaman, L.M., Simonetti, A., 2005. Northwestern Superiorcraton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustalgrowth, erosion and orogenesis (parts of NTS 54D and 64A). In: Report of Activi-ties 2004, Manitoba Industry, Economic Development and Mines, Manitoba GeologicalSurvey, pp. 54–60.

Hartlaub, R.P., Heaman, L.M., Simonetti, A., Boehm, C.O., 2006. Relicts of Earth’s earliestcrust: U-Pb, Lu-Hf , and morphological characteristics of >3.7 Ga detrital zircon of the

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 63aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

64 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

western Canadian Shield. In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on theEarly Earth. In: Geological Society of America, Special Paper 405, pp. 75–90.

Hartmann, W.K., 1998. Moons and Planets. Brooks Cole, 528 pp.Hartmann, W.K., Ryder, G., Dones, L., Grinspoon, D., 2000. The time-dependent in-

tense bombardment of the primordial Earth–Moon system. In: Canup, R.M., Righter,K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, AZ, pp.493–512.

Hattori, K., Cameron, E.M., 1986. Archean magmatic sulphate. Nature 319, 45–47.Hauck, S.A., Phillips, R.J., Price, M.H., 1998. Venus: Crater distribution and plains resur-

facing models. Journal of Geophysical Research 103, 13,635–13,642.Haugh, I., 1969: Geology of the Split Lake area. In: Manitoba Mines and Natural Re-

sources, Mines Branch, Publication 65-2, p. 87.Haugh, I., Elphick, S.C., 1968. Kettle Rapids–Moose Lake area. Summary of Geological

Fieldwork 1968. In: Manitoba Mines and Natural Resources, Mines Branch, GeologicalPaper 68-3, pp. 29–37.

Hayes, J.M., Kaplan, I.R., Wedekling, K.W., 1983. Precambrian organic geochemistry,preservation of the record. In: Schopf, J.W. (Ed.), Earth’s Earliest Biosphere: Its Originand Evolution. Princeton University Press, Princeton, pp. 93–134.

Hayes, J.M., Waldbauer, J.R., 2006. The carbon cycles and associated redox processesthrough time. Philosophical Transactions of the Royal Society of London 361, 931–950.

Head, J.W., Crumpler, L.S., Aubele, J.C., Guest, J.E., Saunders, R.S., 1992. Venus Vol-canism: Classification of Volcanic Features and Structures, Associations, and GlobalDistribution from Magellan Data. Journal of Geophysical Research 97, 13153–13198.

Heaman, L.M., Corkery, M.T., 1996. U-Pb geochronology of the Split Lake Block, Man-itoba: preliminary results. In: 1996 Trans-Hudson Orogen, Lithoprobe Report 55, pp.60–68.

Heaman, L.M., Machado, N., Krogh, T.E., Weber, W., 1986. Preliminary U-Pb zircon re-sults from the Pikwitonei granulite domain, In: Manitoba. Geological Association ofCanada – Mineralogical Association of Canada, Joint Annual Meeting, Program andAbstracts, 11, p. 79.

Hedderich, R., Klimmek, O., Kroger, A., Dirmeier, R., Keller, M., Stetter, K.O., 1998.Anaerobic respiration with elemental sulfur and with disulfides. FEMS MicrobiologyReviews 22, 353–381.

Heinrichs, T.K., 1980. Lithostratigraphische Untersuchungen in der Fig Tree Gruppe desBarberton Greenstone Belt zwischen Umsoli und Lomati (Sudafrika). Gottinger Ar-beiten zur Geologie und Palaontologie 22, 118 pp.

Heinrichs, T.K., 1984. The Umsoli Chert, turbidite testament for a major phreatoplinianevent at the Onverwacht/Fig Tree transition (Swaziland Supergroup, Archaean, SouthAfrica). Precambrian Research 24, 237–283.

Heinrichs, T.K., Reimer, T.O., 1977. A sedimentary barite deposit from the Archean FigTree Group of the Barberton Mountain Land (South Africa). Economic Geology 72,1426–1441.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 64aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 65

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Helmstaedt, H.H., Gurney, J.J., 1995. Geotectonic controls of primary diamond deposits:implications for area selection. Journal of Geochemical Exploration 53, 125–140.

Henry, D.J., Mueller, P.A., Wooden, J.L., Warner, J.L., Lee-Berman, R., 1982. Granulitegrade supracrustal assemblages of the Quad Creek area, eastern Beartooth Mountains,Montana. In: Montana Bureau of Mines and Geology, Special Publication 84, pp. 147–159.

Henry, P., Stevenson, R., Gariepy, C., 1998. Late Archean mantle composition and crustalgrowth in the western Superior Province of Canada: Neodymium and lead isotopicevidence from the Wawa, Quetico, and Wabigoon subprovinces. Geochimica et Cos-mochimica Acta 62, 143–157.

Henry, P., Stevenson, R., Larbi, Y., Gariepy, C., 2000. Nd isotopic evidence for Early toLate Archean (3.4–2.7 Ga) crustal growth in the Western Superior Province (Ontario,Canada). Tectonophysics 322, 135–151.

Hensen, B.J., Zhou, B., 1995. A Pan-African granulite facies metamorphic episode inPrydz Bay, Antarctica: evidence from Sm-Nd garnet dating. Australian Journal of EarthSciences 42, 249–258.

Herd, R.K., 1978. Notes on metamorphism in New Québec. In: Fraserand, J.A., Heywood,W.W. (Eds.) Metamorphism in the Canadian Shield. In: Geological Survey of Canada,Paper 78-10, pp. 78–83.

Hertogen, J., Janssens, M.J., Palme, H., 1980. Trace elements in ocean ridge basalt glasses:Implications for fractionations during mantle evolution and petrogenesis. Geochimicaet Cosmochimica Acta 44, 2125–2143.

Herzberg, C., 1992. Depth and degree of melting of komatiite. Journal of GeophysicalResearch 97, 4521–4540.

Herzberg C., 1999. Phase equilibrium constraints on the formation of cratonic mantle. In:Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations andHigh-Pressure Axperimentation: A Tribute to Francis R. (Joe) Boyd. In: GeochemicalSociety Special Publication #6. The Geochemical Society, Houston, pp. 241–258.

Heubeck, C., Lowe, D.R., 1994a. Depositional and tectonic setting of the Archean MoodiesGroup, Barberton Greenstone Belt, South Africa. Precambrian Research 68, 257–290.

Heubeck, C., Lowe, D.R., 1994b. Late syndepositional deformation and detachment tec-tonics in the Barberton Greenstone Belt, South Africa. Tectonics 13, 1514–1536.

Heubeck, C., Lowe, D.R., 1999. Sedimentary petrography and provenance of the ArcheanMoodies Group, Barberton Greenstone Belt. In: Lowe, D.R., Byerly, G.R. (Eds.), Geo-logic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Societyof America, Special Paper 329, pp. 259–286.

Heymann, D., 1967. On the origin of hypersthene chondrites: Ages and shock effects ofblack meteorites. Icarus 6, 189–221.

Hickman, A.H., 1973. The North Pole barite deposits, Pilbara Goldfield. In: Annual Reportof Geological Survey of Western Australia for 1972, pp. 57–60.

Hickman, A.H., 1975. Precambrian structural geology of part of the Pilbara region. In:Annual Report, 1974. Western Australia Geological Survey, pp. 68–73.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 65aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

66 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Hickman, A.H., 1983. Geology of the Pilbara Block and Its Environs. Bulletin 127. West-ern Australia Geological Survey, 268 pp.

Hickman, A.H., 1984. Archaean diapirism in the Pilbara Block, Western Australia.In: Kröner, A., Greiling, R. (Eds.), Precambrian Tectonics Illustrated. E. Schweizer-barts’che Verlagsbuchhandlung, Stuttgart, pp. 113–127.

Hickman, A.H., 1997. A revision of the stratigraphy of Archaean greenstone successionsin the Roebourne-Whundo area – west Pilbara. In: Annual Review 1996-97. WesternAustralia Geological Survey, pp. 76–81.

Hickman, A.H., 2004. Two contrasting granite−greenstones terranes in the Pilbara Cra-ton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma.Precambrian Research 131, 153–172.

Hickman, A.H., Van Kranendonk, M.J., 2004. Diapiric processes in the formation ofArchaean continental crust, East Pilbara Granite-Greenstone Terrane, Australia. In:Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneau, O. (Eds.), ThePrecambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 54–75.

Hildreth W., Moorbath S., 1988, Crustal contributions to arc magmatism in the Andes ofCentral Chile. Contributions to Mineralogy and Petrology 98, 455–489.

Hill, R.E.T., 2001. Komatiite volcanology, volcanological setting and primary geochemicalproperties of komatiite-associated nickel deposits. Geochemistry: Exploration, Environ-ment, Analysis 1, 365–381.

Hill, R.E.T., Barnes, S.J., Gole, M.J., Dowling, S.E., 1995. The volcanology of komatiitesas deduced from field relationships in the Norseman-Wiluna greenstone belt, WesternAustralia. Lithos 34, 159–188.

Hill, R.I., Campbell, I.H., Compston, W., 1989. Age and origin of granitic rocks in theKalgoorlie–Norseman region of Western Australia – Implications for the origin of Ar-chaean crust. Geochimica et Cosmochimica Acta 53, 1259–1275.

Hill, R.M., 1997. Stratigraphy, structure and alteration of hanging wall sedimentary rocksat the Sulphur Springs volcanogenic massive sulphide (VMS) prospect, east PilbaraCraton, Western Australia. B.Sc. Hon. thesis. University of Western Australia, 67 pp.

Himmelberg, G.R., 1968. Geology of Precambrian rocks, Granite Falls-Montevideo area,southwestern Minnesota. In: Minnesota Geological Survey, Special Publication Series,SP-5, 33 pp.

Himmelberg, G.R., Phinney, W.C., 1967. Granulite-facies metamorphism, Granite Falls-Montevideo area, Minnesota. Journal of Petrology 8, 325–348.

Hirner, A., 2001. Geology and Gold Mineralization in the Madibe Greenstone Belt, Easternpart of the Kraaipan Terrain, Kaapvaal Craton, South Africa. University of the Witwa-tersrand, Johannesburg, 220 pp.

Hirose, K., Fei, Y., Ma, Y., Mao, H.-K., 1999. The fate of subducted basaltic crust in theEarth’s lower mantle. Nature 397, 53–56.

Hoatson, D.M., Jaireth, S., Jaques, A.L., 2006. Nickel sulfide deposits in Australia: Char-acteristics, resources and potential. Ore Geology Reviews 29, 177–241.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 66aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 67

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Hodges, K.V., Bowring, S.A., Coleman, D.S., Hawkins, D.P., Davidek, K.L., 1995. Multi-stage thermal history of the ca. 4.0 Ga Acasta gneisses. In: American GeophysicalUnion Fall Meeting, pp. F708.

Hoefs, J., 1997. Stable Isotope Geochemistry. Springer-Verlag, Berlin, 201 pp.Hoering, T.C., 1989. The isotopic composition of bedded barites from the Archean of

southern India. Journal of the Geological Society of India 34, 461–466.Hofmann, A., Bolhar, R., Dirks, P., Jelsma, H., 2003. The geochemistry of Archaean shales

derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: prove-nance, source area unroofing and submarine versus subaerial weathering. Geochimicaet Cosmochimica Acta 67, 421–440.

Hofmann, A., 2005a. Silica alteration zones in the Barberton greenstone belt: a windowinto subseafloor processes 3.5–3.3 Ga ago. In: GEO2005, Abstracts Volume. Universityof KwaZulu-Natal, Durban, South Africa, pp. 111–112.

Hofmann, A., 2005b. The geochemistry of sedimentary rocks from the Fig Tree Group,Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processesduring mid-Archaean times. Precambrian Research 143, 23–49.

Hofmann, A., Bolhar, R., 2007. Field relationships of carbonaceous cherts in the Barbertongreenstone belt and their significance for the study of early life in mid-Archaean rocks.Astrobiology, in press.

Hofmann, A., Bolhar, R., Harris, C., Orberger, B., 2006. Silica alteration zones and chertsas a record of hydrothermal processes on the Archaean seafloor. Geochimica et Cos-mochimica Acta 70, Suppl. 1, A257.

Hofmann, A., Bolhar, R., Dirks, P.H.G.M., Jelsma, H.A., 2003. The geochemistry ofArchaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt,Zimbabwe: provenance, source area unroofing and submarine vs subaerial weathering.Geochimica et Cosmochimica Acta 67, 421–440.

Hofmann, A.W., 1988. Chemical differentiation of the Earth: The relationship betweenmantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90,297–314.

Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature385, 219–229.

Hofmann, A.W., 1997. Early evolution of continents. Science 275, 498–499.Hoffman, A.W., 2005. Sampling mantle heterogeneity through oceanic basalts: Isotopes

and trace elements. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry,vol. 2. Elsevier, Amsterdam, pp. 61–101 (Chapter 2.03).

Hoffman, H.J., Grey, K., Hickman, A., Thorpe, R., 1999. Origin of 3.45 Ga coniformstromatolites in Warrawoona Group, Western Australia. Bulletin of Geological Societyof America 111, 1256–1262.

Hoffman, P.F. 1989. Precambrian geology and tectonic history of North America, In: Bally,A.W., A.R Palmer (Eds.), The Geology of North America – An Overview. In: The Ge-ology of North America, A. Geological Society of America, pp. 447–512.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 67aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

68 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Hoffman, P., 1990. Subdivision of the Churchill province and extent of the Trans-Hudsonorogen. In: Lewry, J., Stauffer, M. (Eds.), The Early Proterozoic Trans-Hudson Orogenof North America. In: Geologic Association of Canada Special Paper 37, pp. 15–39.

Hoffman, P.F., 1988. United plates of America, the birth of a craton: Early ProterozoicAssembly and Growth of Laurentia. Annual Review of Earth and Planetary Sciences16, 543–603.

Hoffman, P.F., 1989. Precambrian geology and tectonic history of North America. In:Bally, A.W., Palmer, A.R. (Eds.), The Geology of North America – An overview. Geo-logical Society of America, Boulder, CO, pp. 447–512.

Hohenberg, C.M., Brazzle, R.H., Pravdivtseva, O.V., Meshik, A.P., 1998. Iodine-xenonchronometry: The verdict. Meteoritics and Planetary Science 33 (Supplement), A69–70(abstract).

Hohenberg, C M., Pravdivtseva, O.V., Meshik, A.P., 2000. Reexamination of anomalousI-Xe ages: Orgueil and Murchison magnetites and Allegan feldspar. Geochimica et Cos-mochimica Acta 64, 4257–4262.

Hokada, T., Misawa, K., Shiraishi, K., Suzuki, S., 2003. Mid to late Archaean (3.3–2.5 Ga)tonalitic crustal formation and high-grade metamorphism at Mt Riiser-Larsen, NapierComplex, East Antarctica. Precambrian Research 127, 215–228.

Hokada, T., Harley, S.L., 2004. Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth element (REE) relations in the Napier Complex, Antarctica. Journal ofMineralogical and Petrological Science 99, 180–190.

Holdaway, M.J., 2000. Application of new experimental and garnet margules data to thegarnet-biotite geothermometer. American Mineralogist 85, 881–892.

Holland, H.D., 1984. The Chemical Evolution of the Atmospheres and Oceans. PrincetonUniversity Press, Princeton, 582 pp.

Holland, H.D., 1994. Early Proterozoic atmosphere change. In: Bengston, S. (Ed.), NobelSymposium 84, Early Life on Earth. Columbia University Press, New York, pp. 237–244.

Holland, H.D., 2005. Sedimentary mineral deposits and the evolution of Earth’s near sur-face environments. Economic Geology 100, 1489–1500.

Holland, T.J.B., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and theirbearing on amphibole-plagioclase thermometry. Contributions to Mineralogy andPetrology 116, 433–447.

Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic dataset forphases of petrological interest. Journal of Metamorphic Geology 16, 309–343.

Hollings, P., 2002. Archean Nb-enriched basalts in the northern Superior Province. Lithos64, 1–14.

Hollings, P., Kerrich, R., 1999. Trace element systematics of ultramafic and mafic volcanicrocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province.Precambrian Research 93, 257–279.

Hollings, P., Kerrich, R., 2000. An Archean arc basalt-Nb-enriched basalt – adakite associ-ation: the 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, SuperiorProvince. Contributions to Mineralogy and Petrology 139, 208–226.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 68aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 69

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Hollings, P., Wyman, D.A., 1999. Trace element and Sm-Nd systematics of volcanic andintrusive rocks from the 3 Ga Lumby Lake greenstone belt, Superior Province; evidencefor Archean plume-arc interaction. Lithos 46, 189–213.

Hollings, P., Wyman, D.A., Kerrich, R., 1999. Komatiite-basalt-rhyolite associations innorthern Superior Province greenstone belts: significance of plume-arc interaction inthe generation of the protocontinental Superior Province. Lithos 46, 137–161.

Hollings, P., Stott, G.M., Wyman, D.A., 2000. Trace element geochemistry of the Meen-Dempster greenstone belt, Uchi subprovince, Superior Province, Canada: back-arc de-velopment on the margins of an Archean protocontinent. Canadian Journal of EarthSciences 37, 1021–1038.

Holm, N.G., 1989. The 13C/12C ratios of siderite and organic matter of a modern metallifer-ous hydrothermal sediment and their implications for banded iron formations. ChemicalGeology 77, 41–45.

Holm, N.G., Charlou, J.L., 2001. Initial indications of abiotic formation of hydrocarbons inthe Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth and PlanetaryScience Letters 191, 1–8.

Holser, W.T., Schidlowski, M., Mackenzie, F.T., Maynard, J.B., 1988. Geochemical cyclesof carbon and sulfur. In: Gregor, C.B., Garrels, R.M., Mackenzie, F.T., Maynard, J.B.(Eds.), Chemical Cycles in the Evolution of the Earth. John Wiley and Sons, New York,pp. 105–173.

Hon, K., Kauahikaua, J., Denlinger, R., Mackay, K., 1994. Emplacement and inflation ofpahoehoe sheet flows: Observations and measurements of active lava flows on KilaueaVolcanoe, Hawaii. Bulletin of Geological Society of America 106, 351–370.

Hong, D., Wang, S-G., Han, B-F., Jin, M-Y., 1996. Post-orogenic alkaline granites fromChina and comparisons with anorogenic alkaline granites elsewhere. Journal of South-east Asian Earth Sciences 13, 13–27.

Hong, D., Zhang, J-S., Wang, T., Wang, S-G., Xie, X-L., 2004. Continental crust growthand the supercontinental cycle: evidence from the Central Asian orogenic Belt. Journalof Asian Earth Sciences 23, 799–813.

Hoogenboom, T., Houseman, G.A., 2006. Rayleigh–Taylor instability as a mechanism forcorona formation on Venus. Icarus 180, 292–307.

Hopfe, W.D., Goldstein, J.I., 2001. The metallographic cooling rate method revisited: ap-plication to iron meteorites and mesosiderites. Meteoritics and Planetary Science 36,135–154.

Horan, M.F., Smoliar, M.I., Walker, R.J. 1998. 182W and 187Re-187Os systematics ofiron meteorites: chronology for melting differentiation, and crystallization in asteroids.Geochimica et Cosmochimica Acta 62, 545–554.

Horita, J., Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionationunder hydrothermal conditions. Science 285, 1055–1057.

Horn, I., von Blanckenburg, F., Schoenberg, R., Steinhoefel, G., Markl, G., 2006. In situiron isotope ratio determination using UV-femtosecond laser ablation with applicationto hydrothermal ore formation processes. Geochimica et Cosmochimica Acta 70, 3677–3688.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 69aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

70 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Horstwood, M.S.A., Nesbitt, R.W., Noble, S.R., Wilson, J.F., 1999. U-Pb zircon evidencefor an extensive early Archean craton in Zimbabwe: A reassessment of the timing ofcraton formation, stabilization, and growth. Geology 27, 707–710.

Horwitz, R., Pidgeon, R.T., 1993. 3.1 Ga tuff from the Scholl Belt in the west Pilbara: fur-ther evidence for diachronous volcanism in the Pilbara Craton. Precambrian Research60, 175–183.

Hoskin, P.W.O., Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use asa provenance indicator. Geology 28, 627–630.

Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and meta-morphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. In: Reviews inMineralogy and Geochemistry, vol. 53, pp. 27–62.

Hou, Z.-Q., Qu, X-M., Wang, S-X., Du, A., Gao, Y-F., Huang, W., 2004 Re-Os age formolybdenite from the Gangdese porphyry copper belt on Tibetan plateau: implicationfor geodynamic setting and duration of the Cu mineralization. Science in China, SeriesD 47, 221–231.

Hou, Z-Q., Ma, H-W., Zaw, K., Zhang, Y-Q., Wang, M-J., Wang, Z., Pan, G-T., Tang, R-L.,2003, The Himalayan Yuolong porphyry copper belt: product of large sacle strike-slipfaulting in eastern Tibet. Economic Geology 98, 125–145.

House, C.H., Schopf, J.W., McKeegan, K.D., Coath, C.D., Harrison, T.M., Stetter, K.,2000. Carbon isotopic composition of individual Precambrian micro-fossils. Geology28, 707–710.

House, C.H., Schopf, J.W., Stetter, K.O., 2003. Carbon isotopic fractionation by Archaeansand other thermophilic prokaryotes. Organic Geochemistry 34, 345–356.

Howell, D.G., 1995. Principles of Terrane Analysis – New Applicatons for Global Tecton-ics. Chapman & Hall, London, 245 pp.

Hsu, W., Huss, G.R., Wasserburg, G.J., 1997. Mn-Cr systematics of differentiated mete-orites. Lunar and Planetary Science XXVIII, 609–610.

Hu, G.X., Rumble, D., Wang, P.L., 2003. An ultraviolet laser microprobe for the in situanalysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochimica et Cosmochimica Acta 67, 3101–3118.

Hubregtse, J.J.M.W., 1980. The Archean Pikwitonei Granulite Domain and its positionat the margin of the northwestern Superior Province (central Manitoba). In: ManitobaDepartment of Energy and Mines, Mineral Resources Division, Geological Paper GP80-3, p. 16.

Hulbert, L.J., Hamilton, M.A., Horan, M.F., Scoates, R.F., 2005. U-Pb zircon and Re-Osisotope geochronology of mineralized ultramafic intrusions and associated nickel oresfrom the Thompson Nickel Belt, Manitoba, Canada. Economic Geology 100, 29–41.

Hulston, J.R., Thode, H.G., 1965. Variations in the 33S, 34S, and 36S contents of meteoritesand their relation to chemical and nuclear effects. Journal of Geophysical Research 70,3475–3484.

Humphris, S.E., Tivey, M.K., 2000. A synthesis of geological and geochemical investi-gations of the TAG hydrothermal field: Insights into fluid-flow and mixing processesin a hydrothermal system. In: Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A. (Eds.),

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 70aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 71

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean DrillingProgram. In: Geological Society of America, Special Paper 349, pp. 213–235.

Hunt, J.M., 1996. Petroleum Geochemistry and Geology, second ed. W.H. Freeman andCompany, New York, 389 pp.

Hunten, D.M., 2002. Exospheres and planetary escape. In: Mendillo, M., Nagy, A., Waite,J.H. (Eds.), Atmospheres in the Solar System: Comparative Aeronomy. In: AGU Geo-physical Monograph, 130, pp. 191–202.

Hunter, D.R., 1979. The role of tonalitic to trondhjemitic rocks in the cxrustal developmentof Swaziland and the eastern Trasvaal, South Africa. In: Barker, F. (Ed.) Trondhjemites,Dacites and Related Rocks. Elsevier, Amsterdam, pp. 301–322.

Hunter, D.R., 1991. Crustal processes during Archaean evolution of the southeastern Kaap-vaal province. Journal of African Earth Science 13, 13–25.

Hunter, D.R., 1993. The Ancient Gneiss Complex. In: Kröner, A. (Ed.) The Anciet GneissComplex: Overview Papers and Guidebook for Excursion. In: Swaziland GeologicalSurvey Mines Department, Bulletin 11, pp. 1–14.

Hunter, D.R., Wilson, A.H., 1988. A continuous record of Archaean evolution from 3.5Ga to 2.6 Ga in Swaziland and northern Natal. South African Journal of Geology 91,57–74.

Hunter, D.R., Barker, F., Millard, H.T., Jr., 1978. The geochemical nature of the ArcheanAncient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study. Pre-cambrian Research 7, 105–127.

Hunter, D.R., Allen, A.R., Millin, P., 1983. A preliminary note on Archaean supracrustaland granitoid rocks west of Piet Retief. Transactions of the Geological Society of SouthAfrica 86, 301–306.

Hunter, D.R., Barker, F., Millard, H.T., 1984. Geochemical investigation of Archaeanbimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland. Pre-cambrian Research 24, 131–155.

Hunter, D.R., Smith, R.G., Sleigh, D.W.W., 1992. Geochemical studies of Archaean grani-toid rocks in the southeastern Kaapvaal Province: implications for crustal development.Journal of African Earth Sciences 15 (1), 127–151.

Huss, G.R., McPherson, G.J., Wasserburg, G.J., Russell, S.S., Srinivasan, G., 2001.Aluminium-26 in calcium-aluminium-rich inclusions and chondrules from unequili-brated ordinary chondrites. Meteoritics and Planetary Science 36, 975–997.

Huston, D.L., 1999. Stable isotopes and their significance for understanding the genesis ofvolcanic-hosted massive sulfide deposits: a review. Reviews in Economic Geology 10,151–180.

Huston, D.L., Large, R.R., 1987. Genetic and exploration significance of the zinc ratio(100Zn/[Zn+Pb]) in massive sulfide systems. Economic Geology 82, 1521–1539.

Huston, D.L., Logan, G.A., 2004. Barite, BIFs and bugs: evidence for the evolution of theEarth’s early hydrosphere. Earth and Planetary Science Letters 220, 41–55.

Huston, D.L., Brauhart, C.W., Dreiberg, S.L., Davidson, G.J., Groves, D.I., 2001a. Metalleaching and inorganic sulphate reduction in volcanic-hosted massive sulphide mineral

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 71aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

72 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

systems: Evidence from the paleo-Archean Panorama district, Western Australia. Geol-ogy 29, 687–690.

Huston, D.L., Blewett, R.S., Mernagh, T.P., Sun, S-S., Kamprad, J., 2001b. Gold depositsof the Pilbara Craton: Results of AGSO Research, 1998–2000. Australian GeologicalSurvey Organisation, Record 2001/10, 86 pp.

Huston, D.L., Sun, S.-S., Blewett, R.S., Hickman, A.H., Van Kranendonk, M., Phillips, D.,Baker, D., Brauhart, C.W., 2002. The timing of mineralization in the Archean PilbaraCraton, Western Australia. Economic Geology 97, 733–756.

Huston, D.L., Champion, D.C., Cassidy, K.F., 2005. Tectonic controls on the endowmentof Archean cratons in VHMS deposits: Evidence from Pb and Nd isotopes. In: Mao,J.W., Bierlein, F.P. (Eds.), Mineral Deposit Research: Meeting the Global Challenge.Berlin, Springer, pp. 15–18.

Hutcheon, I.D., Olsen, E., 1991. Cr isotopic composition of differentiated meteorites: Asearch for 53Mn. Lunar and Planetary Science XXII, 605–606.

Hutcheon. I.D., Phinney, D.L., 1996. Radiogenic 53Cr in Orgueil carbonates: chronologyof aqueous activity on the CI parent body. Lunar and Planetary Science XXVII, 577–578.

Hutcheon, I.D., Krot, A.N., Keil, K., Phinney, D.L., Scott, E.R.D., 1998. 53Mn-53Cr datingof fayalite formation in the CV3 chondrite, Mokoia: evidence for asteroidal alteration.Science 282, 1865–1867.

Hutcheon, I.D., Weisberg, M.K., Phinney, D.L., Zolensky, M.E., Prinz, M., Ivanov, A.V.,1999. Radiogenic 53Cr in Kaidun carbonates: evidence for very early aqueous activity.Lunar and Planetary Science XXX, abstract 1722.

Hutchison, R., 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cam-bridge University Press, 506 pp.

Hutchison, R., Alexander, C.M.O’D., Barber, D.J., 1987. The Semarkona meteorite:First recorded occurrence of smectite in an ordinary chondrite, and its implications.Geochimica et Cosmochimica Acta 51, 1875–1882.

Hutchison, R., Alexander, C.M.O’D., Bridges, J.C., 1998. Elemental redistribution in Ti-eschitz and the origin of white matrix. Meteoritics and Planetary Science 33, 1169–1179.

Hutchison, R., Williams, C.T., Din, V.K., Clayton, R.N., Kirschbaum, C., Paul, R.L., Lip-schutz, M.E., 1988. A planetary H-group pebble in the Barwell L6, unshocked ordinarychondrite. Earth and Planetary Science Letters 90, 105–118.

Hutton, J., 1785. Theory of the Earth. Abstract from his book published in 1795.Hynes, A., Skulski, T., 2005. Archean plate tectonics – similarities and differences. Geo-

logical Association of Canada Program with Abstracts, 30, p. 92.Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in situ Hf isotope

microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Ge-ology 220, 121–137.

Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B.F.,2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidencefor early continental crust. Geology 34, 245–248.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 72aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 73

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., John-son, S.P., Dunkley, D., 2007. Geology and zircon geochronology of the Acasta gneisscomplex, northwestern Canada: new constraints on its tectonothermal history. Precam-brian Research, in press.

Iizuka, T., Komiya, T., Maruyama, S., Hirata, T., Johnson, S.P., submitted. In situ Lu-Hf isotopic analysis of zircon from the Acasta Gneiss Complex, northwestern Canada:Implications for extensive reworking of Hadean continental crust. Earth and PlanetaryScience Letters.

Ingle, S., Coffin, M.F., 2004. Impact origin for the greater Ontong Java Plateau? Earth andPlanetary Science Letters 218, 123–134.

Ingram, P.A.J., 1977. A summary of the geology of a portion of the Pilbara Goldfield,Western Australian. In: McCall, G.J.H. (Ed.), The Archaean, Search for the Beginning.Dowden, Hutchinson and Ross, Stroudsburg, PA, pp. 208–216.

Ireland, T.R., Wlotzka, F., 1992. The oldest zircons in the Solar System. Earth and Plane-tary Science Letters 109, 1–10.

Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the commonvolcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.

Irving, E., Woodsworth, G.J., Wynne, P.J., Morrison, A., 1985. Paleomagnetic evidence fordisplacement from the south of the Coast Plutonic Complex, British Columbia. Cana-dian Journal of Earth Sciences 22, 584–598.

Isley, A.E., Abbot, D.H., 1999. Plume-related mafic volcanism and the deposition ofbanded iron formation. Journal of Geophysical Research 104, 15461–15477.

Isnard, H., Gariepy, C., 2004. Sm-Nd, Lu-Hf and Pb-Pb signatures of gneisses and grani-toids from the La Grande Belt; extent of late Archean crustal recycling in the northeast-ern Superior Province, Canada. Geochimica et Cosmochimica Acta 68, 1099–1113.

Isozaki, Y. et al., 1997. Early Archean mid-oceanic ridge rocks and early life in the PilbaraCraton, W. Australia. Eos 78, 399.

Ivanov, B.A., Melosh, H.J., 2003. Impacts do not initiate volcanic eruptions. Geology 31,869–872.

Ivanov, M.A., Head, J.W. 1996. Tessera terrain on Venus: A survey of the global distrib-ution, characteristics, and relation to surrounding units from Magellan data. Journal ofGeophysical Research 101, 14861–14908.

Izenberg, N.R., Arvidson, R.E., Phillips, R.J., 1994. Impact crater degradation on Venusianplains. Geophysical Research Letters 21, 289–292.

Jackson, I.N.S., Rigden, S.M., 1998. Composition and temperature of the mantle: seis-mologial models interpreted through experimental studies of mantle minerals. In: Jack-son, I.N.S. (Ed.), The Earth’s Mantle: Composition, Structure and Evolution. Cam-bridge University Press, Cambridge, pp. 405–460.

Jackson, M.P.A., 1984. Archaean structural styles in the Ancient Gneiss Complex ofSwaziland, southern Africa. In: Kröner, A., Greiling, R. (Eds.)., Precambrian Tecton-ics Illustrated. E. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart, pp. 1–18.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 73aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

74 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Jackson, M.P.A., Robertson, D.I., 1983. Regional implications of Early-Precambrianstrains in the Onverwacht Group adjacent to the Lochiel granite, north-west Swaziland.In: Geological Society of South Africa, Special Publication 9, pp. 45–62.

Jackson, M.P.A., Eriksson, K.A., Harris, C.W., 1987. Early Archean foredeep sedimenta-tion related to crustal shortening: a reinterpretation of the Barberton Sequence, southernAfrica. Tectonophysics 136, 197–221.

Jacobs, J., Bauer, W., Spaeth, G., Thomas, R.J., Weber, K., 1996. Lithology and struc-ture of the Grenville-aged (∼1.1 Ga) basement of Heimefrontfjella (East Antarctica).Geologische Rundschau 85, 800–821.

Jacobs, J., Fanning, C.M., Henjes-Kunst, F., Olesch, M., Paech, H.-J., 1998. Continua-tion of the Mozambique Belt into East Antarctica: Grenville-age metamorphism andpolyphase Pan-African high-grade events in central Dronning Maud Land. Journal ofGeology 106, 385–406.

Jacobs, J., Fanning, C.M., Bauer, W., 2003. Timing of Grenville-age vs. Pan-Africanmedium- to high-grade metamorphism in western Dronning Maud Land (East Antarc-tica) and significance for correlations in Rodinia and Gondwana. Precambrian Research125, 1–20.

Jacobsen, S.B., 2005. The Hf-W isotopic system and the origin of the Earth and Moon.Annual Reviews of Earth and Planetary Science 33, 531–570.

Jacobsen, S.B., Pimentel-Close, M., 1988. A Nd isotopic study of the Hamersley andMichipicoten banded iron formations: The source of REE and F in Archean oceans.Earth and Planetary Science Letters 87, 29–44.

Jacobsen, S.B., Wasserburg, G.J., 1984. Sm-Nd evolution of chondrites and achondrites.Earth and Planetary Science Letters 67, 137–150.

Jaffrés, J.B.D., 2005. Development of a model to evaluate seawater oxygen isotope com-position over the past 3.4 billion years. Unpublished honours thesis. James Cook Uni-versity, North Queensland, Australia.

Jagoutz, E., Jotter, R., Kubny, A., Varela M.E., Zartman, R., Kurat, G., Lugmair, G.W.,2003. CM?-U-Th-Pb isotopic evolution of the D’Orbigny angrite. Meteoritics and Plan-etary Science 38 (Supplement), A81 (abstract).

Jahn, B.-M., 1994. Géochimie des granitoïdes archéens et de la croûte primitive. In: Hage-mann, R., Jouzel, J., Treuil, M., Turpin, L. (Eds.), La géochimie de la Terre. CEA-Masson.

Jahn, B-M., 2004. The Central Asian Orogenic Belt and growth of the continental crust inthe Phanerozoic. In: Geological Society London, Special Publication 226, pp. 73–100.

Jahn, B.-M., Zhang, Z.Q., 1984. Archaean granulite gneisses from eastern Hebei Province,China; rare earth geochemistry and tectonic implications. Contributions to Mineralogyand Petrology 85, 224–243.

Jahn, B.-M., Auvray, B., Blais, S., Capdevila, R., Cornichet, J., Vidal F., Hammeurt, J.,1980. Trace elements geochemistry and petrogenesis of Finnish greenstone belts. Jour-nal of Petrology 21, 201–244.

Jahn, B.-M., Glikson, A.Y., Peucat, J.J., Hickman, A.H., 1981. REE geochemistry and iso-topic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 74aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 75

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Australia: implications for the early crustal evolution. Geochimica et CosmochimicaActa 45, 1633–1652.

Jahn, B., Gruau, G., Glikson, A.Y., 1982. Komatiites of the Onverwacht Group, S. Africa:REE geochemistry, Sm/Nd age and mantle evolution. Contributions to Mineralogy andPetrology 80, 25–40.

Jahn, B.-M., Vidal, P., Kröner, A., 1984. Multi-chronometric ages and origin of Archaeantonalitic gneisses in finnish Lapland: a case for long crustal residence time. Contributionto Mineralogy and Petrology 86, 398–408.

Jahn, B.-M., Auvray, B., Cornichet, J., Bai, Y.L., Dhen, Q.H., Liu, D.Y., 1987. 3.5Ga oldamphibolites from eastern Hebei Province, China: Field occurrence, petrology, Sm-Ndisochron age and REE geochemistry. Precambrian Research 34, 311–346.

Jahn, B.-M., Auvray, B., Shen, Q.H., Liu, D.Y., Zhang, Z.Q., Dong, Y.J., Ye, X.J., Zhang,Z.Q., Comichet, J., Mace, J., 1988. Archaean crustal evolution in China: The Taishancomplex, and evidence for juvenile crustal addition from long-term depleted mantle.Precambrian Research 38, 381–403.

Jahn, B.-M., Gruau, G., Capdevila, R., Cornichet, J., Nemchin, A., Pidgeon, R., Rudnik,V.A., 1998. Archean crustal evolution of the Aldan Shield, Siberia: geochemical andisotopic constraints. Precambrian Research 91, 333–363

Jahn, ,-O., Gruau, G., Bernard-Griffiths, J., Cornichet, J., Kröner, A., Wendt, I., 1990. TheAldan Shield, Siberia: geochemical characterization, ages, petrogenesis and comparisonwith the Sino-Korean craton. In: Golver, J.E., Ho, S. (Eds.), Third International ArcheanSymposium, Extended abstract volume. Geoconferences WA Inc., Perth, Australia, pp.179–181.

Janes, D.M., Squyres, S.W., 1995. Viscoelastic relaxation of topographic highs on Venusto produce coronae. Journal of Geophysical Research 100, 21,173–21,187.

Janes, D.M., Squyres, S.W., Bindschadler, D.L., Baer, G., Schubert, G., Sharpton, V.L.,Stofan, E.R., 1992. Geophysical models for the formation and evolution of coronae onVenus. Journal of Geophysical Research 97, 16055–16068.

Javoy, M., 1995. The integral enstatite chondrite model of the Earth. Geophysical ResearchLetters 22, 2219–2222.

Jawhari, T., Roid, A., Casado, J., 1995. Raman spectroscopic characterization of somecommercially available carbon black materials. Carbon 33, 1561–1565.

Jeffery, P.M., Reynolds, J.H., 1961. Origin of excess Xe129 in stone meteorites. Journal ofGeophysical Research 66, 3582–3583.

Jehlicka, J., Urban, O., Pokorny, J., 2003. Raman spectroscopy of carbon and solid bitu-mens in sedimentary and metamorphic rocks. Spectrochimica Acta, Part A 59, 2341–2352.

Jenner, F.J., Bennett, V.C., Nutman, A.P., 2006. 3.8 Ga arc related basalts from SouthwestGreenland. Geochimica et Cosmochimica Acta 70, A291.

Jérbak, M., Harnois, L.,. 1991. Two-stage evolution in an Archean tonalite suite: theTaschereau stock, Abitibi (Quebec, Canada). Canadian Journal of Earth Science 28,172–183.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 75aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

76 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Ji, Z.Y., 1993. New data of isotope age of the Proterozoic metamorphic rocks from northernJiaodong and its geological significance. Geology of Shandong 9, 40–51 (in Chinesewith English abstract).

Jian, P., Zhang, Q., Liu, D.Y., Jin, W.J., Jia, X.Q., Qian, Q., 2005. SHRIMP dating andgeological significance of Late Archaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica 21, 151–157 (in Chinesewith English abstract).

Jin, K., Xu, W.L., Wang, Q.H., Gao, S., Liu, X.C., 2003. Formation time and sources ofthe Huaiguang migmatitic granodiorite in the Bangbu, Anhui Province: Evidence fromSHRIMP zircon U-Pb geochronology. Acta Geologica Sinica 24, 331–336 (in Chinesewith English abstract).

Johannesson, K.H., Hawkins, D.L., Cortes, A., 2006. Do Archean chemical sedimentsrecord ancient seawater rare earth element patterns? Geochimica et Cosmochimica Acta70, 871–890.

Johnson, C.M., Beard, B.L., Beukes, N.J., Klein, C., O’Leary, J.M., 2003. Ancient geo-chemical cycling in the Earth as inferred from Fe isotope studies of banded iron for-mations from the Transvaal Craton. Contributions to Mineralogy and Petrology 144,523–547.

Johnson, R.C., Hills, F.A., 1976. Precambrian geochronology and geology of the Box ElderCanyon area, northern Laramie Range, Wyoming. Bulletin of Geological Society ofAmerica 87, 809–817.

Johnston, S.T., 2001. The Great Alaskan Terrane Wreck: reconciliation of paleomagneticand geological data in the northern Cordillera. Earth and Planetary Science Letters 193,259–272.

Johnson, T.M., Bullen, T.D., 2004. Mass-dependent fractionation of selenium and chromiumisotopes in low-temperatures environments. Reviews in Mineralogy and Geochemistry55, 289–317.

Johnson, W.J., Goldstein, R.H., 1993. Cambrian seawater preserved as inclusions in marinelow-magnesium calcite cement. Nature 362, 335–337.

Johnston, A.D., Wyllie, P.J., 1988. Constraints on the origin of Archean trondhjemitesbased on phase relationships of Nuk Gneiss with H2O at 15 kbar. Contributions to Min-eralogy and Petrology 100, 35–46.

Jones, A.P., Pickering, K.T., 2003. Evidence for aqueous fluid-sediment transport and ero-sional processes on Venus. Journal Geological Society London 160, 319–327.

Jones, A.P., Price, G.D., Price, N.J., DeCarli, P.S., Clegg, R.A., 2002. Impact-induced melt-ing and development of large igneous provinces. Earth and Planetary Science Letters202, 551–561.

Jones, A.P., Wunemann, K., Price, D., 2005. Impact volcanism as a possible origin for theOntong Java Plateau (OJP). In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson,D.L. (Eds.), Plates, Plumes, and Paradigms. In: Geological Society of America, SpecialPaper 388, pp. 711–720.

Jones, C.B, 1990. Coppin Gap copper-molybdenum deposit. In: Australasian Institute ofMining and Metallurgy, Monograph 14, pp. 1xx-1yy ???.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 76aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 77

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Jordan, T.H., 1975. The continental tectosphere. Geophysics and Space Physics 13, 1–12.Jordan, T.H., 1978. Composition and development of the continental tectosphere. Nature

274, 544–548.Kah, L.C., 2000. Depositional δ18O signatures in Proterozoic dolostones: constraints on

seawater chemistry and early diagenesis. In: James, N., Grotzinger, J.P. (Eds.), Car-bonate Sedimentation and Diagenesis in the Evolving Precambrian World. In: SEPMSpecial Publication, vol. 67, pp. 345–360.

Kaiser, T., Wasserburg, G.J., 1983. The isotopic composition and concentration of Ag iniron meteorites. Geochimica et Cosmochimica Acta 47, 43–58.

Kallemeyn, G.W., Wasson, J.T., 1985. The compositional classification of chondrites: IV.Ungrouped chondritic meteorites and clasts. Geochimica et Cosmochimica Acta 49,261–270.

Kallemeyn, G.W., Rubin, A.E., Wasson, J.T., 1996. The compositional classification ofchondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta 60, 2243–2256.

Kamber, B.S., Moorbath, S., 1998. Initial Pb of the Amîtsoq gneissrevisited: implicationfor the timing of early Archaean crustal evolution in West Greenland. Chemical Geology150, 19–41.

Kamber, B.S., Webb, G.E., 2001. The geochemistry of Late Archaean microbial carbon-ate: implications for ocean chemistry and continental erosion history. Geochimica etCosmochimica Acta 65, 2509–2525.

Kamber, B.S., Moorbath, S., Whitehouse, M.J., 2001. The oldest rocks on Earth: timeconstraints and geological controversies. In: Lewis, C.L.E., Knell, S.J., (Eds.), The Ageof the Earth: From 4004BC to AD 2002. In: Geological Society of London, SpecialPublication 190, pp. 177–203.

Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Ar-chaean crustal growth models. Contributions to Mineralogy and Petrology 144, 38–56.

Kamber, B.S., Collerson, K.D., Moorbath, S., Whitehouse, M.J., 2003. Inheritance of earlyArchaean Pb-isotope variability from long-lived Hadean protocrust. Contributions toMineralogy and Petrology 145, 25–46.

