steve platnick 1 , zhibo zhang 1,2 , paul hubanks 1,3 , bob holz 4 , robert pincus 5 ,

42
Steve Platnick Steve Platnick 1 , , Zhibo Zhang Zhibo Zhang 1,2 1,2 , Paul Hubanks , Paul Hubanks 1,3 1,3 , , Bob Holz Bob Holz 4 , Robert Pincus , Robert Pincus 5 , , Steve Ackerman Steve Ackerman 4 , , Brent Maddux Brent Maddux 4 , et al. , et al. 1 NASA GSFC, 2 2 UMBC/GEST, 3 Wyle, 4 U. Wisconsin/CIMSS, 5 CIRES/CU Innovative Satellite Observations to Characterize the Cloudy Boundary Layer Keck Institute for Space Studies, Cal Tech 21-24 September 2010 Boundary Layer Cloud Characterization with Passive Satellite Imagers: Capabilities, Limitations, Future Needs

Upload: graceland

Post on 21-Jan-2016

48 views

Category:

Documents


0 download

DESCRIPTION

Boundary Layer Cloud Characterization with Passive Satellite Imagers: Capabilities, Limitations, Future Needs. Steve Platnick 1 , Zhibo Zhang 1,2 , Paul Hubanks 1,3 , Bob Holz 4 , Robert Pincus 5 , Steve Ackerman 4 , Brent Maddux 4 , et al. 1 NASA GSFC, 2 UMBC/GEST, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Steve PlatnickSteve Platnick11, , Zhibo ZhangZhibo Zhang1,21,2, Paul Hubanks, Paul Hubanks1,31,3, ,

Bob HolzBob Holz44, Robert Pincus, Robert Pincus55, , Steve AckermanSteve Ackerman44, ,

Brent MadduxBrent Maddux44, et al., et al.

11NASA GSFC, 2 2UMBC/GEST, 33Wyle, 44U. Wisconsin/CIMSS, 55CIRES/CU

Innovative Satellite Observations to Characterize the Cloudy Boundary Layer

Keck Institute for Space Studies, Cal Tech21-24 September 2010

Boundary Layer Cloud Characterization with Passive Satellite Imagers: Capabilities,

Limitations, Future Needs

Page 2: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

1. Imager cloud retrieval overview

2. Examples from MODIS: Capabilities

3. Examples from MODIS: Issues• What do we mean by a “cloudy pixel” and why does it matter?

• Effective radius sensitivity to choice of spectral bands

• Geometric sensitivities/biases

• Clouds/BL height

• Trend detection

4. Future needs and discussion

OutlineMODIS true-color daily composite

Page 3: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

1. Imager Cloud Retrieval Overview

Page 4: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

µo=0.65, µ=0.85, azimuth avg

g=0.85, Qe=2.0

Optical Thickness

1−ϖο= 0

1−ϖο = 0.006

1−ϖο = 0.020

1−ϖο = 0.100

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

µo=0.65, µ=0.85, azimuth avg

g=0.85, Qe=2.0

Bid

irect

iona

l ref

lect

ance

(R

)

Optical thickness ()

g = 0.85

1-ϖ0 = 0.006

1-ϖ0 = 0

1-ϖ0 = 0.02

1-ϖ0 = 0.1

1-ϖ0 = 0

g = 0.85

= 0.86= 0.87

conservative scattering, R≈R((1-g)

Water Cloud Reflectance: R = R (, g, ϖ0, geometry)

reflectance vs. 1-ϖ0, R≈R(1-ϖ0)

Optical thickness ()

Page 5: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

MODTRAN, absorption transmittance only

– general purpose window bands (land, aerosol, clouds)

cloud microphysicsinformation

MODIS nominalsolar reflectanceband locations

0.006 0.02LIQUID WATER 1-ϖ0 at re =10µm

0.1

Page 6: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Cloud optical vs. microphysical properties?

For homogeneous cloud and Mie scattering (water droplets), 3 optical variables can be reduced to 1 optical & 1 microphysical:

Rλ = R τ λ ,ϖ0,λ,gλ( )

Rλ ≈ R τ λ0,re( )

re ≡ r3n(r)dr

0

r2n(r)dr0

∫ =

34

VAcs

WP = 2

3 re

Page 7: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Cloud optical vs. microphysical properties?

