stochastic modeling in reaction-transport processes...

55
Stochastic Modeling in Reaction-Transport Processes: Forward and Backward considerations Stefan Engblom Division of Scientific Computing Department of Information Technology Uppsala University BSSE Seminar, ETH, March 26, 2013 S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 1 / 42

Upload: others

Post on 08-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

Stochastic Modeling in Reaction-Transport Processes:Forward and Backward considerations

Stefan Engblom

Division of Scientific ComputingDepartment of Information Technology

Uppsala University

BSSE Seminar, ETH, March 26, 2013

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 1 / 42

Page 2: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

Today

Agenda: give an overview of computational stochastic modeling in(bio-)chemical kinetics, specifically targeting cell biology. I also like todiscuss some different possibilities for inverse formulations (“givenobservations, find the model”).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 2 / 42

Page 3: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

Program

1. Stochastic modelingBrownian motion(Bio-)Chemical kineticsSpatial chemical kinetics

2. Computations by examples

3. Inverse formulationsReaction rates from observationsMolecular movements from observationsOptimal rates

Conclusions

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 3 / 42

Page 4: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Brownian motion

Brownian motionEinstein 1905, & some others...

Example: Particle in a fluid.

A stochastic model is simpler but depends on randomness.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 4 / 42

Page 5: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Brownian motion

Brownian motionEinstein 1905, & some others...

Example: Particle in a fluid.

A stochastic model is simpler but depends on randomness.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 4 / 42

Page 6: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

XY

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number ofX -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 5 / 42

Page 7: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

XY

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number ofX -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 5 / 42

Page 8: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

XY

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number ofX -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 5 / 42

Page 9: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

XY

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number ofX -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 5 / 42

Page 10: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout thevolume (homogeneous).Assumption #2: the energy of a molecule does not depend on its positionin the volume (thermal equilibrium).

-State vector x ∈ ZD+ counting the number of molecules of each of D

species.-R specified reactions defined as transitions between these states,

xwr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

where each transition intensity or propensity wr : ZD+ → R+ is the

probability of reacting per unit of time.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 6 / 42

Page 11: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout thevolume (homogeneous).Assumption #2: the energy of a molecule does not depend on its positionin the volume (thermal equilibrium).

-State vector x ∈ ZD+ counting the number of molecules of each of D

species.-R specified reactions defined as transitions between these states,

xwr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

where each transition intensity or propensity wr : ZD+ → R+ is the

probability of reacting per unit of time.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 6 / 42

Page 12: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Simulating the chain(Doob ∼’45, Gillespie ’76)

Simulate a single stochastic trajectory X (t) “an outcome”:

0. Let t = 0 and set the state x to the initial number of molecules.

1. Compute the total reaction intensity W :=∑

r wr (x). Generate thetime to the next reaction τ := −W−1 log u1 where u1 ∈ (0, 1) is auniform random number. Determine also the next reaction r by therequirement that

r−1∑s=1

ws(x) < Wu2 ≤r∑

s=1

ws(x),

where u2 is again a uniform random deviate in (0, 1).

2. Update the state of the system by setting t := t + τ and x := x −Nr .

3. Repeat from step 1 until some final time T is reached.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 7 / 42

Page 13: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling (Bio-)Chemical kinetics

Kolmogorov’s forward differential system/Master equation(Kolmogorov ’31, Nordsieck/Lamb/Uhlenbeck ’40)

With states x ∈ ZD+, let p(x , t) := P(X (t) = x |X (0)). Then the chemical

master equation (CME) is given by

∂p(x , t)

∂t=

R∑r=1

wr (x + Nr )p(x + Nr , t)−R∑

r=1

wr (x)p(x , t)

=:Mp.

-A gain-loss discrete PDE in D dimensions for the probability densityconditioned upon an initial state.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 8 / 42

Page 14: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Inhomogeneous kinetics

Not well-stirred:

I When the molecular movement (diffusion) is slow compared to thereaction intensity — large local concentrations may easily build up.

I When some reactions are localized — e.g. depend on an enzymeemitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside livingcells!