Kamber, B S., Whitehouse, M.J., Bolhar, R., Moorbath, S., 2005a. Volcanic resurfacing andthe early terrestrial crust: Zircon U-Pb and REE constraints from the Isua GreenstoneBelt, southern West Greenland. Earth and Planetary Science Letters 240 (2), 276–290.

Kamber, B.S., Greig, A., Collerson, K.D., 2005b. A new estimate for the composition ofweathered young upper continental crust from alluvial sediments, Queensland, Aus-tralia. Geochimica et Cosmochimica Acta 69, 1041–1058.

Kambers, B., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D., 2002. Fluid-mobile trace elements constraints on the role of slab melting and implications forArchaean crustal growth models. Contribution to Mineralogy and Petrology 144, 38–56.

Kamo, S.L., Davis. D.W., 1994. Reassessment of Archean crust development in the Bar-berton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13, 167–192.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 77aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

78 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kamo, S.L., Davis, D.W., De Wit, M.J., 1990. U-Pb geochronology of Archean plutonismin the Barberton region, S. Africa: 800 Ma of crustal evolution. In: 7th InternationalGeocongress on Geochemistry, Canberra, p. 53.

Kamo, S.L., Reimold, W.U., Krogh, T.E., Colliston, W.P., 1996. A 2.023 Ga age for theVredefort impact event and a first report of shock metamorphosed zircons in pseudo-tachylitic breccias and granophyre. Earth and Planetary Sciences Letters 144, 369–387.

Kappler, A., Pasquero, C., Konhauser, K.O., Newman, D.K., 2005. Deposition of bandediron formations by photoautotrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868.

Kareem, K.M., Byerly, G.R., 2002. Observed and predicted crystallization sequence inBarberton komatiite. In: Geological Society of America, Abstracts with Programs, vol.34, p. 62.

Kareem, K.M., Byerly, G.R., 2003. Petrology and geochemistry of 3.3 Ga komatiites –Weltevreden Formation, Barberton Greenstone Belt. In: Lunar and Planetary ScienceConference XXXIV, #2071.

Karlstrom, K.E., Houston, R.S., 1984. The Cheyenne Belt: Analysis of a Proterozoic suturein southern Wyoming. Precambrian Research 25, 415–446.

Kasting, J.F., 1992. Models related to Proterozoic atmospheric and ocean chemistry. In:Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere: A Multidisciplinary Study.Cambridge University Press, pp. 1185–1187.

Kasting, J.F., 1993. Earths early atmosphere. Science 259, 920–926.Kasting, J.F., 2005. Methane and climate during the Precambrian era. Precambrian Re-

search 137, 119–129.Kasting, J.F., Ono, S., 2006. Palaeoclimates: the first two billion years. Philosophical

Transactions of the Royal Society of London Ser. B 361, 917–929.Kasting, J.F., Zahnle, K.J., Pinto, J.P., Young, A.T., 1989. Sulfur, ultraviolet-radiation, and

the early evolution of life. Origins of Life and Evolution of the Biosphere 19, 95–108.Kasting, J.F., Howard, M.T., Wallmann, K., Veizer, J., Shields, G.A., Jaffrés, J., 2006.

Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earthand Planetary Science Letters, available online.

Katagiri, G., Ishida, H., Ishitani, A., 1988. Raman spectra of graphite edge planes. Carbon26, 565–571.

Kato, Y., Nakamura, K., 2003. Origin and global tectonic significance of Early Archeancherts from the Marble Bar greenstone belt, Pilbara craton, Western Australia. Precam-brian Research 125, 191–243.

Kaula, W.M., 1990. Venus: A contrast in evolution to Earth. Science 247, 1191–1196.Kay, I., Sol, S., Kendall, J.M., Thomson, C., White, D., Asudeh, I., Roberts, B., Francis,

D., 1999a. Shear wave splitting observations in the Archean craton of western Superior.Geophysical Research Letters 26, 2669–2672.

Kay, I., Musacchio, G., White, D., Asudeh, I., Roberts, B., Forsyth, D., Hajnal, Z., Koper-whats, B., Farrell, D., 1999b. Imaging the Moho and Vp/Vs ratio in the western SuperiorArchean craton with wide-angle reflections. Geophysical Research Letters 26, 2585–2588.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 78aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 79

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kay, R.W., Kay, S.M., 1991. Creation and destruction of lower continental crust. Geolo-gische Rundschau 80, 259–278.

Keil, K., 2000. Thermal alteration of asteroids: evidence from meteorites. Planetary andSpace Science 48, 887–903.

Keil, K., Stöffler, D., Love, S.G., Scott, E.R.D., 1997. Constraints on the role of impactheating and melting in asteroids. Meteoritics and Planetary Science 32, 349–363.

Kelemen, P.B., 1995. Genesis of high Mg# andesites and the continental crust. Contributionto Mineralogy and Petrology 120 (1), 1–19.

Kelemen, P.B., 2003. One View of the Geochemistry of Subduction-related MagmaticArcs, with Emphasis on Primitive Andesite and Lower Crust. In: Rudnick, R.L. (Ed.),Treatise on Geochemistry, vol. 3: The Crust. Amsterdam, Elsevier B.V.

Keller, G., 2005. Impacts, volcanism and mass extinction: random coincidence or causeand effect? Australian Journal of Earth Science 52 (4–5), 725–758.

Kellogg, L.H., Hager, B.H., van der Hilst, R.D., 1999. Compositional stratification in thedeep mantle. Science 283, 1881–1884.

Kelly, N.M., Clarke, G.L., Carson, C.J., White, R.W., 2000. Thrusting in the lower crust:evidence from the Oygarden Islands, Kemp Land, East Antarctica. Geological Maga-zine 137, 219–234.

Kelly, N.M., Clarke, G.L., Fanning, C.M., 2002. A two-stage evolution of the Neopro-terozoic Rayner Structural Episode: new U-Pb SHRIMP constraints from the OygardenGroup, Kemp Land, East Antarctica. Precambrian Research 116, 307–330.

Kelly, N.M., Clarke, G.L., Fanning, C.M., 2004. Archaean crust in the Rayner Complexof east Antarctica: Oygarden Group of Islands, Kemp Land. Transactions of the RoyalSociety of Edinburgh: Earth and Environmental Science 95, 491–510.

Kelly, N.M., Harley, S.L., 2005. An integrated microtextural and chemical approach to zir-con geochronology: refining the Archaean history of the Napier Complex, east Antarc-tica. Contributions to Mineralogy and Petrology 149, 57–84.

Kelly, W.R., Wasserburg, G.J., 1978. Evidence for the existence of 107Pd in the early solarsystem. Geophysical Research Letters 5, 1079–1082.

Kelsey, D.E., White, R.W., Powell, R., Wilson, C.J.L., Quinn, C.D., 2003. New constraintson metamorphism in the Rauer Group, Prydz Bay, east Antarctica. Journal of Metamor-phic Geology 21, 739–759.

Kendall, J.M., Sol, S., Thomson, C.J., White, D.J., Asudeh, I., Snell, C.S., Sutherland,F.H., 2002. Seismic heterogeneity and anisotropy in the western Superior Province,Canada: insights into the evolution of an Archean craton. In: Fowler, C.M.R., Ebinger,C.J., Hawkesworth, C.J. (Eds.), The Early Earth: Physical, Chemical and BiologicalDevelopment. In: Geological Society of London, Special Publication 199, pp. 27–44.

Kent, R.W., Hardarson, B.S., Saunders, A.D., Storey, M., 1996. Plateaux ancient and mod-ern: geochemical and sedimentological perspectives on Archaean oceanic magmatism.Lithos 37, 129–142.

Kenyon, S.J., Bromley, B.C., 2005. Prospects for detection of catastrophic collisions indebris disks. Astronomical Journal 130, 269–279.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 79aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

80 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kerrich, R., Polat, A., 2006. Archean greenstone-tonalite duality: thermochemical mantleconvection models or plate tectonics in the early Earth global dynamics? Tectonophysics415, 141–165.

Kerrich, R., Wyman, D., Fan, J., Bleeker, W., 1998. Boninite series: Low Ti-tholeiite asso-ciations from the 2.7 Ga Abitibi Greenstone Belt. Earth and Planetary Science Letters164, 303–316.

Kerrich, R., Polat, A., Wyman, D.A., Hollings, P., 1999. Trace element systematics of Mg-to Fe tholeiitic basalt suites of the Superior province: implications for Archean mantlereservoirs and greenstone belt genesis. Lithos 46, 163–187.

Kerrich, R., Goldfarb, R., Groves, D., Garwin, S., 2000. The geodynamics of world-classgold deposits: characteristics, space-time distribution, and origins. In: Hagemann, S.G.,Brown, P.E. (Eds.), Gold in 2000. In: Reviews in Economic Geology, vol. 13, pp. 501–551.

Kerrich, R., Goldfarb, R.J., Richards, J.P., 2005. Metallogenic processes in an evolvinggeodynamic framework. Economic Geology, 100th Anniversary Volume, 1097–1136.

Kerridge, J.F., Mackay, A.L., Boynton, W.V., 1979. Magnetite in CI carbonaceous chon-drites: Origin by aqueous activity on a planetesimal surface. Science 205, 395–397.

Keszthelyi, L., Self, S., 1998. Some physical requirement for the emplacement of longbasaltic lava flows. Journal of Geophysical Research 103, B11, 27,447–27,464.

Ketchum, J., Ayer, J., Van Breemen, O., Pearson, N.J., Becker, J.K., Pericratonic crustalgrowth of the southwestern Abitibi subprovince, Canada – U-Pb, Hf, and Nd isotopicevidence. Economic Geology, submitted.

Khain, V.E., 2001. Tectonics of the Continents and Oceans. Nauchnyi Mir, Moscow, 604pp. (in Russian).

Khoreva, B.Ya. (Ed.), 1987. Map of the Metamorphic and Granitic Rock Associationsof the USSR. Scale 1:10,000,000. Kartfabrika Vsesoyuzn. Geol. Inst., Leningrad (inRussian).

Kidder, J.G., Phillips, R.J., 1996. Convection-driven subsolidus crustal thickening onVenus. Journal Geophysical Research 101, 23,181–23,194.

Kinny, P.D., 1987. An ion microprobe study of uranium-lead and hafnium isotopes innatural zircon. Ph.D. thesis. Australian National University, Canberra, ACT, pp. 160(unpublished).

Kinny, P.D., 1990. Age spectrum of detrital zircons in the Windmill Hill Quartzite. In:Ho, S.E., Glover, J.E., Myers, J.S., Muhling, J.R. (Eds.), Third International ArchaeanSymposium, Excursion Guidebook. Geology Department and University Extension,University of Western Australia, Publication no. 21, pp. 116–117.

Kinny, P.D., Nutman, A.P., 1996. Zirconology of the Meeberrie gneiss, Yilgarn Craton,Western Australia: an early Archaean migmatite. Precambrian Research 78, 165–178.

Kinny, P.D., Williams, I.S., Froude, D.O., Ireland, T.R., Compston, W., 1988. Early Ar-chaean zircon ages from orthogneisses and anorthosites at Mount Narryer, WesternAustralia. Precambrian Research 38, 325–341.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 80aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 81

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kinny, P.D., Wijbrans, J.R., Froude, D.O., Williams, I.S., Compston, W., 1990. Age con-straints on the geological evolution of the Narryer Gneiss Complex, Western Australia.Australian Journal of Earth Sciences 37, 51–69.

Kinny, P.D., Black, L.P., Sheraton, J.W., 1993. Zircon ages and the distribution of Archaeanand Proterozoic rocks in the Rauer Islands. Antarctic Science 5, 193–206.

Kirk, R., Soderblom, L., Lee, E., 1992. Enhanced visualization for interpretation of Mag-ellan radar data: Supplement to the Magellan special issue. Journal of GeophysicalResearch 97, 16371–16380.

Kirkwood, R., 2000. Geology, geochronology and economic potential of the Archean rocksin the western Owl Creek Mountains, Wyoming. Unpublished M.Sc. thesis. Universityof Wyoming, Laramie, 99 pp.

Kissel, J., Brownless, D.E., Buchler, K., Clarke, B.C., Fechtig, H., Grun, E., HOrnung, K.,Igenbergs, E.B., Jessberger, E.K., Krueger, F.R., Kuczera, H., McDonnell, J.A.M., Mor-fill, G.M., Rahe, J., Schwehm, G.H., Sekanina, Z., Utterback, N.G., Volk, H.J., Zook,H.A., 1986. Composition of comet Halley dust particples from Giotto observations. Na-ture 321, 336–337.

Kisters, A.F.M., Anhaeusser, C.R., 1995a. Emplacement features of Archaean TTG plutonsalong the southern margin of the Barberton greenstone belt, South Africa. PrecambrianResearch 75, 1–15.

Kisters, A.F.M., Anhaeusser, C.R., 1995b. The structural significance of the Steynsdorppluton and anticline within the tectono-magmatic framework of the Barberton MountainLand. South African Journal of Geology 98, 43–51.

Kisters, A.F.M., Stevens, G., Dziggel, A., Armstrong, R.A., 2003. Extensional detachmentfaulting and core-complex formation in the southern Barberton granite-greenstone ter-rain, South Africa: evidence for a 3.2 Ga orogenic collapse. Precambrian Research 127,355–378.

Kisters, A.F.M., Stevens, G., Van Reenen, D., 2004. Excursion Field Guide: The KaapvaalTraverse. 17–23 July 2004. Geoscience Africa, University of Witswaterrand, Johannes-bourg.

Kisters, A., Belcher, R., Poujol, M., Stevens, G., Moyen, J.F., 2006. A 3.2 Ga magmaticarc preserving 50 Ma of crustal convergence in the Barberton terrain, South Africa. In:AGU Fall Meeting, 11–15 December 2006, San Francisco, USA.

Kitajima, K., Maruyama, S., Utsunomiya, S., Liou, J.G., 2001. Seafloor hydrothermal alter-ation at an Archaean mid-ocean ridge. Journal of Metamorphic Geology 19, 581–597.

Kitsul, V.I., Dook, V.L., 1985. Endogenic formation regimes and evolution stages of theEarly Precambrian lithosphere in the Vitim-Aldan Shield. In: Endogenic FormationRegimes of the Earth’s Crust and Ore Deposits in the Early Precambrian. Nauka,Leningrad, pp. 217–235 (in Russian).

Kiyokawa, S., Ito, T., Ikehara, M., Kitajima, F., 2006. Middle Archean volcano-hydrothermalsequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbaraterrane, Australia. Bulletin of Geological Society of America 118, 3–22.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 81aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

82 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kleikemper, J., Schroth, M.H., Bernasconi, S.M., Brunner, B., Zeyer, J., 2004. Sulfur iso-tope fractionation during growth of sulfate-reducing bacteria on various carbon sources.Geochimica et Cosmochimica Acta 68, 4891–4904.

Klein, M., Stosch, H-.G., Seck, H.A., 1997. Partitioning of high-field strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: and experi-mental study. Chemical Geology 138, 257–271.

Klein, M., Stosch, H.-G., Seck, H.A., Shimizu, N., 2000. Experimental partitioning of highfield strength and rare earth elements between clinopyroxene and garnet in andesitic totonalitic systems. Geochimica et Cosmochimica Acta 64, 99–115.

Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall,L.L., Stahl, D.A., Wagner, M., 2001. Multiple lateral transfers of dissimilatory sul-fite reductase genes between major lineages of sulfate-reducing prokaryotes. Journalof Bacteriology 183, 6028–6035.

Kleine, T., Münker, C., Mezger, K., Palme, H., 2002. Rapid accretion and early core for-mation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418,952–955.

Kleine, T., Mezger, K., Münker, C., Palme, H., Bischoff, A., 2004. 182Hf-182W isotope sys-tematics of chondrites, eucrites and martian meteorites: Chronology of core formationand early mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta68, 2935–2946.

Kleine, T., Mezger, K., Palme, H., Scherer, E., Munker, C., 2005a. Early core formationin asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182Win CAIs, metal rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta69, 5805–5818.

Kleine, T., Palme, H., Mezger. K., Halliday, A.N., 2005b. Hf-W chronometry of lunarmetals and the age and early differentiation of the Moon. Science 370, 1671–1674.

Kleine, T., Halliday, A.N., Palme, H., Mezger, K., Markowski, A., 2006. Hf-W chronom-etry of the accretion and thermal metamorphism of ordinary chondrite parent bodies.Lunar and Planetary Science XXXVII, abstract 188

Kleinhanns, I.C., Kramers, J.D., Kamber, B.S., 2003. Importance of water for Archaeangranitoid petrology: a comparative study of TTG and potassic granitoids from BarbertonMountain Land, South Africa. Contribution to Mineralogy and Petrology 145, 377–389.

Klemme, S., Blundy, J.D., Wood, B., 2002. Experimental constraints on major and traceelement partitioning during partial melting of eclogite. Geochimica Cosmochimica Acta66, 3109–3123.

Kloppenburg, A., White, S.H., Zegers, T.E., 2001. Structural evolution of the WarrawoonaGreenstone Belt and adjoining granitoid complexes, Pilbara Craton, Australia: implica-tions for Archaean tectonic processes. Precambrian Research 112, 107–147.

Knauth, L.P., 2005. Temperature and salinity history of the Precambrian ocean: im-plications for the course of microbial evolution. Palaeogeography PalaeoclimetologyPalaeoecology 219, 53–69.

Knauth, L.P., Epstein, S., 1976. Hydrogen and oxygen isotope ratios in nodular and beddedcherts. Geochimica et Cosmochima Acta 40, 1095–1108.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 82aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 83

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Knauth, L.P., Lowe, R.L., 1978. Oxygen isotope geochemistry of cherts from the Onver-vacht Group (3.4 billion years) Transvaal, South Africa, with implications for secularvariations in the isotopic composition of cherts. Earth and Planetary Science Letters 41,209–222.

Knauth, L.P., Lowe, D.R., 2003. High Archean climatic temperatures inferred from oxy-gen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa.Bulletin of Geological Society of America 115, 566–580.

Köber, B., Pidgeon, R.T., Lippolt, H.J., 1989. Single-zircon dating by stepwise Pb-evaporation constrains the Archaean history of detrital zircons from the Jack Hills,Western Australia. Earth and Planetary Science Letters 91, 286–296.

Koch, D.M., Manga, M., 1996. Neutrally buoyant diapirs: A model for Venus coronae.Geophysical Research Letters 23, 225–228.

Koeberl, C., 2003. The late heavy bombardment in the inner solar system: Is there anyconnection to Kuiper belt objects? Earth, Moon, and Planets 92, 79–87.

Koeberl, C., 2006. Impact processes on the early Earth. Elements 2, 211–216.Koeberl, C., Sharpton, V.L., 1988. Giant impacts and their influence on the early Earth.

In: Papers Presented to the Conference on the Origin of the Earth. Lunar and PlanetaryInstitute, Houston, TX, pp. 47–48.

Koeberl, C., Reimold, W.U., McDonal, I., Rosing, M., 1998. The late heavy bombardmenton Earth? A shock petrographic and geochemical survey of some of the world’s oldestrocks. In: Origin of the Earth and Moon. LPI Contribution No. 957, Lunar and PlanetaryInstitute, Houston, TX, pp. 19–20.

Koeberl, C., Reimold, W.U., McDonald, I., Rosing, M., 2000. Search for petrographicaland geochemical evidence for the late heavy bombardment on Earth in Early Archeanrocks from Isua, Greenland. In: Gilmour, I., Koeberl, C. (Eds.), Impacts and the EarlyEarth. In: Lecture Notes in Earth Sciences, vol. 91. Springer-Verlag, Heidelberg, pp.73–97.

Koenig, E., Aydin, A., 1998. Evidence for large-scale strike-slip faulting on Venus. Geol-ogy 26, 551–554.

Kohler, E.A., Anhaeusser, C.R., Isachsen, C., 1993. The Bien Venue Formation: a proposednew unit in the northeastern sector of the Barberton greenstone belt. In: Swaziland,G.S.M.D. (Ed.), 16th International Colloquium on Africa Geology, Ezulwini, Swazi-land, pp. 186–188.

Komatsu, G., Baker, V.R., 1994. Meander properties of Venusian channels. Geology 22,67–70.

Komiya, T., Maruyama, S., Masuda, T., Nohda, S., Hayashi, M., Okamoto, K., 1999. Platetectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southernWest Greenland. Journal of Geology 107, 515–554.

Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell Publishing, Oxford, 425pp.

Konhauser, K.O., Hamade, T., Morris, R.C., Ferris, F.G., Southam, G., Raiswell, R., Can-field, D., 2002. Could bacteria have formed the Precambrian banded iron formations?Geology 30, 1079–1082.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 83aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

84 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Konopliv, A.S., Sjorgren, W.L., 1994. Venus spherical harmonic gravity model to degreeand order 60. Icarus 112, 42–54.

Kotov, A.B., 2003. Confines on geodynamic models of formation of continental crust ofthe Aldan shield. Dissertation thesis. Institute of Geology and Geochronology of thePrecambrian, St.-Petersburg, 78 pp. (in Russian).

Kotov, A.B., Glebovitsky, V.A., Kazansky, V.I., Salnikova, E.B., Pertsev, N.N., Kovach,V.P., Yakovleva, S.Z., 2005. Age formation confines of the main structures in the centralAldan shield. Doklady Earth Sciences 404 (6), 798–801.

Kotov, A.B., Kovach, V.P., Salnikova, E.B., Glebovitsky, V.A., Yakovleva, S.Z., Berezh-naya, N.G., Myskova, T.A., 1995. Continental crust age and formation stages in theCentral Aldan granulite-gneiss terrane – U-Pb and Sm-Nd isotopic data for granitoids.Petrology 3 (1), 87–97.

Kotov, A.B., Morozova, I.M., Salnikova, E.B., Bogomolov, E.S., Belyatsky, B.V., Berezh-naya, N.G. 1993. Early Proterozoic granitoids of NW part of the Aldan granulite-gneissprovince: U-Pb and Sm-Nd data. Russian Geology and Geophysics 34 (2), 15–21 (inRussian).

Kouamelan, A.N., Delor, C., Peucat, J.J., 1997. Geochronological evidence for reworkingof Archean terrains during the Early Proterozoic (2.1 Ga) in the western Cote d’Ivoire(Man Rise-West African craton). Precambrian Research 86, 177–199.

Kovach, V.P., Kotov, A.B., Salnikova, E.B., Berezkin, V.I., Smelov, A.P., 1996. Sm-Ndisotopic systematics of the Kurumkan Subgroup, the Iengra Group of Aldan Shield.Stratigraphy and Geological Correlation 4 (3), 3–10.

Kovach, V.P., Kotov, A.B., Salnikova, E.B., Bogomolov, E.S., Belyatsky, 1995a. Age offormation confines of high metamorphic supracrustal complexes in the Aldan shield.In: Earth Crust and Mantle. Abstracts of the Russian Foundation for Basic ResearchConference, vol. 2. Institute of the Earth Crust, Irkutsk, pp. 58–57 (in Russian).

Kovach, V.P., Kotov, A.B., Salnikova, E.B., Yakovleva, S.Z., Berezhnaya, N.G., 1995b.Sm-Nd isotope systematic of high metamorphic complexes in the Aldan shield. In:Main Age Confines in the Precambrian Earth Evolution and Their Basis in the Isotope-Geochronology. Conference Abstract Volume. Institute of Geology and Geochronologyof the Precambrian, St.-Petersburg, p. 31 (in Russian).

Kramers, J.D., 2007. Hierarchical Earth accretion and the Hadean Eon. Journal of the Ge-ological Society London 165, 3–18.

Kramers, J.D., Kreissig, K., Jones, M.Q.W., 2001. Crustal heat production and styleof metamorphism: a comparison between two Archaean high grade provinces in theLimpopo Belt, southern Africa. Precambrian Research 112, 149–163.

Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forwardtransport modelling, core formation and the history of the continental crust. ChemicalGeology 139, 75–110.

Krapež, B., Brown, S.J.A., Hand, J., Barley, M.E., Cas, R.A.F., 2000. Age constraintson recycled crustal and supracrustal sources of Archaean metasedimentary sequences,Eastern Goldfields Province, Western Australia: evidence from SHRIMP zircon dating.Tectonophysics 322, 89–133.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 84aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 85

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279.Kring, D.A., Cohen, B.A., 2002. Cataclysmic bombardment throughout the inner solar

system 3.9–4.0 Ga. Journal of Geophysical Research – Planets 107, Art. No. 5009.Krogh, T.E., Moser, D.E., 1994. U-Pb zircon and monazite ages from the Kapuskasing

uplift: age constraints on deformation within the Ivanhoe Lake fault zone. CanadianJournal of Earth Sciences 31, 1096–1103.

Krogh, T.E., Ermanovics, I.F., Davis, G.L., 1974. Two episodes of metamorphism anddeformation in the Archean rocks of the Canadian shield. In: Carnegie Institution ofWashington, Geophysical Laboratory Yearbook, pp. 573–575.

Krogh, T.E., Harris, N.B.W., Davis, G.L., 1976. Archean rocks from the eastern Lac Seulregion of the English River gneiss belt, northwestern Ontario. Canadian Journal of EarthSciences 13, 1212–1215.

Krogh, T.E., Kamo, S., Hess, D.F., 1997. Wyoming province 3300+ gneiss with 2400 Mametamorphism, northwestern Tobacco Root Mountains, Madison Co., Montana. Geo-logical Society of America Abstracts with Programs 29 (6), A-408.

Kröner, A.M., 1981. Precambrian plate tectonics. In: Kröner, A. (Ed.), Precambrian PlateTectonics. In: Developments in Precambrian Geology, vol. 4. Amsterdam, Elsevier, pp.56–90.

Kröner, A., 1985. Archean crustal evolution. Annual Reviews of Earth and Planetary Sci-ence 13, 264–302.

Kröner, A., Compston, W., 1988. Ion microprobe ages of zircons from early Archaeangranite pebbles and greywacke, Barberton greenstone belt, Southern Africa. Precam-brian Research 38, 367–380.

Kröner, A., Greiling, R. (Eds.), 1984. Precambrian Tectonics Illustrated. E. SchweizerbartVerlagsbuchhandlung, Stuttgart, 419 pp.

Kröner, A., Tegtmeyer, A., 1994. Gneiss-greenstone relationships in the Ancient GneissComplex of southwestern Swaziland, southern Africa, and implications for early crustalevolution. Precambrian Research 67 (1–2), 109–139.

Kröner, A., Todt, W., 1988. Single zircon dating contraining the maximum age of the Bar-berton greenstone belt, Southern Africa. Journal of Geophysical Research 93, 15329–15337.

Kröner, A., Compston, W., Zhang, G.W., Guo, A.L., Todt, W., 1988. Age and tectonic set-ting of Late Archaean greenstone-gneiss terrain in Henan Province, China, as revealedby single grain zircon dating. Geology 16, 211–215.

Kröner, A., Compston, W., Williams, I.S., 1989. Growth of early Archaean crust in the An-cient Gneiss Complex of Swaziland as revealed by single zircon dating. Tectonophysics161, 271–298.

Kröner, A., Byerly, G.R., Lowe, D.R., 1991a. Chronology of early Archean granite-greenstone evolution in the Barberton Moutain Land, South Africa, based on precisedating by single grain zircon evaporation. Earth and Planetary Sciences Letters 103,41–54.

Kröner, A., Wendt, J.I., Tegtmeyer, A.R., Milisenda, C., Compston, W., 1991b. Geochronol-ogy of the Ancient Gneiss Complex, Swaziland, and implications for crustal evolution.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 85aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

86 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

In: Ashwal, L.D. (Ed.), Two Cratons and an Orogen – Excursion Guidebook and Re-view Articles for a Field Workshop Through Selected Archaean Terranes of Swaziland,South Africa, and Zimbabwe. IGCP Project 280, Department of Geology, University ofthe Witwatersrand, Johannesburg, pp. 8–31.

Kröner, A., Hegner, E., Byerly, G.R., Lowe, D.R., 1992. Possible terrane identificationin the early Archaean Barberton greenstone belt, South Africa, using single zircongeochronology. Eos Transactions AGU, Fall Meeting suppl. 73 (43), 616.

Kröner, A., Wendt, J.I., Milisenda, C., Compston, W., Maphalala, R., 1993. Zircongeochronology and Nd isotopic systematics of the Ancient Gneiss Complex, Swazi-land, and implications for crustal evolution. In: Kröner, A. (Ed.) The Ancient GneissComplex: Overview Papers and Guidebook for Excursion. In: Swaziland GeologicalSurvey, Mines Department, Bulletin 11, pp. 15–37.

Kröner, A., Hegner, E., Wendt, J.I., Byerly, G.R., 1996. The oldest part of the Barbertongranitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5and 3.7 Ga. Precambrian Research 78, 105–124.

Kröner, A., Cui, W.Y., Wang, S.Q., Nemchin, A.A., 1998. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of AsianEarth Sciences 16, 519–532.

Kröner, A., Jaeckel, P., Brandl, G., 2000. Single zircon ages for felsic to intermediate rocksfrom the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses,northern Kaapvaal Craton, South Africa. Journal of African Earth Sciences 30 (4), 773–793.

Kröner, A., Ekwueme, N., Pidgeon, R.T., 2001. The oldest rocks in West Africa: SHRIMPzircon age for early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. Jour-nal of Geology 109, 399–406.

Kröner, A., Wilde, S.A., Li, J.H., Wang, K.Y., 2005. Age and evolution of a late Archaeanto Palaeoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fupingterrain of northern China. Journal of Asian Earth Sciences 24, 577–595.

Kröner, A., Wilde, S.A., Zhao, G.C., O’Brien, P.J., Sun, M., Liu, D.Y., Wan, Y.S., Liu,S.W., Guo, J.H., 2006. Zircon geochronology and metamorphic evolution of maficdykes in the Hengshan Complex of northern China: Evidence for late Palaeoprotero-zoic extension and subsequent high-pressure metamorphism in the NCC. PrecambrianResearch 146, 45–67.

Kroopnick, P., 1980. The distribution of 13C in the Atlantic ocean. Earth and PlanetaryScience Letters 49, 469–484.

Krot, A.N., Keil, K., Goodrich, C.A., Scott, E.R.D., Weisberg, M.K., 2003. Classificationof meteorites. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise onGeochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 83–128.

Kruckenberg, S.C., Chamberlain, K.R., Frost, C.D., Frost, B.R., 2001. One billion yearsof Archean crustal evolution: Black Rock Mountain, northeastern Granite Mountains,Wyoming. Geological Society of America Abstracts with Programs 33 (6), A-401.

Kruger, F.J., 1996. Legitimizing the ivory trade using isotopic techniques: tagging vs. trac-ing. South African Journal of Wildlife Research 26 (4), 131–132.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 86aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 87

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Krull-Davatzes, A.E., Lowe, D.R., Byerly, G.R., 2006. Compositional grading in an ∼3, 24 Ga impact-produced spherule bed, Barberton greenstone belt, South Africa: Akey to impact plume evolution. South African Journal of Geology 109, 233–244.

Kryuchov, V.P., 1990. Ridge Belts: are they compressional or extensional structures? Earth,Moon, and Planets 50–51, 471– 491.

Kudryavtsev, A.B., Schopf, J.W., Agresti, D.G., Wdowiak,T.J., 2001. In situ laser-Ramanimagery of Precambrian microscopic fossils. Proceedings of the National Academy ofSciences 98, 823–826.

Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2003. Structural geology of the AsseanLake and Aiken River deformation zones, northern Manitoba (NTS 64A1, 2 and 8).In: Report of Activities 2003, Manitoba Industry, Economic Development and Mines,Manitoba Geological Survey, pp. 105–113.

Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2004a. Structural geology of AsseanLake, northern Manitoba (NTS 64A1, 2, 8). In: Report of Activities 2004, ManitobaIndustry, Economic Development and Mines, Manitoba Geological Survey, pp. 195–200.

Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2004b. Structural geology of the AikenRiver deformation zone, northern Manitoba (NTS 64A1, 2, 8). In: Report of Activi-ties 2004, Manitoba Industry, Economic Development and Mines, Manitoba GeologicalSurvey, pp. 195–200.

Kump, L.R., Barley, M.E., 2006. Abrupt onset of subaerial volcanism and the rise of at-mospheric oxygen. In: Geological Society of America Annual Meeting, Philadelphia,Abstracts with Programs, p. 55.

Kurat, G., Koeberl, C., Presper, T., Brandstatter, F., Maurette, M., 1994. Petrology andgeochemistry of Antarctic micrometeorites. Geochimica et Cosmochimica Acta 58,3879–3904.

Kusky, T.M., 2004. Introduction. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Re-lated Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam,pp. 1–34.

Kusky, T.M., Polat, A., 1999. Growth of granite greenstone terranes at convergent marginsand stabilization of Archean cratons. Tectonophysics 305, 43–73.

Kusky, T.M., Li, J.H., Tucker, R.T., 2001. The Dongwanzi ophiolite: Complete Archaeanophiolite with extensive sheeted dike complex, North China craton. Science 292, 1142–1145.

Kuznetsov, V.G., Khrenov, P.M. (Eds.), 1982. Geological Map of Irkutsk Region and Con-tiguous Territories, Scale of 1:500,000. Ministy of Geology of the USSR, Irkutsk.

Kyte, F.T., 2002. Tracers of extraterrestrial components in sediments and inferences forEarth’s accretion history. In: Geological Society America, Special Paper 356, pp. 21–38.

Kyte, F.T., Zhou, L., Lowe, D.R., 1992. Noble metal abundances in an early Archaeanimpact deposit. Geochimica et Cosmochimica Acta 56, 1365–1372.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 87aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

88 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Kyte, F.T., Shukolyukov, A., Lugmair, G.W., Lowe, D.R., Byerly, G.R., 2003. EarlyArchean spherule beds: Chromium isotopes confirm origin through multiple impactsof projectiles of carbonaceous chondrite type. Geology 31, 283–286.

Laflèche, M.R., Dupuy, C., Dostal, J., 1992. Tholeiitic volcanic rocks of the late ArcheanBlake River Group, southern Abitibi greenstone belt: origin and geodynamic implica-tions. Canadian Journal of Earth Sciences 29, 1448–1458.

Lahaye, Y., Arndt, N., Byerly, G.R., Chauvel, C., Fourcade, S., Gruau, G., 1995. The in-fluence of alteration on the trace-element and Nd isotopic compositions of komatiites.Chemical Geology 126, 43–64.

Lamb, S.H., 1984. Structures on the eastern margin of the Archaean Barberton greenstonebelt, northwest Swaziland. In: Kröner, A., Greiling, A. (Eds.), Precambrian TectonicsIllustrated. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 19–39.

Lamb, S.H., Paris, I., 1988. Post-Onverwacht Group stratigraphy in the SE part of ArchaeanBarberton greenstone belt. Journal of African Earth Sciences 7, 285–306.

Lambert, I., Donnelly, T., Dunlop, J., Groves, D., 1978. Stable isotopic compositions ofearly Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Na-ture 276, 808–811.

Lambert, R.St.J., 1983. Metamorphism and thermal gradients in the Proterozoic continen-tal crust. In: Medaris, L.G., et al. (Eds.), Proterozoic Geology: Selected Papers from anInternational Proterozoic Symposium. Geological Society of America, Memoir 161, pp.155–166.

Lan, Y.Q., Si, X.M, Li, Z.D., Sun, F.X., 1990. Archaean Metamorphic Geology of Qian’anArea, Eastern Hebei, China. Jilin Science and Technology Press, Jilin, 247 pp. (in Chi-nese).

Lang, N.P., Hansen, V.L., 2006. Venusian channel formation as a subsurface process. Jour-nal of Geophysical Research 111, doi:10.1029/2005JE002629.

Langstaff, G.D., 1995. Archean geology of the Granite Mountains, Wyoming. UnpublishedPh.D. dissertation. Colorado School of Mines, Golden, CO, 671 pp.

Lanier, W.P., Lowe, D.R., 1982. Sedimentology of the Middle Marker (3.4 Ga), On-verwacht Group, Transvaal, South Africa. Precambrian Research 18, 237–260.

Langford, F.F., Morin, J.A., 1976. The development of the Superior Province of northwest-ern Ontario by merging island arcs. American Journal of Science 276, 1023–1034.

Large, R.R., 1992. Australian volcanic-hosted massive sulphide deposits: features, stylesand genetic models. Economic Geology 87, 471–510.

Larson, R.L., 1991. Latest pulse of the Earth: evidence for a mid-Cretaceous superplume.Geology 19, 547–550.

Laska, S., Lottspeich, F., Kletzin, A., 2003. Membrane-bound hydrogenase and sulfurreductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens.Microbiology-SGM 149, 2357–2371.

Layer, P.W., 1986. Archean palaeomagnetism of southern Africa. Ph.D. thesis. StanfordUniversity, Stanford, CA, 397 pp.

Lawver, L.A., Müller, R.D., 1994. Iceland hotspot track. Geology 22, 311–314.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 88aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 89

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Layer, P.W., Kröner, A., York, D., 1992. Pre-3000 Ma thermal history of the Archean KaapValley pluton, South Africa. Geology 20, 717–720.

Leal, L.R.B., Cunha, J.C., Cordani, U.G., Teixeira, W., Nutman, A.P., Leal, A.B.M.,Macambira, M.J.B., 2003. SHRIMP U-Pb, Pb-207/Pb-206 zircon dating, and Nd iso-topic signature of the Umburanas greenstone belt, northern Sao Francisco craton, Brazil.Journal of South American Earth Science 15, 775–785.

Leat, P.T., Larter, R.D., 2003. Intra-oceanic subduction systems: tectonic and magmaticprocesses. In: Geological Society of London, Special Publication 219, pp. 1–17.

Le Bas, M.J., Le Maître, R.W., Streckeisen, A., Zanettin, B. 1986. A chemical classificationof volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750.

LeCheminant, A.N., Heaman, L.M., 1989. Mackenzie igneous events, Canada: MiddleProterozoic hotspot magmatism associated with ocean opening. Earth and PlanetaryScience Letters 96, 38–48.

Leclair, A.D., 2005. Géologie du nord-est de la Province du Supérieur, Québec. Min-istère des Ressources naturelles et de la Faune, DV 2004-04, 19 pp., 1 carte (échelle1:750,000).

Leclair, A., Berclaz, A., David, J., Percival, J.A., 2002a. Les événements tectonomag-matiques du nord-est de la Province du Supérieur: 300 millions d’années d’évolutionarchéenne. In: Projet de cartographie du Grand-Nord – Rapport d’atelier. Ministère desRessources naturelles, Québec, MB 2002-01, pp. 65–67.

Leclair, A., Parent, M., David, J., Dion, D.-J., Sharma, K.N.M., 2002b. Geology of the LacLa Potherie Area (34I). Ministère des Ressources naturelles, Québec, RG 2001-04, 40pp.

Leclair, A., Berclaz, A., Parent, M., Cadieux, A.M., Sharma, K.N.M., 2003. Géologie1:250,000, 24L – Lac Dufreboy. Ministère des Ressources naturelles, Québec, carteSI-24L-C2G-03C.

Leclair, A.D., Boily, M., Berclaz, A., Labbé, J.-Y., Lacoste, P., Simard, M., Maurice, C.,2006a. 1.2 billion years of Archean evolution in the northeastern Superior Province.Geological Association of Canada, Abstracts, vol. 31, p. 85.

Leclair A., Labbé, J.-Y., Berclaz, A., David, J., Gosselin, C., Lacoste, P., Madore, L., Mau-rice, C., Roy, P., Sharma, K.N.M., Simard, M., 2006. Government geoscience stimulatesmineral exploration in the Superior Province, northern Quebec. Geoscience Canada 33,60–75.

Leclerc, F., 2004. Évolution tectonostratigraphique et métamorphique de la ceinturevolcano-sédimentaire de Qalluviartuuq-Payne, nord-est de la Province du Supérieur.M.Sc. thesis. Université du Québec à Montréal, 101 pp.

Lecuyer, C., Simon, L., Guyot, F., 2000. Comparison of carbon, nitrogen and water budgetson Venus and the Earth. Earth and Planetary Science Letters 181, 33–40.

Lee, S.M., 1965. Région d’Inussuaq – Pointe Normand, Nouveau-Québec. Ministère desrichesses naturelles, Québec, Rapport géologique 119, 138 pp.

Le Maître, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. Cam-bridge, Cambridge University Press.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 89aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

90 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Lee, T., Papanastassiou, D.A., 1974. Mg isotopic anomalies in the Allende meteorite andcorrelation with O and Sr effects. Geophysical Research Letters 1, 225–228.

Lee, T., Papanastassiou, D.A., Wasserburg, G.J., 1976. Demonstration of 26Mg excess inAllende and evidence for 26Al. Geophysical Research Letters 3, 109–112.

Lemieux, S., Ross, G.M., Cook, F.A., 2000. Crustal geometry and tectonic evolution of theArchean crystalline basement beneath the southern Alberta Planis, from new seismicreflection and potential-field studies. Canadian Journal of Earth Sciences 37, 1473–1491

Lenardic, A., Moresi, L-N., 1999. Some thoughts on the stability of cratonic lithosphere:effects of buoyancy and viscosity. Journal of Geophysical Research 104, 12747–12758.

Lenton, P.G., Corkery, M.T., 1981. The Lower Churchill River Project (interim report).Manitoba Department of Energy and Mines, Mineral Resources Division, Open FileReport OF81-3, pp. 23.

Lepland, A., Arrhenius, G., Cornell, D., 2002. Apatite in early Archean supracrustal rocks,southern West Greenland: its origin, association with graphite and potential as a bio-marker. Precambrian Research 118, 221–241.

Lepland, A., van Zuilen, M.A., Arrhenius, G., Whitehouse, M.J., Fedo, C.M., 2005. Ques-tioning the evidence for Earth’s earliest life – Akilia revisited. Geology 33, 77–79.

Lesher, C.M., Arndt, N.T., 1995. REE and Nd isotope geochemistry, petrogenesis, andvolcanic evolution of contaminated komatiites in Kambalda, Western Australia. Lithos34, 127–157.

Leshin, L.A., Rubin, A.E., McKeegan, K.D., 1997. The oxygen isotopic composition ofolivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta 61, 835–845.

Lespade, P., Al-Jishi, R., Dresselhaus, M.S., 1982. Model for Raman scattering from in-completely graphitized carbons. Carbon 5, 427–431.

Levison, H., Lissauer, J.J., Duncan, M.J., 1998. Modelling the diversity of outer planetarysystems. Astronomical Journal 116, 1998–2014.

Lewan, M.D., 2003. Experiments on the role of water in petroleum formation. Geochimicaet Cosmochimica Acta 61, 3691–3723.

Li, H.K., Li, H.M., Lu, S.N., 1995. Single grain zircon U-Pb ages for volcanic rocks fromTuanshanzi Formation of Changcheng System and their geological implications. Geo-chemica 24, 43–48 (in Chinese with English abstract).

Li, J.H., He, W.Y., Qian, X.L., 1997. Genetic mechanism and tectonic setting of a Protero-zoic mafic dyke swarm: implications for palaeoplate reconstruction. Geological Journalof China Universities 3, 2–8 (in Chinese with English abstract).

Li, J.H., Kusky, T.M., Huang, X.N., 2002. Archaean podiform chromitites and mantle tec-tonites in ophiolitic melange, NCC: A record of early oceanic mantle processes. GSAToday 12, 4–11.

Li, J.H., Qian, X.L., Huang, X.N., 2000. The tectonic framework of the basement of NCCand its implication for early Precambrian cratonization. Acta Petrologica Sinica 16, 1–10 (in Chinese with English abstract).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 90aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 91

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Li, S.G., Hart, S.R., Gou, A.L., Zhang, G.W., 1987. Whole-rock Sm-Nd isotope age ofthe Dengfeng Group in central Henan and its tectonic significance. Chinese ScienceBulletin 22, 1728–1731 (in Chinese).

Li, S.X., Xu, X.C., Liu, X.S., Sun, D.Y., 1994. Early Precambrian geology of WulashanRegion, Inner Mongolia. Geological Publishing House, Beijing, 140 pp. (in Chinesewith English abstract).

Li, Y.-H., 1991. Distribution patterns of elements in the ocean: A synthesis. Geochimica etCosmochimica Acta 55, 3223–3240.

Li, Z-X., Zhang, L., Powell, C.McA., 1996. Positions of the East Asian cratons in theNeoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences 43, 593–604.

Libby W.G., de Laeter, J.R., Armstrong, R.A., 1999. Proterozoic biotite dates in the north-western part of the Yilgarn Craton, Western Australia. Australian Journal of EarthSciences 46, 851–860.

Lin, S., 2005. Synchronous vertical and horizontal tectonism in the Neoarchean: Kinematicevidence from a synclinal keel in the northwestern Superior craton, Canada. Precam-brian Research 139, 181–194.