For homogeneous cloud and Mie scattering (water droplets), 3 optical variables can be reduced to 1 optical & 1 microphysical:

Rλ = R τ λ ,ϖ0,λ,gλ( )

Rλ ≈ R τ λ0,re( )

re ≡ r3n(r)dr

0

r2n(r)dr0

∫ =

34

VAcs

column-integratedquantities

WP = 2

3 re

local parameterin generalre=re(x,y,z)

WARNING!

and ve or more generally

n(r)dr

Page 8: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Twomey & Cocks (1982, 1989)Clouds downwind fromCane fires, Australia

Residual example for 5 wavelength retrieval: 0.75, 1.0, 1.2, 1.6, 2.1 µm obvious causes for the re discrepancy “found wanting”

Page 9: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Nakajima & King (1990)

Page 10: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

2. Capabilities: Examples from MODIS

Page 11: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

• Cloud mask. U. Wisconsin/CIMSS. 1km, 48-bit mask/11 spectral tests, clear sky confidence given in 4 levels

• Cloud top properties: pressure, temperature, effective emissivity. U. Wisconsin/CIMSS. 5 km, CO2 slicing high clouds, 11 µm for low clouds

• Cloud optical & microphysical properties: optical thickness, effective particle size, water path, thermodynamic phase. NASA GSFC

- 1 km, 2-channel solar reflectance algorithm. Standard retrievals are non-absorbing band (depends on surface type) + 1.6, 2.1, 3.7 µm

- 1 , 3 re retrievals

- 2.1 µm combination is the “primary” retrieval re (used in L3 aggregations)

- Retrieval uncertainties

- Various QA including, “Clear Sky Restoral” (CSR): Used to help eliminate cloudy pixels not suitable for retrievals or incorrectly identified cloudy pixels spatial (edge removal, use of 250m bands over water surfaces, and spectral tests).

MODIS Cloud Product OverviewMain pixel-level products (Level-2), Collection 5

Page 12: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Monthly Mean Cloud Optical Thickness & Effective RadiusApril 2005, Aqua Collection 5

“Cloud_Effective_Radius_Liquid_QA_Mean_Mean”

“Cloud_Optical_Thickness_QA__Mean_Mean”

Monthly Mean Cloud (MYD06 Cloud Mask)

Monthly Mean re (MYD06)

Page 13: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

“Cloud_Effective_Radius_Liquid_QA_Mean_Mean”

Monthly Mean Cloud Fraction & Effective RadiusApril 2005, Aqua Collection 5

“Cloud_Fraction_Day_Mean_Mean”

Monthly Mean Cloud Fraction (MYD35 Cloud Mask)

Monthly Mean re (MYD06)

Page 14: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Monthly Mean Cloud Effective Radius: 2.1 vs. 3.7 µm(Terra MODIS April 2005, C6 Test3, L3 unweighted means, liquid water clouds)

Page 15: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

0.0 0.1 0.2 0.3 0.4

0

1

2

3

4

5

6

7

8

0.66 µm

1.6 µm

2.2 µm

3.7 µm

vertical weighting

cloudtop

cloudbase

2.2 µm

3.7 µm

1.6 µm

depthcorresponding to

retrieved re :

wm

approx. vertical weighting(based on photon penetration depth)

Effective radius (re) retrieval differences - theoretical

4 6 8 10 12 14

0

1

2

3

4

5

6

7

8

Effective radius (µm)

cloudtop

cloudbase

Adia

batic

(LW

C ~

z)

r e ~

zr e ~

example analytic profiles

Platnick (2000)

Page 16: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Adiabatic cloud

W =59ρLreff Vert. homog. cloud

2

3 L effW rρ =

Global comparison withmicrowave data show excellent agreement of LWP for stratiform

marine BL clouds

No indicationof systematic errors for marine BL clouds

Example Liquid Water Path: MODIS vs. AMSR-E(from Borg and Bennartz, 2007; see also dry bias Greenwald 2007,

Horvath and Genteman, 2007)

Page 17: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

3. Issues: Examples from MODIS

• What do we mean by a “cloudy pixel” and why does it matter? Rationale for “Clear Sky Restoral” and impact on retrievals

• Analysis of effective radius sensitivity to choice of spectral bands

• Geometric sensitivities/biases

• BL Cloud-Top Pressure: sensitivity to lapse rate

• Trend detection

Page 18: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Granule Example – Peru/Chile Sc (Terra, 18 July 2001)(Terra, 18 July 2001)

rgb re

Page 19: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

CloudCloud

ClearClear

What Do We Mean by a Cloud Mask?A pixel

Page 20: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

What Do We Mean by a Cloud Mask?