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 9 / 42

Page 15: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdividedinto smaller computational cells Ωj such that their individual volume |Ωj |is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # ofmolecules in each dual cell.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 10 / 42

Page 16: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics (cont)

I D chemically active species Xij for i = 1, . . . ,D but now countedseparately in K cells, j = 1, . . . ,K .

I The state of the system is now an array x with D × K elements.

I This state is changed by chemical reactions occurring between themolecules in the same cell (vertically in x) and by diffusion/transportwhere molecules move to adjacent cells (horizontally in x).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 11 / 42

Page 17: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Reactions

By assumption, each cell is well-stirred and consequently the masterequation is valid as a description of reactions,

∂p(x, t)

∂t=Mp(x, t) :=

K∑j=1

R∑r=1

wr (x·j + Nr )p(x·1, . . . , x·j + Nr , . . . , x·K , t)

−K∑j=1

R∑r=1

wr (x·j)p(x, t).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 12 / 42

Page 18: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xikqkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.

-Ideally, qkj should be taken as the inverse of the mean first exit time for asingle molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, whereσ2/2 is the macroscopic diffusion, h the local length.The diffusion master equation can therefore be written

∂p(x, t)

∂t=

D∑i=1

K∑k=1

K∑j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42

Page 19: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xikqkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.-Ideally, qkj should be taken as the inverse of the mean first exit time for asingle molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, whereσ2/2 is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

∂p(x, t)

∂t=

D∑i=1

K∑k=1

K∑j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42

Page 20: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xikqkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.-Ideally, qkj should be taken as the inverse of the mean first exit time for asingle molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, whereσ2/2 is the macroscopic diffusion, h the local length.The diffusion master equation can therefore be written

∂p(x, t)

∂t=

D∑i=1

K∑k=1

K∑j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42

Page 21: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

The reaction-diffusion master equation“RDME”

Combining reactions with diffusions,

∂p(x, t)

∂t= (M+D)p(x, t).

-An approximation! Valid when

ρ2 h2 σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.-Once formulated, any algorithm for sampling from the CME can alsosimulate the RDME. For a spatially resolved model, most of the simulationtime is spent on diffusion events.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 14 / 42

Page 22: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

The reaction-diffusion master equation“RDME”

Combining reactions with diffusions,

∂p(x, t)

∂t= (M+D)p(x, t).

-An approximation! Valid when

ρ2 h2 σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.-Once formulated, any algorithm for sampling from the CME can alsosimulate the RDME. For a spatially resolved model, most of the simulationtime is spent on diffusion events.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 14 / 42

Page 23: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).-How to handle complicated geometries?

Attempt to converge inexpectation to the macroscopic diffusion equation. Briefly, a numericalmethod applied to ut = σ2/2 ∆u yields the discretized form

du

dt=σ2

2Du.

-Define ϕij = E Ω−1j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt=

K∑k=1

|Ωk ||Ωj |

qkjϕik −

(K∑

k=1

qjk

)ϕij ,

⇐⇒dϕT

i ·dt

= QϕTi · .

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 15 / 42

Page 24: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).-How to handle complicated geometries? Attempt to converge inexpectation to the macroscopic diffusion equation. Briefly, a numericalmethod applied to ut = σ2/2 ∆u yields the discretized form

du

dt=σ2

2Du.

-Define ϕij = E Ω−1j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt=

K∑k=1

|Ωk ||Ωj |

qkjϕik −

(K∑

k=1

qjk

)ϕij ,

⇐⇒dϕT

i ·dt

= QϕTi · .

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 15 / 42

Page 25: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).-How to handle complicated geometries? Attempt to converge inexpectation to the macroscopic diffusion equation. Briefly, a numericalmethod applied to ut = σ2/2 ∆u yields the discretized form

du

dt=σ2

2Du.

-Define ϕij = E Ω−1j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt=

K∑k=1

|Ωk ||Ωj |

qkjϕik −

(K∑

k=1

qjk

)ϕij ,

⇐⇒dϕT

i ·dt

= QϕTi · .