Lin, S., Percival, J.A., Skulski, T., 1996. Structural constraints on the tectonic evolution ofa late Archean greenstone belt in the northeastern Superior Province, northern Quebec(Canada). Tectonophysics 265, 151–167.

Lin, S., Davis, D.W., Rotenberg, E., Corkery, M.T., Bailes A.H., 2006. Geological evo-lution of the northwestern Superior Province: Clues from geology, kinematics andgeochronology in the Gods Lake Narrows area, Oxford Lake – Knee Lake – Gods Lakegreenstone belt, Manitoba. Canadian Journal of Earth Sciences 43, 749–765.

Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., McNamara, K.M.,Steele, A., Mertzman, S.A., 2003. Abiotic Earth – establishing a baseline for earliestlife, data from the Archean of Western Australia. Lunar and Planetary Science XXXIV,1137.

Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., Steele, A., Mertz-man, S.A., 2005. The problem of deep carbon – an Archaean paradox. PrecambrianResearch 143, 1–22.

Lissauer, J.J., 1999. Chaotic motion in the solar system. Reviews of Modern Physics 71,835–845.

Liu, D.Y., Page, R.W., Compston, W., Wu, J.S., 1985. U-Pb zircon geochronology of lateArchaean metamorphic rocks in the Taihangshan–Wutaishan area. Precambrian Re-search 27, 85–109.

Liu, D.Y., Shen, Q.H., Zhang, Z.Q., Jahn, B.M., Aurvay, B., 1990. Archaean crustal evolu-tion in China: U-Pb geochronology of the Qianxi Complex. Precambrian Research 48,223–244.

Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of >3800Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–342.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 91aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

92 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Liu, D.Y., Wilde, S.A., Wan, Y.S., Wu, J.S., Wu, F.Y., Zhou, H.Y, Dong, C.Y., Yin, X.Y.,in review. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved partof the North China Craton. American Journal of Science.

Liu, S.W., Pan, Y.M., Li, J.H., Li, Q.G., Zhang, J., 2002. Geological and isotopic geo-chemical constraints on the evolution of the Fuping Complex, North China Craton.Precambrian Research 117 (1–2), 41–56.

Lobach-Zhuchenko, S.B., Levchenkov, O.A., Chekulaev, V.P., Krylov, I.N, 1986. Geo-logical evolution of the Karelian-granite greenstone terrain. Precambrian Research 33,45–65.

Loiselle, M.C., Wones, D.R., 1979. Characteristic and origin of anorogenic granites. In:Geological Society of America, Abstracts with Programs, vol. 11, p. 468

Londry, K.L., Des Marais, D.J., 2003. Stable carbon isotope fractionation by sulfate-reducing bacteria. Applied and Environmental Microbiology 69, 2942–2949.

Love, G.D., Snape, C.E., Carr, A.D., Houghton, R.C., 1995. Release of covalently-boundalkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. OrganicGeochemistry 23, 981–986.

Love, S.G., Brownlee, D.E., 1993. A direct measurement of the terrestrial mass accretionrate of cosmic dust. Science 262, 550–553.

Lovley, D.R., Stolz, J.F., Nord, G.L., Jr., Phillips, E.J.P., 1987. Anaerobic production ofmagnetite by a dissimilatory iron-reducing micro-organism. Nature 330, 252–254.

Lowe, D.R., 1980. Archean sedimentation. Annual Review of Earth and Planetary Sciences8, 145–167.

Lowe, D.R., 1980. Stromatolites 3,400-Myr old from the Archaean of Western Australia.Nature 284, 441–443.

Lowe, D.R., 1982. Comparative sedimentology of the principal volcanic sequences ofArchean greenstone belts in South Africa, Western Australia, and Canada: implicationsfor crustal evolution. Precambrian Research 17, 1–29.

Lowe, D.R., 1983. Restricted shallow-water sedimentation of Early Archean stromatoliticand evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Pre-cambrian Research 19, 239–283.

Lowe, D.R., 1992. Major events in the geological development of the Precambrian earth.In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere. Cambridge UniversityPress, Cambridge, pp. 67–76.

Lowe, D.R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geol-ogy 22, 387–390.

Lowe, D.R., 1994. Archean greenstone-related sedimentary rocks. In: Condie, K.C. (Ed.),Archean Crustal Evolution. Elsevier, Amsterdam, pp. 121–170.

Lowe, D.R., 1994. Accretionary history of the Archean Barberton greenstone belt (3.55–3.22 Ga) southern Africa. Geology 22, 1099–1102.

Lowe, D.R., 1999a. Petrology and sedimentology of cherts and related silicified sedimen-tary rocks in the Swaziland Supergroup. In: Lowe, D.R., Byerly, G.R. (Eds.), GeologicEvolution of the Barberton Greenstone Belt, South Africa. In: Geological Society ofAmerica, Special Paper 329, pp. 83–114.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 92aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 93

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Lowe, D.R., 1999b. Geologic evolution of the Barberton greenstone belt and vicinity. In:Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt,South Africa. In: Geological Society of America, Special Paper 329, pp. 287–312.

Lowe, D.R., Byerly, G.R., 1986a. Archean flow-top alteration zones formed initially in alow-temperature sulphate-rich environment. Nature 324, 245–248.

Lowe, D.R., Byerly, 1986b. Early Archaean silicate spherules of probable impact origin,South Africa and Western Australia. Geology 14, 83–86.

Lowe, D.R., Byerly, G.R., 1999. Stratigraphy of the west-central part of the BarbertonGreenstone Belt, South Africa. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolutionof the Barberton Greenstone Belt, South Africa. In: Geological Society of America,Special Paper 329, pp. 1–36.

Lowe, D.R., Fisher Worrell, G., 1999. Sedimentology, mineralogy, and implications of sili-cified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa.In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton GreenstoneBelt, South Africa. In: Geological Society of America, Special Paper 329, pp. 167–188.

Lowe, D.R., Knauth, L.P., 1977. Sedimentology of the Onverwacht Group (3.4 billionyears), Transvaal, South Africa, and its bearing on the characteristics and evolutionof the early earth. Journal of Geology 85, 699–723.

Lowe, D.R., Knauth, L.P., 1978. The oldest marine carbonate ooids reinterpreted as vol-canic accretionary lapilli: Onverwacht Group, South Africa. Journal of SedimentaryPetrology 48, 709–722.

Lowe, D.R., Nocita, B.W., 1999. Foreland basin sedimentation in the Mapepe Formation,southern-facies Fig Tree Group. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolu-tion of the Barberton Greenstone Belt, South Africa. In: Geological Society of America,Special Paper 329, pp. 233–258.

Lowe, D.R., Byerly, G.R., Ransom, B.L., Nocita, B.R., 1985. Stratigraphic and sedimento-logical evidence bearing on structural repetition in Early Archean rocks of the BarbertonGreenstone Belt, South Africa. Precambrian Research 27, 165–186.

Lowe, D.R., Byerly, G.R., Asaro, F., Kyte, F., 1989. Geological and geochemical record of3400-million-year-old terrestrial meteorite impacts. Science 245, 959–962.

Lowe, D.R., Byerly, G.R., Heubeck, C., 1999. Structural divisions and development of thewest-central part of the Barberton Greenstone Belt. In: Lowe, D.R., Byerly, G.R. (Eds.),Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological So-ciety of America, Special Paper 329, pp. 37–82.

Lowe, D.R., Byerly, G.R., Kyte, F.T., Shukolyukov, A., Asaro, F., Krull, A., 2003. Charac-teristics, origin, and implications of Archean impact-produced spherule beds, 3.47–3.22Ga, in the Barberton Greenstone Belt, South Africa: Keys to the role of large impactson the evolution of the early Earth. Astrobiology 3, 7–48.

Lu, L.Z., Xu, X.C., Liu, F.L. 1996. Early Precambrian Khondalite Series of North China.Changchun Publishing House, Changchun, 272 pp. (in Chinese).

Lu, S.N., 2002. Preliminary Study of Precambrian Geology in the North Tibet-QinghaiPlateau. Geological Publishing House, Beijing, 125 pp. (in Chinese).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 93aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

94 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Lu, S.N., Yang, C.L., Li, H.K., Li, H.M., 2002. A group of rifting events in the terminalPalaeoproterozoic in the NCC. Gondwana Research 5, 123–131.

Luais, B., Hawkesworth, C.J., 2002. Pb isotope variations in Archean time and possiblelinks to the sources of certain Mesozoic – Recent basalts. In: Fowler, C.M.R., Ebinger,C.J., Hawkesworth, C.J. (Eds.), The Early Earth: Physical, Chemical and Biologic De-velopment. In: Geologic Society of London, Special Publication 199, pp. 105–124.

Ludden, J., Hubert, C., Barnes, A., Milkereit, B., Sawyer, E., 1993. A three dimensionalperspective on the evolution of Archaean crust: LITHOPROBE seismic reflection im-ages in the southwestern Superior province. Lithos 30, 357–372.

Ludwig, K.R., 1999. User’s Manual for Isoplot / Ex, v2.3, A Geochronological Toolkit forMicrosoft Excel. Berkeley Geochronological Center Special Publication No. 1a, 52 pp.

Lugmair, G.W., Galer, S.J.G., 1992. Age and isotopic relationships among the angritesLewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta 56, 1673–1694.

Lugmair, G.W., Shukolyukov, A., 1997. 53Mn-53Cr isotope systematics of the HED parentbody. Lunar and Planetary Science XXVIII, 823–824.

Lugmair, G.W., Shukolyukov, A., 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta 62, 2863–2886.

Lugmair, G. ., Shukolyukov, A., 2001. Early solar system events and timescales. Meteorit-ics and Planetary Science 36, 1017–1026.

Lund, E.H., 1956. Igneous and metamorphic rocks of the Minnesota River Valley. Bulletinof Geological Society of America 67, 1475–1490.

Lundberg, L.L., Zinner, E., Crozaz, G., 1994. Search for isotopic anomalies in oldhamite(CAs) from unequilibrated (E3) enstatite chondrites. Meteoritics 29, 384–393.

Lunine, J.I., Coradani, A., Gautier, D., Owen, T.C., Wuchterl, G., 2004. The origin ofJupiter. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter. CambridgeUniversity Press, pp. 19–34.

Lutts, B.G., Oksman, V.K., 1990. Deeply Eroded Fault Zones of the Anabar Shield. Nauka,Moscow, 260 pp.

Lutts, B.G., 1985. Magmatism of Mobile Belts of the Early Earth. Moscow, 216 pp.Lyell, C., 1830. Principles of Geology, Being an Attempt to Explain the Former Changes

of the Earth’s Surface, by Reference to Causes Now in Operation, vol. 1. John Murray,London, 511 pp.

Lyons, J.R., 2006. Gas-phase mechanisms of sulfur isotope mass-independent fractiona-tion. In: Eos Transactions of the American Geophysical Union, vol. 87, Fall MeetingSupplements, Abstract V11C-0599.

Maaløe, S., 1982. Petrogenesis of Archaean tonalites. Geologische Rundschau 71, 328–346.

Maas, R., McCulloch, M.T., 1991. The provenance of Archean clastic metasediments in theNarryer Gneiss Complex, Western Australia: trace element geochemistry, Nd isotopes,and U-Pb ages for detrital zircons. Geochimica et Cosmochimica Acta 55, 1914–1932.

Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992. The Earth’soldest known crust: A geochronological and geochemical study of 3900–4200 Ma old

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 94aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 95

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cos-mochimica Acta 56, 1281–1300.

MacDougall, J.D., Lugmair, G.W., Kerridge, J.F., 1989. Early Solar System aqueaous ac-tivity: Sr isotope evidence from the Orgueil CI meteorite. Nature 307, 249–251.

Macek, J.J., 1989. Sapphirine coronas from Sipiwesk Lake, Manitoba. Manitoba Energyand Mines, Minerals Division, Geological Paper GP85-1, 42 pp.

Macek, J.J., Bleeker, W., 1989. Thompson Nickel Belt project – Pipe Pit mine, Settingand Ospwagan lakes. In: Report of Field Activities 1989, Manitoba Energy and Mines,Minerals Division, pp. 73–87.

Macek, J.J., McGregor, C.R., 1998. Thompson Nickel Belt project: progress on a newcompilation map of the Thompson Nickel Belt. In: Report of Activities, 1998, ManitobaEnergy and Mines, Geological Services, pp. 36–38.

Macek, J.J., Zwanzig, H.V., Pacey, J.M., 2006. Thompson Nickel Belt geological com-pilation map, Manitoba. Manitoba Science, Technology, Energy and Mines, ManitobaGeological Survey, Open File Report, OF2006-33, digital map on CD.

Macgregor, A.M., 1951. Some milestones in the Precambrian of Southern Rhodesia. Pro-ceedings of the Geological Society of South Africa 54, 27–71.

Machado, N., Brooks, C., Hart, S.R., 1986. Determination of initial 87Sr/86Sr and143Nd/144Nd in primary minerals from mafic and ultramafic rocks: Experimental pro-cedure and implications for the isotopic characteristics of the Archean mantle under theAbitibi greenstone belt, Canada. Geochimica et Cosmochimica Acta 50, 2335–2348.

Machado, N., Heaman, L.M., Krogh, T.E., Weber, W., 1987. U-Pb geochronology pro-gram: Thompson Belt – northern Superior Province. In: Report of Field Activities 1987,Manitoba Energy and Mines, Minerals Division, pp. 145–147.

Machado, N., Krogh, T.E., Weber, W., 1990. U-Pb geochronology of basement gneisses inthe Thompson Belt (Manitoba): evidence for pre-Kenoran and Pikwitonei-type crust andearly Proterozoic basement reactivation in the western margin of the Archean SuperiorProvince. Canadian Journal of Earth Sciences 27, 794–802.

Mackwell, S.J., Zimmerman, M.E., Kohlstedt, D.L., 1998. High-temperature deformationof dry diabase with application to tectonics on Venus. Journal of Geophysical Research102, 975–984.

MacPherson, G.J., 2003. Calcium-Aluminium-rich inclusions in chondritic meteorites. In:Davis, A.M. (Ed.), Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1.Elsevier-Pergamon, Oxford, pp. 201–246.

MacPherson, G.J., Davis, A.M., Zinner, E.K., 1995. The distribution of aluminium-26 inthe early Solar System – a reappraisal. Meteoritics 30, 365–386.

Madore, L., Larbi, Y., 2001. Geology of the Rivière Arnaud area (25D) and adjacent coastalareas (25C, 25E et 25F). Ministère des Ressources naturelles, Québec, RG 2001-06, 33pp.

Madore, L., Bandyayera, D., Bédard, J.H., Brouillette, P., Sharma, K.N.M., Beaumier, M.,David, J., 2000. Geology of the Lac Peters Area (NTS 24M). Ministère des Ressourcesnaturelles, Québec, RG 99-16, 40 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 95aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

96 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Madore, L., Larbi, Y., Sharma, K.N.M., Labbé, J-Y., Lacoste, P., David, J., Brousseau, K.,Hocq, M., 2002. Geology of the Lac Klotz (35A) and the Cratère du Nouveau-Quebec(southern half of 35H) areas. Ministère des Ressources Naturelles Québec, RG 2002-05.

Mann, S., Sparks, N.H.C, Frankel, R.B., Bazylinski, D.A., Jannasch, H.W., 1990. Biomin-eralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotacticbacterium. Nature 343, 258–261.

Manning, C.E., Mojzsis, S.J., Harrison, T.M., 2006. Geology, age and origin of supracrustalrocks, Akilia, Greenland. American Journal of Science 306, 303–366.

Maphalala, R.M., Kröner, A., 1993. Pb-Pb single zircon ages for the younger archaeangranitoids of Swaziland, Southern Africa. In: Mines, G.S.A. (Ed.), International Collo-quium of African Geology, Mbabane, pp. 201–206.

Mareschal, J.C., West, G.F., 1980. A model for Archean tectonism. 2. Numerical-modelsof vertical tectonism in greenstone belts. Canadian Journal of Earth Sciences 17, 60–71.

Markowski, A., Quitté, G., Kleine, T., Halliday, A.N., 2005. Tungsten isotopic constraintson the formation and evolution of iron meteorite parent bodies. Lunar and PlanetaryScience XXXVI, abstract 1308.

Markowski, A., Leya, I., Quitté, G., Ammon, K., Halliday, A.N., Wieler, R., 2006. Cor-related helium-3 and tungsten isotopes in iron meteorites: Quantitative cosmogeniccorrections and planetesimal formation times. Earth and Planetary Science Letters 250,104–115.

Marshak, S., 1999. Deformation style way back when: thoughts on the contrasts betweenArchaean/Paleoproterozoic and contemporary orogens. Journal of Structural Geology21, 1175–1182.

Marshall, A.E., 2000. Low temperature-low pressure (‘epithermal’) siliceous vein depositsof the North Pilbara granite-greenstone terrane, Western Australia. Australian Geologi-cal Survey Organization, Record 2000/1, 40 pp.

Marshall, C.P, Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Summons, R.E.,2004a. Spectroscopic and microscopic characterization of the Carbonaceous Materialin Archaean Cherts, Pilbara Craton, Western Australia. In: Abstracts of the 21st An-nual Meeting of the Society of Organic Petrology, vol. 21. Sydney, New South Wales,Australia, pp. 107–108.

Marshall, C.P, Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Summons, R.E.,2004b. Characterization of the carbonaceous material in the 3.4 Ga Strelley Pool Chert,Pilbara Craton, Western Australia. Geological Society of America Annual Meeting,Denver, CO. Abstracts with programs, pp. 197-3.

Marshall, C.P., Love, G.D., Snape, C.E., Hill, A.C., Allwood, A.C., Walter, M.R., Van Kra-nendonk, M.J., Bowden, S.A., Sylva, S.P., Summons, R.E., 2007. Characterization ofkerogen in Archaean cherts, Pilbara Craton, Western Australia. Precambrian Research,in press.

Marston, J.G., 1979. Copper mineralization in Western Australia. Geological Survey ofWestern Australia, Mineral Resources Bulletin 13.

Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry ofsubduction-zone magmas. Geology 14 (9), 753–756.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 96aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 97

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Martin, H., 1987. Petrogenesis of Archean trondhjemites, tonalites and granodiorites fromeastern Finland: major and trace element geochemistry. Journal of Petrology 28, 921–953.

Martin, H., 1993. The mechanisms of petrogenesis of the Archean continental crust – Com-parison with modern processes. Lithos 30, 373–388.

Martin, H., 1994. The Archean grey gneiss and the genesis of continental crust. In: Condie,K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 205–259.

Martin, H., 1999. The adakitic magmas: modern analogs of Archean granitoids. Lithos 46,411–429.

Martin, H., 2005. Genesis and evolution of the primitive Earth continental crust. In: Gar-gaud, M., Barbier, B., Martin, H., Reisse, J. (Eds.), Lectures in Astrobiology, vol. I.Springer, Berlin, pp. 352–383.

Martin, H., Moyen, J-F., 2002. Secular changes in tonalite-trondhjemite-granodiorite com-position as markers of the progressive cooling of the Earth. Geology 30, 319–322.

Martin, H., Peucat, J.J., Sabate, P., Cunha, J.C., 1997. Crustal evolution in the EarlyArchean of South America: Example of the Sete Voltas massif, Bahia state, Brazil.Precambrian Research 82, 35–62.

Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F., Champion, D., 2005. An overviewof adakite, tonalitie-trondhjemite-granodiorite (TTG) and sanukitoid: relationships andsome implications for crustal evolution. Lithos 79, 1–24.

Marty, B., Yokochi, R., 2006. Water in the early Earth. Reviews in Mineralogy and Geo-chemistry 62, 421–450.

Mason, B., Moore, C.B., 1982. Principles of Geochemistry, 4th ed. John Wiley and Sons,New York, 344 pp.

Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Endo, M., 1999. Ori-gin of dispersive effects of the Raman D band in carbon materials. Physics Review B59, 6585–6588.

Matthews, P.E., Charlesworth, E.G., Eglington, B.M., Harmer, R.E., 1989. A minimum3.29 Ga age for the Nondweni greenstone complex in the southeastern Kaapvaal Craton.South African Journal of Geology 92, 272–278.

Mauersberger, K., Erbacher, B., Krankowsky, D., Gunther, J., Nickel, R., 1999. Ozoneisotope enrichment: Isotopomer-specific rate coefficients. Science 283, 370–372.

Maurette, M., Duprat, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., Toppani, A.,2000. Accretion of neon, organics, CO2, nitrogen and water from large interplanetarydust particles on the early Earth. Planetary and Space Science 48, 1117–1137.

Maurice, C., Berclaz, A., David, J., Sharma, K.N.M., Lacoste, P., 2005. Geology of thePovungnituk (35C) et de Kovik Bay (35F) areas. Ministère des Ressources naturelles,Québec, RG 2004-05, 41 pp.

Maurice, C., David, J., Leclair, A., Francis, D., 2006. An autochthonous origin for thenortheastern Superior Province greenstone belts. In: Geological Association of Canada– Mineralogical Association of Canada, Annual Meeting, Abstracts Volume 31, p. 98.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 97aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

98 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

McCall, J.G.H., 2003. A critique of the analogy between Archaean and Phanerozoic tec-tonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone inthe Makran, Iran. Precambrian Research 127, 5–18.

McCarthy, T., Rubridge, B. (Eds.), 2005. The Story of Earth & Life – A Southern AfricanPerspective on a 4.6 Billion-Year Journey. Striuk Publishers, Cape Town, South Africa,333 pp.

McCollom, T., 2003. Formation of meteorite hydrocarbons from thermal decomposition ofsiderite (FeCO3). Geochimica et Cosmochimica Acta 67, 311–317.

McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of organic compoundsproduced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Sci-ence Letters 243, 74–84.

McCombs, J.A., Dahl, P.S., Hamilton, M.A., 2004. U-Pb ages of Neoarchean granitoidsfrom the Black Hills, South Dakota, USA: implications for crustal evolution in theArchean Wyoming province. Precambrian Research 130, 161–184.

McCord, T.B., Adams, J.B., Johnson, T.V., 1970. Asteroid Vesta: spectral reflectivity andcompositional implications. Science 168, 1445–1447.

McCoy, T., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., Huss,G.R., Hutcheon, I.D., Wieler, R., 1996. A petrologic, chemical and isotopic study ofMonument Draw and comparison with other acapulcoites: evidence for formation byincipient partial melting. Geochimica et Cosmochimica Acta 60, 2681–2708.

McCoy, T., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., Wieler,R., 1997. A petrologic and isotopic study of lodranites: evidence for early formationas partial melt residues from heterogeneous precursors. Geochimica et CosmochimicaActa 61, 623–637.

McCuaig, T.C., Kerrich, R., 1998. P-T-t-deformation-fluid characteristics of lode gold de-posits: evidence from alteration systematics. Ore Geology Reviews 12, 381–453.

McCulloch, M.T., 1987. Sm-Nd isotopic constraints on the evolution of Precambrian crustin the Australian continent. In: Kroner, A. (Ed.), Proterozoic Lithospheric Evolution.In: American Geophysical Union, Geodynamics Series, vol. 17. Washington, DC, pp.115–130.

McCulloch, M.T., 1994. Primitive 87Sr/86Sr from and Archean barite and conjecture on theEarth’s age and origin. Earth and Planetary Science Letters 126, 1–13.

McCulloch, M.T., Bennett, V.C., 1993. Evolution of the early Earth: Constraints from143Nd-142Nd isotopic systematics. Lithos 30, 237–255.

McCulloch, M.T., Bennett, V.C., 1994. Progressive growth of the Earth’s continental crustand depleted mantle: Geochemical constraints. Geochimica et Cosmochimica Acta 58,4717–4738.

McCulloch, M.T., Bennett, V.C., 1998. Early Differentiation of the Earth: An IsotopicPerspective. In: Jackson, I. (Ed.), The Earth’s Mantle. Cambridge University Press,Cambridge, pp. 127–158.

McCulloch, M.T., Black, L.P., 1984. Sm-Nd isotopic systematics of Enderby Land gran-ulites and evidence for the redistribution of Sm and Nd during metamorphism. Earthand Planetary Science Letters 71, 46–58.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 98aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 99

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

McCulloch, M.T., Wasserburg, G.J., 1978. Sm-Nd and Rb-Sr chronology of continentalcrust formation. Science 200, 1003–1011.

McCulloch, M.T., Wasserburg, G.J., 1980. Early Archean Sm-Nd model ages from atonalitic gneiss, northern Michigan. In: Geological Society of America, Special Paper182, pp. 135–138.

McDaniel, K.M., Hansen, V.L., 2005. Circular Lows, a Genetically Distinct Subset ofCoronae? In: Lunar and Planetary Science Conference XXXVI, 2367.pdf.

McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology120, 223–253.

McGill, G.E., 1994. Hotspot evolution and Venusian tectonic style. . Journal of Geophysi-cal Research 99, 23149–23161.

McGregor, V.R., 1968. Field evidence of very old Precambrian rocks in the Godthaab area,West Greenland. In: The Geological Survey of Greenland, Report 15, pp. 31–35.

McGregor, V.R., 1973. The early Precambrian gneisses of the Godthaab district, WestGreenland. Philosophical Transactions of the Royal Society of London A273, 343–358.

McGregor, V.R., Mason, B., 1977. Petrogenesis and geochemistry of metabasaltic andmetasedimentary enclaves in the Amîtsoq gneisses, West Greenland. American Min-eralogist 62, 887–904.

McGregor, V.R., Friend, C.R.L., Nutman, A.P., 1991. The late Archaean mobile beltthrough Godthåbsfjord, southern West Greenland: a continent-continent collision zone?Bulletin of the Geological Society Denmark 39, 179–197.

McKeegan, K.D., Davis, A.M., 2003. Early Solar System chronology. In: Davis, A.M.(Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 431–460.

McKenzie, D.P., Bickle, M.J., 1988. The volume and composition of melt generated byextension of the lithosphere. Journal of Petrology 29, 625–679.

McKenzie, D., Ford, P.G., Johnson, C., Parsons, B., Pettengill, G.H., Sandwell, D., Saun-ders, R.S., Solomon, S.C., 1992. Features on Venus generated by plate boundaryprocesses. Journal of Geophysical Research 97, 13533–13544.

McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., Melosh, H.J., 1997. Cratering on Venus:Models and observations. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VenusII. University of Arizona Press, Tucson, AZ, pp. 969–1014.

McLennan, S.M., Taylor, S.R., Hemming, S.R., 2005. Composition, differentiation andevolution of continental crust: Constraints from sedimentary rocks and heat flow. In:Brown, M., Rushmer, T. (Eds.), Evolution and Differentiation of the Earth’s Crust. Cam-bridge University Press, pp. 93–135.

McPhie, J., Goto, Y., 1996, Lobe and layered structures in dacite sills of the Archean Strel-ley succession, Western Australia. Eos, Transactions, American Geophysical Union,vol. 77 (Supplement), p. W125.

McSween Jr, H.Y., Richardson, S.M., 1977. The composition of carbonaceous chondritematrix. Geochimica et Cosmochimica Acta 41, 1145–1161.

Meissner, R., 1986: The Continental Crust: A Geophysical Approach. In: InternationalGeophysical Series, vol. 34. Academic Press, 426 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 99aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

100 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Melnyk M.J., Cruden, A.R., Davis, D.W., Stern, R.A., 2006. U-Pb ages of magmatismconstraining regional deformation in the Winnipeg River subprovince and Lake of theWoods greenstone belt: Evidence for Archean terrane accretion in the western SuperiorProvince. Canadian Journal of Earth Sciences 43, 967–993.

Melosh, H.J., 1990. Giant impacts and the thermal state of the early Earth. In: Newsome,H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp.69–83.

Melosh, H.J., Vickery, A.M., 1991. Melt droplet formation in energetic impact events.Nature 350, 494–497.

Menzies, M.A., Fan, W.M., Zhang, M., 1993. Palaeozoic and Cenozoic lithoprobes and heloss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: GeologicalSociety of London, Special Publication 76, pp. 71–78.

Menzies, M.A., Xu, Y-G., 1998. Geodynamics of the North China Craton. In: Flower, M.,Chng, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in EastAsia. In: American Geophysical Union, Geodynamics Series, vol. 27. Washington, DC,pp. 155–165.

Meredith, M.T., 2005. A late Archean tectonic boundary exposed at Tin Cup Mountain,Granite Mountain, Wyoming. M.S. thesis. University of Wyoming, Laramie, Wyoming,77 pp.

Meyer, M.R., Backman, D.E., Weinberger, A.J., Wyatt, M.C., 2006. Evolution of circum-stellar disks around normal stars: Placing our solar system in context. In: Reipurt, B.,Jewitt, D., Keil, K. (Eds.), Protostars and Planets, vol. V. University of Arizona Press,Tucson, AZ, in press.

Mezger, K., Bohlen, S.R., Hanson, G.N., 1990. Metamorphic history of the Archean Pik-witonei Granulite Domain and the Cross Lake Subprovince, Superior Province, Mani-toba, Canada. Journal of Petrology 31, 483–517.

Mikhalsky, E.V., Sheraton, J.W., Laiba, A.A., Tingey, R.J., Thost, D.E., Kamenev, E.N.,Fedorov, L.V., 2001. Geology of the Prince Charles Mountains, Antarctica. GeoscienceAustralia Bulletin 247, Australian Geological Survey Organisation, Canberra, 210 pp.

Mikhalsky, E.V., Beliatsky, B.V., Sheraton, J.W., Roland, N.W., 2006a. Two distinct Pre-cambrian terranes in the Southern Prince Charles Mountains, East Antarctica: SHRIMPdating and geochemical constraints. Gondwana Research 9, 291–309.

Mikhalsky, E.V., Laiba, A.A., Beliatsky, B.V., 2006b. Tectonic subdivisions of the PrinceCharles Mountains: a review of geologic and isotopic data. In: Futterer, D.K., Damaske,D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds.), Antarctica – Contributions toGlobal Earth Sciences. Springer, Berlin, Heidelberg, New York, pp. 69–82.

Miller, D.M., Goldstein, S.L., Langmuir, C.H., 1994. Cerium/lead and lead isotope ratiosin arc magmas and the enrichment of lead in the continents. Nature 368, 514–520.

Millero, F., Sohn, M.L., 1992. Chemical Oceanography. CRC Press, Boca Raton, FL, 531pp.

Millhohlen, G.L., Irving, A.J., Wyllie, P.J., 1974. Melting interval of peridotite with 5.7per cent water to 30 kbar. Journal of Geology 82, 575–587.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 100aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 101

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Minister, J.-F., Birck, J.-L., Allegre, C.J., 1982. Absolute age of formation of chondritesstudies by the 87Rb-87Sr method. Nature 300, 414–419.

Mittlefehldt, D.W., 2003. Achondrites. In: Davis, A.M. (Ed.), Meteorites, Comets andPlanets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 291–324.

Mittlefehldt, D.W., Lindstom, M.M., Bogard, D.D., Garrison, D.H., Field, S.W., 1996.Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology and ori-gin. Geochimica et Cosmochimica Acta 60, 867–882.

Mittlefehldt, D.W., McCoy, T.J., Goodrich, C.A., Kracher, A., 1998. Non-chondritic me-teorites from asteroidal bodies. In: Papike, J.J. (Ed.), Planetary Materials. In: Reviewsin Mineralogy, vol. 36. Mineralogical Society of America, Washington, DC, pp. 4.103–4.130.

Mittlefehldt, D.W., Bogard, D.D., Berkley, J.L., Garrision, D.H., 2003. Brachinites: Ig-neous rocks from a differentiated asteroid. Meteoritics and Planetary Science 38, 1601–1625.

Moecher, D.P., Perkins, D., III, Leier-Englehardt, P.J., et al., 1986. Metamorphic conditionsof late Archean high-grade gneisses, Minnesota River Valley, U.S.A. Canadian Journalof Earth Sciences 23, 633–645.

Mogk, D., Henry, D., 1988. Metamorphic petrology of the northern Archean WyomingProvince, SW Montana: evidence for Archean collisional tectonics, In: Ernst, W. (Ed.),Metamorphism and Crustal Evolution in the Western US. Prentice Hall, EnglewoodCliffs, NJ, pp. 363–382.

Mogk, D.W., Mueller, P.A., Wooden, J.L., 1988. Archean tectonics of the North SnowyBlock, Beartooth Mountains, Montana. Journal of Geology 96, 125–141.

Mogk, D.W., Mueller, P.A., Wooden, J., 1992. The significance of Archean terrane bound-aries: Evidence from the northern Wyoming province. Precambrian Research 55, 155–168.

Mogk, D.W., Mueller, P.A., Wooden, J.L., 2004. Tectonic implications of late Archean-early Proterozoic supracrustal rocks in the Gravelly Range, SW Montana. In: GeologicalSociety of America, 2004 Annual Meeting, Abstracts with Programs – Geological So-ciety of America, vol. 36, no. 5, p. 507.

Mojzsis, S.J., Harrison, T.M., 2002a. Establishment of a 3.83-Ga magmatic age for theAkilia tonalite (southern West Greenland). Earth and Planetary Science Letters 202,563–576.

Mojzsis, S.J., Harrison, T.M., 2002b. Origin and Significance of Archean Quartzose Rocksat Akilia, Greenland. Science 298, 917a.

Mojzsis, S.J., Ryder, G., 2001. Accretion to Earth and Moon ∼3.85 Ga. In: Peucker-Ehrenbrink, B., Schmitz, B. (Eds.), Accretion of Extraterrestrial Matter ThroughoutEarth’s History. Kluwer, New York, pp. 423–466.

Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend,C.R.L., 1996. Evidence for life on Earth before 3,800 million years ago. Nature 384,55–59.

Mojzsis, S.J., Harrison, T.M., Arrhenius, G., McKeegan, K.D., Grove, M., 1999. Origin oflife from apatite dating? – Reply. Nature 400, 127–128.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 101aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

102 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancientzircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181.

Mojzsis, S.J., Coath, C.D., Greenwood, J.P., McKeegan, K.D., Harrison, T.M., 2003. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulphides deter-mined by ion microprobe analysis. Geochimica et Cosmochimica Acta 67, 1635–1658.

Monster, J., Appel, P.W.U, Thode, H.G., Schidlowski, M., Carmichael, C.M., Bridgwa-ter, D., 1979. Sulfur isotope studies in early Archaean sediments from Isua, WestGreenland – Implications for the antiquity of bacterial sulfate reduction. Geochimicaet Cosmochimica Acta 43, 405–413.

Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343.

Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation be-tween dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary ScienceLetters 22, 169–176.

Moorbath, S., 1975. Evolution of Precambrian crust from Strontium isotopic evidence.Nature 254, 395–398.

Moorbath, S., 1977. Ages, isotopes and the evolution of the Precambrian continental crust.Chemical Geology 20, 151–187.

Moorbath, S., 2005. Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaeantransition. Applied Geochemistry 20, 819–824.

Moorbath, S., Taylor, P.N., 1985. Precambrian geochronology and the geological record.In: Snelling, N.J. (Ed.), The Chronology of the Geological Record. In: Geological So-ciety of London, Memoir 10, pp. 10–28.

Moorbath, S., O’Nions, R.K., Pankhurst, R.J., Gale, N.H., McGregor, V.R., 1972. Fur-ther rubidium-strontium age determinations on the very early Precambrian rocks of theGodthåb district: West Greenland. Nature 240, 78–82.

Moorbath, S., O’Nions, R.K., Pankhurst, R.J., 1973. Early Archaean age for the Isua IronFormation, West Greenland. Nature 245, 138–139.

Moorbath, S., Whitehouse, M.J., Kamber, B.S., 1997. Extreme Nd-isotope heterogeneityin the early Archaean – Fact or fiction? Case histories from northern Canada and WestGreenland. Chemical Geology 135, 213–231.

Moores, E.M., 2002. Pre-1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmentalindicators. Bulletin of Geological Society of America 114, 80–95.

Moralev, V.M., 1986. Early Evolution of the Continental Lithosphere. Nauka, Moscow,119 pp. (in Russian).

Moralev, V.M., Glukhovsky, M.Z., 2000. Diamond-bearing kimberlite fields of the Siberiancraton and the early Precambrian metallogeny. Ore Geology Reviews 17, 141–153.

Morant, P., 1998. Panorama Zinc-Copper deposits. In: Berkman, D.A., Mackenzie, D.H.(Eds.), Geology of Australian and Papua New Guinean Mineral Deposits. The Aus-tralian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 287–292.

Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr,K.E., 2000. Source regions and time scales for the delivery of water to Earth. Meteoriticsand Planetary Science 35, 1309–1320.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 102aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 103

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Morey, G.B., Sims, P.K., 1976. Boundary between two lower Precambrian terranes in Min-nesota and its geological significance. Bulletin of Geological Society of America 87,141–152.

Morgan, J.W., Anders, E., 1980. Chemical composition of Earth, Venus and Mercury.Proceedings of the National Academy of Sciences of the United States of America –Physical Sciences 77, 6973–6977.

Morgan, J.W., Walker, R.J., Grossman, J.N., 1992. Rhenium-osmium isotope systematicsin meteorites I: Magmatic iron meteorite groups IIAB and IIIAB. Earth and PlanetaryScience Letters 108, 191–202.

Morgan, J.W., Horn, M.F., Walker, R.J., Grossman, J.N., 1995. Rhenium-osmium con-centration and isotope systematics in group IIAB iron meteorites. Geochimica et Cos-mochimica Acta 59, 2331–2344.

Mortensen, J.K., Card, K.D., 1993. U-Pb age constraints for the magmatic and tectonicevolution of the Pontiac Subprovince, Quebec. Canadian Journal of Earth Sciences 30,1970–1980.

Moser, D., 1994. The geology and structure of the mid-crustal Wawa gneiss domain: akey to understanding tectonic variation with depth and time in the late Archean Abitibi-Wawa orogen. Canadian Journal of Earth Sciences 31, 1064–1080.

Moser, D.E., Heaman, L.M., Krogh, T.E., Hanes, J.A., 1996. Intracrustal extension of anArchean orogen revealed using single-grain U-Pb zircon geochronology. Tectonics 15,1093–1109.

Moser, D.E., Flowers, R.M., Hart, R.J., 2001. Birth of the Kaapvaal tectosphere 3.08 billionyears ago. Nature 291, 465–468.

Moyen, J.-F., Stevens, G., 2006. Experimental constraints on TTG petrogenesis: Implica-tions for Archean geodynamics. In: Benn, K., Mareschal, J.-C., Condie, K.C. (Eds.),Archean Geodynamics and Environments. In: Geophysical Monograph 164. AmericanGeophysical Union, Washington, DC, pp. 149–175.

Moyen, J.-F., Martin, H., Jayananda, M., Auvray, B., 2003. Late Archaean granites: a typol-ogy based on the Dharwar Craton (India). Precambrian Research 127 (1–3), 103–123.

Moyen, J.-F., Stevens, G., Kisters, A.F.M., 2006. Record of mid-Archaean subduction frommetamorphism in the Barberton terrain, South Africa. Nature 443, 559–562.

Muehlenbachs, K., 1998. The oxygen isotopic composition of the oceans, sediments andthe seafloor. Chemical Geology 145, 263–273.

Mueller, P.A., Frost, C.D., 2006. The Wyoming province: a distinctive Archean craton inLaurentian North America. Canadian Journal of Earth Sciences 43, in press.

Mueller, P.A., Wooden, J.L., 1988. Evidence for Archean subduction and crustal recycling,Wyoming province. Geology 16, 871–874.

Mueller, P.A., Wooden, J.L., Henry, D.J., Bowes, D.R., 1985. Archean crustal evolutionof the eastern Beartooth Mountains, Montana–Wyoming. In: Montana Bureau of Minesand Geology, Special Publication 92, pp. 9–20.

Mueller, P.A., Shuster, R.D., Graves, M.A., Wooden, J.L., Bowes, D.R., 1988. Age andcomposition of a Late Archean magmatic complex, Beartooth Mountains, Montana–Wyoming. In: Montana Bureau of Mines and Geology, Special Publication 96, pp. 6–22.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 103aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

104 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Mueller, P.A., Wooden, J.L., Nutman, A.P., 1992. 3.96 Ga zircons from an Archeanquartzite, Beartooth Mountains, Montana. Geology 20, 327–330.

Mueller, P.A., Shuster, R.D., Wooden, J.L., Erslev, E.A., Bowes, D.R., 1993. Age andcomposition of Archean crystalline rocks from the southern Madison Range, Montana:implications for crustal evolution in the Wyoming craton. Bulletin of Geological Societyof America 105, 437–446.

Mueller, P.A., Heatherington, A., Weyand, E., Mogk, D., Wooden, J., Nutman, A., 1995.Geochemical evolution of Archean crust in the northern Madison Range, Montana: Evi-dence from U-Pb and Sm-Nd systematics. Geologic Society of America, Abstracts withPrograms 27 (4), 49.

Mueller, P.A., Wooden, J.L., Mogk, D.W., Nutman, A.P., Williams, I.S., 1996. Extendedhistory of a 3.5 Ga trondhjemitic gneiss, Wyoming province, USA: evidence from U-Pbsystematics in zircon. Precambrian Research 78, 41–52.

Mueller, P.A., Wooden, J.L., Nutman, A.P., Mogk, D.W., 1998. Early Archean crust in thenorthern Wyoming province: Evidence from U–Pb ages of detrital zircons. PrecambrianResearch 91, 295–307.

Mueller, P.A., Heatherington, A.L., Kelly, D.M., Wooden, J.L., Mogk, D.W., 2002. Paleo-proterozoic crust within the Great Falls tectonic zone; implications for the assembly ofsouthern Laurentia. Geology 30, 127–130.

Mueller, P., Wooden, J., Heatherington, A., Burger, H., Mogk, D., D’Arcy, K., 2004. Ageand evolution of the Precambrian crust of the Tobacco Root Mountains. In: Brady, J.B.,Burger, H.R., Cheney, J.T., Harms, T.A. (Eds.), Precambrian Geology of the TobaccoRoot Mountains, Montana. In: Geological Society of America, Special Paper 377, pp.181–202.

Mueller, P.A., Burger, H.R., Wooden, J.L., Brady, J.B., Cheney, J.T., Harms, T.A., Heather-ington, A.L., Mogk, D.W., 2005. Paleoproterozoic metamorphism in the northernWyoming Province: implications for the assembly of Laurentia. Journal of Geology113 (2), 169–179.

Mueller, P., Mogk, D., Wooden, J., 2006. Archean Crustal Evolution in the NorthernWyoming Province: Implications for Mantle Keels. In: AGU Fall Meeting (V11D-0631)

Mueller, W.U., Marquis, R., Thurston, P. (Eds.), 2002. Evolution of the Archean AbitibiGreenstone Belt and Adjacent Terranes: New Insights from Geochronology, Geochem-istry, Structure and Facies Analysis. Precambrian Research 115, 374 pp.

Muhling, J.R., 1990. The Narryer Gneiss Complex of the Yilgarn block, Western Aus-tralia: a sement of Archean lower crust uplifted during Proterozoic orogeny. Journal ofMetamorphic Geology 8, 47–64.

Mulligan, R., 1957. Split Lake, Manitoba. Geological Survey of Canada, Preliminary Map10-1956.

Murphy, J.B., Nance, R.D., 1991. Supercontinent model for the contrasting character lateproterozoic orogenic belts. Geology 91, 469–472.

Musacchio, G., White, D.J., Asudeh, I., Thomson, C.J., 2004. Lithospheric structure andcomposition of the Archean western Superior Province from seismic refraction/wide-

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 104aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 105

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

angle reflection and gravity modeling. Journal of Geophysical Research 109, B03304,doi:10.1029/2003JB002427.

Myers, J.S., 1978. Formation of banded gneisses by deformation of igneous rocks. Pre-cambrian Research 6, 43–64.

Myers, J.S., 1988a. Early Archaean Narryer Gneiss Complex, Yilgarn Craton, WesternAustralia. Precambrian Research 38, 297–307.

Myers, J.S., 1988b. Oldest known terrestrial anorthosite at Mount Narryer, Western Aus-tralia. Precambrian Research 38, 309–323.

Myers, J.S., 1990a. Precambrian tectonic evolution of part of Gondwana, southwesternAustralia. Geology 18, 537–540.

Myers, J.S., 1990b. Western Gneiss Terrane. In: Geology and Mineral Resources of West-ern Australia. Western Australia Geological Survey, Memoir 3, pp. 13–31.

Myers, J.S., 1993. Precambrian history of the West Australian Craton and adjacent orogens.Annual Review of Earth and Planetary Sciences 21, 453–485.

Myers, J.S., 1995. The generation and assembly of an Archaean supercontinent: evidencefrom the Yilgarn Craton, Western Australia. In: Coward, M.P., Ries, A.C. (Eds.), EarlyPrecambrian Processes. In: Geological Society of London, Special Publication 95, pp.143–154.