CloudCloud

ClearClear

OvercastCloud Mask

Clear Sky Mask

Partly Cloudy

Page 21: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

What Do We Mean by a Cloud Mask?Most cloud masks are Clear Sky Masks

CloudCloud

ClearClear

MODISCloud Mask

(likelihood of “not clear”)

Page 22: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

weighting

Another Issue: What is a Pixel?

“instantaneous FOV” at t

Sensor

scan direction“Pixels” (individual

observations) overlap substantially in the across-

track direction

“instantaneous FOV” at t=t+tsample

Moral of this story:

(1) “Pixels” are rarely distinct elements.

(2) It is dangerous to treat non-clear pixels from detection algorithms as “cloudy”.

Page 23: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Effect of imager spatial resolution for low cloud portion of track:

MAS cloud fraction (50m) = 20.1%MODIS cloud fraction (MYD35 1km cloud mask) = 47%

(see Ackerman et al, JAOT, 2007 for other lidar comparisons)

CLASIC MAS vs. MODIS Cloud Fraction Comparison

Page 24: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Granule Example – Peru/Chile Sc (Terra, 18 July 2001)(Terra, 18 July 2001)

rgb re

Page 25: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Difference: C5 run w/out Clear Sky Restoral - C5 Retrieval Fraction, Terra 8-Day Aggregation, 30 March - 6 April 2005Retrieval Fraction, Terra 8-Day Aggregation, 30 March - 6 April 2005

“blue” => implementing CSR algorithm causes a decrease in retrieved fraction

6 Apr 20056 Apr 2005

Page 26: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Sensitivity to Clear Sky Restoral: Histograms Optical Thickness, liquid water clouds (April 2005)Optical Thickness, liquid water clouds (April 2005)

Tropical Pacific (±25°) Tropical Pacific (±25°) Peru Sc (Peru Sc (10S–20S, 70W–85W) )

Page 27: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Tropical Pacific (±25°) Tropical Pacific (±25°) Peru Sc (Peru Sc (10S–20S, 70W–85W) )

Sensitivity to Clear Sky Restoral: Histograms Optical Thickness, liquid water clouds (April 2005)Optical Thickness, liquid water clouds (April 2005)

Page 28: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

BL Phase In Broken Cloud Regimes (B. Holz)(B. Holz)

•Analysis: Fraction of non-tropical low clouds detected by CALIOP that are/have ice (early Yong Hu algorithm, applied before off-nadir pointing)

•Restricted to: Height<3km, ±30-70° latitude, isolated clouds w/spatial scales <20 km (max diameter from MODIS)

Page 29: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

BL Phase In Broken Cloud Regimes, cont. (B. Holz)(B. Holz)

Feb. 2007Feb. 2007

Aug. 2007Aug. 2007

Page 30: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Cloud Detection/Cloud Fraction: Ill-defined but nevertheless impacts those pixels considered for optical/microphysical retrievals, and a useful metric for trend studies if consistent instruments/algorithms are available.

MODIS “Clear Sky Restoral” Algorithm

• As expected:

– algorithm removes more liquid than ice cloud (not shown) from the retrieval space

– algorithm increases mean as expected (e.g., eliminates broken cloud or aerosol portion of PDF)

• Not expected:

– algorithm does not in general have a significant effect on mean re !

• Cloud Phase: Midlatitude BL clouds w/ice appear relatively common in broken regimes.

Summary: Cloud Retrieval Fraction and Issues

Page 31: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

3. Issues: Examples from MODIS

• What do we mean by a “cloudy pixel” and why does it matter? Rationale for “Clear Sky Restoral” and impact on retrievals

• Analysis of effective radius sensitivity to choice of spectral bands

• Geometric sensitivities/biases

• BL Cloud-Top Pressure: sensitivity to lapse rate

• Trend detection

Page 32: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

MODIS Aqua, Collection 59 September 2005

2.1 µm re retrieval

3.7 µm re retrieval

Page 33: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

re Differences Correlated w/250m spatial inhomogeneties Global Ocean, ±60°, April 2005, Terra (Zhibo Zhang, et al.)

/µ for 0.86 µm

250m pixels

pdf of ihomog. index

Page 34: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

re Differences and Spatial Inhomogeneties: Back-of-Envelope Example (no 3D RT)

(Zhibo Zhang, et al.)

=3re=16µm

=30re=16µm

f1

(fraction of thinner cloud)

“pixel” over dark ocean

f1 (thin cloud fraction)

µ0=0.65 , µ~1

1

2

1 2

Page 35: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

re Differences and Spatial Inhomogeneties: Back-of-Envelope Example (no 3D RT)

(Zhibo Zhang, et al.)

re=16 µm

re=27 µm

re=16 µm

re=27 µm

1

21

2

Page 36: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

re Differences and Spatial Inhomogeneties: 3D RT Results(Zhibo Zhang, et al.)

periodic 8 km cloud elements over Cox-Munk

ocean sfc. =30re=16µm

=3re=16µm

=3re=16µm

… …8 km

µ0=0.65 µ~1

1 km pixel position (km)

=30 =3 =3

sunsun

Page 37: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Example, RICO region

October 29, 2003(Di Girolamo et al.)

50

100

150

200

250

300

350

-80 -60 -40 -20 0 20 40 60 80

= 4.3, = 8.0 Re µm

= 11.0, = 11.3 Re µm

= 63.2, = 19.4 Re µm

View Zenith Angle

MISR observationsDISORT Simulations

from MODIS retrievals

Global Oceanic Low Cloud Results

• MODIS 250m cloud heterogeneity metric (dispersion in 3x3 sq. km region)

• For metric < 0.1 (~40% of all retrievals are less than this value): Angular consistency in the MODIS-retrieved cloud optical properties are within 10% of their plane-parallel values for various angular consistency metrics.

Page 38: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Relationship Between MODIS Retrievals and CloudSat Probability of Precipitation (Matt Lebsock et al.)

Three MODIS parameters are related to the POP:

1. 2. re

3. δre

Page 39: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

MODIS re Joint Distributions vs. CloudSat Precipitation(Matt Lebsock et al.)

• re,3.7 appears to show less precipitation influence

• re or δre alone can’t predict precipitation

• re,2.1 extends beyond 30 μm

AdiabaticAdiabatic CoalescenceCoalescence PrecipitationPrecipitation

Page 40: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

Summary of Water Cloud re Results

• Global re statistics between 1.6/2.1 and 3 7 µm retrievals are significantly different. – Can’t directly compare MODIS standard retrieval (2.1 µm)

with AVHRR or MODIS/CERES 3.7 µm derived data sets.– Differences between these data sets are due to choice of

bands uses, not algorithmic.

– Oceanic differences correlated with absolute re and inhomogeneities reflectance (/µ) and precip. (Lebsock et al., 2008; Takashi Nakajima et al., 2010)

– But drizzle/precip may also be correlated with clouds inhomogeneities. Which is the tail and which is the dog (both)?

– Some/more significant positive (2.1–3.7) bias with VZA (beyond pixel level uncertainties) in broken oceanic regions.

• Pursuing MOD06 retrievals from marine BL LES runs

Page 41: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

• All retrievals (w/out exception) have issues with portions of the All retrievals (w/out exception) have issues with portions of the retrieval pdf space. retrieval pdf space.

• Spatial Resolution is a key issue for BL cloud studies.• Issues related to broken clouds and/or strong

inhomogeneities/precip: – Inability to retrieve cloud amount and physical cloud information

(temperature/height biases, optical property “failed” retrievals)

– Interpretation of large re and large re from different spectral channels

– Vertical (non-adiabatic) as well as horizontal structure

– Deviations from plane-parallel models with view angle (instantaneous differences may be large, but aggregated statistics appear less so)

– Significant presence of ice in midlatitude low clouds. Must have the ability to detect ice and discern mixed phase to (a) understand BL energy budget and affect on dynamics/microphysics, (b) have any hope of understanding retrieval uncertainties.

4. Summary & Discussion

Page 42: Steve Platnick 1 ,  Zhibo  Zhang 1,2 , Paul Hubanks 1,3 ,  Bob Holz 4 , Robert Pincus 5 ,

• Cloud processes occur across the gamut of spatial/temporal scales, are complex, and require a full understanding of cloud properties (in addition to aerosol and dynamic/thermodynamic properties, model analysis, ancillary data, etc.).

- Synergistic sensor approaches are required (e.g., A-Train, ACE)

- To maintain/monitor climatologies (trends), need to continue to invest in instruments that can maintain data continuity.

- Not everything can be learned from satellites. Strong in situ and modeling efforts are necessary. Inability to retrieve cloud amount and physical cloud information (temperature/height biases, optical property “failed” retrievals)

• ACE BL

- Imager: narrow swath (selected high res bands), multiple views, wide swath Solar reflectance + IR (w/spectral heritage)

- Polarimeter

- Active: Radar (dual frequ.), HSRL

Summary & Discussion, cont.