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 15 / 42

Page 26: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

1. Stochastic modeling Spatial chemical kinetics

Assuming point-wise convergence of the numerical discretization →diffusion PDE, the consistency in this interpretation ensures convergencein distribution to the correct Brownian motion as the mesh-size h→ 0.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 16 / 42

Page 27: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

(Forward) Computations by examples

I Bistable model

I Spatial oscillations in E. coli.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 17 / 42

Page 28: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

Bistable double-negative feedback system

EAk1−→ EA + A EB

k1−→ EB + B

EA + Bkakd

EAB EB + Akakd

EBA

EAB + Bkakd

EAB2 EBA + Akakd

EBA2

Ak4−→ ∅ B

k4−→ ∅

Slow/intermediate/fast diffusion in a simple model of an S. cerevisiae cellwith internal structures in the form of a nucleus and a large vacuole.Molecules are not allowed to diffuse across the membranes and enter theorganelles.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 18 / 42

Page 29: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

(a) Species A. (b) Species B.

“URDME” software www.urdme.org.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 19 / 42

Page 30: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

0 200 400 600 800 1000

500

1000

1500

2000

2500

t [s]

A B

(c) σ2 = 2× 10−13

0 200 400 600 800 1000

500

1000

1500

2000

2500

t [s]

A B

(d) σ2 = 4× 10−13

Figure: The total number of A and B molecules as the diffusion constant isvaried. Right: local bistability is lost.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 20 / 42

Page 31: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

MinD oscillationsOscillations of proteins involved in the cell division of E. coli:

MinD c atpkd−→ MinD m MinD c atp + MinD m

kdD−−→ 2MinD m

Min e+MinD mkde−−→ MinDE MinDE

ke−→ MinD c adp + Min e

MinD c adpkp−→ MinD c atp

“URDME” software www.urdme.org.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 21 / 42

Page 32: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

−2.25 0 2.55x 10−6

0

0.2

0.4

0.6

0.8

1

Average concentration of MinDm

location (µ m)

1000 1100 1200 1300 1400 15000

250

500

750

1000

MinDm polar oscillations

time (s)

# m

olec

ules

LeftRight

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 22 / 42

Page 33: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

2. Computations by examples

Bacterium length (µ m)

Gro

wth

(µ m

)

Average concentration of MinDm

0 1 2 3 4 5 6 7 8x 10−6

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10−6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2.25 0 2.55x 10−6

0

0.2

0.4

0.6

0.8

1

Average concentration of MinDm

location (µ m)

1000 1100 1200 1300 1400 15000

250

500

750

1000

MinDm polar oscillations

time (s)

# m

olec

ules

LeftRight

−2.25 0 2.55x 10−6

0

0.2

0.4

0.6

0.8

1

Average concentration of MinDm

location (µ m)

1000 1100 1200 1300 1400 15000

250

500

750

1000

MinDm polar oscillations

time (s)

# m

olec

ules

LeftRight

(a)(b)

Figure3:Thegeometryandmesh(a).Moredescriptionhere

9

Bacterium length (µ m)

Gro

wth

(µ m

)

Average concentration of MinDm

0 1 2 3 4 5 6 7 8x 10−6

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10−6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B

C D

Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal averageconcentration of MinD protein as a function of position along the long axis of the E. Colicell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasinglengths, as specified in the parameter sweep described in Table 1. The color intensity showsthe temporal average concentration of MinD protein along the membrane. (D) Parametersweep shows how the relative concentration of MinD changes as the bacterium grows.

8

Bacterium length (µ m)

Gro

wth

(µ m

)

Average concentration of MinDm

0 1 2 3 4 5 6 7 8x 10−6

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10−6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B

C D

Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal averageconcentration of MinD protein as a function of position along the long axis of the E. Colicell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasinglengths, as specified in the parameter sweep described in Table 1. The color intensity showsthe temporal average concentration of MinD protein along the membrane. (D) Parametersweep shows how the relative concentration of MinD changes as the bacterium grows.

8

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 23 / 42

Page 34: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations

Inverse or ‘Backwards’ formulations

I Reaction rates from observations...