Myers, J.S., 1997. Archaean geology of the Eastern Goldfields of Western Australia; re-gional overview. Precambrian Research 83, 1–10.

Myers, J.S., 2001. Protoliths of the 3.8–3.7 Ga Isua greenstone belt, West Greenland. Pre-cambrian Research 105, 129–141.

Myers, J.S., Crowley, J.L., 2000. Vestiges of life in the oldest Greenland rocks? A review ofearly Archaean geology of the Godthåbsfjord region, and reappraisal of field evidencefor >3850 Ma life on Akilia. Precambrian Research 103, 101–124.

Myers, J.S., Hocking, R., 1998. Geological Map of Western Australia, 1:2,500,000, 13thed. Western Australian Geological Survey.

Myers, J.S., Occhipinti, S.A., 2001. Narryer Terrane. In: Occhipinti, S.A., Sheppard, S.,Myers, J.S., Tyler, I.M., Nelson, D.R. (Eds.) Archaean and Palaeoproterozoic Geologyof the Narryer Terrane (Yilgarn Craton) and the Southern Gascoyne Complex (Capri-corn Orogen), Western Australia – A Field Guide. In: Western Australia GeologicalSurvey, Record 2001/8, pp. 8–42.

Myers, J.S., Swager, C., 1997. The Yilgarn Craton. In: de Wit, M., Ashwal, L.D.(Eds.),Greenstone Belts. Clarendon Press, Oxford, UK, pp. 640–656.

Myers, J.S., Williams, I.R., 1985. Early Precambrian crustal evolution at Mount Narryer,Western Australia. Precambrian Research 27, 153–163.

Mysen, B., Boettcher, A.L., 1975a. Melting of an hydrous mantle I. Phase relations ofnatural peridotite at high pressures and temperatures with controlled activity of water,carbon dioxyde and hydrogen. Journal of Petrology 16, 520–548.

Mysen, B., Boettcher, A.L., 1975b. Melting of an hydrous mantle II. Geochemistry ofcrystals and liquids formed by anatexis of mantle peridotite at high pressures andtemperatures as a function of the controlled activities of water, carbon dioxyde andhydrogen. Journal of Petrology 16, 549–593.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 105aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

106 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nadeau, P., 2003. Structural investigation of the Porpoise Cove area, Northeastern SuperiorProvince, Northern Quebec. Unpublished thesis. Simon Fraser University, 95 pp.

Nagahara, H., 1992. Yamato 8002: Partial melting residue on the “unique” chondrite parentbody. In: Proceedings of the NIPR Symposium on Antarctic Meteorites, vol. 5, pp. 191–223.

Nagao, K., Okazaki, R., Sawada, S., Nakamura, N., 1999. Noble gases and K-Ar ages offive Rumuruti chondrites: Yamato Y-75302, Y-79182, Y-793575, Y-82002, and Asuka-881988. Antarctic Meteorite Research (abstract) 23, 81.

Nägler, T.F., Kramers, J.D., 1998. Nd isotopic evolution of the upper mantle during thePrecambrian: Models, data and the uncertainty of both. Precambrian Research 91, 233–252.

Nägler, T.F., Kramers, J.D., Kamber, B.S., Frei, R., Predergast, M.D.A., 1997. Growth ofsubcontinental lithospheric mantle beneath Zimbabwe started at or before 3.8 Ga: ARe-Os study on chromites. Geology 25, 983–986.

Nakamoto, T., Kita, N.T., Tachibana, S., 2005. Chondrule age distribution and rate of heat-ing events for chondrule formation. Antarctic Meteorite Research 18, 253–272.

Nakamura, K., Kato, Y., 2004. Carbonatization of oceanic crust by the seafloor hydrother-mal activity and its significance as a CO2 sink in the Early Archean. Geochimica etCosmochimica Acta 68, 4595–4618.

Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous andordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–775.

Namiki, N., Solomon, S.C., 1994. Impact crater densities on volcanoes and coronae onVenus: implications for volcanic resurfacing. Science 265, 929–933.

Nance, R.D., Worsley, T.R., Moody, J.B., 1998. The supercontinent cycle. Scientific Amer-ican 259, 44–52.

Naraoka, H., Ohtake, M., Maruyama, S., Ohmoto, H., 1996. Non-biogenic graphite in 3.8-Ga metamorphic rocks from the Isua district, Greenland. Chemical Geology 133, 251–260.

Nelson, D.R., 1996. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1995.Western Australia Geological Survey, Record 1996/5.

Nelson, D.R., 1997a. Evolution of the Archaean granite–greenstone terranes of the EasternGoldfields, Western Australia. SHRIMP U-Pb zircon constraints. Precambrian Research83, 57–81.

Nelson, D.R., 1997b. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1996.Western Australia Geological Survey, Record 1997/2.

Nelson, D.R., 1998a. Granite-greenstone crust formation on the Archaean Earth: a con-sequence of two superimposed processes. Earth and Planetary Science Letters 158,109–119.

Nelson, D.R., 1998b. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1997.Western Australia Geological Survey, Record 1998/2.

Nelson, D.R., 1999, Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1998.Western Australia Geological Survey, Record 1999/2.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 106aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 107

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nelson, D.R., 2000. Compilation of Geochronology Data, 1999. In: Geological Survey ofWestern Australia, Record 2000/2, pp. 62–65.

Nelson, D.R., 2001. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 2000.Western Australia Geological Survey, Record 2001/2.

Nelson, D.R., 2002a. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 2001.Western Australia Geological Survey, Record 2002/2.

Nelson, D.R., 2002b. Hadean Earth crust: microanalytical investigation of 4.4 to 4.0 Gazircons from Western Australia. Geochimica et Cosmochimica Acta 66, A549.

Nelson, D.R., 2004. The early Earth, Earth’s formation and first billion years. In: Eriksson,P.G., et al. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam,pp. 3–27.

Nelson D.R., Trendall A.F., Altermann W., 1999. Chronological correlations between thePilbara and Kaapvaal cratons. Precambrian Research 97, 165–189.

Nelson, D.R., Robinson, B.W., Myers, J.S., 2000. Complex geological histories extendingfor �4.0 Ga deciphered from xenocryst zircon microstructures. Earth and PlanetaryScience Letters 181 (1–2), 89–102.

Nemchin, A.A., 1990. Evolution of the Aldan Shield, Eastern Siberia. In: VII InternationalConference on Geochronology, Cosmochronology and Isotope Geology, Abstracts vol-ume. Geological Society of Australia, Canberra, p. 70.

Nemchin, A.A., Pidgeon, R.T., 1997. Evolution of the Darling Range batholith, YilgarnCraton, Western Australia: a SHRIMP zircon study. Journal of Petrology 38, 625–649.

Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., 2006. Re-evaluation of the origin andevolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth andPlanetary Science Letters 244, 218–233.

Neukum, G., Ivanov, B., Hartmann, W.K., 2001. Cratering records in the inner solar sys-tem. In: Kallenbach, R., et al. (Eds.), Chronology and Evolution of Mars. Kluwer,Dordrecht, pp. 55–86.

Neumann, E.-R., 1994. The Oslo Rift: P-T relations and lithosphere structure. Tectono-physics 240, 159–172.

Neumayr, P., Cabri, L.J., Groves, D.I., Mikucki, E.J., Jackman, J., 1993. The mineralogicaldistribution of gold and relative timing of gold mineralization in two Archean settingsof high metamorphic grades in Australia. Canadian Mineralogist 31, 711–725.

Newsom, H.E., White, W.M., Jochum, K.P., Hofmann, A.W., 1986. Siderophile and chal-cophile element abundances in oceanic basalts, Pb isotope evolution and growth of theEarth’s core. Earth and Planetary Science Letters 80, 299–313.

Newton, R.C., Manning, C.E., 2005. Solubility of anhydrite, CaSO4, in NaCl-H2O solutionat high pressures and temperatures: Applications to fluid-rock interaction. Journal ofPetrology 46, 701–716.

Neymark, L.A., Kovach, V.P., Nemchin, A.A., Morozova, I.M., Kotov, A.B., Vinogradov,D.P., Gorokhovsky, B.M., Ovchinikova, G.V., Bogomolova, L.M., Smelov, A.P. 1993.Late Archaean intrusive complexes in the Olekma granite-greenstone terrane (EasternSiberia): geochemical and isotopic study. Precambrian Research 62, 453–472.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 107aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

108 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Neymark, L.A., Larin, A.M., Nemchin, A.A., 1998. Geochemical, geochronological (U-Pb) and isotopic (Pb, Nd) evidence of anorogenic magmatism in the North Baikalvolcano-plutonic belt. Petrology 6 (2), 139–164.

Nichols Jr., R.H., Hohenberg, C.M., Kehm, K., Kim, Y., Marti, K., 1994. I-Xe studiesof the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and theBjurböle standard. Geochimica et Cosmochimica Acta 58, 2553–2561.

Nicolaysen, K., Frey, F.A., Hodges, K.V., Weis, D., Giret, A., 2000. 40Ar/39Ar geochronol-ogy of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implica-tions for cenozoic eruption rates of the Kerguelen plume. Earth and Planetary ScienceLetters 174, 313–28.

Nicollet, C., Lahlafi, M., Lasnier, B., 1993. Existence d’un épisode métamorphique tardi-hercynien, granulitique de basses pressions, dans le Haut-Allier (Massif Central) : im-plications géodynamiques. Comptes rendus de l’Académie des Sciences, Série 2 317,1609–1615.

Niemeyer, S., 1979a. I-Xe dating of silicate and troilite from IAB iron meteorites.Geochimica et Cosmochimica Acta 43, 843–860.

Niemeyer, S., 1979b. 40Ar-39Ar dating of inclusions from IAB iron meteorites. Geochimicaet Cosmochimica Acta 43, 1829–1840.

Niemeyer, S., Zaikowski, A., 1980. I-Xe age and trapped Xe components in the Murray(C2) chondrite. Earth and Planetary Science Letters 48, 335–347.

Nieuwland, D.A., Compston, W., 1981. Crustal evolution in the Yilgarn Block near Perth,Western Australia. In: Glover, J.A., Groves, D.I. (Eds.), Archaean Geology. In: Geolog-ical Society of Australia, Special Publication 7, pp. 159–171.

Nijman, W., De Bruin, K., Valkering, M., 1998. Growth fault control of early Archaeancherts, barite mounds, and chert-barite veins, North Pole Dome, Eastern Pilbara, West-ern Australia. Precambrian Research 88, 25–52.

Nijman, W., de Vries, S.T., 2004. Early Archaean crustal collapse structures and sedimen-tary basin dynamics. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U.,Catuneau, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam,pp. 139–154.

Nijman, W., de Bruijne, K.C.H., Valkering, M.E., 1998. Growth fault control of early Ar-chaean cherts, barite mounds and chert-barite veins, North Pole Dome, eastern Pilbara,Western Australia. Precambrian Research 88, 25–52.

Nikishin, A.M., Ziegler, P.A., Abbott, D., Brunet, M-F., Cloetingh, S., 2002. Permo-Triassic intraplate magmatism and rifting in Eurasia: Implications for mantle plumesand mantle dynamics. Tectonophysics 351, 3–39.

Nikolayeva, O.V., 1993. Largest impact features on Venus—non-preserved or non-recognizable? In: Lunar and Planetary Science Conference XXIV. Houston, TX, pp.1083–1084.

Nimmo, F., McKenzie, D. 1998. Volcanism and tectonics on Venus. Annual Reviews ofEarth and Planetary Sciences 26, 23–52.

Nisbet, E.G., Sleep, N., 2001. The habitat and nature of early life. Nature 409, 1083–1091.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 108aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 109

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nisbett, E.G., Cheadle, M.J., Arndt, N.J., Bickle, M.J., 1993. Constraining the potentialtemperature of the Archean mantle: A review of the evidence from komatiites. Lithos30, 291–307.

Nishizawa, M., Takahata, N., Terada, K., Komiya, T., Ueno, Y., Sano, Y., 2005. Rare-earthelement, lead, carbon, and nitrogen geochemistry of apatite-bearing metasedimentsfrom the ∼3.8 Ga Isua Supracrustal Belt, West Greenland. International Geology Re-view 47, 952–970.

Noldart A.J., Wyatt, J.D., 1962. The geology of a portion of the Pilbara Goldfield, coveringthe Marble Bar and Nullagine 4-mile map sheets. Western Australia Geological Survey,Bulletin 115, 199 pp.

Nolet, G., Karato, S-I., Montelli, R., 2006. Plume fluxes from seismic tomography. Earthand Planetary Science Letters 248, 685–699.

Norman, M.D., Borg, L.E., Nyquist, L.E., Bogard, D.D., 2003. Chronology, geochemistry,and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Cluesto the age, origin, structure, and impact history of the lunar crust. Meteoritics and Plan-etary Science 38, 645–661.

Norrish, K., Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysisof a wide range of geological samples. Geochemica et Cosmochimica Acta 33, 431–453

Norrish, K., Chappell, B.W., 1977. X-ray fluorescence spectrometry. In Zussman, J. (Ed.),Physical Methods in Determinative Mineralogy, 2nd ed. Academic Press, London, pp.201–272.

Norrish, K., Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysisof a wide range of geological samples. Geochimica et Cosmochimica Acta 33, 431–453.

Nozhkin, A.D., 1999. Continental margin Paleoproterozoic complexes in the Angara fold-belt and their metallogenic peculiarities. Russian Geology and Geophysics 40 (11),1524–1544

Nozhkin, A.D., 1986. Main features of composition and structure of the Precambrian com-plexes of the Yenisey highland. In: Reverdatto, V.V., Khlestov, V.V. (Eds.), PrecambrianCrystalline Complexes of the Yenisey Highland. Russian Academy of Sciences Publi-cation, Novosibirsk, pp. 9–18 (in Russian).

Nozhkin, A.D., Turkina, O.M., 1993. Geochemistry of granulites from Kansk andSharyzhalgay complexes. In: Transactions of the United Institute of Geology, Geo-physics and Mineralogy, vol. 817, Novosibirsk, 219 pp. (in Russian).

Nozkin, A.D., Turkina, O.M., Melgunov, M.S., 2001. Geochemistry of metavolcano-sedimentary and granitoid rocks of the Onot greenstone belt. Geochemistry Interna-tional 39 (1), 27–44.

Nunes, D.C., Phillips, R.J., Brown, C.D., Dombard, A.J., 2004. Relaxation of compen-sated topography and the evolution of crustal plateaus on Venus. Journal GeophysicalResearch 109, doi:10.1029/2003JE002119.

Nutman, A.P., 1984. Early Archaean crustal evolution of the Isukasia area, southern WestGreenland. In: Kröner, A., Greiling, R. (Eds.), Precambrian Tectonics Illustrated. E.Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 79–94.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 109aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

110 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nutman, A.P., 2006a. Comment on: Zircon thermometer reveals minimum melting condi-tions on Earliest Earth. Science 311, 779a.

Nutman, A.P, 2006b. Antiquity of the oceans and continents. Elements 2, 223–227.Nutman, A.P., Bridgwater, D., 1986. Early Archaean Amîtsoq tonalites and granites from

the Isukasia area, southern West Greenland: Development of the oldest-known sial.Contributions to Mineralogy and Petrology 94, 137–148.

Nutman, A.P., Collerson, K.D., 1991. Very early Archean crustal-accretion complexes pre-served in the North Atlantic Craton. Geology 19, 791–794.

Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archeangranitoids from the Contendas-Mirante aarea of the Sao Francisco craton, Bahia, Brazil.Precambrian Research 63, 179–188.

Nutman, A.P., Friend, C.R.L., 2006. Petrography and geochemistry of apatites in bandediron formation, Akilia, W. Greenland: Consequences for oldest life evidence. Precam-brian Research 147, 100–106.

Nutman, A.P., Friend, C.R.L., 2007. Adjacent terranes with c. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton,southern West Greenland: Complexities of Neoarchaean collisional orogeny. Precam-brian Research, in press.

Nutman, A.P., Allaart, J.H., Bridgwater, D., Dimroth, E., Rosing, M.T., 1984a. Strati-graphic and geochemical evidence for the depositional environment of the early Ar-chaean Isua supracrustal belt, southern West Greenland. Precambrian Research 25,365–396.

Nutman, A.P., Bridgwater, D., Fryer, B, 1984b. The iron rich suite from the Amîtsoqgneisses of southern West Greenland: Early Archaean plutonic rocks of mixed crustaland mantle origin. Contributions to Mineralogy and Petrology 87, 24–34.

Nutman, A.P., Mojzsis, S.J., Friend, C.R.L., 1997. Recognition of � 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth.Geochimica et Cosmochimica Acta 61, 2475–2484.

Nutman, A.P., Friend, C.R.L., Baadsgaard, H., McGregor, V.R., 1989. Evolution and as-sembly of Archean gneiss terranes in the Godthåbsfjord region, southern West Green-land: Structural, metamorphic, and isotopic evidence. Tectonics 8, 573–589.

Nutman, A.P., Chernyshev, I.V., Baadsgaard, H., 1990. The Archean Aldan shield ofSiberia, USSR – The search for its oldest rocks and evidence for reworking in the Mid-Proterozoic. In: Golver, J.E., Ho, S. (Eds.), Third International Archean Symposium,Extended Abstract Volume, Geoconferences WA Inc., Perth, Australia, p. 60–61.

Nutman, A.P., Kinny, P.D., Compston, W., Williams, I.S., 1991. SHRIMP U-Pb zircongeochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Re-search 52, 275–300.

Nutman, A.P., Chernyshev. I.V., Baadsgaard, H., Smelov, A.P., 1992a. The Aldan shieldof Siberia, USSR: the age of its Archean components and evidence for widespreadreworking in the mid-Proterozoic. Precambrian Research 54, 195–210.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 110aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 111

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nutman, A.P., Chadwick, B., Ramakrishnan, M., Viswanatha, M.N., 1992b. U-Pb ages ofdetrital zircon in supracrustal rocks older than c. 3000 Ma in southern Peninsular India.Journal of the Geological Society of India 39, 367–374.

Nutman, A.P., Bennett, V., Kinny, P.D., Price, R. 1993a. Large-scale crustal structure ofthe northwestern Yilgarn Craton, Western Australia: evidence from Nd isotopic dataand zircon geochronology. Tectonics 12, 971–981.

Nutman, A.P., Friend, C.R.L., Kinny, P.D., McGregor, V.R., 1993b. Anatomy of an EarlyArchean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Green-land. Geology 21, 415–418.

Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001. Review of the oldest (4400–3600 Ma)geological and mineralogical record: Glimpses of the beginning. Episodes 24 (2), 93–101.

Nutman, A.P., Hagiya, H., Maruyama, S. 1995. SHRIMP U-Pb single zircon geochronol-ogy of a Proterozoic mafic dyke, Isukasia, southern West Greenland. Bulletin of theGeological Society Denmark 42, 17–22.

Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C., Kinny, P.D., 1996. The Itsaqgneiss complex of southern West Greenland; the world’s most extensive record of earlycrustal evolution. Precambrian Research 78, 1–39.

Nutman, A.P., Bennett, V.C., Friend, C.R.L., Rosing, M.T., 1997. ∼3710 and �3790 Mavolcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotopeimplications. Chemical Geology 141, 271–287.

Nutman, A.P., Mojzsis, S.J., Friend, C.R.L., 1997. Recognition of � 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth.Geochimica et Cosmochimica Acta 61, 2475–2484.

Nutman, A.P., Bennett, V.C., Friend, C.R.L., Norman, M.D., 1999. Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of theIsua supracrustal belt, southern West Greenland: constraints on early crust formation.Contributions to Mineralogy and Petrology 137 (4), 364–388.

Nutman, A.P., Friend, C.R.L., Bennett, V.C., McGregor, V.R., 2000. The early Archaean It-saq Gneiss Complex of southern West Greenland: The importance of field observationsin interpreting dates and isotopic data constraining early terrestrial evolution. Geochem-ica et Cosmochimica Acta 64, 3035–3060.

Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001. Review of the oldest (4400–3600 Ma)geological and mineralogical record: Glimpses of the beginning. Episodes 24, 93–101.

Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2002a. Evidence for 3650–3600 Ma assemblyof the northern end of the Itsaq Gneiss complex, Greenland: implicationm for earlyArchean tectonics. Tectonics 21 (1), 10.1029/2000TC001203.

Nutman, A.P., McGregor, V.R., Shiraishi, K., Friend, C.R.L., Bennett, V.C., Kinny, P.D.,2002b. �3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complexaround Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites. Precambrian Research 117, 185–224.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 111aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

112 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Nutman, A.P., Friend, C.R.L., Barker, S.S., McGregor, V.R., 2004, Inventory and assess-ment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland.Precambrian Research 135, 281–314.

Nutman, A.P., Bennett, V.C., Friend, C.R.L., Horie, K., Hidaka, H., 2007. C. 3850 Matonalites in the Nuuk region, Greenland: Geochemistry and their reworking within anEoarchaean gneiss complex. Contributions to Mineralogy and Petrology, in press.

Nyquist, L.E., Takeda, H., Bansal, B.M., Shih, C-Y., Wiesmann, H., Wooden, J.L., 1986.Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and a matrix samplefrom the Y 75011 eucrite. Journal of Geophysical Research 91, 8137–8150.

Nyquist, L.E., Bansal, B.M., Wiesmann, H., Shih, C-Y., 1994. Neodymium, strontium andchromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and thechronology of the angrite parent body. Meteoritics 29, 872–885.

Nyquist, L.E., Bogard, D.D., Shih, C.Y., Greshake, A., Stoffler, D., Eugster, O., 2001a.Ages and geologic histories of Martian meteorites. Space Science Reviews 96 (1–4),105–164.

Nyquist, L.E., Reese, Y., Wiesmann, H., Shih, C-Y., Takeda, H., 2001b. Live 53Mn and26Al in an unique cumulate eucrite with very calcic feldspar (An-98). Meteoritics andPlanetary Science 36 (Supplement), A151–152.

Nyquist, L.E., Shih, C-Y., Wiesmann, H., Mikouchi, T., 2003. 26Al and 53Mn in D’Orbignyand Sahara 99555 and the timescale for angrite magmatism. In: Lunar and PlanetaryScience Conference XXXIV, abstract 1388.

Occhipinti, S.A., Reddy, S.M., 2004. Deformation in a complex crustal-scale shear zone:Errabiddy Shear Zone, Western Australia. In: Alsop, G.I., Holdsworth, R.E., McCaffrey,K.J.W., Hand, M. (Eds.), Flow Processes in Faults and Shear Zones. In: GeologicalSociety of London, Special Publication 224, pp. 229–248.

Occhipinti, S.A., Sheppard, S., Passchier, C., Tyler, I.M., Nelson, D.R., 2004. Palaeopro-terozoic crustal accretion and collision in the southern Capricorn Orogen: the GlenburghOrogeny. Precambrian Research 128, 237–255.

O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ra-tios. In: U.S. Geological Survey, Professional Paper 525(B), pp. 79–84.

Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy16, 491–559.

Ohmoto, H., 1997. When did Earth’s atmosphere become oxic? Geochemical News 93,12–27.

Ohmoto, H., 1999. Redox state of the Archean atmosphere: Evidence from detrital heavyminerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia: Comment.Geology 27, 1151–1152.

Ohmoto, H., Felder, R.P., 1987. Bacterial activity in the warmer, sulfate-beating Archeanoceans. Nature 328, 244–246.

Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: Barnes, H.L. (Ed.),Geochemistry of Hydrothermal Ore Deposits, 3rd ed. John Wiley & Sons, New York,pp. 517–611.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 112aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 113

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Ohmoto, H., Kakegawa, T., Lowe, D.R., 1993. 3.4-billion-year-old biogenic pyrites fromBarberton, South Africa – sulfur isotope evidence. Science 262, 555–557.

O’Keefe, J.D., Aherns, T.J., 1982. Interaction of the Cretaceous/Tertiary extinction bolidewith the atmosphere. In: Geological Society of America, Special Paper 190, pp. 103–120.

Oldow, J.S., Bally, A.W., Ave Lallemant, H.G., Leeman, W.P., 1989. Phanerozoic evolutionof the North American Cordillera; United States and Canada. In: Bally, A.W., Palmer,A.R. (Eds.), The Geology of North America – An Overview. In: The Geology of NorthAmerica, v. A. Geological Society of America, Boulder, CO, pp. 139–232.

Olivarez, A.M., Owen, R.M., 1991. The europium anomaly of seawater: implications forfluvial versus hydrothermal REE inputs to the oceans. Chemical Geology 92, 317–328.

Oliver, R.L., James, P.R., Collerson, K.D., Ryan, A.B., 1982. Precambrian geologic rela-tionships in the Vestfold Hills, Antarctica. In: Craddock, C. (Ed.), Antarctic Geoscience.University of Wisconsin Press, Madison, pp. 435–444.

O’Neil, J., Cloquet, C., Stevenson, R.K., Francis, D., 2006. Fe isotope systematics ofbanded iron formation from the 3.8 Ga Nuvvuagittuq greenstone belt, Northern Su-perior Pronvince, Canada. Geological Association of Canada, Abstracts, vol. 31.

O’Neil, J.R., 1986. Theoretical and experimental aspects of isotope fractionation. In: Val-ley, J.W., Taylor, H.P., J.R. O’Neil (Eds.), Stable Isotope in High Temperature Geologi-cal Processes. In: Reviews in Mineralogy, vol. 16, pp. 1–40.

O’Neill, C.J., Lenardic, A., O’Reilly, S.Y., Griffin, W.L., 2007. Dynamics of cratons in anevolving mantle. Lithos, in press.

O’Neill, J.M., Lopez, D.A., 1985. Character and regional significance of Great Falls Tec-tonic Zone, east-central Idaho and west-central Montana. American Association ofPetroleum Geologists Bulletin 69, 437–447.

O’Nions, R.K., Evenson, N.M., Hamilton, P.J., 1979 Geochemical modelling of mantledifferentiation and crustal growth. Journal of Geophysical Research 84, 6091–6101

O’Nions, R.K., Hamilton, P.J., Hooker, P.J., 1983. A Nd isotopic investigation of sedimentsrelated to crustal development in the British Isles. Earth and Planetary Science Letters63, 229–240

Ono, S., Eigenbrode, J.L., Pavlov, A.A., Kharecha, P., Rumble, D., Kasting, J.F., Freeman,K.H., 2003. New insights into Archean sulfur cycle from mass-independent sulfur iso-tope records from the Hamersley Basin, Australia. Earth and Planetary Science Letters213, 15–30.

Ono, S., Wing, B.A., Johnston, D., Farquhar, J., Rumble, D., 2006. Mass-dependent frac-tionation of quadruple sulfur isotope system as a new tracer of sulfur biogeochemicalcycles. Geochimica et Cosmochimica Acta 70, 2238–2252.

Ono, S., Shanks, W.C., III, Rouxel, O.J., Rumble, D., 2007. S-33 constraints on the sea-water sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimicaet Cosmochimica Acta, in press.

Ontario Geological Survey, 1992. Chart A – Archean tectonic assemblages, plutonic suites,and events in Ontario. Ontario Geological Survey, Map 2579.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 113aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

114 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

O’Reilly, S.Y., Griffin, W.L., 1985. A xenolith-derived geotherm for southeastern Australiaand its geophysical implications. Tectonophysics 111, 41–63.

O’Reilly, S.Y., Griffin, W.L., 1996. 4-D lithosphere mapping: methodology and examples.Tectonophysics 262, 3–18.

O’Reilly, S.Y., Griffin, W.L., 2006. Imaging chemical and thermal heterogeneity in the sub-continental lithospheric mantle with garnets and xenoliths: Geophysical implications.Tectonophysics 416, 289–309.

O’Reilly, S.Y., Griffin, W.L., Poudjom-Djomani Y.H., Morgan, P., 2001. Are lithospheresforever? Tracking changes in subcontinental lithopsheric mantle through time. GSAToday 11, 4–10.

Orgel, L., 1998. The origin of life – a review of facts and speculations. Trends in Biochem-ical Sciences 23, 491–495.

Oslund, R., 1997. Modelling of variations in Norwegian olivine deposits, causes of varia-tion and estimation of key quality factors. Doktor Ingeniør thesis. Norwegian Universityof Science and Technology, Trondheim, 189 pp.

Ota, T., Gladkochub, D.P., Sklyarov, E.V., Sklyarov, E.V., Mazukabzov, A.M., Watanabe,T., 2004. P-T history of garnet-websterites in the Sharyzhalgay complex, southwesternmargin of the Siberian craton: evidence for Paleoproterozoic high-pressure metamor-phism. Precambrian Research 132 (4), 327–348.

Otto, A., Dziggel, A., Kisters, A.F.M., Meyer, F.M., 2005. Polyphase gold mineralization inthe structurally condensed granitoid-greenstone contact at the New Consort Gold Mine.In: Geological Society of America Abstracts with Programs, Barberton Greenstone Belt,South Africa.

Otto, A., Dziggel, A., Meyer, F.M., 2006. Geochemical signatures of gold mineralizationat the New Consort gold mine, South Africa. Beihefte zum European Journal of Miner-alogy 18, 99.

Otto, A., Dziggel, A., Kisters, A.F.M., Meyer, F.M., 2007. The New Consort gold mine,South Africa: Orogenic gold mineralization in a condensed metamorphic profile. Min-eralium Deposita, in review.

Oversby, V.M., 1975. Lead isotope systematics and ages of the Archaean acid intrusives inthe Kalgoorlie–Norseman area, Western Australia. Geochimica et Cosmochimica Acta39, 1107–1125.

Pace, N.R., 1997. A molecular view of microbial diversity and the biosphere. Science 276,734–740.

Pace, N.R., 2001. The universal nature of biochemistry. Proceedings of the National Acad-emy of Sciences of the United States of America 98, 805–808.

Page, F.Z., DeAngelis, M.T., Fu, B., Kita, N.T., Lancaster, P.J., Valley, J.W., 2006. Slowoxygen diffusion in zircon. Geochimica et Cosmochimica Acta 70 (18), Suppl. 1, A467.

Pahlevan, K., Stevenson, D.J., 2005. The oxygen isotope similarity between the Earth andMoon – source region or formation process? Lunar and Planetary Science XXXVI, 2382(abstract).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 114aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 115

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Palme, H., Jones, A., 2003. Solar System abundances of the elements. In: Davis, A.M.(Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 41–61.

Palmer, M.R., Edmond, J.M., 1989. Strontium isotope budget of the modern ocean. Earthand Planetary Science Letters 92, 11–26.

Papineau, D., Mojzsis, S.J., 2006. Mass-independent fractionation of sulfur isotopes insulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4,227–238.

Papineau, D., Mojzsis, S.J., Coath, C.D., Karhu, J.A., McKeegan, K.D., 2005. Multiple sul-fur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations.Geochimica et Cosmochimica Acta 69, 5033–5060.

Papineau, D., Mojzsis, S.J., Schmitt, A.K., 2007. Multiple sulfur isotopes from Paleopro-terozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth andPlanetary Science Letters, in press.

Paris, I.A., 1985. The geology of the farms Josefsdal, Dunbar and part of Diepgezet in theBarberton greenstone belt. Ph.D. thesis. University of the Witwatersrand, Johannesburg,239 pp.

Paris, I., Stanistreet, I.G., Hughes, M.J., 1985. Cherts of the Barberton greenstone beltinterpreted as products of submarine exhalative activity. Journal of Geology 93, 111–129.

Park, J.K., Buchan, K.L., Harlan, S.S., 1995. A proposed giant radiating dyke swarm frag-mented by the separation of Laurentia and Australia based on palaeomagnetism of ca.780 Ma mafic intrusions in western North America. Earth and Planetary Science Letters132, 129–139.

Park, R.G., 1997. Early Precambrian plate tectonics. South African Journal of Geology100, 23–35.

Parks, J., Lin, S., Davis, D.W., Corkery, M.T., 2006. Geochronological constrains on thehistory of the Island Lake greenstone belt and the relationship of terranes in the north-western Superior Province. Canadian Journal of Earth Sciences 43, 789–803.

Parman, S., Dann, J.C., Grove, T.L., de Wit, M.J., 1997. Emplacement conditions of ko-matiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, SouthAfrica. Earth and Planetary Science Letters 150, 303–323.

Parman, S.W., Grove, T.L., Dann, J.C., 2001. The production of Barberton komatiites inan Archean subduction zone. Geophysical Letter 28, 303–323.

Parman, S.W., Grove, T.L., Dann, J.C., de Wit, M.J., 2004. A Subduction origin for komati-ites and cratonic lithospheric mantle. South African Journal of Geology 107, 107–118.

Parman, S.W., Grove, T.L., 2004. Petrology and geochemistry of Barberton Komatiites andbasaltic komatiites: Evidence of Archean fore-arc magmatism. In: Kusky, T.M. (Ed.),Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology,vol. 13. Elsevier, Amsterdam, pp. 539–565.

Pasteris, J.D., Wopencka, B., 2002. Images of Earth’s earliest fossils? Nature 420, 476–477.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 115aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

116 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Pasteris, J.D., Wopencka, B., 2003. Necessary, but not sufficient: Raman identification ofdisordered carbon as a signature of ancient life. Astrobiology 3, 727–738.

Patchett, P.J., 1983. Importance of the Lu-Hf isotopic system in studies of planetarychronology and chemical evolution. Geochimica et Cosmochimica Acta 47, 81–91.

Patchett, P.J., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1981. Evolution of continental crustand mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy andPetrology 78, 279–297.

Patiño-Douce, A.E., Beard, J.S., 1995. Dehydration-melting of Bt gneiss and Qtz amphi-bolite from 3 to 15 kB. Journal of Petrology 36, 707–738.

Patiño-Douce, A E., 2005. Vapor-absent melting of tonalite at 15–32 kbar. Journal ofPetrology 46 (2), 275–290.

Patterson, C., 1956. Age of meteorites and the earth. Geochimica et Cosmochimica Acta10, 230–237.

Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes inArchean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology2, 27–41.

Pavlov, A.A., Pavlov, A.K., Kasting, J.F., 1999. Irradiated interplanetary dust particles asa possible solution for the deuterium/hydrogen paradox of Earth’s oceans. Journal ofGeophysical Research – Planets 104 (E12), 30725–30728.

Pavlov, A.A., Kasting, J.F., Eigenbrode, J.L., Freeman, K.H., 2001a. Organic haze inEarth’s early atmosphere: Source of low-C-13 in Late Archean kerogens? Geology 29,1003–1006.

Pavlov, A.A., Kasting, J.F., Brown, L.L., 2001b. UV-shielding of NH3 and O2 by or-ganic hazes in the Archean atmosphere. Journal of Geophysical Research 106, 23,267–23,287.

Pavoni, N., 1997. Geotectonic bipolarity – evidence of bicellular convection in the Earth’smantle. South African Journal of Geology 100, 291–299.

Pawley, M.J., Collins, W.J., 2002. The development of contrasting structures during thecooling and crystallisation of a syn-kinematic pluton. Journal of Structural Geology 24,469–483.

Pawley, M.J., Van Kranendonk, M.J., Collins, W.J., 2004. Interplay between magmatismand deformation during the evolution of the domical Archaean Shaw Granitoid Com-plex, Pilbara Craton, Western Australia. Precambrian Research 131, 213–230.

Pearce, J.A., 1983. The role of sub-continental lithosphere in magma genesis at destruc-tive plate margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts andMantle Xenoliths. Shiva, Nantwich, pp. 230–249.

Pearce, J.A., Parkinson, I.A., 1993. Trace elements models for mantle melting: applicationto volcanic arc petrogenesis. In: Prichard, H., Alabaster, T., Harris, N.B.W., Neary, C.(Eds.), Magmatic Processes and Plate Tectonics. In: Geological Society of London,Special Publication 76, pp. 373–403.

Pearce, J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams forthe tectonic interpretation of granitic rocks. Journal of Petrology 25, 956- 983.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 116aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 117

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P., 2005. Geochemical mapping of the Mar-iana arc-basin system: Implications for the nature and distribution of subduction com-ponents. Geochemistry Geophysics Geosystems 6 (7), doi:10.1029/2004GC000895.

Pearson, D.G., 1999. The age of continental roots. Lithos 48, 171–194.Pearson, D.G., Canil, D., Shirey, S.B., 2004. Mantle samples included in volcanic rocks:

xenoliths and diamonds. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geo-chemistry, vol. 2. Elsevier, Amsterdam, pp. 171–275.

Pearson, N.J., Alard, O., Griffin, W.L., Jackson, S.E., O’Reilly, S.Y., 2002. In situ mea-surement of Re-Os isotopes in mantle sulfides by Laser Ablation Multi-CollectorInductively-Coupled Mass Spectrometry: analytical methods and preliminary results.Geochimica et Cosmochimica Acta 66, 1037–1050.

Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocksfrom the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology58, 63–81.

Peck, W.H., Valley, J.W., Wilde, S.A., Graham, C.M., 2001. Oxygen isotope ratios andrare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18Ocontinental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta65, 4215–4229.

Peck W.H., Valley, J.W., Graham, C.M., 2003. Slow oxygen diffusion rates in igneouszircons from metamorphic rocks. American Mineralogist 88, 1003–1014.

Pellas, P., Fieni, C., Trieloff, M., Jessberger, E.K., 1997. The cooling history of the Aca-pulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers. Geochimica etCosmochimica Acta 61, 3477–3501.

Peltonen, P., Kontinen, A., 2004. The Jormua Ophiolite: A mafic-ultramafic complex froman ancient ocean-continent transition zone. In: Kusky, T.M. (Ed.), Precambrian Ophio-lites and Related Rocks. In: Developments in Precambrian Geology, vol. 13, pp. 35–72.

Peng, P., Zhai, M.G., Zhang, H.F., Guo, J.H., 2005. Geochronological constraints on thePalaeoproterozoic evolution of the NCC: SHRIMP zircon ages of different types ofmafic dikes. International Geological Review 47, 492–508.

Percival, J.A., 1994. Archean high-grade metamorphism. In: Condie, K.C. (Ed.), ArcheanCrustal Evolution. In: Developments in Precambrian Geology, vol. 11. Elsevier, Ams-terdam, pp. 315–355.

Percival, J.A., Card, K.D., 1992. Geology of the Vizien greenstone belt. Geological Surveyof Canada, Open file 2495, scale 1:50,000.

Percival, J., Card, K.D., 1994. Geology, Lac Minto – Rivière aux Feuilles. GeologicalSurvey of Canada, Map 1854A (1:500,000).

Percival, J.A., Helmstaedt, H., 2004. Insights on Archean continent-ocean assembly, west-ern Superior Province, from new structural, geochemical, and geochronological obser-vations: introduction and summary. Precambrian Research 132, 209–212.

Percival, J.A., Mortensen, J.K., 2002. Water-deficient calc-alkaline plutonic rocks ofNortheastern Superior Province, Canada: significance of charnockitic magmatism. Jour-nal of Petrology 43, 1617–1650.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 117aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

118 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Percival, J.A., Skulski, T., 2000. Tectonothermal evolution of the northern Minto Block,Superior Province, Québec, Canada. Canadian Mineralogist 38, 345–378.

Percival, J.A., Whalen, J.B., 2000. Observations on the North Caribou terrane – Uchi sub-province interface in western Ontario and eastern Manitoba. In: Geological Survey ofCanada, Current Research 2000-C15, 8 pp.

Percival, J.A., Green, A.G., Milkereit, B., Cook, F.A., Geis, W., West, G.F., 1989. Seis-mic reflection profiles across deep continental crust exposed in the Kapuskasing upliftstructure. Nature 342, 416–419.

Percival, J.A., Mortensen, J.K., Stern, R.A., Card, K.D., Bégin, N.J., 1992. Giant granuliteterranes of northeastern Superior Province: the Ashuanipi complex and Minto block.Canadian Journal of Earth Sciences 29, 2287–2308.

Percival, J.A., Stern, R.A., Mortensen, J.K., Card, K.D., Bégin, N.J., 1994. Minto blockSuperior Province: missing link in deciphering tectonic assembly of the craton at 2.7Ga. Geology 22, 839–842.

Percival, J.A., Skulski, T., Card, K.D., 1995. Geology, Rivière Kogaluc – Lac Qalluviartuuqregion (parts of 34J and 34O). Geological Survey of Canada, Open file 3112, scale1:250,000.

Percival, J., Skulski, T., Nadeau, L., 1996. Geology, Lac Couture, Quebec. GeologicalSurvey of Canada, Open file 3315.

Percival, J., Skulski, T., Nadeau, L., 1997a. Reconnaissance geology of the Pelican - Nan-tais belt, northeastern Superior province, Quebec. Geological Survey of Canada, Openfile 3525.

Percival, J., Skulski, T., Nadeau, L., 1997b. Granite-greenstone terranes of the north-ern Minto Block, northeastern Québec: Pélican-Nantais, Faribault-Leridon and Duquetbelts. In: Geological Survey of Canada, Current Research, 1997-C, pp. 211–221.

Percival, J.A., Stern, R.A., Skulski, T., 2001. Crustal growth through successive arc mag-matism: Reconnaissance U-Pb SHRIMP data from the northeastern Superior Province,Canada. Precambrian Research 109, 203–238.

Percival, J.A., Bailes, A.H., McNicoll, V., 2002. Mesoarchean breakup, Neoarchean accre-tion in the western Superior craton, Lake Winnipeg Canada. Geological Association ofCanada Field Trip B3 Guidebook, 42 pp.

Percival, J.A., Bleeker, W., Cook, F.A., Rivers, T., Ross, G., van Staal, C., 2004a.PanLITHOPROBE workshop IV: Intraorogen correlations and comparative orogenicanatomy. Geoscience Canada 31, 23–39.

Percival, J.A., McNicoll, V., Brown, J.L., Whalen, J.B., 2004b. Convergent margin tecton-ics, central Wabigoon subprovince, Superior Province, Canada. Precambrian Research132, 213–244.

Percival, J.A., McNicoll, V., Bailes, A.H., 2006a. Strike-slip juxtaposition of ca. 2.72 Gajuvenile arc and >2.98 Ga continent margin sequences and its implications for Archeanterrane accretion, western Superior Province, Canada. Canadian Journal of Earth Sci-ences 43, 895–927.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 118aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 119

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Percival, J.A., Sanborn-Barrie, M., Skulski, T., Stott, G.M., Helmstaedt, H., White, D.J.,2006b. Tectonic evolution of the western Superior Province from NATMAP and Litho-probe studies. Canadian Journal of Earth Sciences 43, 1085–1117.

Percival, J.A., 2007. Geology and metallogeny of the Superior Province. In Goodfellow,W.D. (Ed.), Mineral Resources of Canada: A Synthesis of Major Deposit-types, Dis-trict Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. In:Geological Association of Canada, Special Paper XX, in press.

Peredery, W.V., Inco Geological Staff, 1982. Geology and nickel sulphide deposits of theThompson Belt, Manitoba. In: Hutchinson, R.W., Spence, C.D., Franklin, J.M. (Eds.),Precambrian Sulphide Deposits. In: Geological Association of Canada, Special Paper25, pp. 165–209.

Perfit, M.R., Davidson, J.P., 2000. Plate tectonics and volcanism. In: Sigurdson, H., et al(Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, CA, pp. 89–113

Pering, C.S., Barnes, S.J., Hill, R.E.T., 1995. The physical volcanology of Archean komati-ite sequences from Forrestania, Southern Cross Province, Western Australia. Lithos 34,189–207.

Perry, E.C., 1967. The oxygen isotope chemistry of ancient cherts. Earth and PlanetaryScience Letters 3, 62–66.

Perry, E.C., Ahmad, S.N., Swulius, T.M., 1978. The oxygen isotope composition of 3800m.y. old metamorphosed chert and iron formation from Isukasia, Greenland. Journal ofGeology 86, 223–239.

Perry, E.C., Lefticariu, L., 2003. Formation and geochemistry of Precambrian cherts. In:Mackenzie, F.T. (Ed.), Sediments, Diagenesis, and Sedimentary Rocks. In: Treatise onGeochemistry, vol. 7. Elsevier, Amsterdam, pp. 99–113.

Peterman, Z.E., 1981. Dating of Archean basement in northeastern Wyoming and southernMontana. Bulletin of Geological Society of America 92 (1), 139–146.

Peterman, Z.E., Hildreth, R.A., 1978. Reconnaissance geology and geochronology of thePrecambrian of the Granite Mountains, Wyoming. U.S. Geological Survey, ProfessionalPaper 1055, 22 pp.

Peterman, Z.E., Zartman, R.E., Sims, P.K., 1980. Tonalitic gneiss of early Archean agefrom northern Michigan. In: Geological Society of America, Special Paper 182, pp.125–134.