I ...diffusion rates from observations

I “Evolutionary” optimal control setup

None of these formulations are in a ‘final’ state.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 24 / 42

Page 35: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Rate coefficients from observations

Physics: linear birth-death processwith hidden parameters (k, µ):

∅ k−→ X

Xµx−→ ∅

Data:

50 100 150

10

20

30

Task: find the rates (k, µ).

Convergence: increasing thetemporal resolution:

50 100 150

10

20

30

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 25 / 42

Page 36: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Maximum LikelihoodIn a nutshell: find the parameters (k , µ) that maximizes the probability ofobtaining the data we did observe (...)

-Model: let us assume independent observations, say, Gaussians around acertain predicted value x(t),

P(X (t1) = x1|X (0) = x0) ∝ exp(−[x1 − x(t1|x0, t0)]2/2σ2

)P(X (t2) = x2|X (t1) = x1) ∝ exp

(−[x2 − x(t2|x1, t1)]2/2σ2

). . .

indep. =⇒P ∝ exp

− 1

2σ2

∑i

[xi − x(ti |xi−1, ti−1)]2︸ ︷︷ ︸minimize

-Linear birth-death ODE is x ′(t) = k − µx(t). Use for the predictorx(t|xi , ti ) the solution to the ODE at time t given initial data (xi , ti ).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 26 / 42

Page 37: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Maximum LikelihoodIn a nutshell: find the parameters (k , µ) that maximizes the probability ofobtaining the data we did observe (...)

-Model: let us assume independent observations, say, Gaussians around acertain predicted value x(t),

P(X (t1) = x1|X (0) = x0) ∝ exp(−[x1 − x(t1|x0, t0)]2/2σ2

)P(X (t2) = x2|X (t1) = x1) ∝ exp

(−[x2 − x(t2|x1, t1)]2/2σ2

). . .

indep. =⇒P ∝ exp

− 1

2σ2

∑i

[xi − x(ti |xi−1, ti−1)]2︸ ︷︷ ︸minimize

-Linear birth-death ODE is x ′(t) = k − µx(t). Use for the predictorx(t|xi , ti ) the solution to the ODE at time t given initial data (xi , ti ).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 26 / 42

Page 38: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Maximum LikelihoodIn a nutshell: find the parameters (k , µ) that maximizes the probability ofobtaining the data we did observe (...)

-Model: let us assume independent observations, say, Gaussians around acertain predicted value x(t),

P(X (t1) = x1|X (0) = x0) ∝ exp(−[x1 − x(t1|x0, t0)]2/2σ2

)P(X (t2) = x2|X (t1) = x1) ∝ exp

(−[x2 − x(t2|x1, t1)]2/2σ2

). . .

indep. =⇒P ∝ exp

− 1

2σ2

∑i

[xi − x(ti |xi−1, ti−1)]2︸ ︷︷ ︸minimize

-Linear birth-death ODE is x ′(t) = k − µx(t). Use for the predictorx(t|xi , ti ) the solution to the ODE at time t given initial data (xi , ti ).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 26 / 42

Page 39: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Linear birth-deathResults (µ)

0 200 400 600 800 1000

0.09

0.1

0.11

0.12

Sample length

Estim

ate

exact

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 27 / 42

Page 40: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Dimerization

Slightly more difficult (nonlinear)

∅ k−→ X

X + Xνx(x−1)−−−−−→ ∅

10 20 30

10

20

30

10 20 30

10

20

30

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 28 / 42

Page 41: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

DimerizationResults (ν)

0 200 400 600 800 1000

0.1

0.15

0.2

Sample length

Estim

ate

exact

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 29 / 42

Page 42: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

Maximum Likelihood using the CME

-Previously we used a Gaussian probability model. A better model is thechemical master equation.

=⇒ P(X (ti ) = xi |X (ti−1) = xi−1) = p(xi , ti ) with p a solution to theCME with initial data p(xi−1, ti−1) = 1.