Peterman, Z.E., Zartman, R.E., Sims, P.K., 1986. A protracted Archean history in the Wa-tersmeet gneiss dome. In: U.S. Geological Survey, Bulletin 1655, pp. 51–64.

Petford, N., Atherton, M.P., 1996. Na-rich partial melts from newly underplated basalticcrust: the Cordillera Blanca batholith, Peru. Journal of Petrology 37 (6), 1491–1521.

Petrov, A.F., Gusev, G.S., Tretyakov, F.F., Oksman, V.S., 1985. The Archean (Aldanian)and early Proterosoic (Karelian) megacomplexes. In: Kovalsky, V.V. (Ed.), Structureand Evolution of the Earth’s Crust in Yakutia. Nauka, Moscow, pp. 9–39 (in Russian).

Petrova, Z.I., Levitsky, V.I., 1984. Petrology and Geochemistry of Cisbaikal GranuliteComplexes. Nauka, Moscow, 201 pp. (in Russian).

Pettengill, G.H., Ford, P.G., Wilt, R.J., 1992. Venus surface radiothermal emission as ob-served by Magellan. Journal of Geophysical Research 97, 13,091-13,102

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 119aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

120 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Peucat, J.J., Capdevila, R., Drareni, A., Choukroune, P., Fanning, C.M., BernardGriffiths,J., Fourcade, S., 1996. Major and trace element geochemistry and isotope (Sr, Nd, Pb,O) systematics of an Archaean basement involved in a 2.0 Ga very high-temperature(1000 ◦C) metamorphic event in Ouzzal Massif, Hoggar, Algeria. Journal of Metamor-phic Geology 14 (6), 667–692.

Peucat, J.J., Ménot, R.P., Monnier, O., Fanning, C.M., 1999. The Terre Adélie basement inthe East Antarctica Shield: geological and isotopic evidence for a major 1.7 Ga thermalevent; comparison with the Gawler Craton in South Australia. Precambrian Research94, 205–224.

Peucat, J.J., Drareni, A., Latouche, L., Deloule, E., Vidal, P., 2003. U-Pb zircon (TIMSand SIMS) and Sm-Nd whole-rock geochronology of the Gour Oumelalen granuliticbasement, Hoggar massif, Tuareg shield, Algeria. Journal of African Earth Science 37,229–239.

Peucker-Ehrenbrink, B., Miller, M.W., 2006. Marine 87Sr/86Sr record mirros the evolvingupper continental crust. Geochimica et Cosmochimica Acta 70 (18), A487.

Pflug, H.D., 1965. Structured organic remains from the Fig Tree Series of the BarbertonMountain Land. Economic Geology Research Unit, Information Circular, 32, Universityof the Witwatersrand, Johannesburg, 36 pp.

Pflug, H.D., 2001. Earliest organic evolution. Essay to the memory of Bartholomew Nagy.Precambrian Research 106, 79–91.

Pflug, H.D., Jaeschke-Boyer, H., 1979. Combined structural and chemical analysis of3800-Myr-old microfossils. Nature 280, 483–486.

Phillips, R.J., 1993. The age spectrum of the Venusian surface. Eos 74 (16) (Supplement),187.

Phillips, R.J., Bullock, M.A., Hauck, S.A., II, 2001. Climate and interior coupled evolutionon Venus. Geophysical Research Letters 28, 1779–1782.

Phillips, R.J., Grimm, R.E., Malin, M.C., 1991. Hot-spot evolution and the global tectonicsof Venus. Science 252, 651–658.

Phillips, R.J., Hansen, V.L., 1994. Tectonic and magmatic evolution of Venus. Annual Re-views of Earth and Planetary Sciences 22, 597–654.

Phillips, R.J., Hansen, V.L., 1998. Geological evolution of Venus: Rises, plains, plumesand plateaus. Science 279, 1492–1497.

Phillips, R.J., Izenberg, N.R., 1995. Ejecta correlations with spatial crater density andVenus resurfacing history. Geophysical Research Letters 22, 1517–1520.

Phillips, R.J., Johnson, C.J., Mackwell, S.L., Morgan, P., Sandwell, D.T., Zuber, M.T.,1997. Lithospheric mechanics and dynamics of Venus. In: Bouger, S.W., Hunten, D.M.,Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 1163–1204.

Phillips, R.J., Kaula, W.M., McGill, G.E., Malin, M.C., 1981. Tectonics and evolution ofVenus. Science 212, 879–887.

Phillips, R.J., Raubertas, R.F., Arvidson, R.E., Sarkar, I.C., Herrick, R.R., Izenberg, N.,Grimm, R.E., 1992. Impact crater distribution and the resurfacing history of Venus.Journal of Geophysical Research 97, 15923–15948.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 120aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 121

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Pidgeon, R.T., 1978. 3450 M.y. old volcanics in the Archaean layered greenstone succes-sion of the Pilbara Block, Western Australia. Earth and Planetary Science Letters 37,423–428.

Pidgeon, R.T., 1992. Recrystallisation of oscillatory zoned zircon: some geochronologicaland petrological implications. Contributions to Mineralogy and Petrology 110, 463–472.

Pidgeon, R.T., Hallberg, J.A., 2000. Age relationships in supracrustal sequences in thenorthern part of the Murchison Terrane, Archaean Yilgarn Craton, Western Australia: acombined field and zircon U-Pb study. Australian Journal of Earth Sciences 47, 153–165.

Pidgeon, R.T., Nemchin, A.A., 2006. High abundance of early Archaean grains and theage distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer,Western Australia. Precambrian Research 150, 201–220.

Pidgeon, R.T., Wilde, S.A., 1990. The distribution of 3.0 Ga and 2.7 Ga volcanic episodesin the Yilgarn Craton of Western Australia. Precambrian Research 48, 309–325.

Pidgeon, R.T., Wilde, S.A., 1998. The interpretation of complex zircon U-Pb systems inArchaean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, WesternAustralia. Precambrian Research 91, 309–332.

Pidgeon, R.T., Compston, W., Wilde, S.A., Baxter, J.L., Collins, L.B., 1986. Archaean evo-lution of the Jack Hills Metsedimentary Belt, Yilgarn Block, Western Australia. TerraCognita 6, 146.

Pidgeon, R.T., Wilde, S.A., Compston, W., 1990. U-Pb ages of zircons from conglomerateclasts in the Jack Hills Metasedimentary Belt, Yilgarn Craton, Western Australia. In:7th International ICOG Conference, Abstracts, p. 78.

Pirajno, F., 2000. Ore Deposits and Mantle Plumes. Kluwer Academic Publishers, 507 pp.Pirajno, F., Van Kranendonk, M.J., 2005. A review of hydrothermal processes and systems

on earth and implications for Martian analogues. Australian Journal of Earth Sciences52, 329–351.

Pirajno, F., Chen, Y.-J., Qi, J.-P., Long, X., 2006. Mesozoic-Cenozoic intraplate tectonicsand magmatism in E and NE China. In: IAVCEI 2006. International Conference onContinental Volcanism, Abstracts and Programs, Guangzhou, China, p. 184.

Pirajno, F., Mao, J.-W., Zhang, Z.-C., Zhang, Z.-H., Yang, F.-Q., Chai, F.-M., in press.The association of anorogenic mafic-ultramafic intrusions and A-type magmatism inthe Tian Shan and Altay orogens, NW China: implications for geodynamic evolutionand potential for the discovery of new ore deposits. Asian Journal of Earth Sciences,Special Issue.

Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduc-tion Zones and the Evolution of Continents. Journal of Petrology 46, 921–944

Plant, J.A., Kinniburgh, D.G., Smedley, F.M., Fordyce, F.M., Klinck, B.A., 2003. Arsenicand selenium. In: Treatise on Geochemistry, vol. 9. Elsevier, Amsterdam, pp. 17–66.

Platt, J.P., England, P.C., 1993. Convective removal of lithosphere beneath mountain belts:thermal and mechanical consequences. American Journal of Science 293, 307–336.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 121aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

122 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Plaut, J.J., 1993. Stereo imaging. In: Ford, J.P., et al. (Eds.), Guide to Magellan ImageInterpretation. NASA-JPL Publication 93-24, pp. 33–41.

Playford, P.E., Cockbain, A.E., 1976. Modern algal stromatolites at Hamelin Pool, a hyper-saline barred basin in Shark Bay, Western Australia. In: Walter, M.R. (Ed.), Stromato-lites. In: Developments in Sedimentology, vol. 20. Elsevier, Amsterdam, pp. 389–411.

Plumb, K.A., 1991. New Precambrian timescale. Episodes 14, 139–140.Plumb, K.A., James, H.L., 1986. Subdivision of Precambrian time: Recommendations and

suggestions by the commission on Precambrian stratigraphy. Precambrian Research 32,65–92.

Plyusnina, L.P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bear-ing assemblages. Contributions to Mineralogy and Petrology 80, 140–146.

Podmore, D.C., 1990. Shay Gap-Sunrise Hill and Nimingarra iron ore deposits. In: Aus-tralasian Institute of Mining and Metallurgy, Monograph 14, pp. 137–140.

Podosek, F.A., Cassen, P., 1994. Theoretical, observational, and isotopic estimates of thelifetime of the solar nebula. Meteoritics 29, 6–25.

Poitrasson, F., Halliday, A.N., Lee, D.C., Levasseur, S., Teutsch, N., 2004. Iron isotopedifferences between Earth, Moon, Mars and Vesta as possible records of contrastedaccretion mechanisms. Earth and Planetary Science Letters 223, 253–266.

Polat, A., Frei, R., 2005. The origin of early Archean banded iron formations and of conti-nental crust, Isua, southern West Greenland. Precambrian Research 138, 151–175.

Polat, A., Hofmann, A.W., 2003. Alteration and geochemical patterns in the 3.7–3.8 GaIsua greenstone belt, West Greenland. Precambrian Research 126, 197–218.

Polat, A., Kerrich, R., 2004. Precambrian arc associations: Boninites, adakites, magnesianandesites, and Nb-enriched basalts. In: Kusky, T.M. (Ed.), Precambrian Ophiolites andRelated Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amster-dam, pp. 567–598.

Polat, A., Kerrich, R., Wyman, D.A., 1998. The late Archean Schreiber-Hemlo ad WhiteRiver-Dayohessarah greenstone belts, Superior Province: collages of oceanic plateausand subduction-accretion complexes. Tectonophysics 289, 295–326.

Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanicsubduction zone processes in the early Earth. Chemical Geology 184, 231–254.

Polat, A., Li, J.H., Fryer, B., Kusky, T., Gagnon, J., Zhang, S., 2006. Geochemical char-acteristics of the Neoarchean (2800–2700 Ma) Taishan greenstone belt, North ChinaCraton: Evidence for plume–craton interaction. Chemical Geology 230, 60–87.

Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W., 2004.Timing of Early Proterozoic magmatism along the Southern margin of the SiberianCraton (Kitoy area). Transactions Royal Society Edinburg, Earth Sciences 136 (95),353–368.

Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W., 2005.Multistage magmatic and metamorphic evolution in the Southern Siberian craton:Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precam-brian Research 136, 353–368.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 122aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 123

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Pope, M.C., Grotzinger, J.P., 2000. Controls on fabric development and morphology oftufa and stromatolites, uppermost Pethei Group (1.8 Ga), Great Slave Lake, northwestCanada. In: Grotzinger, J., James, N. (Eds.), SEPM Special Publication – CarbonateSedimentation and Diagenesis in the Evolving Precambrian World, pp. 103–122.

Popov, N.V., Smelov, A.P., Dobretsov, H.N., Bogomolova, L., Kartavchenko, V.G., 1990.Olondo Greenstone Belt. Academy of Sciences Publishers, Yakutsk, 170 pp. (inRussian).

Popov, N.V., Zedgenizov, A.N., Berezkin, V.I., 1989. Petrochemistry of the ArcheanMetavolcanics in the Sunnagin Block of the Aldan Massif. Nauka, Novosibirsk, 78 pp.(in Russian).

Post, N.J., Hensen, B.J., Kinny, P.D., 1997. Two metamorphic episodes during a 1340–1180 Ma convergent tectonic event in the Windmill Islands, East Antarctica. In: C.Ricci, A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra An-tartica Publication, Siena, pp. 157–161.

Postelnikov, E.S., Museibov, N.I., 1992. Structure of the Baikal orogeny basement. Geo-tectonics 6, 37–51.

Potrel, A., Peucat, J.J., Fanning, C.M., Auvray, B., Burg, J.P., Caruba, C., 1996. 3.5 Gaold terranes in the Est African craton, Mauritania. Journal of the Geological SocietyLondon 153, 507–510.

Potter, J., Rankin, A.H., Treloar, P.J., 2004. Abiogenic Fischer-Tropsch synthesis of hydro-carbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence fromthe Lovozero complex, N.W. Russia. Lithos 75, 311–330.

Poudjom Djomani, Y.H., O’Reilly, S.Y., Griffin, W.L., Morgan, P., 2001. The densitystructure of subcontinental lithosphere: Constraints on delamination models. Earth andPlanetary Science Letters 184, 605–621.

Poujol, M., Anhaeusser, C.R., 2001. The Johannesburg Dome, South Africa: new sin-gle zircon U-Pb isotopic evidence for early Archaean granite-greenstone developmentwithin the Central Kaapvaal Craton. Precambrian Research 108, 139–157.

Poujol, M., Robb, L.J., 1999. New U-Pb zircon ages on gneisses and pegmatite from Southof the Murchison greenstone belt, South Africa. South African Journal of Geology 102(2), 93–97.

Poujol, M., Robb, L.J., Respaut, J.P., Anhaeusser, C.R., 1996. 3.07–2.97 Ga GreenstoneBelt formation in the northeastern Kaapvaal Craton: Implications for the origin of theWitwatersrand Basin. Economic Geology 91 (8), 1455–1461.

Poujol, M., Robb, L.J., Anhaeusser, C.R., Gericke, B., 2003. A review of the geochrono-logical constraints on the evolution of the Kaapvaal Craton, South Africa. PrecambrianResearch 127, 181–213.

Poulsen, K.H., Borraidaile, G.H., Kehlenbeck, M.M., 1980. An inverted Archean succes-sion at Rainy Lake, Ontario. Canadian Journal of Earth Sciences 17, 1358–1369.

Powell, R., Will, T.M., Phillips, G.N., 1991. Metamorphism in Archean greenstone belts:Calculated fluid compositions and implications for gold mineralization. Journal ofMetamorphic Geology 9, 141–150.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 123aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

124 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Pravdivtseva, O.A., Hohenberg, C.M., 1999. Observations of mineral specific I-Xe ages inordinary chondrites. Lunar and Planetary Science XXX, 2047.

Premo, W.R., Tatsumoto, M., Misawa, K., Nakamura, N., Kita, N.I., 1999. Pb-isotopicsystematics of lunar highland rocks (>3.9 Ga): Constraints on early lunar evolution. In:Snyder, G.A., Neal, C.R., Ernst, W.G. (Eds.), Planetary Petrology and Geochemistry.GSA, Bellwether Publishing Ltd.

Price, M., Suppe, J., 1994. Mean age of rifting and volcanism on Venus deduced fromimpact crater densities. Nature 372, 756–759.

Price, M.H., Watson, G., Brankman, C., 1996. Dating volcanism and rifting on Venus usingimpact crater densities. Journal of Geophysical Research 101, 4637–4671.

Price, N.J., 2001. Major Impacts and Plate Tectonics: A Model for the Phanerozoic Evolu-tion of the Earth’s Lithosphere. Routledge, London, 354 pp.

Price, R.E., Pichler, T., 2006. Abundance and mineralogical association of arsenic in theSuwannee Limestone (Florida): Implications for arsenic release during water-rock in-teraction. Chemical Geology 228, 44–56.

Prinzhofer, A., Papanastassiou, D.A., Wasserberg, G.J., 1992. Samarium-neodymium evo-lution of meteorites. Geochimica et Cosmochimica Acta 56, 797–815.

Prinz, M., Nehru, C.E., Delaney, J.S., Weisberg, M., 1983. Silicates in IAB and IIICDirons, winonaites, lodranites and Brachina: a primitive and modified-primitive group.Lunar and Planetary Science XIV, 616–617.

Puchtel, I.S., 1992. Mafic-ultramafic rocks and crust-mantle evolution in the Early Pre-cambrian: the Olekma gneiss-greenstone area as ana example. Publ. Inst. Petrography,Mineralogy and Ore Deposits of Russia, Russian Academy of Sciences, Moscow, 20pp. (in Russian).

Puchtel, I.S., Zhuravlev, D.Z., 1989. Petrology and geochemistry of early and later Archeankomatiites from Olekma granite-greenstone terrane. In: 28th I.G.C., Abstracts, vol. 2.Washington, DC, pp. 643–644.

Puchtel, I.S., Zhuravlev, D.Z., Samsonov, A.V., Arndt, N.’., 1993. Petrology and geochem-istry of metamorphosed komatiites and basalts from the Tungurcha greenstone belt,Aldan shield. Precambrian Research 62 (4), 399–417.

Puchtel, I.G., Haase, K.M., Hofmann, A.W., Chauvel, C., Kulikov, V.S., Garbe-Schonberg,C.-D., Nemchin, A.A., 1997. Petrology and geochemistry of crustally contaminated ko-matiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an earlyProterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimicaet Cosmochimica Acta 61 (6), 1205–1222.

Puchtel, I.S., Hofmann, A.W., Mezger, K., Jochum, K.P., Shchipansky, A.A., Samsonov,A.V., 1998. Oceanic plateau model for continental crustal growth in the Archaean: acase study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Plane-tary Science Letters 155, 57–74.

Puura, V., Flodén, T., 1999. Rapakivi-granite-anorthosite magmatism – a way of thinningand stabilisation of the Sveofennian crust, Baltic Sea Basin. Tectonophysics 305, 75–92.

Pyke, J., 2000. Minerals laboratory staff develops new ICP-MS preparation method. Aus-tralian Geological Survey Organisation Research Newsletter 33, 12–14.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 124aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 125

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Qian, X.L., Cui, W.Y., Wang, S.Q., Wang, G.Y., 1985. Geology of Precambrian Iron Oresin Eastern Hebei Province, China. Hebei Science and Technology Press, Shijiazhuang,273 pp. (in Chinese with English abstract).

Rabeau, O., 2003. Étude de l’évolution du néodyme dans la croûte continentale du nord-estde la Province du Supérieur, Nunavik, Québec. Unpublished M.Sc. thesis. Université duQuébec à Montréal, 80 pp.

Rai, V.K., Jackson, T.L., Thiemens, M.H., 2005. Photochemical mass-independent sulfurisotopes in achondrite meteorites. Science 309, 1062–1065.

Rai, V.K., Thiemens, M.H., 2007. Mass independently fractionated sulfur components inchondrites. Geochimica et Cosmochimica Acta, in press.

Rainbird, R.H., Ernst, R.E., 2001. The sedimentary record of mantle plume uplift. In: Ernst,R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: Ge-ological Society of America, Special Paper 352, pp. 227–245.

Rainbird, R.H., McNicoll, R.J., Theriault, R.J., Heaman, L.M., Abbott, J.G., Long,D.G.F., Thorkelson, D.J., 1997. Pan-continental river system draining Grenville Oro-gen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites andmudrocks, northwestern Canada. Journal of Geology 105, 1–17.

Ramberg, H., 1952. The Origin of Metamorphic and Metasomatic Rocks. University ofChicago Press, Chicago, 317 pp.

Ramberg, H., 1967. Gravity Deformation and the Earth’s Crust. Academic Press, London,214 pp.

Ramsay, J.G., 1963. Structural investigations in the Barberton Mountain Land, easternTransvaal. Transactions of the Geological Society of South Africa 66, 353–401.

Ranen, M.C., Jacobsen, S.B., 2006. Barium isotopes in chondritic meteorites: Implicationsfor planetary reservoir models. Science 314, 809–812.

Ransom, B.L., 1987. The paleoenvironmental, magmatic, and geologic history of the 3,500Myr Kromberg Formation, west limb of the Onverwacht anticline, Barberton Green-stone Belt, South Africa. Masters thesis. Louisiana State University, Baton Rouge, 103pp.

Ransom, B., Byerly, G.R., Lowe, D.R., 1999. Subaqueous to subaerial Archean ultramaficphreatomagmatic volcanism, Kromberg Formation, Barberton Greenstone Belt, SouthAfrica. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Green-stone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp.151–166.

Rapp, R., 2003. Experimental constraints on the origin of compositionnal variations in theadakite-TTG-sanukitoid-HMA family of granitoids. In: EGS-AGU-EUG Joint Assem-bly, Nice, France, 6–11 April 2003.

Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: im-plications for continental growth and crust-mantle recycling. Journal of Petrology 36,891–931.

Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa.Chemical Geology 160, 335–356.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 125aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

126 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Rapp, R., Shimizu, N., Norman, M.D., Applegate, G.S., 2000. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa.Chemical Geology 160, 335–356.

Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partialmelting of eclogite. Nature 425, 605–609.

Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite andthe origin of Archean trondhjemites and tonalites. Precambrian Research 51, 1–25.

Rasmussen, B., 2000. Filamentous microfossils in a 3,235-million-year-old volcanogenicmassive sulphide deposit. Nature 405, 676–679.

Rasmussen, B., Buick, R., Holland, H.D., 1999. Redox state of the Archean atmosphere:Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the PilbaraCraton, Australia: Reply. Geology 27, 1152–1152.

Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2007. In situ U–Pb dating and element map-ping of three generations of monazite: Unravelling cryptic tectonothermal events inlow-grade terranes. Geochimica et Cosmochimica Acta 71, 670–690.

Ravna, E.K., 2000a. Distribution of Fe2+ and Mg between coexisting garnet and horn-blende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos 53, 265–277.

Ravna, E.K., 2000b. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated cal-ibration. Journal of Metamorphic Geology 18, 211–219.

Rayner, N., Corrigan, D., 2004. Uranium-lead geochronological results from the ChurchillRiver-Southern Indian Lake transect, northern Manitoba. In: Geological Survey ofCanada, Current Research 2004-F1, p. 14.

Rayner, N., Stern, R.A., Carr, S.D., 2005. Grain-scale variations in trace element compo-sition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contribu-tions to Mineralogy and Petrology 148, 721–734.

Redden, J.A., Peterman, Z.E., Zartman, R.E., DeWitt, E., 1990. U-Th-Pb geochronologyand preliminary interpretation of Precambrian tectonic events in the Black Hills, SouthDakota. In: Lewry, J.G., Stauffer, M.R. (Eds.), The Early Proterozoic Trans-HudsonOrogen of North America. In: Geological Association of Canada, Special Paper 37, pp.229–251.

Redman, B.A., Keays, R.R., 1985. Archaean basic volcanism in the Eastern GoldfieldsProvince, Yilgarn Block, Western Australia. Precambrian Research 30, 113–152

Rees, D.C., Howard, J.B., 2003. The interface between the biological and inorganic worlds:Iron-sulfur metalloclusters. Science 300, 929–931.

Rees, C.E., Thode, H.G., 1977. S-33 anomaly in Allende meteorite. Geochimica et Cos-mochimica Acta 41, 1679–1682.

Regelous, M., Collerson, M.D., 1996. 147Sm-143Nd, 146Sm-142Nd systematics of early Ar-chaean rocks and implications for crust-mantle evolution. Geochimica et CosmochimicaActa 60, 3513–3520.

Regelous, M., Hofmann, A.W., Abouchami, W., Galer, S.J.G., 2003. Geochemistry of lavasfrom the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatismfrom 85 to 42 Ma. Journal of Petrology 44, 113–140.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 126aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 127

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Reimold, W.U., Meyer, F.M., Walraven, F., Matthews, P.E., 1993. Geochemistry andchronology of the pre- and post-Pongola granitoids for northeastern Transvaal. In:Mines, G.S.A. (Ed.), 16th Colloquium of African Geology, Mbabane, Swaziland, pp.294–296.

Reimold, W.U., Koeberl, C., Johnson, S., McDonald, I., 2000. Early Archaean spherulebeds in the Barberton Mountain Land, South Africa: impact or terrestrial origin? In:Koeberl, C., Gilmour, I. (Eds.), Impacts and the Early Earth. Springer-Verlag, Berlin,pp. 100–116.

Ren, J-Y., Tamaki, K., Li, S-T., Zhang, J-X., 2002. Late Mesozoic and Cenozoic rifting andits dynamic setting in Eastern China and adjacent areas. Tectonophysics 344, 175–205.

Replumaz, A., Karason, H., van der Hilst, R.D., Besse, J., Tapponier, P., 2004. 4-D evo-lution of SE Asia’s mantle from geological reconstructions and seismic tomography.Earth and Planetary Science Letters 221, 103–115.

Rey, P.F., Philippot, P., Thebaud, N., 2003. Contribution of mantle plumes, crustal thicken-ing and greenstone blanketing to the 2.75–2.65 Ga global crisis. Precambrian Research127, 43–60.

Reynolds, D.G., Brook, W.A., Marshall, A.E., Allchurch, P.D., 1975. Volcanogenic copper-zinc deposits in the Pilbara and Yilgarn Archaean blocks. In: Australasian Institute ofMining and Metallurgy, Monograph 5, pp. 185–194.

Reynolds, J.H., 1960. I-Xe dating of meteorites. Journal of Geophysical Research 65,3843–3846.

Richard, P., Shimizu, N., Allègre, J.J., 1976. 143Nd/146Nd, a natural tracer: an applicationto oceanic basalts. Earth and Planetary Science Letters 31, 269–278.

Richards, J.R., Fletcher, I.R., Blockley, J.G., 1981. Pilbara galenas: precise isotopic assayof the oldest Australian leads; model ages and growth-curve implications. MineraliumDeposita 16, 7–30.

Richardson, W.P., Okal, E.A., Van der Lee, S., 2000. Raylegh-wave tomography of theOntong-Java Plateau. Physics of the Earth and Planetary Interiors 118, 29–51.

Rieke, G.H., Su, K.Y.L., Stansberry, J.A., Trilling, D., Bryden, G., Muzerolle, J., White, B.,Gorlova, N., Young, E.T., Beichman, C.A., Stapelfeldt, K.R., Hines, D.C., 2005. Decayof planetary debris disks. Astrophysical Journal 620, 1010–1026.

Riganti, A. 1996. The northern segment of the early Archaean Nondweni greenstone belt,South Africa: field relations and petrogenetic constraints. Ph.D. thesis. University ofNatal, Pietermaritzburg, 384 pp.

Riganti, A., 2003. Geology of the Everett Creek 1:100,000 sheet. Western Australia Geo-logical Survey, 1:100,000 Geological Series Explanatory Notes, 3 pp.

Riganti, A., Wilson, A.H., 1995a. Geochemistry of the mafic/ultramafic volcanic associa-tions of the Nondweni greenstone belt, South Africa, and constraints on their petrogen-esis. Lithos 34, 235–252.

Riganti, A., Wilson, A.H., 1995b. Early Archaean fumaroles: evidence in the NondweniGreenstone Belt, South Africa. In: Extended Abstracts of the Geocongress ’95. Geolog-ical Society of South Africa, pp. 1177–1180.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 127aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

128 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Robb, L.J., Anhauesser, C.R., 1983. Chemical and petrogenetic characteristics of Archeantonalite-trondhjemite gneiss plutons in the Barberton Mountain Land. In: Anhauesser,C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land. In: Geolog-ical Society of South Africa, Special Publication 9, pp. 103–116.

Robb, L.J., Barton, Jr, J.M., Kable, E.J.D., Wallace, R.C., 1986. Geology, geochemistryand isotopic characteristics of the Archaean Kaap Valley pluton, Barberton mountainland, South Africa. Precambrian Research 31, 1–36.

Robert, F., Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceansbased on silicon isotopes in cherts. Nature 443, 969–972.

Roberts, M.J., Snape, C.E., Mitchell, S.C., 1995. Hydropyrolysis: Fundamentals, two-stageprocessing and PDU operation. In: Snape, C.E. (Ed.), Composition, Geochemistry andConversion of Oil Shales. Kluwer, Germany, pp. 277–294.

Robertson, M.J., Charlesworth, E.G., Phillips, G.N., 1993. Gold mineralization duringprogressive deformation at the Main Reef Complex, Sheba Gold Mine, BarbertonGreenstone-Belt, South-Africa. In: Information Circular, Economic Geology ResearchUnit, University of the Witwatersrand, Johannesburg, 267, 26 pp.

Roedder, E., 1981. Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluidinclusions, or neither? Nature 293, 459–462.

Rogers, G.C., 1982. Oceanic plateaus as meteorite impact signatures. Nature 299, 341–342.

Rogers, J.J.M., 1996. A history of the continents in the past three billion years. Journal ofGeology 104, 91–107.

Rogers, J.J.W., Santosh, M., 2004. Continent and Supercontinents. Oxford UniversityPress, Oxford, 289 pp.

Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation.Longman Scientific & Technical, London.

Rollinson, H.R., 2002. The Metamorphic History of the Isua Greenstone Belt, West Green-land. In: Fowler, C.M.R., Ebinger, C.J., Hawkesworth, C.J. (Eds.), The Early Earth:Physical, Chemical and Biological Development. In: Geological Society of London,Special Publication 199, 329–350.

Rollinson, H., 2007. Early Earth Systems: A Geochemical Approach. Blackwell, Oxford,285 pp.

Rollinson, H.R., Tarney, J., 2005. Adakites – the key to understanding LILE depletion ingranulites. Lithos 79, 61–81.

Roscoe, S.M., Donaldson, J.A., 1988. Uraniferous pyritic quartz pebble conglomerateand layered ultramafic intrusions in a sequence of quartzite, carbonate, iron formationand basalt of probable Archean age at Lac Sakami, Quebec. In: Geological Survey ofCanada, Paper 88-1C, pp. 117–121.

Rose, N.M., Rosing, M.T., Bridgwater, D., 1996. The origin of metacarbonate rocks in theArchaean Isua Supracrustal Belt, West Greenland. American Journal of Science 296,1004–1044.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 128aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 129

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Rosen, O.M., 1990. Archean geology and geochemistry of the Anabar shield. In: Condie,K.C., Bogdanov, N.A. (Eds.), Guidebook of the International Field Conference forIGCP Projects 217, 247, 280. Institute of Lithosphere, Moscow, 102 pp.

Rosen, O.M., 1995. Metamorphic effects of tectonic movements at the lower crust level:Proterozoic collision zones and terranes of the Anabar Shield. Geotectonics 29 (2), 91–101.

Rosen, O.M., 2002. Siberian craton—a fragment of Paleoporterozoic supercontinent.Russian Journal of Earth Science 4 (2), 103–119.

Rosen, O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geo-tectonics 37 (3), 175–192.

Rosen, O.M., Fedorovsky, V.S., 2001. Collisional Granitoids and Crustal Sheeting.Nauchny Mir, Moscow, 186 pp. (in Russian).

Rosen, O.M., Andreev, V.P., Belov, A.N., Bibikova, E.V., Zlobin, V.L., Rachkov, V.S.,Sonyushkin, V.E., 1988. The Archaean of the Anabar Shield and the Problems of EarlyEvolution of the Earth. Nauka, Moscow, 253 pp. (in Russian).

Rosen, O.M., Bibikova, E.V., Zhuravlev, D.Z., 1991. The Anabar shield early crust: age andthe origin models. In: Ancient Terrestrial Crust: Age and Composition. Nauka, Moscow,pp. 199–224 (in Russian).

Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., 1994. Archean and Early Pro-terozoic evolution of the Siberian craton: A preliminary assessment. In: Condie, K.C.(Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 411–459.

Rosen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., Bibikova, E.V., Zlobin, V.L., 2000. EarlyProterozoic terranes, collision zones, and associated anorthosites in the northeast ofthe Siberian craton: isotope geochemistry and age characteristics. Russian Geology andGeophysics 41 (2), 159–178.

Rosen, O.M., Serenko, V.P., Spetsius, Z.V., Manakov, A.V., Zinchuk, N.N., 2002. Yakutiankimberlite province: position in the structure of the Siberian craton and composition ofthe upper and lower crust. Russian Geology and Geophysics 43 (1), 1–24.

Rosenberg, E., McGill, G.E., 2001. Geologic map of the Pandrosos Dorsa (V5) quadrangle,Venus. Geologic Investigation Series Map I-2721, U.S. Geological Survey, 1:5,000,000.

Rosing, M.T., 1999. 13C-depleted carbon microparticles in >3700 Ma sea-floor sedimen-tary rocks from West Greenland. Science 283, 674–676.

Rosing, M.T., Frei, R., 2004 U-rich Archaean sea-floor sediments from Greenland – in-dications of >3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters217, 237–244.

Rosing, M.T., Rose, N.M, Bridgwater, D., Thomsen, H.S., 1996. Earliest part of Earth’sstratigraphic record; a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal se-quence. Geology 24, 43–46.

Rosing, M.T., Nutman, A.P., Løfqvist, L., 2001. A new fragment of the early Earth crust:the Aasivik terrane of West Greenland. Precambrian Research 105, 115–128.

Rossi, M.J., Gudmundsson, A., 1996. The morphology and formation of flow-lobe tumulion Icelandic shield volcanoes. Journal of Volcanology and Geothermal Research 72,291–308.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 129aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

130 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Rouxel, O., Bekker, A., Edwards, K., 2005. Iron isotope constraints on the Archean andPaleoproterozoic ocean redox state. Science 307, 1088–1091.

Rouzaud, J.-N., Skrzypczak, A., Bonal, L., Derenne, S., Quirico, E., Robert, F., 2005.The high resolution transmission electron microscopy: A powerful tool for studyingthe organization of terrestrial and extra-terrestrial carbons. Lunar and Planetary ScienceXXXVI.

Roy, A.B., Kröner, A., 1996. Single zircon evaporation ages constraining the growth of theArchean Aravalli craton, NW Indian shield. Geological Magazine 133, 333–342.

Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the linkbetween U-Pb ages and metamorphism. Chemical Geology 184, 123–138.

Rubin, A.E., 1997a. Mineralogy of meteorite groups. Meteoritics and Planetary Science32, 231–247.

Rubin, A.E. 1997b. Mineralogy of meteorite groups: An update. Meteoritics and PlanetaryScience 32, 733–734.

Rubin, A.E., 2000. Petrologic, geochemical and experimental constraints on models ofchondrule formation. Earth Science Reviews 50, 3–27.

Rubin, A.E., Kalleymeyn, G.W., 1994. Pecora Escarpment 91002: A member of the newRumuruti (R) chondrite group. Meteoritics 29, 255–264.

Rubin, A.E., Mittlefehldt, D.W., 1992. Mesosiderites – a chronological and petrologic syn-thesis. Meteoritics 27, 282.

Rundqvist, D.V., Sokolov, Y.M., 1993. Main features of Precambrian metallogeny: In:Rundquist, D.V., Mitrofanov, F.P. (Eds.), Precambrian Geology of the USSR. Elsevier,Amsterdam, pp. 1–6.

Runnegar, B., 2001. Archean sulfates from Western Australia: implications for Earth’searly atmosphere and ocean. In: 11th Annual Goldschmidt Conference, Hot Spring,Virginia, pp. 3859.

Runnegar, B., Coath, C.D., Lyons, J.R., McKeegan, K.D., 2002. Mass-independent andmass-dependent sulfur processing throughout the Archean. Geochimica et Cosmochim-ica Acta 66 (15A), A655.

Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental resultsunder fluid-absent conditions. Contributions to Mineralogy and Petrology 107, 41–59.

Russell, M.J., Arndt, N.T., 2005. Geodynamic and metabolic cycles in the Hadean. Bio-geosciences 2, 97–111.

Russell, M.J., Hall, A.J., 1997. The emergence of life from iron monosulphide bubbles ata submarine hydrothermal redox and pH front. Journal of the Geological Society 154,377–402.

Russell, M.J., Martin, W., 2004. The rocky roots of the acetyl-CoA pathway. Trends inBiochemical Sciences 29, 358–363.

Russell, M.J., Hall, A.J., Boyce, A.J., Fallick, A.E., 2005 On hydrothermal convectionsystems and the emergence of life. Economic Geology 100, 419–438.

Russell, S.S., 1998. A survey of calcium-aluminium-rich inclusions from Rumurutiitechondrites: implications for relationships between meteorite groups. Meteoritics andPlanetary Science 33, A131–132.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 130aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 131

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Rutland, R.W.R., 1973. Tectonic evolution of the continental crust of Australia. In: Tarling,D.H., Runcorn, S.K. (Eds.), Implications of Continental Drift to the Earth Sciences.Academic Press, London, pp. 1011–1033.

Ryder, G., 1990. Lunar samples, lunar accretion and th early bombardment of the Moon.Eos Transactions of the American Geophysical Union 70, 322–323.

Ryder, G., 1991. Accretion and bombardment in the Earth–Moon system: the Lunar record.In: Lunar Planetary Institute Contribution 746, pp. 42–43.

Ryder, G., 1997. Coincidence in the time of the Imbrium Basin impact and Apollo 15 Kreepvolcanic series: impact-induced melting? In: Lunar Planetary Institute Contribution 790,pp. 61–62.

Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: A criti-cal review. American Journal of Science 298, 621–672.

Rye, R., Kuo, P.H., Holland, H.D., 1997. Atmospheric carbon dioxide concentrations be-fore 2.2 billion years ago. Nature 378, 603–605.

Ryerson, F.J., Watson, E.B., 1987. Rutile saturation in magmas: implications for Ti-Nb-Tadepletion in island-arc basalts. Earth and Planetary Sciences Letters 86, 225–239.

Sackmann, I.-J., Boothroyd, A.I., 2003. Our Sun V. A bright young Sun consistent with he-lioseismology and warm temperatures on ancient Earth and Mars. Astrophysical Journal583, 1024–1039.

SACS (South African Committee for Stratigraphy), 1980. Stratigraphy of South Africa:Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibiaand the Republics of Bophuthatswana, Transkei and Venda. In: Geological Survey ofSouth Africa Handbook, vol. 8, 690 pp.

Sagan, C., Mullen, G., 1972. Earth and Mars – evolution of atmospheres and surface tem-peratures. Science 177, 52–56.

Sagan, C., Chyba, C.F., 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221.

Salnikova, E.B, Kotov, A.B., Levitskiy, V.I., Morozova, I.M., Berezhnaya, N.G., 2003.Age boundaries of high-temperature metamorphism in crystalline complexes of theSharyzhalgay uplift of the Siberian Platform: results of U-Pb dating of single zir-con grains. In: Proceedings of 2nd Conference on Isotope Geochronology: IsotopeGeochronology in the Solution of Problems of Geodynamics and Ore Genesis, St.-Petersburg, pp. 453–455 (in Russian).

Salnikova, E.B., Kotov, A.B., Belyatskii, B.V., Yakovleva, S.Z., Morozova, I.M., Berezh-naya, N.G., Zagornaya, N.Yu., 1997. U-Pb age of granitoids in the junction zone be-tween the Olekma and Aldan granulite-gneiss terranes. Stratigraphy and GeologicalCorrelation 5 (2), 101–109.

Salnikova, E.B., Kotov, A.B., Nemchin, A.A., Yakovleva, S.Z., Morozova, I.M., Bogo-molova, L.M., Smelov, A.P., 1993. The age of Tungurchakan Pluton (Olekma granite-greenstone terrane, Aldan shield). Doklady Earth Sciences 331 (3), 356–358.

Samieyani, A., 1995. Mineralogy and geochemistry of ∼3.5 Ga volcanogenic massivesulfide deposits at the Big Stubby prospect, the Pilbara district, Western Australia. Un-published M.Sc. thesis. Tohoku University, 90 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 131aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

132 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Sanborn-Barrie, M., Skulski, T., 1999. 2.7 Ga tectonic assembly of continental margin andoceanic terranes in the Savant Lake-Sturgeon Lake greenstone belt, Ontario. In: CurrentResearch 1999-C, Geological Survey of Canada, pp. 209–220.

Sanborn-Barrie, M., Skulski, T., 2006. Sedimentary and structural evidence for 2.7 Gacontinental arc-oceanic arc collision in the Savant – Sturgeon greenstone belt, westernSuperior Province, Canada. Canadian Journal of Earth Sciences 43, 995–1030.

Sanborn-Barrie, M., Skulski, T., Parker, J.R., 2001. Three hundred million years of tectonichistory recorded by the Red Lake greenstone belt, Ontario. In: Current Research 2001-C19, Geological Survey of Canada, 19 pp.

Sanborn-Barrie, M., Rogers, N., Skulski, T., Parker, J.R., McNicoll, V., Devaney, J., 2004.Geology and tectonostratigraphic assemblages, east Uchi, Red Lake and Birch-Uchibelts, Ontario. Geological Survey of Canada, Open File 4256, Ontario Geological Sur-vey, Preliminary Map P.3460, scale 1:250,000.

Sanchez-Garrido, C., 2006. Nature des apports (juvéniles/recyclage) dans la sédimentationorogénique de Schapenburg (3.2 Ga) : approche isotopique Sr et Nd. DEA, UniversitéBlaise-Pascal, Clermont-Ferrand, France, 45 pp.

Sandiford, M., 1985. The metamorphic evolution of granulites at Fyfe Hills: implicationsfor Archaean crustal thickness in Enderby Land, Antarctica. Journal of MetamorphicGeology 3, 155–178.

Sandiford, M., McLaren, S., 2002. Tectonic feedback and the ordering of heat producingelements within the continental lithosphere. Earth and Planetary Science Letters 204,133–150.

Sandiford, M., Van Kranendonk, M.J., Bodorkos, S., 2004. Conductive incubation andthe origin of dome-and-keel structure in Archean granite-greenstone terrains: a modelbased on the eastern Pilbara Craton, Western Australia. Tectonics, 23, TC1009, doi:10.1029/2002TC001452.

Sangster, D.W., Brook, W.A., 1977. Primitive lead in an Australian Zn-Pb-Ba deposit.Nature 270, 423.

Sano, Y., Terada, K., Hidaka, H., Yokoyama, K., Nutman, A.P., 1999. Palaeoproterozoicthermal events recorded in the ∼4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMPU-Pb dating of apatite and zircon. Geochimica et Cosmochimica Acta 63, 899–905.

Sano, Y, Terada, K, Takahasho, Y., Nutman, A.P., 1999b. Origin of life from apatite dating?Nature 400, 127.

Sarkar, G., Corfu, F., Paul, D.K., McNaughton, N.J., Gupta, S.N., Bishui, P.K., 1993. EarlyArchean crust in Bastar craton, central India – a geochemical and isotopic study. Pre-cambrian Research 62, 127–137.

Sasaki, S., 1990. The primary solartype atmosphere surrounding the accreting Earth: H2O-induced high survade temperature. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of theEarth. Oxford University Press, New York, pp. 195–209.

Sasseville, C., 2002. Characteristics of Mesoarchean and Neoarchean supracrustal se-quences at the southern margin of North Caribou terrane in the Wallace Lake green-stobne belt, Superior Province, Canada. M.Sc. thesis. McGill University, Montreal,Canada.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 132aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 133

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Sasseville, C., Tomlinson, K.Y., Hynes, A., McNicoll, V., 2006. Stratigraphy, Structure,and geochronology of the 3.0–2.7 Ga Wallace Lake greenstone belt, Western SuperiorProvince, SE Manitoba, Canada. Canadian Journal of Earth Sciences 43, 929–945.

Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and chemically-depletedmantle reservoir: trace element constraints. Journal of Petrology, Special lithosphereissue, 415–445.

Sawyer, E.W., Benn, K., 1993. Structure of the high-grade Opatica belt and adjacent low-grade Abitibi subprovince, Canada; an Archean mountain front. Journal of StructuralGeology 15, 1443–1458.

Scaillet, B., Clemente, B., Evans, B.W., Pichavant, M., 1998. Redox control of sulfur de-gassing in silicic magmas. Journal of Geophysical Research – Solid Earth 103 (B10),23,937–23,949.

Schaap, B.D., 1989. The geology and crustal structure of southwestern Minnesota usinggravity and magnetic data. M.S. thesis. University of Minnesota, Minneapolis, 78 pp.

Schaber, G.G., Strom, R.G., Moore, H.J., Soderblom, L.A., Kirk, R.L., Chadwick, D.J.,Dawson, D.D., Gaddis, L.R., Boyce, J.M., Russell, J., 1992. Geology and Distributionof Impact Craters on Venus: What are they telling us? Journal of Geophysical Research97, 13,257–13,302.

Schärer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock.Science 293, 683–687.

Schärer, U., Allègre, C.J., 1985. Determination of the age of the Australian continent bysingle-grain zircon analyses of Mt. Narryer metaquartzite. Nature 315, 52–55.

Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock.Science 293, 683–687.

Schidlowski, M., 2001. Carbon isotopes as biogeochemical reorders of life over 3.8 Ga ofEarth history: Evolution of a concept. Precambrian Research 106, 117–134.

Schidlowski, M., Eichmann, R., Junge, C.E., 1975. Precambrian sedimentary carbonates:Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygenbudget. Precambrian Research 2, 1–69.

Schidlowski, M., Appel, P.W.U., Eichmann, R., Junge, C.E., 1979. Carbon isotope geo-chemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for theArchaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta 43, 189–199.

Schidlowski, M., Hayes, J.M., Kaplan, I.R., 1983. Isotopic inference of ancient bio-chemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schopf, J.W. (Ed.), Earth’sEarliest Biosphere – It’s Origin and Evolution. Princeton University Press, Princeton,pp. 149–186.

Schiotte, L., Compston, W., Bridgwater, D., 1989. Ion probe U-Th-Pb zircon dating ofpolymetamorphic orthogneisses from northern Labrador. Canada Journal of Earth Sci-ences 26, 1533–1556.

Schlesinger, W.H., 1997. Biogeochemistry. Academic Press, San Diego, 588 pp.Schmidt, M.W., 1993. Phase relations and composition in tonalite as a function of pressure:

an experimental study at 650 ◦C. American Journal of Science 293, 1011–1060.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 133aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

134 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Schmidt, M.W., Thompson, A.B., 1996. Epidote in calc-alkaline magmas: an experimentalstudy of stability, phase relationships and the role of epidote in magmatic evolution.American Mineralogist 81, 462–474.

Schmidt, M.W., Poli, S., 1998. Experimentally based water budgets for dehydrating slabsand consequences for arc magma generation. Earth and Planetary Science Letters 163,361–379.

Schmitz, M.D., Bowring, S.A., de Wit, M., Volker, G., 2004. Subduction and terrane colli-sion stabilize the western Kaapvaal craton tectosphere 2.9 billion years ago. Earth andPlanetary Science Letters 222, 363–376.

Schmitz, M.D., Bowring, S.A., Southwick, D.L., Boerboom, T.J., Wirth, K.R., 2005. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bear-ing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province.Bulletin of Geological Society of America 118, 82–93.

Schneider, D.A., Bickford, M.E., Cannon, W.F., Schulz, K.J., Hamilton, M.A., 2002. Tim-ing of Marquette Range Supergroup deposition and Penokean collision-related basinformation, southern Lake Superior region: implications for Paleoproterozoic tectonicreconstruction. Canadian Journal of Earth Sciences 39, 999–1012.

Schoenberg, R., Kamber, B.S., Collerson, K.D., Moorbath, S., 2002. Tungsten isotope ev-idence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment ofthe Earth. Nature 418, 403–405.

Schonwandt, H.K., Petersen, J.S., 1983. Continental rifting and porphyry-molybdenumoccurrences in the Oslo region, Norway. Tectonophysics 94, 609–631.

Schopf, J.W. (Ed.), 1983. Earth’s Earliest Biosphere: Its Origin and Evolution. PrincetonUniversity Press, 543 pp.

Schopf, J.W., 1992. Newly discovered microfossils from the Early Archaean Apex Basalt(Warrawoona Group), Western Australia. In: Schopf, J.W., Klein, C. (Eds.), The Pro-terozoic Biosphere: A Multi-Disciplinary Study. Cambridge University Press, pp. 25–39.

Schopf, J.W., 1993. Microfossils of the Early Archean Apex Chert: New evidence of theantiquity of life. Science 260, 640–646.

Schopf, J.W., 2004. Earth’s earliest biosphere: Status of the hunt. In: Eriksson, P.G., Alter-mann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth:Tempos and Events. In: Developments in Precambrian Geology, vol. 12. Elsevier, Am-sterdam, pp. 516–539.

Schopf, J.W., Kudryavtsev., A.B., Agresti, D.G., Wdowiak, T.J., Czaja, A.D., 2002. Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73–76.

Schramm, L.S., Brownlee, D.S., Wheelock, M.M., 1988. The elemental composition ofinterplanetary dust. In: Lunar and Planetary Science Conference XIX. Houston, TX,pp. 1033–1034.

Schubert, G., Moore, W.B., Sandwell, D.T., 1994. Gravity over coronae and chasmata onVenus. Icarus 112, 130–146.

Schubert , G., Sandwell, D.T., 1995. A global survey of possible subduction sites on Venus.Icarus 117, 173–196.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 134aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 135

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Schubert, G.S., Solomatov, V.S., Tackely, P.J., Turcotte, D.L., 1997. Mantle convection andthermal evolution of Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VenusII. University of Arizona Press, Tucson, AZ, pp. 1245–1288.

Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets.Cambridge University Press, Cambridge, 940 pp.

Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., Otto, J., 1994. Mineralogyand chemistry of Rumuruti: the first meteorite fall of the new R chondrite group. Mete-oritics 29, 275–286.

Schultz, L., Palme, H., Spettel, B., Weber, H.W., Wänke, H., Cristophe Michel-Levy, M.,Lorin, J.C., 1982. Allan Hills A77081 – An unusual stony meteorite. Earth and PlanetaryScience Letters 61, 23–31.

Schultz, P.H., 1993. Searching for ancient Venus. In: Lunar and Planetary Science Confer-ence XXIV, pp. 1255–1255.

Scoates, R.F.J., Macek, J.J., 1978. Molson dyke swarm. In: Manitoba Department ofMines, Resources and Environmental Management, Mineral Resources Division, Ge-ological Paper 78-1, p. 53.

Scott, E.R.D., 1972. Chemical fractionation in iron meteorites and its interpretation.Geochimica et Cosmochimica Acta 36, 1205–1236.

Scott, E.R., 1977. Formation of olivine-metal textures in pallasite meteorites. Geochimicaet Cosmochimica Acta 41, 693–710.

Scott, E.R.D., Haack, H., Love, S.G., 2001. Formation of mesosiderites by fragmentationand reaccretion of a large differentiated asteroid. Meteoritics and Planetary Science 36,869–881.

Scott, E.R.D., Jones, R.H., 1990. Disentangling nebula and asteroidal features of CO3carbonaceous chondrite meteorites. Geochimica et Cosmochimica Acta 54, 2485–2502.

Scott, E.R.D., Krot, A.N., 2003. Chondrites and their components. In: Davis, A.M.(Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 143–200.

Seal, R.R., II, 2006. Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J.(Ed.), Sulfide Mineralogy and Geochemistry. In: Reviews in Mineralogy and Geochem-istry, vol. 61, pp. 633–677.

Sears, D.W.G., Hasan, F.A., Batchelor, J.D., Lu J., 1991. Chemical and physical studies oftype 3 chondrites – XI: metamorphism, pairing and brecciation in ordinary chondrites.In: Proceedings of the Lunar and Planetary Science Conference, vol. 21, pp. 493–512.

Sears, D.W.G., Kallemeyn, G.W., Wasson, J.T., 1982. The chemical classification of chon-drites II: The enstatite chondrites. Geochimica et Cosmochimica Acta 46, 597–608.

Seedorff, E., Dilles., J.H., Proffett Jr., J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A.,Johnson, D.A., Barton, M.D., 2005. Porphyry deposits: characteristics and origin ofhypogene features. Economic Geology, 100th Anniversary Volume, 251–298.

Seeger, P.A., Fowler, W.A., Clayton, D.D., 1965. Nucleosynthesis of heavy elements byneutron capture. Astrophysical Journal 11 (Supplement), 121–166.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 135aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

136 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Seewald, J.S., Seyfried, W.E., 1990. The effect of temperature on metal mobility in sub-seafloor hydrothermal systems: constraints from basalt alteration experiments. Earthand Planetary Science Letters 101, 388–403.

Self, S., Keszthelyi, L., Thordarson, T., 1998. The importance of pahoehoe. Annual Reviewof Earth and Planetary Sciences 26, 81–110.

Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy andPetrology 117, 394–409.

Sengör, A.M.C., 2001. Elevation as an indicator of mantle-plume activity. In: Ernst, R.E.,Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: GeologicalSociety of America, Special Paper 352, pp. 183–225.

Sengör, A.M.C., Natal’in, B.A., 1996. Turkic type orogeny and its role in the making ofthe continental crust. Annual Review Earth and Planetary Sciences 24, 263–337.

Sengör, A.M.C., Natal’in, B.A., 2004. Phanerozoic analogues of Archaean oceanic base-ment fragments: Altaid ophiolites and ophirags. In: Kusky, T.M. (Ed.), PrecambrianOphiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. El-sevier, Amsterdam, pp. 675–726.

Sengör, A.M.C., Okurogullari, A.H., 1991. The role of accretionary wedges in the growthof continents: Asiatic examples from Argand to plate tectonics. Eclogae GeologicaeHelveticae 84, 535–597.

Sengör, A.M.C., Natal’in, B.A., Burtman, V.S., 1993. Evolution of the Altayd tectoniccollage and Paleozoic crustal growth in Eurasia. Nature 364, 299–307.

Sengupta, P., Dasgupta, S., Bhattacharya, P.K., Hariya, Y., 1989. Mixing behavior in qua-ternary garnet solid-solution and an extended Ellis and Green garnet-clinopyroxenegeothermometer. Contributions to Mineralogy and Petrology 103, 223–227.

Sephton, M.A., Love, G.D., Meredith, W., Snape, C.E., Sun, C.-G., Watson, J.S., 2005.Hydropyrolysis: A new technique for the analysis of macromolecular material in mete-orites. Planetary and Space Science 53, 1280–1286.

Seyfried, W.E., 1987. Experimental and theoretical constraints on hydrothermal alterationprocesses at mid-ocean ridges, Annual Reviews Earth and Planetary Sciences 15, 317–335.

Shapiro, L., Brannock, W.W., 1962. Rapid analysis of silicate, carbonate and phosphaterocks. In: U.S. Geological Survey, Bulletin 1144-A

Sharp, T.G., De Gregorio, B.T., 2003. Determining the Biogenicity of residual carbonwithin the Apex Chert. Geological Society of America, Annual Meeting, Seattle WA,Paper No. 187-2.

Sharp, Z.D., Essene, E.J., Kelly, W.C., 1985. A reexamination of the arsenopyrite geother-mometer – pressure considerations and applications to natural assemblages. CanadianMineralogist 23, 517–534.

Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cos-mochimica Acta 34 (2), 237–243.

Shemansky, D.E., 1972. CO2 extinction coefficient 1700–3000 Å. Journal of ChemicalPhysics 56, 1582–1587.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 136aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 137

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Shemyakin, V.M., Glebovitsky, V.A., Berezhnaya, N.G.,. Yakovleva, S.Z., Morozova, I.M.,1998. On the age of the Sutam block oldest formations. Doklady Earth Sciences 360 (4),526–529.

Shen, B.F., Luo, H., Li, S.B., Li, J.J., Peng, X.L., Hu, X.D., Mao, D.B., Liang, R.Y., 1994,Geology and Metallization of Archaean Greenstone Belts in North China Platform. Ge-ological Publishing House, Beijing, 202 pp. (in Chinese with English abstract).

Shen, J.J., Papanastassiou, D.A., Wasserburg, G.J., 1996. Precise Re-Os determinationsand systematics of iron meteorites. Geochimica et Cosmochimica Acta 60, 2887–2900.

Shen, Q.H., Geng, Y.S., Song, B., Wan, Y.S., 2005. New information from surface outcropsand deep crust of Archaean Rocks of the North China and Yangtze Blocks, and Qinling-Dabie Orogenic Belt. Acta Geologica Sinica 79, 616–627 (in Chinese with Englishabstract).

Shen, Q.H., Liu, D.Y., Wang, P., Gao, J.F., Zhang, Y.F., 1987. U-Pb and Rb-Sr isotopic agestudy of the Jining Group from Nei Mongol of China. Bulletin of the Chinese Academyof Geological Sciences 16, 165–178.

Shen, Q.H., Shen, K., Geng, Y.S., Xu, H.F., 2000. Compositions and Geological Evolutionof Yishui Complex, Shandong Province, China. Geological Publishing House, Beijing,179 pp. (in Chinese).

Shen, Q.H., Song, B., Xu, H.F., Geng, Y.S., Shen, K., 2004. Emplacement and meta-morphism ages of the Caiyu and Dashan igneous bodies, Yishui County, ShandongProvince: Zircon SHRIMP chronology. Geological Review 50, 275–284.

Shen, Y., Buick, R., 2004. The antiquity of microbial sulfate reduction. Earth Science Re-views 64, 243–272.

Shen, Y., Buick, R., Canfield, D.E., 2001. Isotopic evidence for microbial sulphate reduc-tion in the early Archaean era. Nature 410, 77–81.

Sheppard, S., Occhipinti, S.A., Tyler, I.M., 2003. The relationship between tectonism andcomposition of granitoid magmas, Yarlarweelor Gneiss Complex, Western Australia.Lithos 66, 133–154.

Sheraton, J.W., Black, L.P., McCulloch, M.T., 1984. Regional geochemical and isotopiccharacteristics of high-grade metamorphics of the Prydz Bay area: the extent of Protero-zoic reworking of Archaean continental crust in East Antarctica. Precambrian Research26, 169–198.

Sheraton, J.W., Tingey, R.J., Black, L.P., Offe, L.A., Ellis, D.J., 1987. Geology of EnderbyLand and Western Kemp Land, Antarctica. Bulletin Australian Bureau of Mineral Re-sources 223, 1–51.

Sherwood-Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F., Lacrampe-Couloume, G.,2002. Abiogenic formation of alkanes in the Earth’s crust as a minor source for globalhydrocarbon reservoirs. Nature 416, 522–524.

Shields, G.A., 2002. A chemical explanation for the mid-Neoproterozoic disappearance ofmolar-tooth structure ∼750 Ma. Terra Nova 14, 108–113.

Shields, G.A., Veizer J., 2002. Precambrian marine carbonate isotope database: Version1.1. Geochemistry, Geophysics, Geosystem 6, 1–12.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 137aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

138 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Shields, G.A., Carden G.A.F., Veizer, J., Meidla, T., Rong, J.-Y., Li, R.-Y., 2003. Sr, C andO isotope geochemistry of Ordovician brachiopods: a major event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta 67, 2005–2025.

Shields, G.A., Kasting, J.F. (submitted). No evidence for hot early oceans. Nature.Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y., Nakai, Y., 1994. Cam-

brian orogenic belt in East Antarctica and Sri Lanka: implications for Gondwana as-sembly. Journal of Geology 102, 47–65.

Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423–500.

Shirey, S.B., Wilson, A.H., Carlson, R.W., 1998. Re-Os Isotopic Systematics of the 3300Ma Nondweni Greenstone Belt, South Africa: Implications for Komatiite Formation ata Craton Edge. In: AGU Spring Meeting, Boston.

Shirey, S.B., Richardson, S.H., Harris, J.W., 2004. Integrated models of diamond formationand craton evolution. Lithos 77, 923–944.

Shock, E.L., Schulte, M.D., 1998. Organic synthesis during fluid mixing in hydrothermalsystems. Journal of Geophysical Research – Planets 103 (E12), 28,513–28,527.

Shu, F.H., Shang, H., Gounelle, M., Glassold, A.E., Lee, T., 2001. The origin of chon-drules and refractory inclusions in chondritic meteorites. Astrophysics Journal 548,1029–1050.

Shukolyukov, A., Lugmair, G.W., 1993a. Live iron-60 in the early solar system. Science259, 1138–1142.

Shukolyukov, A., Lugmair, G.W., 1993b. 60Fe in eucrites. Earth and Planetary ScienceLetters 119, 159–166.

Shukolyukov, A., Lugmair, G.W., 1997. The 53Mn-53Cr isotope system in the Omolonpallasite and the half-life of 187Re. Lunar and Planetary Science XXVIII, 1315–1316.

Shukolyukov, A., Lugmair, G.W., 2006. Manganese-chromium isotope systematics of car-bonaceous chondrites. Earth and Planetary Science Letters 250, 200–213.

Shukolyukov, A., Kyte, F.T., Lugmair, G.W., Lowe, D.R., Byerly, G.R., 2000. The old-est impact deposits on Earth – First confirmation of an extraterrestrial component. In:Gilmour, I., Koeberl, C. (Eds.), Impacts and the Early Earth. Springer-Verlag, Berlin,pp. 99–116.

Siever, R., 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta56, 3265–3272.

Sillitoe, R.H., Thompson, J.F.H., 1998. Intrusion-related vein gold deposits: types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. ResourceGeology 48, 237–250.

Silva, K.E., Cheadle, M.J., Nisbet, E.G., 1997. The Origin of B1 zones in komatiite flows.Journal of Petrology 38 (11), 1565-841565-84.

Simard, M., Gosselin, C., David, J., 2002. Geology of the Maricourt area (24D). Ministèredes Ressources naturelles, Québec, RG 2001-07, 41 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 138aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 139

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Simard, M., Parent, M., David, J., Sharma, K.N.M., 2003. Géologie de la région de larivière Innuksuac (34K et 34L). Ministère des Ressources naturelles, Québec, RG 2002-10, 46 pp.

Simard, M., Parent, M., David, J., Sharma, K.N.M., 2004. Geology of the Rivière Innuk-suac area (34K and 34L). Ministère des Ressources naturelles, Québec, RG 2003-03,40 pp.

Simon, N.S.C., Irvine, G.J., Davies, G.R., Pearson, D.G., Carlson, R.W., 2003. The originof garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71, 289–322.

Simons, M., Solomon, S.C., Hager, B.H., 1997. Localization of gravity and topography:constraints on the tectonics and mantle dynamics of Venus. Geophysical Journal Inter-national 131, 24–44.

Simonson, B.M., Glass, B.P., 2004. Spherule layers – Records of ancient impacts. AnnualReview of Earth and Planetary Sciences 32, 329–361

Sims, J.R., Dirks, P.H.G.M., Carson, C.J., Wilson, C.J.L., 1994. The structural evolutionof the Rauer Group, East Antarctica: mafic dykes as passive markers in a compositeProterozoic terrain. Antarctic Science 6, 379–394.

Sims, P.K., 1980. Boundary between Archean greenstone and gneiss terranes in northernWisconsin and Michigan. In: Geological Society of America, Special Paper 182, pp.113–124.

Sims, P.K., 1991. Great Lakes Tectonic Zone in Marquette Area, Michigan – Implicationsfor Archean tectonics in north-central United States. In: U.S. Geological Survey, Bul-letin 1904-E, pp. E1-E17.

Sims, P.K., 1993. Structure map of Archean rocks, Palmer and Sands 7½ minute quadran-gles, Michigan, showing Great Lakes tectonic zone. U.S. Geological Survey, Miscella-neous Investigations Series Map I-2355, scale 1:24,000.

Sims, P.K., 1996a. Great Lakes Tectonics Zone. In: Sims, P.K., Carter, L.M.H. (Eds.),Archean and Proterozoic Geology of the Lake Superior Region, U.S.A., 1993. In: U.S.Geological Survey, Professional Paper 1556, pp. 24–28.

Sims, P.K., 1996b. Minnesota River Valley Subprovince (Archean Gneiss Terrane). In:Sims, P.K., Carter, L.M.H. (Eds.), Archean and Proterozoic Geology of the Lake Su-perior Region, U.S.A., 1993. In: U.S. Geological Survey, Professional Paper 1556, pp.14–23.

Sims, P.K., Day, W.C., 1992. A regional structural model for gold mineralization in thesouthern part of the Archean Superior province, U.S.A. In: U.S. Geological Survey,Bulletin 1904-M, 19 pp.

Sims, P.K., Day, W.C., 1993. The Great Lakes Tectonic Zone – revisited. In: U.S. Geolog-ical Survey, Bulletin 1904-S, pp. 1–11.

Sims, P.K., Card, K.D., Morey, G.B., others, 1980. The Great Lakes tectonic zone; a majorcrustal structure in central North America. Bulletin of Geological Society of America91, 690–698.

Sims, P.K., Kotov, A.B., Neymark, L.A., Peterman, Z.E., 1997. Nd isotopic evidence formiddle and early Archean crust in the Wawa subprovince of Superior Province, Michi-gan, U.S.A. In: Geological Association of Canada, Abstract Volume 23, A137.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 139aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

140 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Singer, B.S., Myers, J.D., Frost, C.D., 1992. Mid-Pleistocene lavas from the Seguam vol-canic center, central Aleutian arc: closed-system fractional crystallization of a basalt torhyodacite eruptive suite. Contributions to Mineralogy and Petrology 110, 87–112.

Sinigoi, S., Quick, J.E., Mayer, A., Demarchi, G., 1995. Density controlled assimilation ofunderplated crust, Ivrea–Verbano zone, Italy. Earth and Planetary Science Letters 129,183–191.

Sircombe, K.N., Bleeker, W., Stern, R.A., 2001. Detrital zircon geochronology and grain-size analysis of a ∼2800 Ma Mesoarchean proto-cratonic cover succession, SlaveProvince, Canada. Earth and Planetary Science Letters 189, 207–220.

Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic mag-mas from common basaltic sources. Contribution to Mineralogy and Petrology 148,635–661.

Sjerp, N., 1983. Geological report, Lennons Find Prospect, Pilbara Goldfield, Western Aus-tralia. Unpublished Sjerp and Associates report to Centenerary International Pty Ltd.

Skjerlie, K.P., Johnston, A.D. 1993. Fluid-absent melting behavior of an F-rich tonaliticgneiss at mid-crustal pressures: implications for the generation of anorogenic granites.Journal of Petrology 34, 785–815.

Skjerlie, K., Patiño-Douce, A.E., 2002. The fluid-absent partial melting of a zoisite bearingquartz eclogite from 1.0 to 3.2 GPA: implications for melting of a thickened continentalcrust and for subduction-zone processes. Journal of Petrology 43, 291–314.

Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Men’shagin, Yu.V., 1998. Meta-morphism of the ancient ophiolites of the Sharyzhalgay massif. Russian Geology andGeophysics 39 (12), 1733–1749.

Sklyarov, E.V., Gladkochub, D.P., Watanabe, T., Fanning, M.K., Mazukabzov, A.M., Men-shagin, Yu. V., Ota, T., 2001. Archean supracrustal rocks of the Sharyzhalgay salientand their tectonic implications. Doklady Earth Sciences 377A (3), 278–282.

Skrzypczak, A., Derenne, S., Robert, F., Binet, L., Gourier, D., Rouzaud, J.N., Clinard, C.,2004. Characterization of the organic matter in an Archean chert (Warrawoona, Aus-tralia). Geochimica et Cosmochimica Acta (Abstracts volume), A240 (Goldschmidt,Copenhagen.)

Skrzypczak, A., Derenne, S., Binet, L., Gourier, D., Robert, F., 2005. Characterization of a3.5 Billion year old organic matter: Electron paramagnetic resonance and pyrolysis GC-MS, tools to assess syngeneity and biogenicity. Lunar and Planetary Science XXXVI,abstract #1351.

Skulski, T., Villeneuve, M., 1999. Geochronological compilation of the Superior Province,Manitoba, Ontario, Quebec. Geological Survey of Canada, Open File 3715.

Skulski, T., Hynes, A., Francis, D., 1988. Basic lavas of the Archean La Grande greenstonebelt: products of polybaric fractionation and crustal contamination. Contributions toMineralogy and Petrology 100, 236–245.

Skulski, T., Percival, J.A., Stern, R.A., 1996. Archean crustal evolution in the central Mintoblock, northern Quebec. In: Radiogenic Age and Isotopic Studies, Report 9: GeologicalSurvey of Canada, Current Research 1995-F, pp. 17–31,

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 140aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 141

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Skulski, T., Sanborn-Barrie, M., Stern, R.A., 1998. Did the Sturgeon Lake belt form near acontinental margin? In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior TransectFifth Annual Workshop. In: Lithoprobe Report 65, Lithoprobe Secretariat, Universityof British Columbia, pp. 87–89.

Skulski, T., Stern, R.A., Ciesielski, A., 1998. Timing and sources of granitic magmatism,Bienville subprovince, northern Quebec. In: Geological Association of Canada – Min-eralogical Association of Canada, Annual Meeting, Abstract Volume 23, p. A-175.

Skulski, T., Percival, J.A., Whalen, J.B., Stern, R.A., 1999. Archean crustal evolution in thenorthern Superior Province. In: Tectonic and Magmatic Processes in Crustal Growth: APan-Lithoprobe Perspective. Lithoprobe Report 75, Lithoprobe Secretariat, Universityof British Columbia, pp. 128–129.

Skulski, T., Corkery, M.T., Stone, D., Whalen, J.B., Stern, R.A., 2000. Geological andgeochronological investigations in the Stull Lake - Edmund Lake greenstone belt andgranitoid rocks of the northwestern Superior Province. In: Report of Activities 2000,Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 117–128.

Skulski, T., Hynes, A., Percival, J., Craven, J., Sanborn-Barrie, M., Helmstaedt, H., 2004.Secular Changes in Tectonic Evolution and the Growth of Continental Lithosphere.In: The LITHOPROBE Celebratory Conference: From Parameters to Processes – Re-vealing the Evolution of a Continent, October 12–15, 2004, Toronto, Ontario, Canada.Lithoprobe Report 86.

Sleep, N.H., Windley, B.F., 1982. Archean plate tectonics: Constraints and inferences.Journal of Geology 90, 363–379.

Smelov, A.P., Bereskin, V.I., Zedgenizov, A.N., 2002. New data on composition, structureand ore deposits of the Kotuykan zone of tectonic melange. Otechestvennaya Geologya4, 45–49 (in Russian).

Smelov, A.P., Zedgenizov, V.F., Timofeev, V.F., 2001. Aldano-Stanovoy shield. In: Par-fenov, L.M., Kuzmin, M.I. (Eds.), Tectonics, Geodynamics and Metallogeny of theSakha Republic (Yakutia). Nauka/Interperiodica, Moscow, pp. 81–104 (in Russian).

Smelov, A.P., Zedgenizov, A.N., Parfenov, L.M., Timofeev, V.F., 1998. Precambrian Ter-ranes of the Aldan–Stanovoi shield. In: Metallogeny, Petroleum Potential, and Geody-namics of the North Asian Craton and the Surrounding Orogenic Belts. Santai Publ.,Irkutsk, pp. 119–120 (in Russian).

Smith, A.J., 1981. The geology of the farms Hooggenoeg 731JT and Avontuur 721JT,southwest Barberton Greenstone Belt. B.Sc. thesis. University of the Witwatersrand,Johannesburg.

Smith, H.S., Erlank, A.J., 1982. Geochemistry and petrogenesis of komatiites from the Bar-berton greenstone belt, South Africa. In: Arndt, N.T., Nisbet, E.G. (Eds.), Komatiites.Allen and Unwin, London, pp. 347–397.

Smith, J.B., Barley, M.E., Groves, D.I., Krapez, B., McNaughton, N.J., Bickle, M.J., Chap-man, H.J., 1998. The Sholl Shear Zone, West Pilbara: evidence for a domain boundarystructure from integrated tectonic analyses, SHRIMP U-Pb dating and isotopic and geo-chemical data of granitoids. Precambrian Research 88, 143–171.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 141aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

142 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Smith, P.E., Evensen, N.M., York, D., Moorbath, S., 2005. Oldest reliable terrestrial 40Ar-39Ar age from pyrite crystals at Isua, west Greenland. Geophysical Research Letters 32,L21318, 1–4.

Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is notan analogue of Cenozoic adakite. Earth and Planetary Science Letters 182, 115–125.

Smithies, R.H., Champion, D.C., 1999. Late Archaean felsic alkaline igneous rocks in theEastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delami-nation. Journal of the Geological Society of London 156, 561–576.

Smithies, R.H., Champion, D.C., 2000. The Archaean high-Mg diorite suite: Links totonalite-trondhjemite-granodiorite magmatism and implications for early Archaeancrustal growth. Journal of Petrology 41, 1653–1671.

Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth’s early Archaeancontinental crust. Precambrian Research 127, 89–101.

Smithies, R.H., Champion, D.C., Sun, S-.S., 2004a. Evidence for early LILE-enrichedmantle source regions: diverse magmas from the c 3.0 Ga Mallina Basin, Pilbara Craton,NW Australia. Journal of Petrology 45, 1515–1537.

Smithies R.H., Champion D.C., Sun S-.S., 2004b. The case for Archaean boninites. Con-tributions to Mineralogy and Petrology 147, 705–721.

Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M., Hickman, A.H.,2005a. Modern-style subduction processes in the Mesoarchaean: geochemical evidencefrom the 3.12 Ga Whundo intraoceanic arc. Earth and Planetary Science Letters 231,221–237.

Smithies, R.H., Van Kranendonk, M.J., Champion, D.C., 2005b. It started with a plume– early Archaean basaltic proto-continental crust. Earth and Planetary Science Letters238, 284–297.

Smithies, R.H., Van Kranendonk, M.J., Champion, D.C., 2007a. The Mesoarchaean emer-gence of modern style subduction. Gondwana Research 11, 50–68.

Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Hickman, A.H., 2007b. Geo-chemistry of ultramafic to felsic volcanic units of the northern Pilbara Craton. WesternAustralia Geological Survey, Record, in press.

Smithson, S.B., Pierson, W.R., Wilson, S.L., et al., 1985. Seismic reflection results fromPrecambrian crust. In: The Deep Proterozoic Crust in the North Atlantic Provinces. In:NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 158. D. ReidelPublishing Company International, pp. 21–37.

Smoliar, M.I., 1993. A survey of Rb-Sr systematics of eucrites. Meteoritics 28, 105–113.Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA and

IVB iron meteorites. Science 271, 1099–1102.Smrekar, S.E., Kiefer, W.S., Stofan, E.R., 1997. Large volcanic rises on Venus. In: Bouger,

S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson,AZ, pp. 845–879.

Smrekar, S.E., Stofan, E.R., 1997. Corona formation and heat loss on Venus by coupledupwelling and delamination. Science 277, 1289–1294.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 142aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 143

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Snape, I.S., Black, L.P., Harley, S.L., 1997. Refinement of the timing of magmatism andhigh-grade deformation in the Vestfold Hills, East Antarctica, from new Shrimp U-Pbzircon geochronology. In: Ricci, C.A. (Ed.), The Antarctic Region: Geological Evolu-tion and Processes. Terra Antartica Publication, Siena, pp. 139–148.

Snelson, C.M., Henstock, T.J., Keller, G.R., Miller, K.C., Levander, A., 1998. Crustal anduppermost mantle structure along the Deep Probe seismic profile. Rocky Mountain Ge-ology 33 (2), 181–198.

Snyder, D., 2002. Cooling of lava flows on Venus: The coupling of radiative and convectiveheat transfer. Journal of Geophysical Research 107, 5080–5088.

Sobotovich, E.V., Kamenev, Y.N., Komaristyy, A.A., Rudnik, V.A., 1976. The oldest rocksof Antarctic (Enderby Land). International Geology Review 18, 371–388.

Solomatov, V.S., Moresi, L.N., 1996. Stagnant lid convection on Venus. Journal of Geo-physical Research 101, 4737–4753.

Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral deposits and sulfurisotope abundances in the Mount Read volcanics between Que River and Mount Dar-win, Tasmania. Economic Geology 83, 1307–1328.

Solomon, S.C., 1993. The geophysics of Venus. Physics Today 46, 48–55.Solomon, S.C., Head, J.W., Kaula, W.M., McKenzie, D., Parsons, B., Phillips, R.J., Schu-

bert, G., Talwani, M., 1991. Venus tectonics: Initial analysis from Magellan. Science252, 297–312.

Solomon, S.C., Smrekar, S.E., Bindschadler, D.L., Grimm, R.E., Kaula, W.M., McGill,G.E., Phillips, R.J., Saunders, R.S., Schubert, G., Squyres, S.W., Stofan, E.R., 1992.Venus tectonics: An overview of Magellan observations. Journal of Geophysical Re-search 97, 13199–13255.

Solomon, S.C. et al, 2005. New Perspectives on Ancient Mars. Science 30, 1214–1220.Solvang, M., 1999. An investigation of metavolcanic rocks from the eastern part of the

Isua greenstone belt, Western Greenland. Geological Survey of Denmark and Greenland(GEUS) Internal Report, Copenhagen, Denmark, 62 pp.

Song, B., 1992. Isotope geochronology, REE characteristics and genesis of Miyun rapakivigranite. Bulletin of the Chinese Academy of Geological Sciences 25, 137–157 (in Chi-nese with English abstract).

Song, B., Nutman, A.P., Liu, D., Wu, J., 1996. 3800 to 2500 Ma crustal evolution in theAnshan area of Lianoning Province, NW China. Precambrian Research 78, 79–94.

Souders, A.K., Frost, C.D., 2006. In suspect terrane? Provenance of the Late ArcheanPhantom Lake Metamorphic Suite, Sierra Madre, Wyoming. Canadian Journal of EarthSciences 43, xxx-xxx in press.

Southwick, D.L., Chandler, V.W., 1996. Block and shear-zone architecture of the Min-nesota River Valley Subprovince: implications for late Archean accretionary tectonics.Canadian Journal of Earth Sciences 33, 831–847.

Spaggiari, C.V., 2006. Interpreted bedrock geology of the northern Murchison Domain,Youanmi Terrane, Yilgarn Craton. Western Australia. Geological Survey of WesternAustralia, Record 2006/10.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 143aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

144 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Spaggiari, C.V., in press a. Structural and lithological evolution of the Jack Hills greenstonebelt, Narryer Terrane, Yilgarn craton. Western Australia Geological Survey, Record2007/x.

Spaggiari, C.V., in press b. The Jack Hills greenstone belt, Western Australia, Part 1:Structural and tectonic evolution over >1.5 Ga. Precambrian Research.

Spaggiari, C.V, Pidgeon, R.T., Wilde, S.A. 2004. Structural and Tectonic framework of>4.0 Ga detrital zircons from the Jack Hills Belt, Narryer Terrane, Western Australia.Geoscience in a Changing World, GSA Conference Denver 2004, Abstracts with Pro-grams 36 (5), 207 (CD-ROM).

Spaggiari, C.V., Pidgeon, R.T., Wilde, S.A., in press. The Jack Hills greenstone belt, West-ern Australia, Part 2: Lithological relationships and implications for the deposition of>4.0Ga detrital zircons. Precambrian Research.

Spaggiari, C.V., Wartho, J.-A., Wilde, S.A., Bodorkos, S., in review. Proterozoic develop-ment of the northern margin of the Archean Yilgarn Craton. Precambrian Research.

Spear, F.S., 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths.Mineralogical Society of America, Washington.

Spencer, J., 2001. Possible giant metamorphic core complex at the center of ArtemisCorona, Venus. Bulletin of Geological Society of America 113, 333–345.

Spiridonov, V.G., Karpenko, S.F., Lyalikov, A.V., 1993. Sm-Nd age and geochemistry ofganulites in the Anabar shield. Geochemistry International 10, 1412–1427.

Spötl, C., Houseknecht, D.W., Jaques, R.C., 1998. Kerogen maturation and incipientgraphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma andArkansas: A combined petrographic and Raman spectrometric study. Organic Geo-chemistry 28, 535–542.

Spray, J.G., 1985. Dynamothermal transition between Archaean greenstone and granitoidgneiss at Lake Dundas, Western Australia. Journal of Structural Geology 7, 187–203.

Sproule, R.A., Lesher, C., Ayer, J.A., Thurston, P.C., Herzberg, C.T., 2002. Spatial and tem-poral variations in the geochemistry of komatiites and komatiitic basalts in the Abitibigreenstone belt. Precambrian Research 115, 153–186.

Squyres, S.W., Janes, D.M., Baer, G., Bindschadler, D.L., Schubert, G., Sharpton, V.L.,Stofan, E.R., 1992a. The morphology and evolution of coronae on Venus. Journal ofGeophysical Research 97, 13611–13634.

Squyres, S.W., Jankowski, D.G., Simons, M., Solomon, S.C., Hager, B.H., McGill, G.E.,1992b. Plains tectonism on Venus: The deformation belts of Lavinia Planitia. Journal ofGeophysical Research 97, 13579–13599.

Srinivasan, G., Sahijpal, S., Ulyanov, A.A., Goswami, J.N., 1996. Ion microprobe studiesof Efremovka CAIs: potassium isotope composition and 41Ca in the early solar system.Geochimica et Cosmochimica Acta 60, 1823–1835.

Srinivasan, G., Goswami, J.N., Bhandari, N., 1999. Al-26 in eucrite Piplia Kalan: plausibleheat source and formation chronology. Science 284, 1348–1350.

Stanistreet, I.G., De Wit, M.J., Fripp, R.E.P., 1981. Do graded units of accretionary spher-oids in the Barberton greenstone belt indicate Archaean deep water environment? Na-ture 293, 280–284.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 144aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 145

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Staudigel, H., 2003. Hydrothermal alteration processes in the oceanic crust. In: Treatise onGeochemistry, vol. 3. Elsevier, Amsterdam, pp. 511–535.

Staudigel, H., Hart, S.R., 1983. Alteration of basaltic glass: mechanisms and significancefor the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta 47, 337–350.

Staudigel, H., Plank, T., White, W., Schmincke, H.-U., 1996. Geochemical fluxes duringseafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. In:Bebout, G., Scholl, D.W., Kirby, S.H., Platt, J.P. (Eds.), Subduction: Top to Bottom. In:Geophysical Monograph, vol. 96, pp. 19–37.

Staudigel, H., Furnes, H., Banerjee, N.R., Dilek, Y., Muehlenbacks, K., 2006. GSA Today16 (10), 4–10.

Stein, M., 2003. Tracing the plume material in the Arabian-Nubian shield. PrecambrianResearch 123, 223–234.

Stein, M., Hofmann, A.W., 1992. Fossil plume head beneath the Arabian lithosphere? Earthand Planetary Science Letters 114, 193–209

Stein, M., Hofmann, A.W., 1994. Mantle plumes and episodic crustal growth. Nature 372,63–68.

Stepanov, L.L., 1974. Radiogenic age of polymetamorphic rocks in the Anabar shield. In:Early Precambrian Formations in the Central Part of the Arctic and Related MineralResources. Arctic Institute Publication, Leningrad, pp. 76–83 (in Russian).

Stepanyuk, L.M. 1991. U-Pb age of the microcline granites in the Anabar shield. DokladyEarth Sciences 10, 127–129

Stepanyuk, L.M., Ponomarenko, A.N., Yakovlev, B.G., 1993. Genesis and age of zirconsin granulites (the Daldyn mafic granulite of the Anabar shield as an example). Miner-alogical Journal 15 (2), 40–52.

Stern, R.A., Bleeker, W., 1998. Age of the world’s oldest rocks refined using Canada’sSHRIMP: The Acasta Gneiss Complex, Northwest Territories. Geoscience Canada 25,27–31.

Stern, R.A., Hanson, G.N., 1991. Archaean high-Mg granodiorites: a derivative of lightrare earth enriched monzodiorite of mantle origin. Journal of Petrology 32, 201–238.

Stern, R.A., Percival, J.A., Mortensen, J.K., 1994. Geochemical evolution of the Mintoblock: a 2.7 Ga continental magmatic arc built on the Superior proto-craton. Precam-brian Research 65, 115–153.

Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamor-phic terranes that the modern episode of subduction tectonics began in Neoproterozoictime. Geology 33, 557–560.

Stetter, K.O., 1996. Hyperthermophiles in the history of life. In: CIBA Foundation Sym-posia 202, 1–18.

Stetter, K.O., Gaag, G., 1983. Reduction of molecular sulfur by methanogenic bacteria.Nature 305, 309–311.

Stevens, G., Droop, T.R., Armstrong, R.A., Anhaeusser, C.R., 2002. Amphibolite-faciesmetamorphism in the Schapenburg schist belt: a record of the mid-crustal response to∼3.23 Ga terrane accretion in the Barberton greenstone belt. South African Journal ofGeology 105, 271–284.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 145aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

146 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Stevenson, D.J., 1988. Planetary evolution – Greenhouses and magma oceans. Nature 335,587–588

Stevenson, D.J., 1990. Fluid dynamics of core formation. In: Newsome, H.E., Jones, J.H.(Eds.), Origin of the Earth. Oxford University Press, New York, pp. 231–249.

Stevenson, D.J., Lunine, J.I., 1988. Rapid formation of Jupiter by diffuse redistribution ofwater vapour in the solar nebula. Icarus 75, 146–155.

Stevenson, I.M., 1968. A Geological Reconnaissance of Leaf River Map-Area, New Que-bec and Northwest Territories. Geological Survey of Canada, Memoire 356.

Stevenson, R.K., 1995. Crust and mantle evolution in the late Archean: Evidence from aSm-Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario.Bulletin of Geological Society of America 107, 1458–1467.

Stevenson, R.K., Bizzarro, M., 2006. Petrology and petrogenesis of the EoarcheanNuvvuagittuq tonalite suite. Geological Association of Canada, Abstracts vol. 31.

Stevenson, R.K., Patchett, P.J., 1990. Implications for the evolution of continental crustfrom Hf isotope systematics of Archean detrital zircons. Geochimica et CosmochimicaActa, 54, 1683–1697.

Stevenson, R.K., Turek, A., 1992. An isotopic study of the Island Lake greenstone belt,Manitoba: crustal evolution and progressive cratonization in the Late Archean. Cana-dian Journal of Earth Sciences 29, 2200–2210.

Stevenson, R.K., David, J., Parent, M., 2006. Crustal evolution in the western Minto Block,northern Superior Province, Canada. Precambrian Research 145, 229–242.

Stewart, B.W., Papanastassiou, D.W., Wasserburg, G.J., 1994. Sm-Nd chronology and pet-rogenesis of mesosiderites. Geochimica et Cosmochimica Acta 58, 3487–3509.

St-Onge, M.R., King, J.E., Lalonde, A.E., 1988. Geology, east-central Wopmay Orogen,District of Mackenzie, Northwest Territories. Geological Survey of Canada, Open-FileReport 1923, 3 sheets, scale 1:125,000.

Stofan, E.R., Anderson, S.W., Crown, D.A., Plaut, J.J., 2000. Emplacement and compo-sition of steep-sided domes on Venus. Journal of Geophysical Research 105, 26,757–26,772.

Stofan, E.R., Hamilton, V.E., Janes, D.M., Smrekar, S.E., 1997. Coronae on Venus: Mor-phology and origin. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II.University of Arizona Press, Tucson, AZ, pp. 931–968.

Stofan, E.R., Sharpton, V.L., Schubert, G., Baer, G., Bindschadler, D.L., Janes, D.M.,Squyres, S.W., 1992. Global distribution and characteristics of coronae and related fea-tures on Venus: Implications for origin and relation to mantle processes. Journal ofGeophysical Research 97, 13347–13378.

Stofan, E.R., Tapper, S., Guest, J.E., Smrekar, S.E., 2001. Preliminary analysis of an ex-panded database of coronae on Venus. Geophysical Research Letters 28, 4267–4270.

Stolz, G.W., Nesbitt, R.W., 1981. The komatiite nickel sulfide association at Scotia: Apetrochemical investigation of the ore environment. Economic Geology 76, 1480–1502.

Stone, D., 1998. Precambrian geology of the Berens River area, northwest Ontario. OntarioGeological Survey, Open File Report 5963, 115 pp.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 146aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 147

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Stone, D., 2000. Temperature and pressure variations in suites of Archean felsic plutonicrocks, Berens River area, northwest Superior Province, Ontario, Canada. Canadian Min-eralogist 38, 455–470.

Stone, D., Tomlinson, K.Y., Davis, D.W., Fralick, P., Hallé, J., Percival, J.A., Pufahl, P.,2002. Geology and tectonostratigraphic assemblages, South–central Wabigoon Sub-province. Ontario Geological Survey, Preliminary Map P.3448 or Geological Surveyof Canada, Open File 4284, scale: 1:250,000.

Stone, D., Corkery, M.T., Hallé, J., Ketchum, J., Lange, M., Skulski, T., Whalen, J., 2004.Geology and tectonostratigraphic assemblages, eastern Sachigo Subprovince, Ontarioand Manitoba. Ontario Geological Survey, Preliminary Map P.3462 or Manitoba Geo-logical Survey Open File OF2003-2 or Geological Survey of Canada, Open File 1582,scale: 1:250,000.

Stott, G.M., 1997. The Superior Province, Canada. In: de Wit, M.J., Ashwal, L.D. (Eds.),Greenstone Belts. In: Oxford Monograph on Geology and Geophysics, vol. 35. Claren-don, Oxford, pp. 480–507.

Stott, G.M., Corfu, F., 1991. Uchi subprovince. In: Thurston, P.C., Williams, H.R., Sut-cliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey,Special Volume 4, Part 1, pp. 145–238.