-Observations are still independent (Markov property).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 30 / 42

Page 43: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Reaction rates from observations

DimerizationResults (ν)

0 200 400 600 800 1000

0.1

0.15

0.2

Sample length

Estim

ate

exact

ODE

M−eq.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 31 / 42

Page 44: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Diffusion rates from observations

Physics: a single particle at positionZ (t) undergoing 2D Brownianmotion with hidden diffusionconstant: dZt = σ dWt , whereZt = [Xt Yt ], Wt = [W

(x)t W

(y)t ].

Data: N = 1000 observations,σ ∈ 1, 4. Only ∼50 observationsfrom within the quarter circle whereσ = 4.

Task: determine σ1,2 and classifythe observations accordingly (hencedetermine σ = σ(x , y)).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 32 / 42

Page 45: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces aMaximum-Likelihood estimator of (i) σ = [σ1 σ2] as well as of (ii) pnk , theprobability that the nth observation had diffusion constant σk .

1. Given values of σ1,2, we can estimate pnk . (Gaussian increments)

2. Given values of pnk , we can estimate σ1,2. (Sample means)

The iteration defined by iterating step #1 and 2 is (a version of) theExpectation-Maximization algorithm.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 33 / 42

Page 46: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces aMaximum-Likelihood estimator of (i) σ = [σ1 σ2] as well as of (ii) pnk , theprobability that the nth observation had diffusion constant σk .

1. Given values of σ1,2, we can estimate pnk . (Gaussian increments)

2. Given values of pnk , we can estimate σ1,2. (Sample means)

The iteration defined by iterating step #1 and 2 is (a version of) theExpectation-Maximization algorithm.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 33 / 42

Page 47: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Diffusion ratesResults iteration #2

σ = [0.97 1.95]

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 34 / 42

Page 48: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Diffusion ratesResults iteration #3

σ = [0.97 3.53]

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 35 / 42

Page 49: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Molecular movements from observations

Diffusion ratesResults iteration #6

σ = [0.98 3.68]

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 36 / 42

Page 50: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Optimal rates

Optimal control of rates

Enzymatic reaction of a complex into a product,

C + Eν C ·E−−−→ P + E .

Combine with

∅s(t)µEE

E , ∅kCµCC

C , PµPP−−→ ∅

such that E is under control through the signal s(t).

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 37 / 42

Page 51: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Optimal rates

Optimal control of rates (cont)

Maximize

M[P] :=

∫ T

0ϕ(Pt) dt,

with a nonlinear payoff function ϕ(P),

ϕ(P) = 0, P ≤ c−ϕ(P) = τ(P − c−), c− < P ≤ C+

ϕ(P) = τ(C+ − c−), C+ < P

Constraints on the production signal s

maxt∈[0,T ] s(t) ≤ S∞,∫ T0 s(t) dt ≤ S1,

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 38 / 42

Page 52: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Optimal rates

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

0

0.2

0.4

0.6

0.8

1

Nu

mb

er

of

mo

lecu

les

Co

ntro

l Sig

na

l

s(t)

c−

c+

-Results from non-spatial deterministic ODE.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 39 / 42

Page 53: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Optimal rates

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

c−

c+

0

0.2

0.4

0.6

0.8

1s(t)

Nu

mb

er

of

mo

lecu

les

Co

ntro

l Sig

na

l

M2[P] :=∫ T

0 ϕ(Pt) + ε|s ′(t)| dt

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 40 / 42

Page 54: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

3. Inverse formulations Optimal rates

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

c−

c+

0

0.2

0.4

0.6

0.8

1s(t)

Time

Contro

l Signal

Number of molecules

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 41 / 42

Page 55: Stochastic Modeling in Reaction-Transport Processes ...user.it.uu.se/~stefane/formalia/ETH130326.pdf · 1. Stochastic modeling (Bio-)Chemical kinetics Well-stirred kinetics Assumption

Conclusions

Summary & Conclusions

I Stochastic mesoscopic modeling in chemical kinetics can combinesimplicity with accuracy

I Spatial modeling is also possible and often necessary, computationalissues arise due to high temporal resolution

I Free software URDME (www.urdme.org)

I Examples of inverse formulations, many possibilities; I like to thinkthat it is important to be data- and question driven

I Input is welcome

Thank you for listening!

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 42 / 42