Stott, G.M., Corfu, F., Breaks, F.W., Thurston, P.C., 1989. Multiple orogenesis in north-western Superior Province. Geological Association of Canada Abstracts 14, A56.

Stowe, C.W., 1984. The early Archaean Selukwe nappe, Zimbabwe. In: Kröner, A., Greil-ings, R. (Eds.), Precambrian Tectonics Illustrated. E. Schweizerbart Verlagsbuchhand-lung, Stuttgart, pp. 41–56.

Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeo-geography Palaeoclimatology Palaeoecology 132, 97–118.

Strauss, H., 2003. Sulphur isotopes and the early Archaean sulphur cycle. PrecambrianResearch 126, 349–361.

Strauss, H., Moore, T.B., 1992. Abundances and isotopic compositions of carbon and sulfurspecies in whole rock and kerogen samples. In: Schopf, J.W., Klein, C. (Eds.), TheProterozoic Biosphere. Cambridge University Press, pp. 709–798.

Strom, R.G., Schaber, G.G., Dawson, D.D., 1994. The global resurfacing of Venus. Journalof Geophysical Research 99, 10899–10926.

Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry. Wiley-Interscience, New York, 1022pp.

Sudo, A., 1988. Stability of phlogopite in the upper mantle: implications for subductionzone magmatism. M.Sc. thesis. Kyoto University, Kyoto, Japan.

Sukhanov, M.K., Spiridonov, V.G., Karpenko, S.F., 1990. First isochron Sm-Nd dating ofthe anorthosites in the Anabar shield. Doklady Earth Sciences 310 (2), 448.

Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-Methylhopanoids as bio-markers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557.

Sun, D.Z., Jin, W.S., Bai, J., Wang, W.Y., Jiang, Y.N., Yang, C.L., 1984. The Early Pre-cambrian Geology of Eastern Hebei. Tianjin Science and Technology Press, Tianjin,273 pp. (in Chinese with English abstract).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 147aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

148 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Sun, D.Z., Li, H.M., Lin, Y.X., Zhou, H.F., Zhao, F.Q., Tang, M., 1991. Precambriangeochronology, chronotectonic framework and model of chronocrustal structure of theZhongtiao Mountains. Acta Geologica Sinica 65, 216–231(in Chinese with English ab-stract).

Sun, S.-S., Hickman, A.H., 1998. New Nd-isotopic and geochemical data from the westPilbara – implications for Archaean crustal accretion and shear zone development. Aus-tralian Geological Survey Organisation, Research Newsletter, June 1998.

Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle compositions and processes. In: Saunders, A.D., Norry, M.J.(Eds.) Magmatism in Ocean Basins. In: Geological Society of London, Special Publi-cation 42, pp. 313–345.

Surkov, Y.A., Moskalyova, L.P., Kharyukova, V.P., Dudin, A.D., Smirnov, G.G., Zaitseva,S.Y., 1986. Venus rock composition at the Vega-2 landing site. Journal of GeophysicalResearch 91, E215-E218.

Sutherland, W.M., Hausel, W.D., 2002. Preliminary geologic map of the Rattlesnake Hills1:100,000 Quadrangle, Fremont and Natrona Counties, central Wyoming. WyomingState Geological Survey Mineral Report 2002-2.

Sutton, J., Watson, J.V., 1951. The pre-Torridonian history of the Loch Torridon andScourie areas of the north-west Highlands and its bearing on the chronological clas-sification of the Lewisian. Journal of the Geological Society of London 106, 241–296.

Suyehiro, K., Takahashi, N., Arie, Y., Yokoi, Y., Hino, R., Shinohara, M., Kanazawa, T.,Hirata, N., Tokuyama, H., Tara, A., 1996. Continental crust, crustal underplating andlow-Q upper mantle beneath an ocean island arc. Science, 272, 390–392.

Swager, C.P., Griffin, T.J., Witt, W.K., Wyche, S., Ahmat, A.L., Hunter, W.M., Mc-Goldrick, P.J., 1995. Geology of the Archaean Kalgoorlie Terrane – an explanatorynote. Western Australia Geological Survey, Report 48, 26 pp.

Sweetapple, M.T., Collins, P.L.F., 2002. Genetic framework for the classification and distri-bution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia.Economic Geology 97, 873–896.

Swindle, T.D., Kring, D.A., Burkland, M.K., Hill, D.H., Boynton, W.V., 1998. Noble gases,bulk chemistry, and petrography of olivine-rich achondrites Eagle Nest and Lewis Cliff88763: comparison to brachinites. Meteoritics and Planetary Science 33, 31–48.

Swindle, T.D., Cafee, M.W., Hohenberg, C.M., Lindstrom, M.M., Taylor, G.I. 1991.Iodine-xenon studies of petrographically and chemically characterized Chainpur chon-drules. Geochimica et Cosmochimica Acta 55, 861–880.

Swindle, T.D., Davis, A.M., Hohenberg, C.M., MacPherson, G.J., Nyquist, L.E., 1996.Formation times of chondrules and Ca-Al-rich inclusions: constraints from short-livedradionuclides. In: Hewins, R.H., Jones, R.H., Scott, E.R.D. (Eds.), Chondrules and theProtoplanetary Disk. Cambridge University Press, New York, pp. 77–86.

Sylvester, P.J., Campbell, I.H., Bowyer, D.A., 1997. Niobium/Uranium evidence for earlyformation of the continental crust. Science 275, 521–523.

Syme, E.C., Corkery, M.T., Bailes, A.H., Lin, S., Skulski, T., Stern, R.A., 1999. Towardsa new tectonostratigraphy for the Knee Lake greenstone belt, Sachigo subprovince,

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 148aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 149

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Manitoba. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Fifth An-nual Workshop. In: Lithoprobe Report 70, Lithoprobe Secretariat, University of BritishColumbia, pp. 124–131.

Symonds, R.B., Rose, W.I., Bluth, G.J.S., Gerlach, T.M., 1994. In: Carroll, M.R., Hal-loway, J.R. (Eds.), Volatiles in Magmas. Mineralogical Society of America, Reviews inMineralogy 30, pp.1–66.

Takahashi, K., Masuda, A., 1990. Young ages of two diogenites and their genetic implica-tions. Nature 343, 540–542.

Takeda, H., Bogard, D.D., Mittlefehldt, D.W., Garrison, D.H., 2000. Mineralogy, petrol-ogy, chemistry and 39Ar-40Ar and exposure ages of the Caddo County IAB iron: evi-dence for early partial melt segregation of a gabbro area rich in plagioclase-diopside.Geochimica et Cosmochimica Acta 64, 1311–1327.

Talbot, C.J., 1973. A plate tectonic model for the Archaean crust. Philosophical Transac-tions of the Royal Society of London A273, 413–427.

Tan, F.C., 1988. Stable carbon isotopes in dissolved inorganic carbon in marine and estu-arine environments. In: Fritz, P., Fontes, J.C. (Eds.), Handbook of Enviromental IsotopeGeochemistry, vol. 3. Elsevier, Amsterdam, p. 171–190.

Tanaka, K.L., Moore, H.J., Schaber, G.G., Chapman, M.G., Stofan, E.R., Campbell, D.B.,Davis, P.A., Guest, J.E., McGill, G.E., Rogers, P.G., Saunders, R.S., Zimbelman, J.R.,1994. The Venus Geologic Mappers’ Handbook, 2nd ed. Open-File Report, 94-438,USGS, 50 pp.

Tang, Y-J., Zhang, H-F., Ying, J-F., 2006. Asthernosphere-lithospheric mantle interactionin an extnsionla regime: implications from the geochemistry of Cenzoic basalt fromTaihang Mounatins, North China Craton. Chemical Geology 233, 309–327.

Tarney, J., Dalziel, I.W.D., de Wit, M.J., 1976. Marginal basin ‘Rocas Verdes’ complexfrom S. Chile: a model for Archaean greenstone belt formation. In: Windley, B.F. (Ed.),The Early History of the Earth. Wiley, London, pp. 131–146.

Tatsumi, Y., 1989. Migration of fluid phases and genesis of basalt magmas in subductionzones. Journal of Geophysical Research 94, 4697–4707.

Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell, Oxford.Taylor, B., 2006. The single largest oceanic plateau: Ontong-Java-Manihiki-Hikurangi.

Earth and Planetary Science Letters 241, 372–380.Taylor, P., 2006. The single largest oceanic plateau: Ontong-Java-Manihiki-Hikurangi.

Earth and Planetary Science Letters 241, 372–397.Taylor, S.R., 2001. Solar System Evolution: A New Perspective, 2nd ed. Cambridge Uni-

versity Press, 460 pp.Taylor, S.R., 2004. Why can’t planets be like stars? Nature 430, 509.Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolu-

tion. Blackwell Scientific Publications, 312 pp.Taylor, S.R., Norman, M.D., 1990. Accretion of differentiated planetesimals to the Earth.

In: Newsom, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, NewYork, pp. 29–43.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 149aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

150 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Taylor, S.R., Taylor, G.J., Taylor, A.L., 2006. The Moon: A Taylor perspective. Geochimicaet Cosmochimica Acta 70, 5904–5918.

Tegtmeyer, A., 1989. Geochronologie und Geochemie im Präkambrium des südlichenAfrika. Unpublished doctoral dissertation, University of Mainz, Germany, 270 pp.

Tegtmeyer, A.R., Kröner, A., 1987. U-Pb zircon ages bearing on the nature of earlyArchean greenstone belt evolution, Barberton Moutainland, Southern Africa. Precam-brian Research 36, 1–20.

Tera, F., Wasserburg, G.J., 1974. U-Th-Pb systematics on lunar rocks and inferences aboutlunar evolution and the age of the Moon. In: Proceedings Lunar Science Conference5th, pp. 1571–1599.

Tera, F., Papanastassiou, D.A., Wasserburg, G.J., 1974. Isotopic evidence for a terminallunar cataclysm. Earth and Planetary Science Letters 22, 1–21.

Tera, F., Carlson, R.W., Boctor, N.Z., 1997. Radiometric ages of basaltic achondrites andtheir relation to the early history of the solar system. Geochimica et Cosmochimica Acta61, 1713–1731.

Terabayashi, M., Masada, Y., Ozawa, H., 2003. Archean ocean-floor metamorphism in theNorth Pole area, Pilbara Craton, Western Australia. Precambrian Research 127, 167–180.

Terabayashi, M., Masada, Y., Ozawa, H., 2003. Archean ocean-floor metamorphism in theNorth Pole area, Pilbara Craton, Western Australia. Precambrian Research 127, 167–180.

Thamdrup. B., Finster, K., Hansen, J.W., Bak, F., 1993. Bacterial disproportionation ofelemental sulfur coupled to chemical-reduction of iron or manganese. Applied and En-vironmental Microbiology 59, 101–108.

Thériault, R., Chevé, S., 2001. Géologie de la région du Lac Hurault (SNRC 23L). Min-istère des Ressources naturelles, Québec, RG 2000-11, 49 pp.

Thieblement, D., Delor, C., Cocherie, A., Lafon, J.M., Goujou, J.C., Balde, A., Bah, M.,Sane, H., Fanning, C., 2001. A 3.5 Ga granite-gneiss basement in Guinea: furtherevidence for early Archean accretion within the West African craton. Precambrian Re-search 108, 179–194.

Thiemens, M.H., 1999. Atmospheric science – mass-independent isotope effects in plane-tary atmospheres and the early solar system. Science 283, 341–345.

Thode, H.G., McNamara, J., Collins, C.B., 1949. Natural variations in the isotopic contentof sulphur and their significance. Canadian Journal of Research 27B, 361.

Thommes, E.W., Duncan, M.J., Levison, H.F., 2002. The formation of Uranus and Neptuneamong Jupiter and Saturn. Astronomical Journal 121, 2862–2883.

Thordarson, Y., Self, S., 1998. The Roza Member, Columbia River Basalt Group: A gigan-tic pahoehoe lava flow field formed by endogenous processes? Journal of GeophysicalResearch 103, 27,411–27,445.

Thorpe, R.A., Hickman, A.H., Davis, D.W., Mortensen, J.K., Trendall, A.F., 1992a. U-Pbzircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton,Western Australia. Precambrian Research 56, 169–189.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 150aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 151

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Thorpe, R.I., Hickman, A.H., Davis, D.W., Mortensen, J.K., Trendall, A.F., 1992b. Con-straints to models for Archaean lead evolution from precise U-Pb geochronology fromthe Marble Bar region, Pilbara Craton, Western Australia. In: Glover, J.E., Ho, S. (Eds.),The Archaean: Terrains, Processes and Metallogeny. Geology Department and Univer-sity Extension, Publication 22. The University of Western Australia, pp. 395–408.

Thorstenson, D.C., 1970. Equilibrium distribution of small organic molecules in naturalwaters. Geochimica et Cosmochimica Acta 34, 745.

Thurston, P.C., 1994. Archean volcanic patterns. In: Condie, K.C. (Ed.), Archean CrustalEvolution. Elsevier, Amsterdam, pp. 45–84.

Thurston, P.C., 2002. Autochthonous development of Superior Province greenstone belts?Precambrian Research 115, 11–36.

Thurston, P.C., Chivers, K.M., 1990. Secular variation in greenstone sequence developmentemphasising Superior Province, Canada. Precambrian Research 46, 21–58.

Thurston, P.C., Ayres, L.D., Edwards, G.R., Gélinas, L., Ludden, J.N., Verpaelst, P., 1985.Archean bimodal volcanism. In: Ayres, L.D., Card, K.D., Weber, W. (Eds.), Evolutionof Archean Supracrustal Sequences. In: Geological Association of Canada, Special Pub-lication 28, pp. 7–21.

Thurston, P.C., Osmani, I.A., Stone, D., 1991. Northwestern Superior Province: review andterrane analysis. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.),Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 81–142.

Tian, W., Liu, S.W., Liu, C.H., Yu, S.Q., Liu, Q.G., Wang, Y.R., 2006. Zircon SHRIMPdating and geochemistry of TTG rocks of Shushui Complex in Zhongtiaoshan, ShanxiProvince. Progress in Natural Sciences 15, 1476–1484 (in Chinese with English ab-stract).

Tian, Z-Y., Han, P., Xu, K-D., 1992. The Mesozoic-Cenozoic East China rift system.Tectonophysics 208, 341–363.

Tice, M.M., Lowe, D.R., 2004. Photosynthetic microbial mats in the 3416-Myr-old ocean.Nature 431, 549–552.

Tice, M.M., Lowe, D.R., 2006a. Hydrogen-based carbon fixation in the earliest knownphotosynthetic organisms. Geology 34, 37–40.

Tice, M.M., Lowe, D.R., 2006b. The origin of carbonaceous matter in pre-3.0 Ga green-stone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. EarthScience Reviews 76, 259–300.

Tice, M.M., Bostick, B.C., Lowe, D.R., 2004. Thermal history of the 3.5–3.2 Ga On-verwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred byRaman microspectroscopy of carbonaceous material. Geology 32, 37–40.

Tingey, R.J., 1982. The geologic evolution of the Prince Charles Mountains – an AntarcticArchaean cratonic block. In: Craddock, C. (Ed.), Antarctic Geoscience. University ofWisconsin Press, Madison, pp. 455–464.

Tingey, R.J., 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica.In: Tingey, R.J. (Ed.), The Geology of Antarctica. Oxford University Press, Oxford, pp.1–73.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 151aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

152 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Tomilenko, A.A., 2006. Fluid regime of mineral formation at high and middle pressuresin the continental lithosphere estimated from fluid inclusion study. Dissertation thesis.Institute of the Earth Crust, Irkutsk, 33 pp. (in Russian).

Tomkinson, M.J., Lombard, A., 1990. Structure, metamorphism, and mineralization in theNew Consort Gold Mines, Barberton greenstone belt, South Africa. In: Glover, J.E., Ho,S.E. (Eds.), Third International Archean Symposium, Perth, 1990. Extended AbstractVolume, Geoconferences (W.A.) Inc., Perth, pp. 377–379.

Tomlinson, K.Y., Dickin, A.P., 2003. Geochemistry and neodymium isotopic character ofgranitoid rocks in the Lac Seul region of the Winnipeg River subprovince, northwesternOntario. In: Summary of Field Work and Other Activities, 2003, Ontario GeologicalSurvey, Open File Report 6120, pp. 13-1–13-8.

Tomlinson, K.Y., Percival, J.A., 2000. Geochemistry and Nd isotopes of granitoid rocksin the Shikag-Garden lakes area, Ontario: recycled Mesoarchean crust in the centralWabigoon Subprovince. In: Geological Survey of Canada, Current Research 2000-E12,11 pp.

Tomlinson, K.Y., Stevenson, R.K., Hughes, D.J., Hall, R.P., Thurston, P.C., Henry, P., 1998.The Red Lake greenstone belt, Superior Province: evidence of plume-related magma-tism at 3 Ga and evidence of an older enriched source. Precambrian Research 89, 59–76.

Tomlinson, K.Y., Hughes, D.J., Thurston, P.C., Hall, R.P., 1999. Plume magmatism andcrustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, western Supe-rior Province. Lithos 46, 103–136.

Tomlinson, K.Y., Sasseville, C., McNicoll, V., 2001. New U-Pb geochronology and struc-tural interpretations from the Wallace Lake greenstone belt (North Caribou terrane):implications for new regional correlations. In: Harrap, R.M., Helmstaedt, H. (Eds.),Western Superior Transect Seventh Annual Workshop. In: Lithoprobe Report 80, Litho-probe Secretariat, University of British Columbia, pp. 8–9.

Tomlinson, K.Y., Davis, D.W., Percival, J.A., Hughes, D.J., Thurston, P.C., 2002. Mafic tofelsic magmatism and crustal recycling in the Obonga Lake greenstone belt, WesternSuperior Province: evidence from geochemistry, Nd isotopes and U-Pb geochronology.Precambrian Research 114, 295–325.

Tomlinson, K.Y., Davis, D.W., Stone, D., Hart, T., 2003. New U-Pb and Nd isotopicevidence for crustal recycling and Archean terrane development in the south-centralWabigoon Subprovince, Canada. Contributions to Mineralogy and Petrology 144, 684–702.

Tomlinson, K.Y., Stott, G.M., Percival, J.A., Stone, D., 2004. Basement terrane correla-tions and crustal recycling in the western Superior Province: Nd isotopic character ofgranitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada.Precambrian Research 132, 245–274.

Tonks, W.B., Melosh, H.J., 1990. The physics of crystal settling and suspension in a turbu-lent magma ocean. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. OxfordUniversity Press, New York, pp. 151–174.

Torigoye-Kita, N., Tatsumoto, M., Meeker, G.P., Yanai, K., 1995. The 4.56 Ga age of theMET 78008 ureilite. Geochimica et Cosmochimica Acta 59, 2319–2329.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 152aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 153

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Torigoye, N., Shima, M., 1993. Evidence for a late thermal event of unequilibrated enstatitechondrites: a Rb-Sr study of Quingzhen and Yamato 6901 (EH3) and Khairpur (EL6).Meteoritics 28, 515–527.

Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T., Todt, W. 1999. Characterization, prove-nance, and tectonic setting of Fig Tree greywackes from the Archaean Barberton Green-stone Belt, South Africa. Sedimentary Geology 124 (1–4), 113–129.

Towe, K.M., 1990. Aerobic respiration in the Archean. Nature 348, 54–56.Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., Young, E.D., 2007.

Constraints on Hadean protoliths from oxygen isotopes and Ti-thermometry (in revi-sions to G3). ???

Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphicrecord. In: Altermann, W., Corocron, P.L. (Eds.), Precambrian Sedimentary Environ-ments: A Modern Approach to Ancient Depositonal Systems. Blackwell Science, Ox-ford, pp. 33–66.

Trendall, A.F., Compston, W., Nelson, D.R., de Laeter, J.R., Bennett, V.C., 2004. SHRIMPzircon ages constraining the depositional history of the Hamersley Group, Western Aus-tralia. Australian Journal of Earth Sciences 51, 621–644.

Trieloff, M., Jessberger, E.K., Herrwerth, I., Hoppe, J., Fieni, C., Ghelis, Bourot-Denise,M., Pellas, P., 2003. Structure and thermal history of the H-chondrite asteroid revealedby thermochronometry. Nature 422, 502–506.

Tuinstra, F., Koenig, J.L., 1970. Raman spectra of graphite. Journal of Chemical Physics53, 1126–1130.

Turcotte, D.L., 1993. An episodic hypothesis for Venusian tectonics. Journal of Geophysi-cal Research 98, 17,061–17,068.

Turcotte, D.L., Morein, G., Malamud, B.D., 1999. Catastrophic resurfacing and episodicsubduction on Venus. Icarus 139, 49–57.

Turek, A., Carson, T.M., Smith, P.E., Van Schmus, W.R., Weber, W., 1986. U-Pb zirconages for rocks from the Island Lake greenstone belt, Manitoba. Canadian Journal ofEarth Sciences 23, 92–101.

Turek, A., Sage, R.P., Van Schmus, W.R., 1992. Advances in the U-Pb zircon geochronol-ogy of the Michipicoten greenstone belt, Superior Province, Ontario. Canadian Journalof Earth Sciences 29, 1154–1165.

Turekian, K.K., Wedepohl, K.H., 1991. Distribution of the elements in some major unitsof the Earth’s crust. Bulletin of Geological Society of America 72, 175–192.

Turkina, O.M., 2001. Geochemistry of granulites of the Arban massif (Sharyzhalgay upliftof the Siberian platform). Russian Geology and Geophysics 42 (5), 815–830.

Turkina, O.M., 2004. The amphibolite-plagiogneiss complex of the Onot block, Sharyzhal-gay uplift: isotopic-geochemical evidence for the Early Archean evolution of the conti-nental crust. Doklady Earth Sciences 399A (9), 1296–1300.

Turner, G., 1988. Dating of secondary events. In: Kerridge, J.F., Matthews, M.S. (Eds.),Meteoritics and the Early Solar System. University of Arizona Press, Tucson, AZ, pp.276–288.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 153aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

154 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Turner, G., Enright, M.C., Cadogan, P.H., 1978. The early history of chondrite parentbodies inferred from 40Ar-39Ar ages. In: Proceedings of the 9th Lunar and PlanetaryScience Conference, pp. 989–1025.

Turner, G., Knott, S.F., Ash, R.D., Gilmour, J.D., 1997. Ar-Ar chronology of the Mar-tian meteorite ALH84001: Evidence for the timing of the early bombardment of Mars.Geochimica et Cosmochimica Acta 61 (18), 3835–3850.

Turner, G., Harrison, T.M., Holland, G., Mojzsis, S.J., Gilmour, J., 2004. Extinct 244Pu inancient zircons. Science 306, 89–91.

Tyler, I.M., Fletcher, I.R., de Laeter, J.R., Williams, I.R., Libby, W.G., 1992. Isotope andrare earth element evidence for a late Archaean terrane boundary in the southeasternPilbara Craton, Western Australia. Precambrian Research 54, 211–229.

Ueno, Y., Isozaki, Y., Yurimoto, H., Maruyama, S., 2001a. Carbon isotopic signatures ofindividual Archaean Microfossils(?) from Western Australia. International Geology Re-views 43, 196–212.

Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, Y., 2001b. Early Archean (ca. 3.5 Ga)microfossils and 13C-depleted carbonaceous matter in the North Pole area, WesternAustralia: field occurrence and geochemistry. In: Nakashima, S., Maruyama, S., Brack,A., Windley, B.F. (Eds.), Geochemistry and the Origin of Life. Universal AcademyPress, Tokyo, pp. 203–236.

Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T., Maruyama, S. 2002. Ion microprobeanalysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Green-land: Relationship between metamorphism and carbon isotopic composition. Geochim-ica et Cosmochimica Acta 66, 1257–1268.

Ueno, Y., Rumble, D., Ono, S., Hu, G., Maruyama, S., 2003. Multiple sulfur isotopesof Early Archean hydrothermal deposits from Western Australia. Geochimica et Cos-mochimica Acta 67, A500.

Ueno, Y., Yoshioka, H., Maruyama, S., Isozaki, Y., 2004. Carbon isotopes and petrogra-phy in ∼3.5 Ga hydrothermal silica dykes in the North Pole area, Western Australia.Geochimica et Cosmochimica Acta 68, 573–589.

Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y., 2006. Evidence from fluidinclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519.

Unrug, R., 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinentassembly. GSA Today 7, 1–6.

Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of theChemical Society (Resumed) 1947, 562–581.

Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.),Zircon. In: Reviews in Mineralogy and Geochemistry, vol. 53, pp. 343–386.

Valley, J.W., 2005. A cool early Earth. Scientific American, October, 58–66.Valley, J.W., 2006. Early Earth. Elements 2, 201–204.Valley, J.W., Chiarenzelli, J.R., McLelland, J.M., 1994. Oxygen isotope geochemistry of

zircon, Earth and Planetary Science Letters 126, 187–206.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 154aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 155

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Valley, J.W., Peck, J.H., King, E.M., Wilde, S.A., 2002. A cool early Earth. Geology 30,351–354.

Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S.,Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei,C.S., 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmaticzircon. Contributions to Mineralogy and Petrology 150, 561–580.

Valley, J.W., Cavosie, A.J., Fu, B., Peck, W.H., Wilde, S.A., 2006. Comment on “Hetero-geneous hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga”. Science 312,5777.

van den Kerkhof, A.M., Kronz, A., Simon, K., Riganti, A., Scherer, T., 2004. Origin andevolution of Archean quartzites from the Nondweni greenstone belt (South Africa):inferences from a multidisciplinary study. South African Journal of Geology 107, 559–576.

van der Hilst, R.D., Kárason, K., 1999. Compositional heterogeneity in the bottom 1000km of Earth’s mantle: towards a hybrid convection model. Science 283, 1885–1888.

van der Laan, S.R., Wyllie, P.J., 1992. Constraints on Arechean trondhjemite genesisfromhydrous crystallization experiments on Nuk Gneiss at 10–17 kbar. Journal of Geology100, 57–68.

van Haaften, W.M., White, S.H., 1998. Evidence for multiphase deformation in theArchean basal Warrawoona Group in the Marble Bar area, East Pilbara, Western Aus-tralia. Precambrian Research 88, 53–66.

Van Kranendonk, M.J., 1998. Litho-tectonic and structural components of the NORTHSHAW 1:100,000 sheet, Archaean Pilbara Craton. Annual Review 1997–1998. WesternAustralian Geological Survey, pp. 63–70.

Van Kranendonk, M.J., 2000. Geology of the North Shaw 1:100,000 sheet. Western Aus-tralia Geological Survey, 1:100,000 Series Explanatory Notes, 89 pp.

Van Kranendonk, M.J., 2003a. Stratigraphic and tectonic significance of eight local un-conformities in the Fortescue Group, Pear Creek Centrocline, Pilbara Craton, WesternAustralia. In: Annual Review 2001–2002. Western Australia Geological Survey, pp.70–79.

Van Kranendonk, M.J., 2003b. Geology of the Tambourah 1:100,000 sheet. Western Aus-tralia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 59 pp.

Van Kranendonk, M.J., 2004a. Archaean tectonics 2004: A review. Precambrian Research131, 143–151.

Van Kranendonk, M.J., 2004b. Geology of the Carlindie 1:100,000 sheet. Western Aus-tralia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 45 pp.

Van Kranendonk, M.J., 2006. Volcanic degassing, hydrothermal circulation and the flour-ishing of early life on Earth: new evidence from the Warrawoona Group, Pilbara Craton,Western Australia. Earth Science Reviews 74, 197–240.

Van Kranendonk, M.J., Collins, W.J., 1998. Timing and tectonic significance of LateArchaean, sinistral strike-slip deformation in the Central Pilbara Structural Corridor,Pilbara Craton, Western Australia. Precambrian Research 88, 207–232.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 155aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

156 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Van Kranendonk, M.J., Morant, P., 1998. Revised Archaean stratigraphy of the North Shaw1:100,000 sheet, Pilbara Craton. In: Western Australia Geological Survey, Annual Re-view 1997–1998, pp. 55–62.

Van Kranendonk, M.J., Pirajno, F., 2004. Geological setting and geochemistry of metabasaltsand alteration zones associated with hydrothermal chert ± barite deposits in the ca. 3.45Ga Warrawoona Group, Pilbara Craton, Australia. Geochemistry: Exploration, Environ-ment, Analysis 4, 253–278.

Van Kranendonk, M.J., Saint-Onge, M.R., Henderson, J.R., 1993. Paleoproterozoic tec-tonic assembly of Northeast Laurentia through multiple indentations. Precambrian Re-search 63, 325–347.

Van Kranendonk, M.J., Hickman, A.H., Collins, W.J., 2001. Comment on “Evidence formultiphase deformation in the Archaean basal Warrawoona Group in the Marble Bararea, East Pilbara, Western Australia”. Precambrian Research 105, 73–78.

Van Kranendonk, M., Hickman A.H., Williams, I.R., Nijman, W., 2001b. Archaean Geol-ogy of the East Pilbara Granite–Greenstone Terrane Western Australia – A Field Guide.Western Australia Geological Survey, Record 2001/9, 134 pp.

Van Kranendonk, M.J., Hickman, A.H., Smithies, R.H., Nelson, D.R., 2002. Geology andtectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Aus-tralia. Economic Geology 97, 695–732.

Van Kranendonk, M.J., Webb, G.E., Kamber, B.S., 2003. Geological and trace elementevidence for a marine sedimentary environment of deposition and biogenicity of 3.45Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archeanocean. Geobiology 1, 91–108.

Van Kranendonk, M.J., Collins, W.J., Hickman, A.H., Pawley, M.J., 2004. Critical tests ofvertical vs horizontal tectonic models for the Archaean East Pilbara Granite-GreenstoneTerrane, Pilbara Craton, Western Australia. Precambrian Research 131, 173–211.

Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., Bagas, L., Williams, I.R., Farrell,T.R., 2005. Event stratigraphy applied to 700 m.y. of Archaean crustal evolution, PilbaraCraton, Western Australia. In: Western Australia Geological Survey, Annual Review2003–2004, pp. 49–61.

Van Kranendonk, M.J., Hickman, A.H., Smithies, R.H., Williams, I.R., Bagas, L., FarrellT.R., 2006a. Revised lithostratigraphy of Archean supracrustal and intrusive rocks in thenorthern Pilbara Craton, Western Australia. In: Western Australia Geological Survey,Record 2006/15, 57 pp.

Van Kranendonk, M.J., Hickman, A.H., Huston, D.L., 2006b. Geology and Mineralizationof the East Pilbara – A Field Guide. In: Western Australia Geological Survey, Record2006/16, 94 pp.

Van Kranendonk, M.J., Philippot, P., Lepot, K., 2006c. The Pilbara Drilling Project: c. 2.72Ga Tumbiana Formation and c. 3.49 Ga Dresser Formation, Pilbara Craton, WesternAustralia. In: Western Australia Geological Survey, Record 2006/14, 25 pp.

Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., Champion, D.C., 2007a. Seculartectonic evolution of Archaean continental crust: interplay between horizontal and ver-tical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 1–38.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 156aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 157

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Van Kranendonk, M.J., Huston D.L., Hickman A.H, 2007b. From plumes to accretion:Changing mineralization styles through ∼800 million years of crustal evolution in thePilbara Craton, Western Australia. In: Western Australia Geological Survey, Record2007/2, pp. 23–25.

Van Kranendonk, M.J., Philippot, P., Lepot, K., 2007c. A felsic volcanic caldera settingfor Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation of the Warrawoona Group,Pilbara Craton, Western Australia: evidence from outcrops and diamond drillcore. Pre-cambrian Research, in press.

Van Schmus, W.R., Wood, J.A., 1967. A chemical-petrological classification for the chon-dritic meteorites. Geochimica et Cosmochimica Acta 31, 747–765.

van Zuilen, M., Lepland, A., Arrhenius, G., 2002. Reassessing the evidence for the earliesttraces of life. Nature 418, 627–630.

van Zuilen, M.A., Lepland, A., Teranew, J., Finarelli, J., Wahlen, M., Arrhenius, G., 2003.Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Green-land. Precambrian Research 126, 331–348.

van Zuilen, M.A., Mathew, K., Wopenka, B., Lepland, A., Marti, B., Arrhenius, G.,2005. Nitrogen and argon isotopic signatures in graphite from the 3.8-Ga-old IsuaSupracrustal Belt, Southern West Greenland. Geochimica et Cosmochimica Acta 69,1241–1252.

van Zuilen, M., Chaussidon, M., Rollion-Bard, C., Luais, B., Marty, B., 2006. Carbona-ceous cherts of the Barberton Greenstone belt, South Africa. Geophysical ResearchAbstracts 8, 04975.

Varela, M.E., Kurat, G., Zinner, E., Hoppe, P., Natflos, T., Nazarov, M.A., 2005. The non-igneous genesis of angrites: Support from trace lement distribution between phases inD’Orbigny. Meteoritics and Planetary Science 40, 409–430.

Vearncombe, J.R., Barley, M.E., Eisenlohr, B.N., Groves, D.I., Houstoun, S.M., Skwar-necki, M.S., Grigson, M.W., Partington, G.A., 1989 Structural controls on mesothermalgold mineralization: examples from the Archean terranes of southern Africa and West-ern Australia. In: Economic Geology Monograph, vol. 6, pp. 124–134.

Vearncombe, S.E., 1995. Volcanogenic massive sulphide-sulfate mineralisation at Strel-ley, Pilbara Craton, Western Australia. Unpublished Ph.D. thesis. University of WesternAustralia, 152 pp.

Vearncombe, S., Kerrich, R., 1999. Geochemistry and geodynamic setting of volcanic andplutonic rocks associated with Early Archaean volcanogenic massive sulphide mineral-ization, Pilbara Craton. Precambrian Research 98, 243–270.

Vearncombe, S., Barley, M.E., Groves, D.I., McNaughton, N.J., Mikucki, E.J., Vearn-combe, J.R., 1995. 3.26 Ga black smoker-type mineralisation in the Strelley Belt,Pilbara Craton, Western Australia. Geological Society of London Journal 152, 587–590.

Vearncombe, S., Vearncombe, J.R., Barley, M.E. 1998. Fault and stratigraphic controls onvolcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, WesternAustralia. Precambrian Research 88, 67–82.

Veizer J., Compston, W., Hoefs, J., Nielsen, H., 1982. Mantle buffering of the early oceans.Naturwissenschaften 69, 173–180

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 157aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

158 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Veizer, J., Hoefs, J., Lowe, D.R., Thurton, P.C., 1989. Geochemistry of Precambriancarbonates: II. Archean greenstone belts and Archean sea water. Geochimica et Cos-mochimica Acta 53, 859–871.

Veizer et al., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. ChemicalGeology 161, 59–88.

Veizer, J., Goddéris, Y., Francois, L., 2000. Evidence for decoupling of atmospheric CO2and global climate during the Phanerozoic eon. Nature 408, 698–701.

Veizer, J., Mackenzie, F.T., 2003. Evolution of sedimentary rocks. In: Mackenzie, F.T.(Ed.), Treatise on Geochemistry, vol. 7: Sediments, Diagenesis, and Sedimentary Rocks.Elsevier, Amsterdam, pp. 369–407.

Vennemann, T.W., Smith, H.S., 1999. Geochemistry of mafic and ultramafic rocks in theKromberg Formation in its type section, Barberton Greenstone Belt, South Africa. In:Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt,South Africa. In: Geological Society of America, Special Paper 329, pp. 133–150.

Vernikovsky V.A., Vernikovskaya, A.E., Kotov, A.B., Salnikova,. E.B., Kovach, V.P.,2003. Neoproterozoic accretionary and collisional events on the western margin of theSiberian craton: new geological and geochronological evidence from the Yenisey Ridge.Tectonophysics 375 (1–4), 147–168.

Versfeld, J.A., 1988. The geology of the Nondweni greenstone belt, Natal. Ph.D. thesis.University of Natal, Pietermaritzburg, 298 pp.

Versfeld, J.A., Wilson, A.H., 1992a. Nondweni Group. In: Johnson, M.R. (Ed.), Cata-logue of South African Stratigraphic Units. South African Commission for Stratigraphy,Council for Geoscience, Pretoria, pp. 19–20.

Versfeld, J.A., Wilson, A.H., 1992b. Toggekry Formation. In: Johnson, M.R. (Ed.), Cata-logue of South African Stratigraphic Units. South African Commission for Stratigraphy,Council for Geoscience, Pretoria, pp. 29–30.

Vervoort, J.D., Patchett, J.P., 1996. Behavior of hafnium and neodymium isotopes in thecrust: constraints from Precambrian crustally derived granites. Geochimica et Cos-mochimica Acta 60, 3717–3733.

Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evi-dence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533–556.

Vervoort, J.D., Patchett, P.J., Gehrels, G.E., Nutman, A.P., 1996. Constraints on early Earthdifferentiation from hafnium and neodymium isotopes. Nature 379, 624–627.

Vielzeuf, D., Schmidt, M.W., 2001. Melting reactions in hydrous systems revisited: ap-plication to metapelites, metagreywackes and metabasalts. Contribution to Mineralogyand Petrology 141, 251–267.

Viljoen, M.J., Viljoen, R.P., 1969a. The geology and geochemistry of the lower ultramaficunit of the Onverwacht Group and a proposed new class of igneous rocks. In: GeologicalSociety of South Africa, Special Publication 2, pp. 55–86.

Viljoen, R.P., Viljoen, M.J., 1969b. The geological and geochemical significance of theupper formations of the Onverwacht Group. In: Geological Society of South Africa,Special Publication 2, pp. 113–152.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 158aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 159

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Viljoen, M.J., Viljoen, R.P., 1969c. An introduction to the geology of the Barberton granite-greenstone terrain. In: Geological Society of South Africa, Special Publication 2, pp.9–28.

Viljoen, M.J., Viljoen, R.P., 1969d. A proposed new classification of the granitoid rocks ofthe Barberton region. In: Geological Society of South Africa, Special Publication 2, pp.153–188.

Viljoen, R.P., Saager, R., Viljoen, M.J., 1969. Metallogenesis and ore control in the Steyns-dorp Goldfield, Barberton Mountain Land, South Africa. Economic Geology 64, 778–797.

Viljoen, M.J., Viljoen, R.P., Smith, H.S., Erlank, A.J., 1983. Geological, textural, andgeochemical features of komatiitic flows from the Komati Formation. In: GeologicalSociety of South Africa, Special Publication 9, pp. 1–20.

Vishnevskiy, A.N., 1978. Metamorphic Complexes of the Anabar Crystalline Shield. Ne-dra, Leningrad, 214 pp. (in Russian).

Vita-Finzi, C., Howarth, R.J., Tapper, S.W., Robinson, C.A., 2005. Venusian craters, sizedistribution and the origin of coronae. In: Foulger, G.R., Natland, J.H., Presnall, D.C.,Anderson, D.L. (Eds.), Plates, Plumes, and Paradigms. In: Geological Society of Amer-ica, Special Paper 388, pp. 815–824.

Wächtershäuser, G., 1988. Before enzymes and templates – theory of surface metabolism.Microbiological Reviews 52, 452–484.

Wächtershäuser, G., 1992. Groundworks for an evolutionary biochemistry – the iron sulfurworld. Progress in Biophysics and Molecular Biology 58, 85–201.

Wächtershäuser, G., 2000. Life as we don’t know it. Science 289, 1307–1308.Wadhwa, M., Shukolyukov, A., Lugmair, G.W., 1998. 53Mn-53Cr systematics in Brachina:

A record of one of the earliest phases of igneous activity on an asteroid. In: 29th Lunarand Planetary Science Conference, abstract #1480 (CD-ROM).

Wagener, J.H.F., Wiegand, J., 1986. The Sheba gold mine, Barberton greenstone belt. In:Anhaeusser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa. In: Geologi-cal Society of South Africa, Special Publication ???, pp. 155–161.

Waight, T.E., Maas, R., Nicholls, I.A., 2000. Fingerprinting feldspar phenocrysts usingcrystal isotopic composition stratigraphy: implications for crystal transfer and magmamingling in S-type granites, Contributions to Mineralogy and Petrology 139, 227–239.

Wakita, K., Metcalfe, I., 2005. Ocean plate stratigraphy in East and Southeast Asia. Journalof Asian Earth Sciences 24, 679–702.

Walker, G.P.L., 1991. Structure, and origin by injection of lava under surface crust, oftumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bulletin ofVolcanology 53, 546–558.

Walker, J.C.G., 1990. Precambrian evolution of the climate system. Global and PlanetaryChange 82, 261–289.

Wallace, P.J., Frey, F.A., Weis, D., Coffin, M.F., 2002. Origin and evolution of the Kergue-len Plateau, Broken Ridge and Kerguelen archipelago: editorial. Journal of Petrology43, 1105–1118.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 159aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

160 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wallmann, K., 2001. The geological water cycle and the evolution of marine δ18O.Geochimica et Cosmochimica Acta 65, 2469–2485.

Walsh, M.M., 1992. Microfossils and possible microfossils from the early Archean On-verwacht Group, Barberton Mountain Land, South Africa. Precambrian Research 54,271–293.

Walsh, M.M., Lowe, D.R., 1999. Modes of accumulation of carbonaceous matter in theEarly Archean: A petrographic and geochemical study of the carbonaceous cherts ofthe Swaziland Supergroup. In: Lowe, D.R., Byerly, G.R. (Eds.), Geological Evolutionof the Barberton Greenstone Belt, South Africa. In: Geological Society of America,Special Paper 329, pp. 115–132.

Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depletedlithosphere. Journal of Petrology 39, 29–60.

Walter, M.R., 1983. Archean stromatolites: evidence of the Earth’s oldest benthos. In:Schopf, J.W. (Ed.), Earth’s Earliest Biosphere. Princeton University Press, pp. 187–213.

Walter, M.R., Buick, R., Dunlop, J.S.R., 1980. Stromatolites 3400–3500 Myr old from theNorth Pole area, Western Australia. Nature 248, 443–445.

Wan, Y.S., 1993. The Formation and Evolution of the Iron-Bearing Rock Series of theGongchangling area, Liaoning Province. Beijing Science and Technology PublishingHouse, Beijing, 108 pp. (in Chinese with English abstract).

Wan, Y.S., Zhang, Z.Q., Wu, J.S., Song, B., Liu, D.Y., 1997. Geochemical and Nd isotopiccharacteristics of some rocks from the Paleoarchaean Chentaigou supracrustal, Anshanarea, NE China. Continental Dynamics 2, 39–46.

Wan, Y.S., Liu, D.Y., Wu, J.S., Zhang, Z.Q., Song, B., 1998. The origin of Mesoarchaeangranitic rocks from the Anshan-Benxi area: constraints from geochemistry and Nd iso-topes. Acta Petrologica Sinica 14, 278–288 (in Chinese with English abstract).

Wan, Y.S., Song, B., Wu, J.S., Zhang, Z.Q., Liu, D.Y., 1999. Geochemical and Nd andSr isotopic compositions of 3.8 Ga trondhjemitic rocks from the Anshan area and theirsignificance. Acta Geologica Sinica 73, 25–36 (in Chinese with English abstract).

Wan, Y.S., Song, B., Liu, D.Y., Li, H.M., Yang, C., Zhang, Q.D., Yang, C.H., Geng, Y.S.,Shen, Q.H., 2001. Geochronology and geochemistry of a 3.8–2.5 Ga ancient rock belt inthe Dongshan scenic park, Anshan area. Acta Geologica Sinica 75, 363–370 (in Chinesewith English abstract).

Wan, Y.S., Song, B., Liu, D.Y., 2002. Zircon SHRIMP age of Mesoarchaean meta-argillo-arenaceous rock in the Anshan area and its geological significance. Science in ChinaSeries B 45, 121–129.

Wan, Y.S., Zhang, Q.D., Song, T.R., 2003a. SHRIMP ages of detrital zircons from theChangcheng System in the Ming Tombs area, Beijing: Constraints on the protolith na-ture and maximum depositional age of the Mesoproterozoic cover of the NCC. ChineseScience Bulletin 4, 2500–2506.

Wan, Y.S., Song, B., Liu, D.Y., 2003b. Early Precambrian Geochronological Framework inthe Eastern China. Geological Report of China Geological Survey, 219 pp. (in Chinese).

Wan, Y.S., Liu, D., Song, B., Wu, J., Yang, C., Zhang, A., Geng, Y., 2005a. Geochemicaland Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 160aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 161

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

from the Anshan area and their geological significance. Journal of Asian Earth Science24, 563–575.

Wan, Y.S., Song, B., Yang, C., Liu, D.Y., 2005b. Zircon SHRIMP U–Pb geochronology ofArchaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geologicalsignificance. Acta Geologica Sinica 79, 78–87 (in Chinese with English abstract).

Wan, Y.S., Song, B., Geng, Y.S., Liu, D.Y., 2005c. Geochemical characteristics of Ar-chaean basement in the Fushun-Qingyuan area, northern Liaoning Province and itsgeological significance. Geological Review 51, 128–137 (in Chinese with English ab-stract).

Wan, Y.S, Song, B., Liu, D.Y., Wilde, S.A., Wu, J.S., Shi, Y.R., Yin, X.Y., Zhou, H.Y., 2006.SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks inthe NCC: evidence for a major Late Palaeoproterozoic tectonothermal event. Precam-brian Research 149, 249–271.

Wang, F., Zhou, X.-H., Zhang, L.-C., Ying, J.-F., Zhang, Y.-T., Wu, F.-Y., Zhu, R.-X.,2006. Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing andimplications for the dynamic setting of NE Asia. Earth and Planetary Science Letters251, 179–198.

Wang, L.G., Qiu, Y.M., McNaughton, N.J., Groves, D.I., Luo, Z.K., Huang, J.Z., Miao,L.C., Liu, Y.K., 1998. Constraints on crustal evolution and gold metallogeny in thenorthwestern Jiaodong, China from SHRIMP U-Pb zircon studies of granitoids. OreGeology Reviews 13, 275–291.

Wang, X.D., Lindh, A., 1996. Temperature-pressure Investigation of the Southern Part ofthe Southwest Swedish Granulite Region. European Journal of Mineralogy 8, 51–67.

Wang, Z.J., Shen, Q.H., Wan, Y.S., 2004. SHRIMP U-Pb zircon geochronology of theShipaihe “meta-diorite mass” from Dengfeng County, Henan Province. Acta Geoscien-tica Sinica 25, 295–298 (in Chinese with English abstract).

Ward, J.H.W., 1999. The Metallogeny of the Barberton Greenstone Belt, South Africa andSwaziland. Geological Survey of South Africa, Memoir 86, 116 pp.

Warneck, P., 1988. Chemistry of the Natural Atmosphere. International Geophysical Se-ries, vol. 41. Academic Press, New York, 757 pp.

Wasserburg, G.J., 1985. Short-lived nuclei in the early solar system. In: Black, D.C.,Matthews, M.S. (Eds.), Protostars and Planets II. University of Arizona Press, Tucson,AZ, pp. 703–737.

Wasson, J.T., Kallemeyn, G.W., 1988. Compositions of chondrites. Philosophical Transac-tions of the Royal Society of London Ser. A – Mathematical Physical and EngineeringSciences 325, 535–544.

Watanabe, Y., Naraoka, H., Wronkiewicz, D.J., Condie, K.C., Ohmoto, H., 1997. Carbon,nitrogen and sulfur geochemistry of the Archean and Proterozoic shales of the KaapvaalCraton, South Africa. Geochimica et Cosmochimica Acta 61, 3441–3459.

Watson, E.B., 1996. Dissolution, growth and survival of zircons during crustal fusion:kinetic principals, geological models and implications for isotopic inheritance. Trans-actions Royal Society Edinburg, Earth Sciences 87, 43–56.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 161aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

162 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Watson, E.B., Cherniak, D.J., 1997. Oxygen diffusion in zircon, Earth and Planetary Sci-ence Letters 148, 527–544.

Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and compo-sition effects in a variety of different crustal magma types. Earth and Planetary ScienceLetters 64, 295–304.

Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting condi-tions on earliest Earth. Science 308, 841–844.

Watson, E.B., Harrison, T.M., 2006. Response to comments on “Zircon thermometerreveals minimum melting conditions on earliest Earth”. Science 311, doi:10.1126/science.112.1080.

Weaver, B.L., Tarney, J., 1981. Lewisian gneiss geochemistry and Archaean crustal devel-opment models. Earth and Planetary Science Letters 55 (1), 171–180.

Weber, W., 1978. Natawahunan lake. Report of Field Activities 1978, Manitoba Depart-ment of Mines, Resources and Environmental Management, Mineral Resources Divi-sion, pp. 47–53 (plus Preliminary Map 1978 U-2, scale 1:50,000).

Weber, W., 1983. The Pikwitonei granulite domain: a lower crustal level along theChurchill-Superior boundary in central Manitoba. In: Ashwal, L.D., Card, K.D. (Eds.),A Cross-Section of Archean Crust. Lunar and Planetary Institute, Houston, TX, Tech-nical Report 83-03, pp. 95–97.

Weber, W., Scoates, R.F.J., 1978. Archean and Proterozoic metamorphism in the north-western Superior Province and along the Churchill-Superior boundary, Manitoba. In:Fraser, J.A., Heywood, W.W. (Eds.), Metamorphism in the Canadian Shield. In: Geo-logical Survey of Canada, Paper 78-10, pp. 5–16.

Weber, D., Schultz, L., Weber, H.W., Clayton, R.N., Mayeda, T.K., Bischoff, A., 1997.Hammadah al Hamra 119 – A new unbrecciated Saharan Rumuruti chondrite. Lunarand Planetary Science XXVIII, 1511–1512 (abstract).

Weber, H.W., Schultz, L., 1995. Noble gases in Rumuruti-group chondrites. Meteoritics30, 596.

Wedepohl, K.H., Muramatsu, Y., 1979. The chemical composition of kimberlites comparedwith the average composition of three basaltic magma types. In: Boyd, F.R., Meyer,H.O.A. (Eds.), Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology andGeochemistry. Proceedings of the Second International Kimberlite Conference, vol. 1.American Geophysical Union, Washington, DC, 399 pp.

Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cos-mochimica Acta 59, 1217–1232.

Weisberg, M.K., Prinz, M., Kojima, H., Yanai, K., Clayton, R.N., Mayeda, T.K., 1991.The Carlisle Lakes- type chondrites: A new grouplet with high ∂17O and evidence fornebula oxidation. Geochimica et Cosmochimica Acta 55, 2657–2669.

Weisberg, M.K., Prinz, M., Clayton, R.N., Mayeda, T.K., Grady, M.M., Franchi, I.,Pillinger, C.T., Kallemeyn, G.W., 1996. The K (Kakangari) chondrite grouplet.Geochimica et Cosmochimica Acta 61, 4253–4263.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 162aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 163

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wendt, J.I., 1993. Early Archean crustal evolution in Swaziland, southern Africa, as re-vealed by combined use of zircon geochronology, Pb-Pb and Sm-Nd systematics. Un-published doctoral dissertation. University of Mainz, Germany, 123 pp.

West, G.F., Mareschal, J.C., 1979. Model for Archean tectonism 1. Thermal conditions.Canadian Journal of Earth Sciences 16, 1942–1950.

Westall, F., Folk, R.L., 2003. Exogenous carbonaceous microstructures in Early Archaeancherts and BIFs from the Isua greenstone belt: Implications for the search for life inancient rocks. Precambrian Research 126, 313–330.

Westall, F., de Wit, M.J., Dann, J.C., van der Gaast, S., de Ronde, C.E.J., Gerneke, D.,2001. Early Archean fossil bacteria and biofilms in hydrothermally influenced sedi-ments, Barberton Greenstone Belt, South Africa. Precambrian Research 106, 93–116.

Westraat, J.D., Kisters, A.F.M., Poujol, M., Stevens, G., 2005. Transcurrent shearing, gran-ite sheeting and the incremental construction of the tabular 3.1 Ga Mpuluzi batholith,Barberton granite-greenstone terrane, South Africa. Journal of the Geological SocietyLondon 162, 373–388.

Wetherill, G.W., 1980. Formation of the terrestrial planets. Annual Review Astron. Astro-phys. 18, 77–113.

Wetherill, G.W., 1985. Occurrence of giant impacts during the growth of the terrestrialplanets. Science 228, 877–879.

Wetherill, G.W., 1990. Formation of the Earth. Annual Review of Earth and PlanetaryScience 18, 205–256.

Whalen, J.B., Percival, J.A., McNicoll, V.J., Longstaffe, F.J., 2002. A mainly crustal originfor tonalitic granitoid rocks, Superior Province, Canada: Implications for late archeantectonomagmatic processes. Journal of Petrology 43 (8), 1551–1570.

Whalen, J.B., Percival, J.A., McNicoll, V., Longstaffe, F.J., 2003. Intra-oceanic productionof continental crust in a Th-depleted ca. 3.0 Ga arc complex, western Superior Province,Canada. Contributions to Mineralogy and Petrology 156, 78–99.

Whalen, J.B., Percival, J.A., McNicoll, V., Longstaffe, F.J., 2004. Geochemical and iso-topic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoidrocks in the Western Superior Province: Implications for late Archean tectonomagmaticprocesses. Precambrian Research 132, 303–326.

Whitby, J.A., Ash, R.D., Gilmour, J.D., Prinz, M., Turner, G. 1997. Iodine-xenon dating ofchondrules and matrix from the Qingzhen and Kota-Kota EH3 chondrites. Meteoriticsand Planetary Science 32 (Supplement), A140.

Whitby, J.A., Burgess, R., Turner, G., Gilmour, J., Bridges, J., 2000. Extinct 129I in halitefrom a primitive meteorite; evidence for evaporite formation in the early Solar System.Science 288, 1819–1821.

White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis. Tectono-physics 43, 7–22.

White, D.J., Lucas, S.B., Bleeker, W., Hajnal, Z., Lewry, J.F., Zwanzig, H.V., 2002. Suture-zone geometry along an irregular Paleoproterozoic margin: The Superior boundaryzone, Manitoba, Canada. Geology 30, 735–738.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 163aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

164 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

White, D.J., Musacchio, G., Helmstaedt, H.H., Harrap, R.M., Thurston, P.C., van derVelden, A., Hall, K., 2003. Images of a lower-crustal oceanic slab: Direct evidence fortectonic accretion in the Archean western Superior province. Geology 31, 997–1000.

White, J.C., 2003. Trace-element partitioning between alkali feldspar and peralkalic quartztrachyte to rhyolite magma: Part II: Empirical equations for calculating trace-elementcoefficients of large-ion lithophile, high field strength, and rare earth elements. Ameri-can Mineralogist 88, 330–337.

White, R.V., Crowley, J.L., Myers, J.S., 2000. Earth’s oldest well-preserved mafic dykeswarms in the vicinity of the Isua greenstone belt, southern West Greenland. Geologyof Greenland Survey Bulletin 186, 65–72.

Whitehouse, M.J., 1988. Granulite facies Nd-isotopic homogenisation in the LewisianComplex of Northwest Scotland. Nature 331, 705–707.

Whitehouse, M.J., Fedo, C.M., 2003. Deformation features and critical field relationshipsof early Archaean rocks, Akilia, southwest Greenland. Precambrian Research 126, 259–271.

Whitehouse, M.J., Kamber, B.S., 2002. On the overabundance of light rare earth elementsin terrestrial zircons and its implications for Earth’s earliest magmatic differentiation.Earth and Planetary Science Letters 204, 333–346.

Whitehouse, M.J., Kamber, B., 2005. Assigning dates to thin gneissic veins in high-grademetamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal ofPetrology 46, 291–318.

Whitehouse, M.J., Fowler, M.B., Friend, C.R.L., 1996. Conflicting mineral and whole-rockisochron ages from the Late-Archaean Lewisian Complex of northwestern Scotland:Implications for geochronology in polymetamorphic high-grade terrains. Geochimicaet Cosmochimica Acta 60 (16), 3085–3102.

Whitehouse, M.J., Kamber, B., Moorbath, S., 1999. Age significance of U-Th-Pb zircondata from early Archaean rocks of west Greenland – a reassessment based on combinedion-microprobe and imaging studies. Chemical Geology 160, 201–224.

Whitehouse, M.J., Kamber, B.S., Moorbath, S., 1999. Age significance of U-Th-Pb zircondata from early Archaean rocks of west Greenland – a reassessment based on combinedion-microprobe and imaging studies. Chemical Geology 160, 201–224.

Whitehouse, M.J., Kamber, B.S., Fedo, C.M., Lepland, A., 2005. Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Green-land. Chemical Geology 222, 112–131.

Whitehouse, M.J., Nagler, T.F., Moorbath, S., Kramers, J.D., Kamber, B.S., Frei, R., 2001.Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada – by Samuel A.Bowring and Ian S. Williams: Discussion. Contributions to Mineralogy and Petrology141, 248–250.

Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B., 1993. Ferrousiron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836.

Wiedenbeck, M., 1990. The duration of tectono-thermal episodes in the late Archaean:constraints from the northwestern Yilgarn Craton, Western Australia. In: Third Interna-tional Archaean Symposium, Extended Abstracts, Geoconferences, Perth, pp. 477–479.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 164aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 165

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wijbrans, J.R., McDougall, I., 1987. On the metamorphic history of an Archaean granitoidgreenstone terrane, East Pilbara, Western Australia, using the 40Ar/39Ar age spectrumtechnique. Earth and Planetary Science Letters 84, 226–242.

Wilde, S.A., 1980. The Jimperding Metamorphic Belt in the Toodyay area and the BalingupMetamorphic Belt and associated granitic rocks in the Southwestern Yilgarn Block.Geological Society of Australia, W.A. Division, Excursion Guide, 41 pp.

Wilde, S.A., 2001. Jimperding and Chittering metamorphic belts, southwestern YilgarnCraton, Western Australia – a field guide. In: Western Australia Geological Survey,Record 2001/12, 24 pp.

Wilde, S.A., Low, G.H., 1978. Perth, W.A. Western Australia Geological Survey, 1:250,000.Geological Series Explanatory Notes, 36 pp.

Wilde, S.A., Pidgeon, R.T., 1990. Geology of the Jack Hills metasedimentary rocks, In:Ho, S.E., Glover, J.E., Myers J.S., Muhling, J. (Eds.), Third International ArchaeanSymposium, Perth, Excursion Guidebook, University of Western Australia Publication21, pp. 82–92.

Wilde, S.A., Middleton, M.F., Evans, B.J., 1996. Terrane accretion in the southwesternYilgarn Craton: evidence from a deep seismic crustal profile. Precambrian Research 78,179–196.

Wilde, S.A., Cawood, P.A., Wang, K.Y., 1997. The relationship and timing of granitoidevolution with respect to felsic volcanism in the Wutai Complex, NCC. In: Proceed-ings of the 30th International Geological Congress, Beijing, vol. 17. VSP InternationalScience Publishers, Amsterdam, 75–87.

Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zirconsfor the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409,175–178.

Wilde, S.A., Cawood, P.A., Wang, K.Y., Nemchin, A.A., 2005. Granitoid evolution in theLate Archaean Wutai Complex, NCC. Journal of Asian Earth Sciences 24, 597–613.

Wilhelmij, H.R., Dunlop, J.S.R. 1984. A genetic stratigraphic investigation of the GorgeCreek Group in the Pilgangoora syncline. In: Muhling, J.R., Groves, D.I., Blake, T.S.(Eds.), Archaean and Proterozoic Basins of the Pilbara, Western Australia: Evolutionand Mineralisation Potential. Geology Department and University Extension, Publica-tion 9. University of Western Australia, pp. 68–88.

Wilhelms, D.E., 1987. The Geological History of the Moon. United States Geological Sur-vey, Professional Paper 1348, 302 pp.

Wilhelms, D.E., 1990. Geologic mapping. In: Greeley, R., Batson, R.M. (Eds.), PlanetaryMapping. Cambridge University Press, New York, pp. 208–260.

Williams, D.A.C., Furnell, R.G., 1979. A reassessment of part of the Barberton type area.Precambrian Research 9, 325–347.

Williams, H.R., Stott, G.M., Thurston, P.C., Sutcliffe, R.H., Bennett, G., Easton, R.M.,Armstrong, D.K., 1992. Tectonic evolution of Ontario: Summary and synthesis. In:Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario.In: Ontario Geological Survey, Special Volume 4, Part 2, pp. 1255–1332.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 165aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

166 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Williams, I.R., 1999. Geology of the Muccan 1:100,000 sheet. Western Australia Geolog-ical Survey, 1:100,000 Geological Series Explanatory Notes, 39 pp.

Williams, I.R., 2001. Geology of the Warrawagine 1:100,000 sheet. Western Australia Ge-ological Survey, 1:100,000 Geological Series Explanatory Notes, 33 pp.

Williams, I.R., 2002. Geology of the Cooragoora 1:100,000 sheet. Western Australia Geo-logical Survey, 1:100,000 Geological Series Explanatory Notes, 23 pp.

Williams, I.R., Myers, J.S., 1987. Archaean geology of the Mount Narryer region WesternAustralia. Western Australia Geological Survey, Report 22, 32 pp.

Williams, I.R., Walker, I.M., Hocking, R.M., Williams, S.J., 1983. Byro, W.A. WesternAustralia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 1st ed.,27 pp.

Williams, I.S., 2001. Response of detrital zircon and monazite, and their U-Pb isotopicsystems, to regional metamorphism and host-rock partial melting, Cooma Complex,southeastern Australia. Australian Journal of Earth Sciences 48, 557–580.

Williams, I.S., Collins, W.J., 1990. Granite-greenstone terranes in the Pilbara Block, Aus-tralia, as coeval volcano-plutonic complexes; evidence from U-Pb zircon dating of theMount Edgar batholith. Earth and Planetary Science Letters 97, 41–53.

Williams, I.S., Compston, W., Black, L.P., Ireland, T.R., Foster, J.J., 1984. Unsupportedradiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages.Contributions to Mineralogy and Petrology 88, 322–327.

Williams, S.J., 1986. Geology of the Gascoyne Province Western Australia. Western Aus-tralia Geological Survey, Report 15, 85 pp.

Williams-Jones, G., Williams-Jones, A.E., Stix, J., 1998. The nature and origin of Venusiancanali. Journal of Geophysical Research 103, 8545.

Wilson, A.C. (Comp.) 1982. 1:250,000 Geological Map of Swaziland. Geological Surveyand Mines Department, Mbabane, Swaziland.

Wilson, A.H., 2003. A new class of silica enriched, highly depleted komatiites in the south-ern Kaapvaal Craton, South Africa. Precambrian Research 127, 125–141.

Wilson, A.H., Carlson, R.W., 1989. A Sm-Nd and Pb isotope study of Archaean greenstonebelts in the southern Kaapvaal Craton, South Africa. Earth and Planetary Science Letters96 (1–2), 89.

Wilson, A.H., Versfeld, J.A., 1992a. Magongolozi Formation. In: Johnson, M.R. (Ed.),Catalogue of South African Stratigraphic Units. South African Commission for Stratig-raphy, Council for Geoscience, Pretoria, pp. 21–28.

Wilson, A.H., Versfeld, J.A., 1992b. Witkop Formation. In: Johnson, M.R. (Ed.), Cata-logue of South African Stratigraphic Units. South African Commission for Stratigraphy,Council for Geoscience, Pretoria, pp. 35–37.

Wilson, A.H., Versfeld, J.A., 1994a. The early Archaean Nondweni greenstone belt, south-ern Kaapvaal Craton, South Africa, Part I: stratigraphy, sedimentology, mineralizationand depositional environment. Precambrian Research 67, 243–276.

Wilson, A.H., Versfeld, J.A., 1994b. The early Archaean Nondweni greenstone belt, south-ern Kaapvaal Craton, South Africa, Part II: characteristics of the volcanic rocks andconstraints on magma genesis. Precambrian Research 67, 277–320.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 166aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 167

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wilson, A.H., Riganti, A., 1998. A fractionated komatiitic basalt lava lake sequence in theNondweni greenstone belt. In: International Volcanological Conference. IAVCEI, CapeTown, p. 70.

Wilson, A.H., Versfeld, J.A., Hunter, D.R., 1989. Emplacement, crystallization and alter-ation of spinifex-textured komatiitic basalt flows in the Archaean Nondweni greenstonebelt, southern Kaapvaal Craton, South Africa. Contributions to Mineralogy ad Petrology101, 301–317.

Wilson, A.H., Shirey, S.B., Carlson, R.W., 2003. Archaean ultra-depleted komatiitesformed by hydrous melting of cratonic mantle. Nature 423, 858–861.

Wilson, J.F., 1981. The granite-greenstone shield, Zimbabwe. In: Hunter, D.R. (Ed.), Pre-cambrian of the Southern Hemisphere, Elsevier, Amsterdam, pp. 454–488.

Wilson, J.T., 1963. Continental drift. Scientific American 208, 86–100.Wilson, J.T., 1988. Convection tectonics: some possible effects upon the Earth’s surface of

flow from the deep mantle. Canadian Journal of Earth Sciences 25, 1199–1208.Wilson, M., Downes, H., 1991. Tertiary-Quaternary extension-related alkaline magmatism

in Western and Central Europe. Journal of Petrology 32, 811–849.Wilson, W.E., Murthy, V.R., 1976. Rb-Sr geochronology and trace element geochemistry

of granulite facies rocks near Granite Falls, in the Minnesota River Valley. In: Proceed-ings and Abstracts, Institute on Lake Superior Geology, Annual Meeting no. 22, p. 69.

Windley, B.F., 1995. The Evolving Continents, 3rd ed. John Wiley and Sons, Chichester,526 pp.

Windley, B.F., Bridgwater, D., 1971. The evolution of Archaean low- and high-grade ter-rains. In: Geological Society of Australia, Special Publication 3, pp. 33–46.

Wingate, M.T.D., Morris, P.A., Pirajno, F., Pidgeon, R.T., 2005. Two large igneousprovinces in Late Mesoproterozoic Australia. In: Wingate, M.T.D., Pisarevsky, S.A.(Eds.), Supercontinents and Earth Evolution Symposium. In: Geological Society ofAustralia, Abstracts, vol. 81, p. 151.

Wingate, M.T.D., Pirajno, F., Morris, P.A., 2004. Warakurna large igneous province: a newMesoproterozoic large igneous province in west-central Australia. Geology 32, 105–108.

Winther, T.K., Newton, R.C., 1991. Experimental melting of an hydrous low-K tholeiite:evidence on the origin of Archaean cratons. Bulletin of the Geological Society of Den-mark 39.

Winther, T.K., 1996. An experimentally based model for the origin of tonalitic and trond-hjemitic melts. Chemical Geology 127, 43–59.

Woese, C.R., Fox, G.E., 1977. Phylogenetic structure of Prokaryotic Domain – primarykingdoms. Proceedings of the National Academy of Sciences of the United States ofAmerica 74, 5088–5090.

Woese (2000. Interpreting the universal phylogenetic tree. Proceedings of the NationalAcademy of Sciences of the United States of America 97, 8392–8396.

Wolf, R., Anders, E., 1980. Moon and Earth: Compositional differences inferred fromsiderophiles, volatiles and alkalies in basalts. Geochimica et Cosmochimica Acta 44,2111–2124.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 167aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

168 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., 2002. Measured mass-loss rates ofsolar-like stars as a function of age and activity. Astrophysical Journal 574, 412–425.

Wooden, J.L., Mueller, P.A., 1988. Pb, Sr, and Nd isotopic compositions of a suite of LateArchean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantleevolution. Earth and Planetary Science Letters 87, 59–72.

Wooden, J.L., Goldich, S.S., Suhr, N.H., 1980. Origin of the Morton Gneiss, southwesternMinnesota: part 2. Geochemistry. In: Geological Society of America, Special Paper 182,pp. 57–76.

Wooden, J.L., Mueller, P.A., Mogk, D., 1988a. A review of the geochemistry andgeochronology of the Archean rocks of the northern part of the Wyoming Province.In: Ernst, W. (Ed.), Metamorphism and Crustal Evolution in the Western US. PrenticeHall, Englewood Cliffs, NJ, pp. 383–410.

Wooden, J.L., Mueller, P.A., Mogk, D., Bowes, D.R., 1988b. A review of the geochem-istry and geochronology of the Archean rocks of the Beartooth Mountains. In: MontanaBureau of Mines and Geology, Special Publication 96, pp. 23–42.

Woosley, S.E., Weaver, T.A., 1986. The physics of supernova explosions. Annual Reviewof Astronomy and Astrophysics 24, 205–253.

World Impact List. Geological Survey of Canada and University of New Brunswick.Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry of Archean shales from the Witwa-

tersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim-ica et Cosmochimica Acta 51, 2401–2416.

Wu, C.M., Zhang, J., Ren, L.D., 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ)geobarometry in medium- to high-grade metapelites. Journal of Petrology 45, 1907–1921.

Wu, F.Y., Zhao, G.C., Wilde, S.A., Sun, D.Y. 2005a. Nd isotopic constraints on crustalformation in the North China Craton. Journal of Asian Earth Sciences 24, 523–545.

Wu, F.Y., Yang, J.H., Liu, X.M., Li, T.S., Xie, L.W., Yang, Y.H., 2005b. Hf isotopes of the3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolutionof the NCC. Chinese Science Bulletin 50, 2473–2480.

Wu, J.S., Geng, Y.S., Shen, Q.H., Liu, D.Y., Li, Z.L., Zhao, D.M., 1991. Important Geo-logical Events in the Early Precambrian North China Platform. Geological PublishingHouse, Beijing, 115 pp. (in Chinese).

Wu, J.S., Geng, Y.S., Shen, Q.H., Wan, Y.S., Liu, D.Y., Song, B., 1998. Archaean GeologyCharacteristics and Tectonic Evolution of China-Korea Paleo-Continent. GeologicalPublishing House, Beijing, 211 pp. (in Chinese).

Wünnemann, K., Ivanov, B.A., 2003. Numerical modelling of impact crater depth-diameterdependence in an acoustically fluidised target. Planetary and Space Science 51, 831–845.

Wuth, M., 1980. The geology and mineralization potential of the Oorschot-Weltevredenschist belt south-west of Barberton - Eastern Transvaal. M.Sc. thesis. University of theWitwatersrand, Johannesburg, 185 pp.

Wyatt, B.A., Mitchell, M., White, B., Shee, S.R., Griffin, W.L., Tomlinson, N., 2002. TheBrockman Creek kimberlite, east Pilbara, Australia. In: Extended Abstracts of the 4th

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 168aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 169

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

International Archean Symposium, AGSO – Geoscience Australia Record 2001/37, pp208–211.

Wyche, S., 2003. Menzies, W.A. Western Australia Geological Survey, 1:250,000 Geolog-ical Series Explanatory Notes, 2nd ed., 38 pp.

Wyche, S., Nelson, D.R., Riganti, A., 2004. 4350–3130 Ma detrital zircons in the SouthernCross granite-greenstone terrane, Western Australia: implications fr the early evolutionof the Yilgarn Craton. Australian Journal of Earth Sciences 51, 31–45.

Wyllie, P.J., 1971. The Dynamic Earth. John Wiley & Sons, Inc., New York, 416 pp.Wyllie, P.J., 1977. Effects of H2O and CO2 on magma generation in the crust and the

mantle. Journal of the Geological Society London 134, 215–234.Wyllie, P.J., Wolf, M.B., van der Laan, S.R., 1997. Conditions for formation of tonalites

and trondhjemites: magmatic sources and products. In: de Wit, M.J., Ashwahl, L.D.(Eds.), Tectonic Evolution of Greenstone Belts. Oxford University Press, pp. 256–266.

Wyman, D.A., Kerrich, R., 2002. Formation of Archean continental lithospheric roots: therole of mantle plumes. Geology 30, 543–546.

Wyman, D.A., Kerrich, R., Polat, A., 2002. Assembly of Archean cratonic mantlelithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretioncomplex. Precambrian Research 115, 37–62.

Wu, F-Y., Sun, D-Y., Li, H-M, Jahn, B-M., Wilde, S.A., 2002. A-type granites in northeast-ern China: Age and geochemical constraints on their petrogenesis. Chemical Geology187, 143–173.

Xia, L.-Q., Xu, X.-Y., Xia, Z.-C., Li, X.-M., Ma, Z.-P., Wang, L.-S., 2003. Carboniferouspost-collisional rift volcanism of the Tianshan mountains, northwestern China. ActaGeological Sinica 77, 338–360.

Xiao, L., Xu, Y.G., Mei, H.J., Zheng, Y.F., He, B., Pirajno, F., 2004. Distinct mantle sourcesof low-Ti and high Ti basalts from the western Emeishan large igneous province, SWChina: implications for plume-lithosphere interaction. Earth and Planetary Science Let-ters 228, 525–546.

Xie, X., Byerly, G.R., Ferrell, R.E., 1997. IIb trioctahedral chlorite from the Barbertongreenstone belt: crystal structure and rock composition constraints with implicationsfor geothermometry. Contributions Mineralogy and Petrology 126, 275–291.

Xiong, J., Fischer, W.M., Inoue, K., Nakahara, M., Bauer, C.E., 2000. Molecular evidencefor the early evolution of photosynthesis. Science 289, 1724–1730.

Xiong, X.L., Adam, J., Green, T.H., 2005. Rutile stability and rutile/melt HFSE partition-ing during partial melting of hydrous basalt: implications for TTG genesis. ChemicalGeology 218, 339–359.

Xu, W.L., Wang, Q.H., Liu, X.C., Wang, D.Y., Guo, J.H., 2004a. Chronology and sourcesof Mesozoic intrusive complexes in the Xuzhou-Huainan region, central China, con-straints from SHRIMP zircon U-Pb dating. Acta Geologica Sinica 78, 96–106.

Xu, W.L., Wang, Q.H., Wang, D.S., Pie, F.P., Gao, S., 2004b. Processes and mechanismof Mesozoic lithospheric thinning in eastern NCC: Evidence from Mesozoic igneousrocks and deep-seated xenoliths. Earth Science Frontiers 11, 309–317 (in Chinese withEnglish abstract).

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 169aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

170 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Xu, Y-G., 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath theSino-Korean Craton in China: evidence, timing and mechanism. Physics and Chemistryof the Earth 26, 747–757.

Yamaguchi, A., Taylor, G.J., Keil, K., 1996. Global crustal metamorphism of the eucriteparent body. Icarus 124, 97–112.

Yamaguchi, A., Taylor, G.J., Keil, K., 1997. Metamorphic history of the eucrite crust of 4Vesta. Journal of Geophysical Research 102, 13,381–13,386.

Yang, S.-F., Chen, H.-L., Li, Z.-L., Dong, C.-W., Jia, C.-Z., Wei, G.-Q., 2006. Early toMiddle Permian magmatism in the Tarim Basin. In: International Conference on Conti-nental Volcanism, IAVCEI 2006, Guangzhou, China, Abstracts & Program, p. 54.

Yanshin, A.L., Borukaev, Ch.B. (Eds.), 1988. Tectonics and Evolution of the Earth’s aCrustin Siberia. In: Transactions of the Institute of Geology and Geophysics, vol. 173. Nauka,Novosibirsk, 175 pp. (in Russian).

Yashchenko, N.Y., Shekhotikin, V.V., 2000. New data on the tectonomagmatic history ofthe Ukrainian Shield (Ingul-Ingulets region). Litasfera 12, 76–84.

Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite: mantle refer-tilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petro-graphische Mitteilungen 78, 243–255.

Yearron, L.M., 2003. Archaean granite petrogenesis and implications for the evolution ofthe Barberton mountain land, South Africa. Ph.D., thesis. Kingston University, Kingt-son, UK, 315 pp.

Yin, Q-C., 2005. From dust to planets: The tale told by moderately volatile elements inChondrites and the Protoplanetary Disk. In: Astronomical Society of the Pacific, Con-ference Series, vol. 341, pp. 632–644.

Yoder, C.F., 1997. Venusian spin dynamics. In: Bouger, S.W., Hunten, D.M., Phillips, R.J.(Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 1087–1124.

Yokochi, R., Marty, B., 2005. Geochemical constraints on mantle dynamics in the Hadean.Earth and Plateary Science Letters 238, 17–30.

York, D., Layer, P.W., Lopez Martinez, M., Kröner, A., 1989. Thermal histories fromthe Barberton greenstone belt, southern Africa, In: International Geological Congress,Washington, DC, p. 413.

Young, C., 1997. Footwall alteration at the Sulphur Springs Zn-Cu volcanic-hosted massivesulfide (VHMS) prospect, east Pilbara, Western Australia. Unpublished B.Sc. Honoursthesis. University of Western Australia, Perth, 135 pp.

Young, D.A., Hansen, V.L., 2005. Poludnista Dorsa, Venus: History and context of a de-formation belt. Journal of Geophysical Research 110, doi:10.1029/2004JE002280.

Young, D.L., 1987. A kinematic interpretation of ductile deformation and shear-inducedquartz c-axis fabric development in the Montevideo Gneiss near Granite Falls, S.W.Minnesota. M.S. thesis. University of Missouri, Columbia, 201 pp.

Young, D.N., Black, L.P., 1991. U-Pb zircon dating of Proterozoic igneous charnockitesfrom the Mawson coast, east Antarctica. Antarctic Science 3, 205–216.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 170aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 171

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Young, E.D., Glay, A., Nagahara, H., 2002. Kinetic and equilibrium mass-dependentisotope fractionation laws in nature and their geochemical and cosmochemical signifi-cance. Geochimica et Cosmochimica Acta 66, 1095–1104.

Young, E.D., Simon, J.I., Galy, A., Russell, S.S., Tonui, E., Lovera, O., 2005. Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk.Science 308, 223–227.

Young, G.M., von Brun, V., Gold, D.J.C., Minter, W.E.L., 1998. Earth’s oldest reportedglaciation: Physical and chemical evidence from the Archaean Mozzan Group (∼2.9Ga) of South Africa. Journal of Geology 106, 523–538.

Young, M.D., McNicoll, V., Helmstaedt, H., Skulski, T., Percival, J.A., 2006. Pickle Lakerevisited: new structural, geochronological and geochemical constraints on greenstonebelt assembly, western Superior Province, Canada. Canadian Journal of Earth Sciences43, 821–847.

Zachariah, J.K., 1998. A 3.1 billion year old marble and the 87Sr/86Sr of late Archeanseawater. Terra Nova 10, 312–316.

Zahnle, K.J., 2006. Earth’s earliest atmosphere. Elements 2, 217–222.Zamora, D., 2000. Fusion de la croûte océanique subductée : approche expérimentale et

géochimique. Ph.D. thesis. Université Blaise-Pascal, Clermont-Ferrand, France, 314 pp.Zandt, G., Ammon, C.J., 1995. Continental crust composition constrained by measure-

ments of crustal Poisson’s ratio. Nature 374, 152–154.Zartman, R.E., Doe, B.R., l98l. Plumbotectonics – the model. Tectonophysics 75, l35-l62.Zartman, R.E., Jagoutz, E., Bowring, S.A., 2006. Pb-Pb dating of the D’Orbigny and Asuka

881371 angrites and a second absolute time calibration of the Mn-Cr chronometer. Lu-nar and Planetary Science XXXVII, abstract 1580.

Zeh, A., Klemd, R., Buhlmann, S., Barton Jr., J.M., 2004. Pro- and retrograde P-T evolutionof granulites of the Beit Bridge Complex (Limpopo Belt, South Africa): constraintsfrom quantitative phase diagrams and geotectonic implications. Journal of MetamorphicGeology 22, 79- 95.

Zegers, T.E., 1996. Structural, Kinematic and Metallogenic Evolution Selected Domainsof the Pilbara Granitoid-Greenstone Terrain. Geologica Ultraiectina, Mededelingen vande Faculteit Aardwetenschappen, Universiteit Utrecht, No. 146, 208 pp.

Zegers, T.E., van Keken, P.E., 2001. Middle Archean continent formation by crustal de-lamination. Geology 29, 1083–1086.

Zegers, T.E., White, S.H., de Keijzer, M., Dirks, P., 1996. Extensional structures duringdeposition of the 3460 Ma Warrawoona Group in the eastern Pilbara Craton, WesternAustralia. Precambrian Research 80, 89–105.

Zegers, T.E., de Keijzer, M., Passchier, C.W., White, S.H., 1998. The Mulgandinnah shearzone; an Archean crustal-scale strike-slip zone, eastern Pilbara, Western Australia. Pre-cambrian Research 88, 233–248.

Zegers, T.E., de Wit, M.J., Dann, J., White, S.H., 1998b. Vaalbara, the Earth’s oldest as-sembled continent? A combined structural, geochronological, and paleomagnetic test.Terra Nova 10, 250–259.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 171aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

172 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Zegers, T.E., Wijbrans, J.R., White, S.H., 1999. 40Ar/39Ar age constraints on tectonother-mal events in the Shaw area of the eastern Pilbara granite-greenstone terrain (W. Aus-tralia): 700 Ma of Archaean tectonic evolution. Tectonophysics 311, 45–81.

Zegers, T.E., Nelson, D.R., Wijbrans, J.R., White, S.H., 2001. SHRIMP U-Pb zircon datingof Archean core complex formation and pancratonic strike-slip deformation in the EastPilbara Granite-Greenstone Terrain. Tectonics 20, 883–908.

Zegers, T.E., Barley, M.E., Groves, D.I., McNaughton, N.J., White, S.H., 2002. Oldestgold: deformation and hydrothermal alteration in the early Archean shear-zone hostedBamboo Creek Deposit, Pilbara, Western Australia. Economic Geology 97, 757–773.

Zhai, M., Kampunzu, A.B., Modisi, M.P., Bagai, Z., 2006. Sr and Nd isotope systematics ofFrancistown plutonic rocks, Botswana: implications for Neoarchaean crustal evolutionof the Zimbabwe craton. International Journal of Earth Sciences 95 (3), 355–369.

Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006. Zircon isotopeevidence for �3.5 Ga continental crust in the Yangtze craton of China. PrecambrianResearch 146 (1–2), 16–34.

Zhang, Z-C., Mahoney, J.J., Mao, J-W., Wang, F-S., 2006. Geochemistry of picritic andassociated basalt flows of the Western Emeishan Flood Basalt province, China. Journalof Petrology, doi:10.1093/petrology/eg1034.

Zhao, G.C., Cawood, P.A., Wilde, S.A., Lu, L.Z., 2001a. High-pressure granulites (retro-graded eclogites) from the Hengshan complex, NCC: petrology and tectonic implica-tions. Journal of Petrology 42, 1141–1170.

Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., Lu, L.Z., 2000. Metamorphism of base-ment rocks in the central zone of the NCC: implications for Palaeoproterozoic tectonicevolution. Precambrian Research 103, 55–88.

Zhao, G.C., Sun, M., Wilde, S.A., 2003. Major tectonic units of the NCC and their Palaeo-proterozoic assembly. Science in China Series D 46, 23–38.

Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2005. Late Archaean to Palaeoproterozoicevolution of the NCC: key issues revisited. Precambrian Research 136, 177–202.

Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2001b. Archaean blocks and their bound-aries in the NCC: Lithological geochemical, structural and P-T path constraints andtectonic evolution. Precambrian Research 107, 45–73.

Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2002. SHRIMP U-Pb zircon ages of theFuping complex: implications for Late Archaean to Palaeoproterozoic accretion andassembly of the NCC. American Journal of Science 302, 191–226.

Zhao, G.C., Wilde, S.A., Li, S.Z., Sun, M., Grant, M.L., Li, X.P., in press. The Dong-wanzi ultramafic-mafic intrusion (North China) is not an Archean ophiolite. Earth andPlanetary Science Letters.

Zhao, J-X., McCulloch, M.T., Korsch, R.J., 1994. Characterisation of a plume-related∼800 Ma magmatic event, and its implications for basin formation in central-southernAustralia. Earth and Planetary Science Letters 21, 349–367.

Zhou, T.-F., Yuan, F., Tan, L.-G., Fan, Y., Yue, S.-C., 2006. Geodynamic significance ofthe A-type granites in the Sawuer region in west Junggar, Xinjiang: rock geochemistryand SHRIMP zircon age evidence. Science in China Ser. D 49, 113–23

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 172aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

References 173

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Zhao, T.P., Zhai, M.G., Xia, B., Li, H.M., Zhang, Y.X., Wan, Y.S., 2004. SHRIMP datingof zircon from volcanic rocks of the Xiong’er Group: Constraints on the beginning ofcover development in the NCC. Chinese Science Bulletin 49, 2342–2349.

Zhao, Z.P., 1993. Precambrian Crustal Evolution of Sino-Korea Platform. Science Press,Beijing, 444 pp.

Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Lu, F.X., Wang, C.Y., Zhang, M., Wang, F.Z., Li,H.M., 2004a. 3.6 Ga lower crust in central China: New evidence on the assembly of theNCC. Geology 32, 229–232.

Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Lu, F.X., Yu, C.M., Zhang, M., Li, H.M., 2004b.U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites:evolution of the lower crust beneath the NCC. Contributions to Mineralogy and Petrol-ogy 148, 79–103.

Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Pearson, N.J., Luo, Z., 2006a. Thelithospheric mantle beneath the southern Tianshan area, NW China. Contributions toMineralogy and Petrology 151, 457–479.

Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Pan, Y., Pearson, N.J., Lin, G., 2006b.Widespread Archean basement beneath the Yangtze Craton. Geology 34, 417–420.

Zhuravlev, D.Z., Rosen, O.M., 1991. Sm-Nd age of metasediments among granulites ofthe Anabar shield. Doklady Earth Sciences 317 (1), 189–193.

Zhuravlev, D.Z., Puchtel, I.S., Samsonov, A.V., 1989. Sm-Nd age and geochemistry of theOlondo greenstone belt volcanics. Izvestiya Academy of Sciences USSR, Geology Ser.(2), 39–49.

Zierenberg, R.A., Schiffman, P., Jonasson, I.R., Tosdal, R., Pickthorn, W., McClain, J.,1995. Alteration of basalt hyaloclastite at the off-axis Sea Cliff hydrothermal field,Gorda Ridge. Chemical Geology 126, 77–99.

Zimbelman, J.R., 2001. Image resolution and evaluation of genetic hypotheses for plane-tary landscapes. Geomorphology 37, 179–199.

Zindler, A., Hart, R.A., 1986. Chemical geodynamics. Annual Review of Earth and Plane-tary Sciences 14, 493–571.

Zlobin, V.L., Zhuravlev, D.Z., Rosen, O.M., 1999. Sm-Nd-model age of metacarbonate- gneiss formation of granulite complex in the western Anabar shield, Polar Siberia.Doklady Earth Sciences 368 (1), 95–98.

Zmolek, P., Xu, X.P., Jackson, T., Thiemens, M.H., Trogler, W.C., 1999. Large mass in-dependent sulfur isotope fractionations during the photopolymerization of (CS2)−12Cand (CS2)−13C. Journal of Physical Chemistry A 103, 2477–2480.

Zolensky, M., Bodnar, R.J., Gibson Jr., E.K., Nyquist, L.E., Reese, Y., Shih, C-Y., Wies-mann, H., 1999. Asteroidal water within fluid inclusion-bearing halite in an H5 chon-drite, Monahans (1998). Science 285, 1377–1379.

Zonenshain, L.P., Kuzmin, V.I., Natapov, L.M., 1989. Geology of the USSR, a PlateTectonic Synthesis. In: American Geophysical Union, Geodynamics Series, vol. 21.Washington, DC, 242 pp.

Zuber, M.T., 1987. Constraints on the lithospheric structure of Venus from mechanicalmodels and tectonic surface features. Journal of Geophysical Research 92, E541–E551.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 173aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC

174 References

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Zuber, M.T., 1990. Ridge belts: Evidence for regional- and local-scale deformation on thesurface of Venus. Geophysical Research Letters 17, 1369–1372.

Zwanzig, H.V., 2005. Geochemistry, Sm-Nd isotope data and age constraints of the BahLake assemblage, Thompson Nickel Belt and Kisseynew Domain margin: relation toThompson-type ultramafic bodies and a tectonic model. In: Report of Activities 2005,Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey,pp. 40–53.

Zwanzig, H.V., 1990. Kisseynew gneiss belt in Manitoba: stratigraphy, structure, andtectonic evolution. In: Lewry, J.F., Stauffer, M.R. (Eds.), The Early Proterozoic Trans-Hudson Orogen of North America. In: Geological Association of Canada, Special Paper37, pp. 95–120.

Zwanzig, H.V., Böhm, C.O., Etcheverry, J., 2001. Superior Boundary Zone-Reindeer Zonetransition in the Pearson Lake-Odei River-Mystery Lake region (parts of NTS 63P and64O). In: Report of Activities 2001, Manitoba Industry, Trade and Mines, ManitobaGeological Survey, pp. 51–56.

Zwanzig, H.V., Böhm, C.O., 2002. Tectonostratigraphy, Sm-Nd isotope and U-Pb age dataof the Thompson Nickel Belt and Kisseynew north and east margins (NTS 63J, 63P,63Q, 64A, 64B). In: Report of Activities 2004, Manitoba Industry, Trade and Mines,Manitoba Geological Survey, pp. 102–114.

Zwanzig, H.V., Böhm, C.O., 2004. Northern extension of the Thompson Nickel Belt, Man-itoba (NTS 64A3 and 4). In: Report of Activities 2004, Manitoba Industry, EconomicDevelopment and Mines, Manitoba Geological Survey, pp. 115–119.

dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 174aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC