stretched excitations as a means to study the spin

20
HAL Id: jpa-00224099 https://hal.archives-ouvertes.fr/jpa-00224099 Submitted on 1 Jan 1984 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. STRETCHED EXCITATIONS AS A MEANS TO STUDY THE SPIN MODES OF THE NUCLEUS WITH ELECTROMAGNETIC AND HADRONIC PROBES R. Lindgren To cite this version: R. Lindgren. STRETCHED EXCITATIONS AS A MEANS TO STUDY THE SPIN MODES OF THE NUCLEUS WITH ELECTROMAGNETIC AND HADRONIC PROBES. Journal de Physique Colloques, 1984, 45 (C4), pp.C4-433-C4-451. <10.1051/jphyscol:1984433>. <jpa-00224099>

Upload: others

Post on 09-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

HAL Id: jpa-00224099https://hal.archives-ouvertes.fr/jpa-00224099

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

STRETCHED EXCITATIONS AS A MEANS TOSTUDY THE SPIN MODES OF THE NUCLEUSWITH ELECTROMAGNETIC AND HADRONIC

PROBESR. Lindgren

To cite this version:R. Lindgren. STRETCHED EXCITATIONS AS A MEANS TO STUDY THE SPIN MODES OFTHE NUCLEUS WITH ELECTROMAGNETIC AND HADRONIC PROBES. Journal de PhysiqueColloques, 1984, 45 (C4), pp.C4-433-C4-451. <10.1051/jphyscol:1984433>. <jpa-00224099>

JOURNAL DE PHYSIQUE

Colloque C4, suppl6ment a u n03, Tome 45, mars 1984 page C4-433

STRETCHED EXCITATIONS AS A MEANS TO STUDY THE SPIN MODES OF THE

NUCLEUS WITH ELECTROMAGNETIC AND HADRONIC PROBES

R.A. Lindgren

Department of Physics and Astronomy, University of Massachusetts, Amherst MA, U.S.A.

~ & s ~ ~ & - Nous avons 6 tudiC l ' e x c i t a t i o n d e s t r a n s i t i o n s d e moment a n g u l a i r e e n nous s e r v a n t d e sondes &lect romagn&tiques e t hadroniques . L 1 i n t e n s i t 6 spec t roscop ique s e d g d u i t d e s e tudes d e ( e , e l ) , ( p , p l ) , ( IT, IT ' ) e t (p ,n ) des & t a t s a l l o n g e s s6 l ec t ionn6s . Dans nos e tudes il y a d e l l i n t e n s i t & a b s e n t e d e s e x c i t a t i o n s d e moment a n g u l a i r e e l eve . Ce f a i t impl ique que d ' a u t r e s mgcanismes impor t an t s d ' e x t i n c t i o n e x i s t e n t p a r c e que l e mecanisme A - N - ~ ne c o n t r i b u e n i aux e x c i t a t i o n s d e moment a n g u l a i r e &lev6 n i aux t r a n s i t i o n s i s o s c a l a i r e s . Les & t a t s a l l o n g g s s e r v e n t d ' g t a l o n pour v g r i f i e r 3 l a f o i s 1 1 i n t e n s i t 6 t enseu r nuclgon-nucl&on dans l e phgnom&ne d e d i f f u s i o n des p ro tons , e t l ' i n t e n s i t c o r b i t a l e d e moment a n g u l a i r e e n t r e l e p ion e t l e nuclgon dans l e ph6nomene d e d i f f u s i o n des p ions . Les r e s u l t a t s s ' a cco rden t d 'une f acon remarquableavec l e s p r 6 d i c t i o n s d u m o d ~ l e D W I A .

Abs t r ac t - E x c i t a t i o n of s p i n t r a n s i t i o n s u s ing e l ec t romagne t i c and hadronic probes i s d i scussed . Spec t roscop ic s t r e n g t h s a r e deduced from s t u d i e s of ( e , e l ) , ( p , p l ) , (" ,IT') and (p ,n) f o r s e l e c t e d s t a t e s . The miss ing i s o v e c t o r and i s o s c a l a r s t r e n g t h s imply t h e e x i s t e n c e of o t h e r impor tant quenching mechanisms s i n c e t h e A - N - ~ mechanism does n o t c o n t r i b u t e t o h igh s p i n e x c i t a t i o n s o r t o i s o s c a l a r t r a n s i t i o n s . The s t r e t c h e d s t a t e s a r e used a s benchmarks t o t e s t t h e nucleon-nucleon t e n s o r f o r c e i n p ro ton s c a t t e r i n g and t h e pion-nucleon s p i n o r b i t f o r c e i n p ion s c a t t e r i n g . The r e s u l t s a r e i n s t r i k i n g agreement w i t h p r e d i c t i o n s of t h e DWIA model.

INTRODUCTION

I n t h i s s e s s i o n on s p i n e x c i t a t i o n s i n n u c l e i we a r e i n t e r e s t e d i n t h e s t u d y of t h e nuc lea r r e sponse t o nucleon o p e r a t o r s of t h e o~ t ype . It h a s been shown1 t h a t e f f e c t s on t h e s p i n - i s o s p i n o p e r a t o r s due t o p i o n i c o l a r i z a t i o n o f t he nuc lea r medium a r e s t r o n g l y momentum dependent. S t ~ d i e s ~ , ~ . ~ . ~ of M1 and GT resonances have provided impor t an t and fundamental i n fo rma t ion on quenching mechanisms i n t h e s t a t i c l i m i t of q = 0 . S t u d i e s of h igh m u l t i p o l e magnet ic resonances should p rov ide valua- b l e i n fo rma t ion on whether medium e f f e c t s a r e impor tant a t h igh q . Yet , quenching e f f e c t s such a s d e l t a pa r t i c l e -nuc leon h o l e admixtures f o r t h e miss ing GT s t r e n g t h a r e no t expected t o s t r o n g l y couple t o t h e h ighe r m u l t i p o l e magnet ic resonances .6

I n t h i s t a l k i n t h i s s e s s i o n I would l i k e t o p r e s e n t r e s u l t s from a s tudy of t h e h i g h e r magnet ic m u l t i p o l e resonances observed i n ( e , e l ) experiments a t t h e Bates-MIT L inea r Acce le ra to r Center , ( p , p f ) and ( p , n ) experiments a t t h e Ind iana U n i v e r s i t y Cyclot ron, and ( n , ~ ' ) exper iments a t t h e Los Alamos Meson Phys i c s F a c i l i t y t h a t show h igh s p i n " s t r e t ched" s t a t e s a r e a l s o quenched compared t o nuc lea r s t r u c t u r e ca lcu- l a t i o n s by amounts s i m i l a r t o t h a t observed i n Y1 and GT resonances . The absence of a n exp lana t ion of t h e miss ing s t r e n g t h he igh tens t h e i n t e r e s t i n t h e s tudy of s t r e t c h e d e x c i t a t i o n s , p a r t i c u l a r l y i n v iew of t h e i r expected s imp le s t r u c t u r e . For example, on ly one nucleon s p i n m a t r i x element i s expected t o c o n t r i b u t e t o t h e e l ec t romagne t i c and had ron ic c r o s s s e c t i o n , ' no o r b i t a l c u r r e n t c o n t r i b u t i o n s a r e expected i n ( e , e l ) ,7 and two-body meson-exchange c u r r e n t s a r e sma l l and c a l c u l - ab l e .8 Perhaps we have t h e oppor tun i ty h e r e t o s tudy t r a n s i t i o n s where t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984433

C4-434 JOURNAL DE PHYSIQUE

p r i n c i p a l quenching mechanism is most ly due t o conven t iona l nuc l ea r s t r u c t u r e . S ince t h e subnucleonic e f f e c t s a r e expected t o b e weak, a t t e n t i o n can be focussed on t h e nucleon-nucleon c o r r e l a t i o n s and c o r e p o l a r i z a t i o n e f f e c t s . The presence of unexpectedly l a r g e ground s t a t e c o r r e l a t i o n s w i l l have g e n e r a l i m p l i c a t i o n s regard- i n g most nuclear s t r u c t u r e p r o p e r t i e s i n c l u d i n g M l t r a n s i t i o n s . The s t r e t c h e d e x c i t a t i o n s a r e of f u r t h e r i n t e r e s t . Because of t h e i r s i m p l i c i t y they can be used a s benchmarks t o t e s t t h e t e n s o r component V: (q) of t h e nucleon-nucleon f o r c e and t h e s p i n o r b i t component, t:S(q), of t h e pion-nucleon f o r c e i n t h e n ~ c l e u s . ~ And u l t i m a t e l y we c a n u s e t h e had ron ic r e a c t i o n s t o deduce nuc lea r s t r u c t u r e inform- a t i o n on t h e i s o s c a l a r magnetic s t a t e s which is unob ta inab le from ( e , e l ) d a t a a lone . Examples u t i l i z i n g t h e complementary a s p e c t s of e lec t romagnet ic and hadronic r e a c t i o n s w i l l b e shown i l l u s t r a t i n g t h e s e f e a t u r e s . The d i s c u s s i o n w i l l b e i n t h e s p i r i t of m a t e r i a l p re sen ted i n Ee f . 10.

Schemat i ca l ly , t h e r e l a t i o n s between t h e weak, s t r o n g , and e l ec t romagne t i c o p e r a t o r s t h a t a r e impor tant i n coupl ing t h e p r o j e c t i l e t o t h e nucleus i n r eg ions of momentum t r a n s 5 e r t h a t f avo r 1' (q=O) and s t r e t c h e d h igh s p i n e x c i t a t i o n s (q22 fm-l) a r e g iven i n Tab le 1.

Table 1. A t a b u l a t i o n of t h e weak, s t r o n g , and e l ec t romagne t i c o p e r a t o r s r e l e v a n t f o r e x c i t a t i o n of u n n a t u r a l p a r i t y s t a t e s of low and high s p i n .

--

Probe 5' = 1+, q=O J' = 4- , 6-, 8-, . . .

The d i f f e r e n t s e n s i t i v i t i e s t o d i f f e r e n t r e g i o n s of q a r i s e s because t h e h ighe r o r d e r s p h e r i c a l Besse l f u n c t i o n j ( q r ) f o r J > l , when fo lded i n w i t h t h e n u c l e a r wave f u n c t i o n and t h e in terac t iog; lsamPles t h e nucleus a t h i g h e r r e g i o n s of q .

Another impor tant o b s e r v a t i o n t h a t d i s t i n g u i s h e s t h e s t r e t c h e d s t a t e s from t h e mag- n e t i c d i p o l e s t a t e s i s t h a t t h e former on ly invo lve t h e nuc lea r s p i n f o r t h e probes i n Table 1, whi l e t h e l a t t e r a l s o inc ludes t h e o r b i t a l momentum i n e l e c t r o n s c a t - t e r i n g . To i l l u s t r a t e t h e d i f f e r e n t s e n s i t i v i t i e s i n ( e , e r ) and ( p , p t ) f o r ex- c i t a t i o n of 1' s t a t e s , F i g . 1 shows a comparison of B(EIl)+ s t r e n g t h ob ta ined from ( e , e l ) w i t h t h e m i r r o r image c r o s s s e c t i o n s ob ta ined from ( p , p l ) t aken a t 8 = 4'

Lab

- 5 0 ~ 1 (e.eS) "

" ~ r (c.eS) '-

' * ~ e (e.e.1 N = a - 1.0- - - r f 0.5- - m

7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12

Ex ( MeV 1 Fig . 1 - A comparison of B(Ml)+ s t r e n g t h ob ta ined from ( e e ' ) w i t h mi r ro r image c r o s s s e c t i o n s ob ta ined from ( p , p 1 ) f o r 5 0 ~ i , 5 2 ~ r , and 5 Z ~ e .

f o r s e v e r a l d i f f e r e n t even-even n u c l e i i n t h e f p s h e l l ? ' l l ~ h e d i f f e r e n c e s a r e most s t r i k i n g f o r t h e s t a t e s i n 5 2 ~ r . Although some of t h e s e d i f f e r e n c e s i n e x t r a c t e d s t r e n g t h s a r i s e because of d i f f e r e n t s e n s i t i v i t i e s of t h e s p i n o p e r a t o r t o neu t ron and p ro ton components ( o r i s o s c a l a r and i s o v e c t o r ) , t h e a d d i t i o n a l o r b i t a l compone t f o r proton ex . t a t i o n s i n ( e , e t ) cannot b e neg lec t ed . A most drama t i c comparison 19 is shown f o r "V i n F ig . 2. The s t r u c t u r e near 10 MeV e x c i t a t i o n observed i n ( p , p l )

F ig . 2 - A comparison of ( e , e l ) and

2 2.0 51 ( p , p l ) s p e 5 f y a t low q f o r t h e odd c V ( P . P ' ) A nuc leus . 3 E.: 2 0 0 K . s ~ f 1

Excitat ion Energy (MeV)

a t 3" is no t a t a l l v i s i b l e i n t h e e l e c t r o n s p e c t r a . A p o s s i b l e ex- p l a n a t i o n is t h a t t h e weaker e x c i t a t i o n s i n ( e , e l ) a r i s e s from p o s s i b l e s p i n and o r b i t a l d e s t r u c t i v e i n t e r f e r e n c e . Such a p o s s i b i l i t y becomes i n c r e a s i n g l y more impor tant w i t h i n c r e a s i n g &. The s i n g l e p a r t - i c l e magnet ic d i p o l e m a t r i x element f o r t h e s p i n and o r b i t a l o p e r a t o r s a r e p l o t t e d v e r s u s 9. i n F ig . 3 . At 9. = 4 t h e p ro ton o r b i t a l r ecoup l ing m a t r i x element < ~ + 1 / 2 1 1 R I I 9.+1/2> i s

about 14 nuc lea r magnetons, which i s a s l a r g e a s t h e i s o v e c t o r s p i n - f l i p m a t r i x element between s p i n - o r b i t p a r t n e r s <9.+1/2 1 1 UT 1 I 9.-1/22. Sp in and o r b i t a l d e s t r u c t i v e i n t e r f e r e n c e i s a l s o a p o s s i b l e exp lana t ion why s t r o n g M 1 t r a n s i t i o n s a r e not ob- s e rved i n ( e , e l i n heavy nuc le i13 l i k e " ~ r and z ' ~ F ' ~ . For c lo sed

JOURNAL DE PHYSIQUE

I- Z

Fig. 3 - Sing le p a r t i c l e magnetic d ipo le ma t r ix elements f o r s p i n and o r b i t a l

; 20

_I o p e r a t o r s p l o t t e d a s a f u n c t i o n of t h e w o r b i t a l quantum number.

X cr

s h e l l n u c l e i such a r e s u l t imp l i e s t h a t h H

t h e r e would be s i g n i f i c a n t ground s t a t e c o r r e l a t i o n s breaking t h e simple s h e l l 'I model s t r u c t u r e i n o rde r f o r t h i s 0 i& I 0 mechanism t o be impor t an t . Calcu- n l a t i o n s of t h i s t ype should b e performed i n o rde r t o t e s t t h e v a l i d i t y of t h i s 2

I- p o s s i b i l i t y . k!

L 0

Since t h e i n t e r e s t i n t h i s s e s s i o n i s 4

focussed on t h e spin modes of nuc lea r E

e x c i t a t i o n s , we s h a l l avoid d i s c u s s i n g mul t ipo le magnetic t r a n s i t i o n s t h a t knowingly c o n t a i n o r b i t a l c o n t r i b u t i o n s

0 0 1 2 3 4 5 6

t o t h e c r o s s s e c t i o n s , which w i l l e l i m i n a t e t h e ambigu i t i e s d i scussed above.

R

ELECTRON, PROTON, AND PION INELASTIC SCATTERING CROSS SECTIONS TO STATES OF STRETCHED CONFIGURATION

I n e l a s t i c e l e c t r o n , proton, and p ion s c a t t e r i n g c r o s s s e c t i o n s f o r unna tu ra l p a r i t y e x c i t a t i o n s involve t h e magnetic mul t ipo le s of t h e e lec t romagnet ic i n t e r a c t i o n , t h e s p i n dependent c e n t r a l , t e n s o r , and sp in -o rb i t components of t h e nucleon-nucleon i n t e r a c t i o n , and t h e sp in -o rb i t component of t h e pion-nucleon i n t e r a c t i o n and thus depend on t h e i s o s c a l a r and i s o v e c t o r s p i n and o r b i t a l t r a n s i t i o n d e n s i t i e s of t he t a r g e t nucleus . The gene ra l express ions f o r t h e c r o s s s e c t i o n have been given i n Ref. 10 and 14. IIere, we summarize i n p l ane wave Born approximation (PWBA) t h e expres s ions f o r t h e i n e l a s t i c d i f f e r e n t i a l c r o s s s e c t i o n f o r 0+ -t J' " s t r e t ched" e x c i t a t i o n s i n e l e c t r o n , p ro ton , and pion-nucleus s c a t t e r i n g . If is assumed t h a t t he " s t r e t ched" p a r t i c l e - h o l e c o n f i g u r a t i o n is of t h e form ( j a j i L ) ~ , where

J,, = ja + j,, ja = + 112, jb = I, + 112, and ja and jb a r e the%rgest angu la r

momentum found i n t h e l a s t f i l l e d s h e l l and t h e f i r s t open s h e l l , r e s p e c t i v e l y . This c o n f i g u r a t i o n i s unique i n a space excluding lp - lh e x c i t a t i o n s wi th &3blw, s o t h e r e is no mixing w i t h o t h e r lp - lh c o n f i g u r a t i o n s . Of cour se , t h e " s t r e t ched" c o n f i g u r a t i o n s can mix wi th multi-nucleon-multi-hole c o n f i g u r a t i o n s w i t h i n t h e same s h e l l . Such mixing produces phys ica l ground and e x c i t e d s t a t e s t h a t a r e n o t pure c losed s h e l l -ahd p a r t i c l e - h o l e wave f u n c t i o n s , r e s p e c t i v e l y ; however, t h e a d d i t i o n a l components i n t h e wave func t ions w i l l not b e connected by t h e one body s p i n and' o r b i t a l c u r r e n t o p e r a t o r s . The on ly e f f e c t i s then a r e d u c t i o n of t h e t r a n s f t i o n s t r e n g t h wi th t h e c r o s s s e c t i o n s remaining p ropor t iona l t o a s i n g l e p a r t i c l e m a t r i x element corresponding t o t h e s t r e t c h e d conf igu ra t ion . An a d d i t i o n a l s i m p l i f i c a t i o n t h a t a r i s e s i s t h a t t h e o r b i t a l t r a n s i t i o n d e n s i t y and t h e s p i n t r a n s i t i o n d e n s i t y a s s o c i a t e d wi th t h e J+1 orde r Besse l f u n c t i o n vanish a s a r e s u l t of angu la r momentum r e s t r i c t i o n s on t h e s i n g l e p a r t i c l e ma t r ix element.

For i n e l a s t i c magnetic e l e c t r o n s c a t t e r i n g 1 t h e PWBA express ion f o r t h e d i f f e r e n t i a l c r o s s s e c t i o n is

where oM is t h e Mott c r o s s s e c t i o n , n is a r e c o i l f a c t o r , 8 is t h e s c a t t e r i n g a n g l e , q is t h e momentum t r a n s f e r , F~ i s t h e t r a n s v e r s e form f a c t o r , which i s g iven by T

f o r t r a n s i t i o n s t o pure i s o v e c t o r o r i s o s c a l a r s t r e t c h e d s t a t e s where T = 1 o r 0 , r e s p e c t i v e l y and gs and g; a r e t h e i s o v e c t o r and i s o s c a l a r s p i n g - f ac to r s , r e spec t - i v e l y . An e x p l i c i t exp res s ion f o r t h e s p i n t r a n s i t i o n d e n s i t y i n momentum space i s g iven by9

where C = 0 f o r T = 0 , l . F o r harmonic o s c i l l a t o r r a d i a l wave f u n c t i o n s and t h e s t r e t c h z d s t a t e c o n d i t i o n s n = nb = 1, La = R + 1, and J = R + R b , t h e r a d i a l

b o v e r l a p i n eq . (3) is given gv

where b i s t h e o s c i l l a t o r l e n g t h parameter . A u s e f u l a n a l y t i c exp res s ion f o r t h e t r a n s v e r s e e l e c t r o n s c a t t e r i n g form f a c t o r is ob ta ined by s u b s t i t u t i n g eq. ( 3 ) and eq . (4) i n t o eq . (2), o b t a i n i n g

a A 2 2 1 1 ( b ~ ) ~ - ' exp(-b 4 14)

j a j b c j a j b 2 - 7 J'',(J-~, 12 112 I (5) [ ( J - l ) ! ! ( J + l ) ! ! ]

The terms p and p N S a r e c e n t e r of mass and nucleon f i n i t e s i z e c o r r e c t i o n f a c t o r s , cm r e s p e c t i v e l y . The c o e f f i c i e n t s ZJT a r e s p e c t r o s c o p i c ampl i tudes p ropor t iona l t o t h e

one body d e n s i t y ma t r ix elements15

where T . , T f , and T a r e t h e i n i t i a l s t a t e , f i n a l s t a t e , and t r a n s i t i o n i s o s p i n , r e s - p e c t i v e i y .

For i n e l a s t i c p ro ton nucleus s c a t t e r i n g t h e corresponding PWBA expres s ion 10,14,16,17

f o r t h e d i f f e r e n t i a l c r o s s s e c t i o n t o s t r e t c h e d s t a t e s i n t h e s p i r i t of t h e impulse approximat ion i s given by

where %(k ) i s t h e reduced energy (wave number) of t h e i n c i d e n t nucleon, t h e f a c t o r a a r i s e s Yrom t h e decomposit ion of t h e r e l a t i v e nucleon-nucleon momentum -p - - -LS p =nppp -atpt , vT (q ) r e f e r s t o t h e s p i n o r b i t component of t h e e f f e c t i v e nucleon-

nucleon i n t e r a c t i o n , and

C4-438 JOURNAL DE PHYSIQUE

a r e t h e l o n g i t u d i n a l and t r a n s v e r s e combinations of t h e c e n t r a l and t e n s o r i n t e r - a c t i o n components. The b a r s on t h e i n t e r a c t i o n components a r e t o i n d i c a t e t h a t they a r e de f ined t o i nc lude , approximate ly , c o n t r i b u t i o n s a s s o c i a t e d wi th knockout ex- change.16-'a The component VT i s s o l e l y due t o t e n s o r exchange.16-la To apply t o cha rge exchange, eq . ( 7 ) must b e m u l t i p l i e d by 2 and T is r e s t r i c t e d t o u n i t y .

For i n e l a s t i c pion-nucleus s c a t t e r i n g a t p ion i n c i d e n t e n e r g i e s near t h e (3 ,3) resonance t h e corresponding PWBA ex r e s s i o n f o r t h e d i f f e r e n t i a l c r o s s s e c t i o n t o s t r e t c h e d s t a t e s i s g iven by14,193 2B

where M and K a r e t h e reduced energy and i n c i d e n t wave number of t h e i n c i d e n t p ion, a' is a sTa t i n eq . ( 7 ) and t+S i s t h e i s o v e c t o r ( ~ = 1 ) o r i s o s c a l a r (T=O) sp in - o r b i t c:mponent of t h e e f f e c t i v e pion-nucleon i n t e r a c t i o n . I n t h i s framework pion- nucleus s c a t t e r i n g determines uniquely t h e t r a n s v e r s e s p i n d e n s i t y . I n t h e import- a n t i n c i d e n t energy r e g i o n of t h e ( 3 , 3 ) resonance , t h e pion-nucleon i n t e r a c t i o n is ve ry non-local. This g i v e s r i s e t o c o r r e c t i o n s i n eq . which produce coupl ing t o o r b i t a l c u r r e n t and sp in -cu r r en t t r a n s i t i o n d e n s i t i e s . "413 22 These terms a r e no t expected t o b e impor tant f o r t h e t r a n s i t i o n of s t r e t c h e d c o n f i g u r a t i o n s near t h e peak of t h e angu la r d i s t r i b u t i o n s .

I n t h e c a l c u l a t i o n of t h e i n e l a s t i c p ro ton and pion c r o s s s e c t i o n s t h e c e n t e r of mass and nucleon f i n i t e s i z e c o r r e c t i o n f a c t o r s a r e not inc luded i n t h e s p i n d e n s i t y

P:JT1(q). I n s t e a d t h e c e n t e r of mass c o r r e c t i o n i s made by modifying23 t h e har-

monlc o s c i l l a t o r parameter b by ( A / A - ~ ) ~ / ( ~ and t h e o v e r a l l no rma l i za t ion f a c t o r by

[ (A-1) /A]

I n e l e c t r o n s c a t t e r i n g g y > > g z s o t h i s r e a c t i o n provides mainly in fo rma t ion on t r ans - i t i o n s where psl i s l a r g e . For q = 2 fm-', t h e a rox ima te momentum t r a n s f e r f o r

J J - 1 observing h igh s p l n e x c i t a t i o n s , vl f s dominant ,I4 3"-l8 s o nucleon-nucleus s c a t - t e r i n g is a l s o p r e f e r e n t i a l l y s e n s l t l v e t o i s o v e c t o r s p i n - f l i p s t a t e s of high s p i n . This r e a c t i o n a l s o p rov ides i n fo rma t iop o: i s o s c a l a r h ' gh s p i n s t a t e s because bo th -I7 G~ and 3LS a r e a p p r e c i a b l e a t q 2-2 f m wl th most of vo.coming from knockout ex- cgange.lQ*16-18 For t h e impor t an t i n c i d e n t energy r eg lon corresponding t o t h e (3 ,3 ) resonance , tLS = 2tkS s o pion-nucleus s c a t t e r i n g f a v o r s i s o s c a l a r t r a n s i t i o n s .

STRETCHED TRANSITIONS VIA ELECTRON SCATTERING

The h igh s p i n s t r e t c h e d magnetic t r a n s i t i o n s a r e r e a d i l y observed i n e l e c t r o n s c a t - t e r i n g a t h igh q-2 fm-' and a t a backward a n g l e 8>140° where non-magnetic t r a n s - i t i o n s a r e r e t a r d e d . I n l i g h t p s h e l l n u c l e i s t r e t c h e d 114 (d5/2p3/2! t r a n s i t i o n s have been observed i n a l l s t l e n u c l e i from 12c through ''0. The distribution of M4 s t rength24y25,8 ,26,27 i n "C, 13c, 14c, and 1 4 ~ a s observed i n e l e c t r o n s c a t - t e r i n g a t 0 = 180° is shown i n Fig . 4 . The decomposit ion of t h e d i s t r i b u t i o n of s t r e n g t h i n terms of s p i n and i s o s p i n i s impor tant t o s tudy because it provides i n fo rma t ion on t h e s p i n and i s o s p i n dependent p a r t s of t h e e f f e c t i v e i n t e r a c t i o n i n n u c l e i by p rov id ing well-def i n f g s y s t e m a t i c s t h a t should b e reproduced by any r e a l i s t i c model. The nucleus C illustrates t h e f e a t u r e t h a t on ly one s t r o n g i s o v e c t o r s t r e t c h e d t r a n s i t i o n i s o b ~ e r v e d * ~ * ~ ~ i n n u c l e i whose ground s t a t e s have ze ro i s o s p i n and zero angu la r momentum. T h i s a l s o t r u e f o r M4 t r a n s i t i o n s 2 9 7 3 0 i n 160 and M6 t r a s i t i o n s 3 1 ~ 3 2 ~ 3 3 i n 2 4 ~ g and i . A second imbor t an t f e a t u r e i l l u s t r a t e d 8 by i s t h a t i n neu t ron excess n u c l e i w i t h ground s t a t e i s o s p i n To, t h e s t r e n g t h i s fragmented i n t o s e v e r a l 4- s t a t e s w i th i s o s p i n To and one s t r o n g 4-

4 -

2

F i g . 4 - E l e c t r o n s p e c t r a from t a r g e t s -1 12713'14C and 14iY a t q v 2 fm and 8 = 180" i l l u s t r a t i n g p r e f e r e n t i a l e x c i t a t i o n of M4 t r a n s i t i o n s .

I 2 c ( e , e 4 ) E o = 196.5 MeV I

- 8 = 180"

-

-

I I

cn I- = 2 - 3 0 0 -

W

- I3c ( e , e 4 ) Eo = 1 9 9 . 5 M e V 8 = 180" M 4

I

M 4 1

C4-440 JOURNAL DE PHYSIQUE

s t a t e w i t h T + 1. A s i m i l a r d i s t r i b u t i o n of M6 and M8 s t r e n g t h h a s been ob- served34>35 ?n 2 6 ~ g and 5 4 ~ e i n t h e s e n s e t h a t one To + 1 s t a t e is observed and s e v e a 1 To s t a t e s a r e observed. The ~ i l l e n e r - ~ u r a t h 3 6 1Mw s h e l l model c a l c u l a t i o n on l E C and t h e L,awson35,37 ( f 7 1 2 e ? 2 ) 6 - and (g912f j j2 ) s h e l l model c a l c u l a t i o n s f o r 2 6 ~ g and 5 4 ~ e , r e s p e c t i v e l y , a r e I n rough agreement w i th t hese obse rva t ions t h a t only one To + 1 l e v e l should be observed. Th i s aupea r s t o be t h e .IK = 4-, T=2 l e v e l a t 24.3 MeV i n 14c, t h e J~ = 6-, T=2 l e v e l a t 18 .1 EleV i n 2614g, and t h e J' = 8-, T=2 l e v e l a t 13.26 MeV i n 5 4 ~ e .

A t h i r d f e a t u r e i n which 1 4 ~ s e r v e s a s t h e on ly example 2 6 7 2 7 s o f a r i s t h a t f o r ground s t a t e s w i th z e r o i s o s p i n and s p i n 1, t h e i sovec to r M4 s t r e n g t h is fragmented i n t o t h e expected 3-, 4-, and 5- s t a t e s . And i n 13c where we have ne h e r zero angu la r momentum nor ze ro i s o s p i n i n t h e ground s t a t e t h e L*4 s t r eng th iS appears t o fragment i n t o J = 712, 912 and T = 112, 3 /2 s t a t e s which poses a s t r o n g e r theo- r e t i c a l cha l l enge .

Because t h e s e s t r e t c h e d l e v e l s a r e l o c a t e d i n t h e continuum, and d i f f i c u l t t o un- r a v e l from unresolved neighbor ing l e v e l s , some c a r e must b e t aken i n i d e n t i f y i n g m u l t i p o l a r i t i e s and deducing s t r e n g t h s . There i s always t h e p o s s i b i l i t y t h a ~ more than one l e v e l is be ing observed. I n a d d i t i o n , many o f t h e l e v e l s a r e unbound t o e i t h e r p ro ton o r neu t ron emiss ion and, t h e r e f o r e , continuum wave funct ions38 .in a r e a l i s t i c f i n i t e p o t e n t i a l w e l l such a s t h e Wood-Saxon form (WSWF) should b e con- s i d e r e d . With excep t ion of t e s t i n g t h e s e n s i t i v i t y of t h e c r o s s s e c t i o n t o Wood- Saxon r a d i a l shapes f o r r e l a t e d examples, t h e q u e s t i o n of r e a l i s t i c w e l l s is ignored h e r e . I n s t e a d , t h e r e s u l t s of a sys t ema t i c s tudy of most of t h e s t r o n g i s o v e c t o r l e v e l s observed i n ( e , e l ) based on the u s e of harmonic o s c i l l a t o r r a d i a l wave f u n c t i o n s (HOWF) is p re sen ted . With t h i s assumpt ion t h e form f a c t o r f o r t h e 1 H w s t r e t c h e d p a r t i c l e - h o l e c o n f i g u r a t i o n s has t h e s imp le q dependence, i n d i c a t e d i n eq. ( 5 ) ,

which peaks a t q = =/b. Th i s s i m p l i c i t y i s a n impor tant a s s e t i n t h e i d e n t i f i - c a t i o n of t h e m u l t i p o l a r i t y . The squa re of t h e t r a n s v e r s e form f a c t o r F$ i s shown v e r s u s qeff f o r s e v e r a l t r a n s i t i o n s i n v a r i o u s n u c l e i i n F i g . 5 . D i s t o r t i o n e f f e c t s due t o t h e e l ec t ron -nuc leus coulomb a t t r a c t i o n a r e t aken i n t o account by c o r r e c t i n g t h e momentum t r a n s f e r u s ing t h e r e l a t i o n

The cu rves through t h e d a t a p o i n t s i n Fig . 5 were determined by a l e a s t squa re f i t of t h e form f a c t o r c a l c u l a t e d assuming t h e extreme s i n g l e p a r t i c l e - h o l e (ESPHM) model. The o s c i l l a t o r parameter , b , and a no rma l i za t ion f a c t o r ,

were used a s f i t t i n g parameters . The r e s u l t i n g v a l u e s of b and t h e normal iz ing f a c t o r S2 a r e summarized f o r s e v e r a l i s o v e c t o r t r a n s i i o n s i n Table 2. The v a l u e s ob ta ined f o r b a r e c l o s e t o t h a t expected from t h e AlT6 r u l e . It is no s u r p r i s e t h a t t h e f a c t o r s S2(ESpHM) a r e c o n s i s t e n t l y much l e s s t han one. These f a c t o r s a r e i n t e n t e d t o s e r v e a s a u n i t i n which t o conven ien t ly compare deduced s p e c t r o s c o p i c s t r e n g t h s . S~(ESPHM) = 1 corresponds t o t h e maximum i s o v e c t o r s t r e n g t h expected i n a s i n g l e l e v e l i n t h e ESPHM. For example i n 160 t h e M4 (d5/2P3/2) s t r e n g t h i n t h e 18.98 MeV l e v e l i s S2(~spHM) = 0.41 o r 41% of t h e ESPHM p r e d i c t i o n .

To t e s t t h e s e n s i t i v i t y of t h e e x t r a t e d S2 t o shapes of t h e r a d i a l wave f u n c t ' o n s , ca l cu$g t ions o f 5 i h e form f a c t o r s were performed u s i n g bound s t a t e WSWF. For 14C, 1 4 ~ , S i , and Fe, S~(ESPHM) was found t o be 0.51, 0.61, 0.37, and 0.57 f o r t h e c o r r e s onding t r a n s i t i n s l i s t e d i n Table2. To t e s t t h e qeff approximat ion i n n u c l e i 160, 2'Mg, 28~ i , and 5zFe, DWBA c a l c u l a t i o n s , u s i n g t h e code HEIMAG, 43 modif ied t o u se HOWF, were performed by f i t t i n g t h e c r o s s s e c t i o n s i n s t e a d of t h e form f a c t o r s . The no rma l i za t ion f a c t o r s were t h e same a s t h o s e deduced i n PWBA f i t s t o w i t h i n 3 % , but t h e s i z e parameter b was s y s t e m a t i c a l l y l a r g e r by 2-4%.

Fig . 5 - The squa re of t h e t r a n s v e r s e 2

f a c t o r FT(q) is shown v e r s u s qe f o r s e v e r a l s t r e t c h e d t r a n s i t i o n s o i d i f f e r e n t m u l t i p o l a r i t y i n v a r i o u s n u c l e i .

There is ample evidence t h a t t h e ground s t a t e o r b i t s a r e n o t f u l l y occupied a s assumed i n ESPHM. The column l a b e l e d S'(THY) c o n t a i n s t h e r e s u l t s w i t h Z ~ ( T H Y ) de- duced from v a r i o u s t h e o r e t i c a l models t h a t t a k e i n t o account c o r e p o l a r i z a t i o n e f f e c t s and c o r r e l a t i o n s i n t h e ground s t a t e . For example, M i l l e er-Kurath wave functionii6(MKtJf) a r e used t o c a l c u l a t e t h e M4 s t r e n g t h i n "c, "C, '*N, and "0. I n 12c, C , and 1 4 ~ t h e complete p s h e l l space is used t o c a l c u l a t e t h e ground s t a t e wave f u n c t i o n . The space is f u r t h e r enlarged t o a l l ow one nucleon i n t h e sd- s h e l l t o c a l c u l a t e t h e odd p a r i t y s t a t e s . Some p r o v i s i o n i s a l s o made t o a l l ow f g r 2$w e x c i t a t i o n s from t h e I s t o l p s h e l l , b u t n o t from t h e l p t o t h e 2 s ld s h e l l . The r e s u l t s 8 of t h i s c a l c u l a t i o n f o r t h e t h r e e s t r o n g 4- s t a t e s i n 14c a r e shown i n Table 3.

S i g n i f i c a n t improvement i s ob ta ined f o r t h e T= l s t a t e s a t 11.7 and 17 .3 MeV us ing t h e MKWF. S t i l l , however, t h e c a l c u l a t e d s t r e n g t h i s about 40% too l a r g e . Very l i t t l e improvement is ob ta ined f o r t h e T=2 s t a t e a t 24.3 MeV. When two-body meson- exchange c u r r e n t s a r e i nc luded i n t h e c a l c u l a t i o n of t h e M4 form f a c t o r , t h e ca lcu- l a t e d c r o s s s e c t i o n i n c r e a s e s by about 15% and, t h e r e f o r e , i n c l u s i o n of MEC in - c r e a s e s t h e subsequent d isagreement between experiment and theo ry by about 15%. The i n a b i l i t y t o f i t t h e M4 s t r e n g t h s c l e a r l y i n d i c a t e s a more r e a l i s t i c t r ea tmen t of t h e e x c i t e d s t a c e and ground s t a t e is r e q u i r e d , f o r example, a l lowing f o r 3Hw

c o n f i g u r a t i o n admixtures i n t h e e x c i t e d s t a t e a s w e l l a s 2p-4h ground s t a t e admix- t u r e s . I n 160 where b e t t e r agreement is ob ta ined , multi-particle-multi-h~le con-

C4-442 JOURNAL DE PHYSIQUE

Table 2. Deduced spec t roscop ic s t r e n g t h S2 from ( e , e l ) f o r s t r e t c h e d s t a t e s w i th s t r o n g i s o v e c t o r components.

b s S2 Ref . Z 2

Nucleus Ex .TT, T CONF

(ESPHM) " (THY) (ESPHM) (MeV)

tHarmonic o s c i l l a t o r parameter b and no rma l i za t ion ~ 2 were determined by a l e a s t squa re f i t of t h e DWBA c a l c u l a t e d c r o s s s e c t i o n t o t h e d a t a . The c e n t e r of mass and f i n i t e s i z e e f f e c t s have been inc luded i n t h e form f a c t o r du r ing t h e f i t t i n g procedu e .

2 t t S 2 = Z'(EXP)/Z2(ESPHM) where Z (ESPHM) is de f ined i n eqs . (3) and ( 6 ) . For pure

proton o r neut ron c o n f i g u r a t i o n s , z2=1.

Table 3. A comparison of t h e deduced i s o v e c t o r (d ) M4 s t r e n g t h w i t h t h e p r e d i c t i o n s of t h e ESPEM and a t r ~ n c a t e d ~ ~ ~ ~ ? ~ ~ m o d e l u s ing MKWF.

-- -- -- -

Ex J* , T S2 (ESPW4) S (MIZWF)

wi thou t w i th MEC wi thou t w i t h MEC (MeV)

24 f i g u r a t i o n s a r e a l lowed both i n t h e 8f;ound s t a t e and t h e e x c i t e d s t a t e . 3 6 I n Mg and 2 8 ~ i open s h e l l RPA c a l c u l a t i o n s p r e d i c t t o o much M6 s t r e n g t h by a f a c t o r of two. Again t h e ground s t a t e i s t r e a t e d r e a l i s t i c a l l y a l l owing f o r l d 5 / 2 . 2 ~ ~ / ~ . ld312 admixtures wh i l e t h e e x c i t e d s t a t e only a l l o w s f o r one nucleon i n t h e f712 o r b i t . Recent s h e l l model c a l c u l a t i o n s by Amusa and ~ a w s o n ~ ~ which u s e a space of

I I I !

- 8 = 160" - E~ = 221.46 MeV -

- BATES

E x ( M e V )

Fig . 6 - E l e c t r o n s p e c t r a from t a r g e t s of 5 4 9 5 6 ~ e and 58'60~i i l l u s t r a t i n g pref eren- t i a l e x c i t a t i o n of M 8 t r a n s i t i o n s .

c4-444 JOURNAL DE PHYSIQUE

t h e type (d5/2~1/2)11 f712 y i e l d s s i m i l a r quenching f a c t o r s . I n t h e extreme deformed l i m i t of t h e c o l l e c t i v e model, t h e M6 s t r e n g t h is fragmented over seven r o t a t i o n a l bands from K=O t o K=6. Each K#O r o t a t i o n a l band would g e t 2/13 of t h e extreme s i n g l e p t i c l e - h o l e model p r e d i c t i o n s . Although t h i s deformed l i m i t is u n r e a l i s t i c f o r "Si, i t does suggest a mechanism f o r producing f ragrnenta t ion.46,47 More r e a l i s t i c f ragmentat ion has been p red ic t ed by ~ m e r ~ ~ ~ by in t roduc ing C o r i o l i s coupl ing between bands b u t p r e d i c t s too much s t r e n g t h i n a s i n g l e s t a t e f o r r e a l i s - t i c deformat ions .

I n t h e f p s h e l l t h e f ragmentat ion of s t r e t c h e d M8 s t r e n g t h i s being s t u d i e d a s a f u n c t i o n of proton and neu t ron number. E l e c t r o n s c a t t e r i n g measurements have been taken on 5 4 ~ e , 5 6 ~ e , 58~i , 6 0 ~ i , a t Bates and a l s o on 5 2 ~ r a t NIKHEF.~' A comparison of s p e c t r a a r e shown i n Fig. 6 i n d i c a t i n g t h e s t r i k i n g s e l e c t i v i w i th whi h t h e 8- l e v e l s a r e e x c i t e d . Form f a c t o r s 5 p e been e x t r a c t e d f o r 5 4 ~ e , "Ni , and 6 S N i , and a n a l y s i s is still i n p rogres s on Fe. Two c h a r a c t e r i s t i c f e a t u r e s of t h e d a t a a r e : (1) t h e t o t a l M8 s t r e n g t h i s about 113 of t h e ESPHM p r e d i c t i o n f o r each nucleus and (2) t h e M8 s t r e n g t h i s s p l i t i n t o two groups wi th i s o s p i n To and To + 1. This fea- t u r e is p a r t i c u l a r l y emphasized f o r 5 6 ~ e and 6 0 ~ i where t h e r e is a c l e a r energy gap AE = Vo(To + l ) /A , which is c o n s i s t e n t w i th an asymmetry energy5' of Vo = 109210 MeV, which is c l o s e t o t h e s imple Lane model va lue of 100 MeV. Among t h e s e n u c l e i , t h e s t r o n g e s t M8 t r a n s i t i o n occur s f o r t h e Ex = 13.26 MeV T=2 s t a t e i n 5 4 ~ e , which g ives s~(EsPHM) = 0.51. Ca lcu la t ions by ~ e t s c h 4 8 which inc lude conf igu ra t ions of t h e type (gg/2p3/2f j j2)8- us ing t h e modified s u r f a c e d e l t a i n t e r a c t i o n (MSDI) y i e l d S ~ ( T H Y ) = 0.72 f o r t h e same t r a n s i t i o n . However t h e comparison between experiment and theory i s s t i l l poor f o r t h e T=l s t a t e s i n 5 2 ~ e a s is shown i n Fig . 7 . Even when t h e 2p-4h c o n f i g u r a t i o n s a r e included, on ly two T=l 8- s t a t e s a r e p red ic t ed and a r e much too s t rong . Only those c a l c u l a t e 8- s t a t e s t h a t o n t a i n more than 1% of the M8 s t r e n g t h a r e shown i n Fig . 7. I n 58Ni calculation^^^ us ing MSDI i n a s h e l l model space con ta in ing p a r t i c l e - h o l e c o n f i g u r a t i o n s of t h e type rgg12 t n d r2ggJ2f7 j2 , where r s t a n d s f o r one of the o r b i t s 2p 2 2p112, and l f 5 / 2 y i e l d S (THY) = 0.31 f o r t h e s t r o n g e s t T-2 M8 t r a n s i t i o n i n Resu l t s f o r To + To M8 t r a n s i t i o n s i n 5 8 ~ i a r e a l s o p red ic t ed t o be too l a r g e by f a c t o r s of two t o th ree . Yore sophis- t i c a t e d c a l c u l a t i o n s a r e r equ i red s i n c e e x i s t i n g r e s u l t s p r e d i c t f a r t oo much s t r e n g t h .

I n 2 0 8 ~ b where one might expect t h e s h e l l model assumpt ions t o be most adequate , measurements of the { e , e ' ) c r o s s s e c t i o n s t o t h e JT = 12-, Ex = 6.43 and 7.02 MeV s t a t e s and t o t h e JT = 14-, Ex = 6.74 MeV s t a t e a r e about h a l f t h e v a l u e s p red ic t ed by t h e ESPHM a s shown i n Table 2. I n deducing t h e s t r e n g t h , t i s assumed t h a t t h e f s t r u c t u r e of each l e v e l i s given by t h e v j 15/2i1?j$2, ~ i ~ ~ / ~ h i ~ / ~ , and ~ j ~ ~ / ~ i i 3 / ~

40 - I - I- =

5 4 ~ e ( e .a') - EXP (8 - ) I

il --- lp-3h MSDI METSCH !l .-.-. lp-3h

!I I I

LAWSON

METSCH

F i g . 7 - Comparison of exper imenta l and t h e o r e t i c a l H8 s t r e n g t h i n 5 4 ~ e f o r v a r i o u s models.

8 10 12 14 16

E x ( M e V )

conf igu ra t ions . This assumption is confirmed by r e c e n t c o r e p o l a r i z a t i o n and p a r t i c l e - v i b r a t i o n c a l c u l a t i o n s . The c o r e p o l a r i z a t i o n c a l c u l a t i o n s by Hammamoto e t a1.51 which inc lude a sum of lp-lh,lHw, 2Mw, 3%w, e t c . , con£ i g u r a t i o n s a l s o p r e d i c t t h e c o r r e c t s t r e n g t h . However, t h e c a l c u l a t i o n s employ a zero range d e l t a f o r c e (Vo = 170 ~ e v - f r n ~ ) , which is known t o be too s t r o n g a t l a r g e a i n c o m ~ a r i s o n t o r e a l i s t i c e f f e c t i v e i n t e r a c t i o n s . Recent c o r e p o l a r i z a t i o n c a l ~ u l a t i o n s > ~ in- c lud ing t h e e f f e c t s of meson and rho exchange of t h e 12- and 14- e l e c t r o n s c a t t e r i n g form f a c t o r s by Suzuki p r e d i c t too much s t r e n g t h by f a c t o r s of two and do not f i t t h e shape of t h e form f a c t o r . On t h e o t h e r hand p a r t i c l e - v i b r a t i o n coupl ing ca l cu - l a t i o n s by Krewald and ~ ~ e t h 5 ~ show a 50% reduc t ion i n M12 and M14 s t r e n g t h t o the E = 6.43, 7.02, and 6.74 MeV l e v e l s i n agreement w i t h experiment. However, t h e m?ssing s t r e n g t h i n t h e s e s t a t e s appears a s a d d i t i o n a l M12 and M14 s t r e n g t h i n a group of s t a t e s a t 8.0-9.0 MeV e x c i t a t i n , which have not been i d e n t i f i e d exper i - menta l ly . C lea r ly , t h e s i t u a t i o n i n "'Pb needs f u r t h e r exper imenta l and t h e o r e t i c a l e f f o r t . It does appear, however, t h a t t h e b e s t agreement between theory and experiment obta ined t o d a t e f o r t h e s e h igh s p i n s t a t e s occur s f o r '08pb.

For most of t h e To + 1 e x c i t a t i o n s i n Table 2 t h e r e i s improved agreement between theory and experiment when t h e model space is enlarged t o i n c l u d e more r e a l i s t i c ground s t a t e wave func t ions . Using t h e ESPHM, t h e average s2 = 0.38 and f o r t h e more r e a l i s t i c t h e o r i e s s2 = 0.66 wi th HOWF. Ex t rac t ed s t r e n g t h s a r e 15% t o 20% h ighe r i n l i g h t n u c l e i when WSWF a r e employed and about 15% lower when MEC c o r r e c t i o n s a r e in- c luded. I f bo th e f f e c t s were s imul taneously included, t h e r e s u l t s would be i n e f f e c t s i m i l a r t o those i n Table 2. Somewhat l a r g e r , spec t roscop ic s t r e n g t h s have been observed f o r t h e r e l a t e d s t r e t c h e d OMw e x c i t a t i o n s observed i n (p,n) charge exchange experiments .54 The spec t roscop ic s t r e n g t h s from Table 2 a r e , however, i n c o n t r a s t w i th t h e much l a r g e r s i n g l e p a r t i c l e s t r e n g t h s e x t r a c t e d f o r t h e l a r e s t ( s t r e t c h e d ) c o n t r i b u t i n g mul t ipo le i n e l a s t i c magnetic e l e c t r o n s c a t - ter ings ' on odd A t a r g e t s w i th ground s t a t e s p i n s j = ka + . The d i f f e r e n c e i n t h e i n e l a s t i c and e l a s t i c magnetic s t r e n g t h s sugges?s t h a t ground s t a t e and exc i t ed s t a t e c o r r e l a t i o n s a r e very important , s i n c e t h e i n t e r f e r i n g backward going ampli- t ude i n RPA c a l c u l a t i o n s f o r i n e l a s t i c t r a n s i t i o n s would not b e p resen t i n e l a s t i c s c a t t e r i n g . 5 5 For t h e To s t r e t c h e d magnetic e x c i t a t i o n s i n non-self-conjugate n u c l e i , t h e s i t u a t i o n appears more complex. For example, t h e r e i s even g r e a t e r f r agmen ta t ion and l e s s s t r e n g t h found exper imenta l ly r e d i c t e d b c u r r e n t theory ( s e e Refs . 8 , 14, 35, and 36) r ega rd ing 14c. ''K: 94Fe, and 5 S % N i w i th t h e except ion of 2 0 8 ~ b . Subnucleonic mechanisms l i k e particle-nucleon h o l e admixtures i n t h e wave f u n ~ t i o n s , ~ which have been proposed t o e x p l a i n t h e quenching of t h e Gamow-Teller s t r e n g t h i n n u c l e i , do not seem t o be a l i k e l y exp lana t ion f o r t h e quenching of h i g h s p i n s t a t e s . There i s always t h e p o s s i b i l i t y t h a t t h e r e a r e many more weak t r a n s i t i o n s t h a t cannot b e d i sce rned from t h e background. Although t h i s may be t r u e , s t i l l c u r r e n t theory i s f a r from p r e d i c t i n g such l a r g e amounts of f rag- mentat ion.

HIGH SPIN STRETCHED STATES AS BENCHMARKS: COMPARISON WITH HADRONIC PROBES

Although t h e s e pure s p i n t r a n s f e r , s t r e t c h e d t r a n s i t i o n s a r e not y e t complete ly understood i n terms of c u r r e n t nuclear s t r u c t u r e models, t hey a r e s t i l l very u s e f u l a s "benchmarks" i n t e s t i n g d i r e c t , one s t e p i n e l a s t i c s c a t t e r i n g models f o r hadronic r e a c t i o n s such a s ( p , p ' ) , ( p , n ) , and ( n - , r ) . The reason f o r t h i s is t h a t w i t h i n t h e s p i r i t of t h e DWIA model, t h e same s p i n t r a n s i t i o n d e n s i t y appea r s i n the t r a n s i t i o n ampl i tude f o r a l l of t h e s e r e a c t i o n s a s was d i sp layed i n eq . ( 2 ) , eq. ( 7 ) , and eq. (10) . D i s t o r t i o n e f f e c t s a r e taken i n t o account through t h e use of DWBA in s t ead of PWBA and t h e exchange ampl i tudes f o r t h e nucleon-nucleus r e a c t i o n s a r e included e x a c t l y through t h e use of t h e code DWBA70. The comparisons of i n t e r e s t h e r e provide informat ion on t h e i sovec to r t enso r p a r t of t h e e f f e c t i v e nucleon-nucleon i n t e r - a c t i o n and t h e sp in -o rb i t component of t h e e f f e c t i v e pion-nucleon i n t e r a c t i o n . TO i l l u s t r a t e t h e former , t h e modulus of v : (~) , ~ k ~ ( ~ ) and f o r 140 MeV protons a s deduced from the f r e e nucleon-nucleon ampl i tudes i n Ref. 16 is shown i n F ig . 8. An important f e a t u r e of t h e i n t e r a c t i o n of Ref. 1 6 i s t h a t t he r a d i a l dependence i s given a s sums of Yukawa terms wi th t h e long range p a r t s of t h e c e n t r a l and t enso r

C4-446 JOURNAL DE PHYSIQUE

+ F i g . 8 - Modulus of the isovector 140 MeV Love- Franey t-matrix i n momentum space.

lsovector - 1 ?:/--.. ' 1 components matched t o OPEP. Clearly, 3;'f(q) is I

is dominant i n the range of q where the e lec t ron s c a t t e r i n g form f a c t o r s displayed i n Fig. 5 peak. This shows very nicely t h a t the compari- son of ( e , e l ) and (p ,p l ) f o r isovector s t re tched s t a t e t r a n s i t i o n s provides inform- a t i o n on the st-cengrh and q dependence of the isovector tensor i n t e r a c t i o n i n the approximate range q = 1-2.5 fm-l. For p ic tu res of the pion- nucleon spin-orbi t i n t e r a c t i o n a t the (3,3) resonance, the reader i s re fe r red t o Refs. 14.

10 I ,v , 1 1 9 . a n d 2 2 .

0 I 2 3

q ( f m - ' 1 The d i f f e r e n t i a l cross sec t ion f o r t h e 4 - , ~ = 1 and t h e , T=l isovector s t re tched s t a t e s i n 160 and "Si, r espec t ive ly , have been measured using the ( e , e l ) , ( p , p l ) , (p ,n) , and (n ,n l ) reac t ions . The da ta and ca lcu la t

Fig. 9 - A plot of t h e ( e , e l ) 33 ( p , p t ) 6 1 ( ~ , n ) , ~ ~ and ( n , n r ) 2 b , 6 2 -9 measured and calculated cross sec t ions f o r t h e (f7,2d;+2)6- t r a n s i t i o n i n 28si.

f o r t h e 6-, T = l s t a t e i n 2 8 ~ i a r e shown a s a funct ion of q i n Fig. 9 . The t r a n s i t i o n densi ty o s c i l l a t o r parameter b and normalization s2, corresponding to f i t t i n g the cross sec t ion t o the peak i n Fig. 10 a r e summarized i n Table 4 together with several other t r a n s i t i o n s . The

value of s2 from the (p,n) and (p ,p ' ) reac t ion is about 15% lower than the values of s2 from ( n , n 7 ) and ( e , e l ) . Additional r e s u l t s f o r t h e 6-,T=1 l e v e l i n 2 8 ~ i observed i n ( 3 , ~ ' ) a t E = 333 and 500 MeV give S = 0.25 aRd 0.29 .68 This indi- c a t e s t h e energy dependence of t h e isovector tensor i n t e r a c t i o n a s given by the Love-Franey nucleon-nucleon t matrix i s approximately cor rec t i n the q r e ion sampled i n these comp- a r i s o n ~ . ~ ~ . ~ ' This is not the case f o r other e f f e c t i v e i n t e r a c t i o n s a s discussed by ~ m e r ~ . ~ ~ Similar sys- tematics a r e obtained f o r the 4 - , T=l s t a t e i n 160 i n Table 4 with s l i g h t l y more s c a t t e r than i n 28~ i . Using t h e Love-Franey nucleon-nucleon I 2 3 t-matrix16 f o r 2 8 ~ i and 54Fe and t h a t of Re$. 70 f o r 160 and 2 4 ~ g , q ( f m - I )

S ~ ( ~ , ~ ' ) / S A ~ , ~ ' ) averages 0.84. Near t h e peak of the form fac tor

Tab le 4 . A comparison of s2 deduced from hadronic probes t o s2 from ( e , e 7 ) f o r s t r o n g i s o v e c t o r s t r e t c h e d s t a t e s .

-

Targe t Probe J', T CONF s2 bt Ref . 2 S ( x , x l )

tt

( x , x l ) Ex

(M~v) (ESPHM) 2 s ( e , e t )

-1 '08Pb ( p , 6.43 12-,22 (j1512i1312) 0.80 2.30 67 0 .67i0 .05

t t h e e n t e r of mass c o r r e c t i o n f a c t o r h a s been inc luded i n t h e f i n a l de t e rmina t ion of S' and b .

2 tt e r r o r s on r a t i o s on ly inc lude u n c e r t a i n t i e s i n S ( e , e r ) .

f o r t h e s e pu re i s o v e c t o r t ~ a n s i t i o n s we a r e on ly s e n s i t i v e t o t h e t e n s o r f o r c e . These r e s u l t s could imply t h a t t h e f r e e nucleon-nucleon t e n s o r f o r c e is too s t r o n g s i n c e t h e e x t r a c t e d s t r e n g t h ob ta ined from ( p , p l ) is 16% weaker t h a n t h a t from ( e , e l ) . However, a word of c a u t i o n concerns t h e c o r r e c t i o n t o t h e one body s p i n d e n s i t y e x t r a c t e d from ( e , e l ) d a t a f p e t o . two body meson exchange cu r r en t s . ' Meson- exchange c u r r e n t c a l c u l a t i o n s 8 f o r C us ing Millener-Kurath and ESPHM wave f u n c t i o n s

2 show t h a t t h e meson exchange c u r r e n t c o n t r i b u t i o n h a s t h e e f f e c t of reducing S ( e , e ' ) by about 15%. From t h i s , one might conclude t h a t t h e spec t roscop ic f a c t o r s2 deduced from ( e , e 7 ) should b e reduced b e f o r e comparing wi th s2 deduced from hadron s c a t t e r i n g . Th i s would b r i n g the e l e c t r o n r e s u l t s i n b e t t e r agreement w i th t h e Love-Franey pa rame t r i za t ion of t h e t e n s o r force .16 I n e l a s t i c p ro ton s c a t t e r i n g s t u d i e s t o s t r e t c h e d 6- s t a t e s i n 2 6 ~ g a r e a l s o i n progress .69 The o v e r a l l g e n e r a l cons i s t ency i n r e s u l t s f o r ( e , e l ) , ( p , p l ) , and ( . r r , . i r l ) d i scussed so f a r i s q u i t e s t r i k i n g and i s s u p p o r t i v e of t h e DWIA d e s c r i p t i o n of t h e had ron ic s c a t t e r i n g p roces s . Th i s g i v e s u s a good measure of t h e s t r e n g t h of t h e t e n s o r and sp in -o rb i t components of nucleon- and pion-nucleon i n t e r a c t i o n s i n t h e r ange of q near t h e peak c r o s s s e c t i o n i n a nuc l ea r medium.

The r e s u l t s f o r t h e two 12- s t a t e s i n 2 0 8 ~ b a r e n o t c o n s i s t e n t . One of t h e s e l e v e l s

is p r ? g r i l y a n i13L2hi$/2 p ro ton c o n f i g u r a t i o n and t h e o t h e r is p r imar i ly a ji511i13j2 neu t ron c o n f i g u r a t i o n . Only t h e f i r s t i s s t r e t c h e d and s i n c e t h e r e a r e two eve s , t h i s i s no t a c l e a n example of t h e unique s t r e t c h e d e x c i t a t i o n s which

C4-448 JOURNAL DE PHYSIQUE

have been t h e primary t o p i c of d i s c u s s i o n he re . I t was shown i n Ref. 68 t h a t a c o n s i s t e n t exp lana t ion of t h e ( e , e 1 ) and ( p , p l ) d a t a f o r t h e s e 12- l e v e l s could not be achieved by cons ide r ing c o n f i g u r a t i o n mixing between t h e two l e v e l s a l o n e . A p o s s i b l e problem i s t h a t t h e p ro ton c r o s s s e c t i o n f o r tbg86.43 MeV neu t ron 12- l e v e l may c o n t a i n a c o n t r i b u t i o n from a n r e so lved 13- l e v e l . For pur e u t r o n ex- c i t a t i o n s l i k e t h e ( g g / 2 f j i 2 ) 8 - i n "Ca and t h e ( j i 5 2 i i3 /2)14- i n "'Pb, t h e i so - s c a l a r s p i n - o r b i t and t e n s o r c o n t r i b u t e a s w e l l a s t h e l s o v e c t o r t e n s o r component of t h e f o r c e . It would b e h i g h l y d e s i r a b l e t o de termine t h e i s o s c a l a r s p i n d e n s i t y from a n independent experiment i n o r d e r t o i s o l a t e t h e e f f ts of t h e f o r c e . Al- though agreement between t h e ( e , e l ) and ( p , p l ) r e s u l t f o r "Ca i n d i c a t e s t h a t t h e d i f f i c u l t y may n o t b e i n t h e u n c e r t a i n t i e s i n t h e f o r c e . S i n c e 2 0 8 ~ b i s such a n impor tant s h e l l model nuc l eus , i t is e s s e n t i a l t h a t i t be examined more c a r e f u l l y and complete ly w i t h r ega rd t o t h e h igh s p i n s t a ~ e s . ~ :

Ther a r e some d i f f i c u l e s i n f i t t i n g t h e ( p , p l ) and (p ,n ) a t h ighe r q f o r t h e 6- i n "Si and t h e 4 - i n 160. The p o s s i b l e appearance of a second maximum i n 160(p,p ') and (p ,n) sugges t s e v e r a l p o s s i b i l i t i e s . The t e n s o r component g e t s r a p i d l y weaker a t h igh q and t h e i s o v e c t o r s p i n - o r b i t i n t e r a c t i o n which is no t a s w e l l determined begins t o dominate. E f f e c t s due t o t h e shapes of r a d i a l wave f u n c t i o n s and t h e nuc lea r medium may a l s o be impor tant h e r e . The l o c a l nucleon-nucleon t m a t r i x ex- c ludes medium e f f e c t s such a s P a u l i b lock ing , c o n s i d e r a t i o n of t h e Fermi motion o f t a r g e t nucleons , and t h e in fo rma t ion on t h e o f f - s h e l l n a t u r e of t h e nucleon-nucleus i n t e r a c t i o n . Ca re fu l s t u d i e s of t h e energy dependence of t h e t -matr ix and o t h e r e f f e c t i v e i n t e r a c t i o n s which i-nclude medium e f f e c t s r e l a t e d t o s p i n obse rvab le s a r e r e q u i r e d and a r e underway46,61y72 and may become more impor tant a t h ighe r q.

CONCLUSIONS

From a comparison of ( e , e ' ) , ( p , p l ) , and (p ,n) e x c i t a t i o n s of 1' s t a t e s a t low q , i t is ev iden t t h a t t h e r e a r e s i g n i f i c a n t s p i n and o r b i t a l i n t e r f e r e n c e e f f e c t s , which, presumably, could be used t o d e r i v e nuc lea r o r b i t a l c u r r e n t i n fo rma t ion a s w e l l a s s p i n . On t h e o t h e r hand, e x c i t a t i o n s of s t r e t c h e d s t a t e s v i a e l ec t romagne t i c and hadronic probes e x c l u s i v e l y provide in fo rma t ion on t h e nuc lea r s p i n c u r r e n t s . Comparison t o s t a t e of t h e a r t s t r u c t u r e c a l c u l a t i o n s i n d i c a t e t h a t t h e r e is s i g - n i f i c a n t quenching of t h e i s o v e c t o r s p i n - f l i p s t r e n g t h t o h i g h s p i n s t r e t c h e d s t a t e s (38 t o 66%). The absence of subnucleonic quenching mechanisms sugges t s t h a t t h e mi s s ing s t r e n g t h may b e found i n conven t iona l nuc l ea r c o n f i g u r a t i o n mixing c a l c u l a t i o n s t h a t more r e a l i s t i c a l l y t r e a t nuc l ea r c o r r e l a t i o n s , p o l a r i z a t i o n , and nuc lea r deformat ion e f f e c t s . S ince s i m i l a r i s o v e c t o r s p e c t r o s c o p i c s t r e n g t h s a r e a l s o ob ta ined from p ro ton and pion s c a t t e r i n g , t h e miss ing s t r e n g t h is u n r e l a t e d t o any s p e c i f i c probe o r wnether t h e i n t e r a c t i o n i s s t r o n g o r e l ec t romagne t i c . Af t e r approximate ly c o r r e c t i n g t h e e l e c t r o n d a t a f o r two-body meson-exchange c u r r e n t s , agreement between ( e , e T ) and ( p , p l ) f o r s e l e c t e d i s o v e c t o r s t r e t c h e d s t a t e s is w i t h i n a few per c e n t u s ing t h e Love-Franey p a r a m e t r i z a t i o n of t h e t enso r

f o r c e . Th i s p a r t i c u l a r form is ve ry c l o s e t o t h a t p r e d i c t e d us ing a p p r o p r i a t e mix- t u r e s of one p ion exchange and rho exchange microscopic fo rces .73 Con t inua t ion o f t h e complimentary s t u d i e s extending t h e n u c l e a r a r e n a t o i n c o r p o r a t e t h e i s o s c a l a r magnetic obse rvab le s should a l l o w f o r a broader i n t e r p r e t a t i o n of quenching pheno- mena and a more fundamental p i c t u r e of n u c l e a r behavior.

ACKNOWLEDGMENTS

The a u t h o r exp res ses h i s g r a t i t u d e t o R . L . Huffman, M.A. Plum, C . Olmer, J. Mi l l ene r , and F. Pe t rov ich f o r t h e u s e of unpublished in fo rma t ion i n t h i s paper . The a u t h o r is pleased t o acknowledge Mrs. Dor i s Atkins f o r h e r e f f i c i e n t t yp ing of t h e manu- s c r i p t .

REFERENCES

1. WEISE W., Nucl. Phys. A374 (1982) 505C. 2. RICHTER A., Nucl. Phys. A374 (1982) 177C; Also see RICHTER A., Proceedings of

the International Conference of Nuclear Physics, Florence, Italy (1983). 3. GAARDE C., Gamow-Teller Resonances, Nuclear Physics (ed. by C.H. Dasso, R.A.

Broglia, A. Winther, p. 347. North-Holland Publ. Co., Amsterdam (1982) and these proceedings.

4. DJALALIC.,MARTY N., MORLET M., WILLIS A., JOURDAIN J.C., ANANTARAMAN N., CRAWLEY G.M., GALONSKY A., and KITCHING P., Nucl. Phys. A388 (1982) and these proceedings.

5. GOODMAN C.D., Proceedings of the International Conference on "Spin Excitations in Nuclei", Ed. by G.E. Brown, G. Garvey, C.D. Goodman, R.A. Lindgren, W.G. Love, and F. Petrovich, Plenum Press (1984).

6. SUZUKI T., KREWALD S., and SPETH J., Phys. Rev. Lett. (1981) 9. 7. DEFOREST T. and WALECKA J.D., Ad. Phys. 15 (1966) 1. 8. PLUM M.A., LINDGREN R.A., DUBACH J., HICKS R.S., HUFFMAN R.L., PARKER B.,

PETERSON G.A., ALSTER J., LICHTENSTADT J., and MOINESTER M.A. Submitted for publication.

9. LINDGREN R.A., GERACE W.J., BACHER A.D., LOVE W.G., and PETROVICH F., Phys. Rev. Lett. 42 (1979) 1524. PETROVICH F., and LOVE W.G., Proc. LAMPF Workshop on Pion Single Charge Exchange, Los Alamos, New Mexico, (LA-7892C) 1979.

10. LINDGREN R.A., and PETROVICH F., Proceedings of the International Conference on "Spin Excitations in Nuclei", Ed. by G.E. Brown, G. Garvey, C.D. Goodman, R.A. Lindgren, W.G. Love, and F. Petrovich, Plenum Press (1984).

11. ANDERSON B.D., MCCARTHY R.J., AHMAD M., FAZELY A., KALENDA A.M., KNUDSON J.N., WATSON J.W., MADEY R., and FOSTER C.C., Phys. Rev. C z (1982) 1.

12. BENDER D., FULENBERG G., RICHTER A., SPAMER E., METSCH B.C., and KNUPFER W., Nucl. Phys. A398 (1983) 408

13. HICKS R.S., HUFFMAN R.L., LINDGREN R.A., PARKER B., PETERSON G.A., RAMAN S., and SARGENT P., Phys. Rev. C z (1982) 1920.

14. PETROVICH F. and LOVE W.G., Nucl. Phys. A354 (1981) 499c. 15. PETROVICH F., HOWELL R.H., POPPE C.H., AUSTIN S.M., and CRAWLEY G.M., Nucl.

Phys. A383 (1982) 355. 16. LOVE W.G. and FRANEY M.A., Phys. Rev. C g (1981) 1073. 17. PETROVICH F., CARR J.A., HALDERSON D., LOVE W.G., and KELLY J.J., to be

published. 18. LOVE W.G., FRANEY M.A., and PETROVICH F., Proceedings of the International

Conference on "Spin Excitations in Nuclei," Ed. by G.E. Brown, G. Garvey, C.D. Goodman, R.A. Lindgren, W.G. Love, and F. Petrovich, Plenum Press (1984). Also, LOVE W.G., in Proceedings of RCNP -Kikuchi Summer School on Nuclear Physics, Kyoto, Japan, May 23-27, 1983.

19. CARR J.A., Proceedings of the Second LAMPF I1 Workshop, Los Alamos, New Mexico (LA-9572C) 1982.

20. CARR J.A., PETROVICH F., HALDERSON D., HOLTKAMP D.B., and COTTINGAME W.B., Phys. Rev. C g (1983) 1636.

21. WILKIN C., Nucl. Phys. A220 (1974) 621. 22. SICILANO E.R. and WALKER G.E., Phys. Rev. C z (1981) 2661. 23. This correction assumes that the transition density is given by eq. (3)

and eq. (4). 24. HICKS R.S., FLANZ J.B., LINDGREN R.A., PETERSON G.A., FAGG L.W., and MILLENER J.,

to be published. 25. HICKS R.S., LINDGREN R.A., PARKER B., PETERSON G.A., THIESSEN H., CRANNELL H.,

and SOBER D., Proceedings of the "Workshop on Nuclear Structure with Inter- mediate-Energy Probes", Los Alamos, New Mexico (LA-8303-C) 1980.

26. HUFFMAN R.L., private communication. 27. BERGSTROM J.C., NEUHAUSEN R., and LAHM G., To be published in Phys. Rev. C. 28. DONNELLY T.W., WALECKA J.D., SICK I., and HUGHES E.B., Phys. Rev. Lett. 1

(1968) 1196. 29. SICK I., HUGHES E.B., DONNELLY T.W., WALECKA J.D., and WALKER G.E., Phys. Rev.

Lett. z (1969) 1117.

C4-450 JOURNAL DE PHYSIQUE

HYDE C., BERTOZZI W., BUT1 T., DEADY M., HERSMAN W., KELLY J., KOWALSKI S., LOURIE R., PUGH B., SARGENT C.P., TURCHINETZ W., NORUM B., BERMAN B.L., HYNES M.V., LICHTENSTADT J., PETROVICH F., HALDERSON D., CARR J.A., and LOVE W.G., Bull. Am. Phys. Soc. 26 (1981) 27. ZAREK H., PICH B.O., DRAKE T.E., ROWE D.J., BERTOZZI W., CRESlJELL C., HIRSCH A., HYNES M.V., KOWALSKI S., NORUM B., RAD F.N., SARGENT C.P., WILLIAMSON C.F., and LINDGREN R.A., Phys. Rev. Lett. 38 (1977) 750. DONNELLY T.W., WALECKA J.D., WALKER G.E., and SICK I., Phys. Lett. 328B (1970) 545. YEN S., SOBIE R., ZAREK H., PICH B.O., DRAKE T.E., WILLIAMSON C.F., KOWALSKI S., and SARGENT C.P., Phys. Lett. (1980) 250; Phys. Rev. C z (1983) 1934. LINDGREN R.A., PLUM M.A., HUFFMAN R.L., HICKS R.S., MARWAMA X.K., BACHER A.D., OLMER C., GEESAMAN D.F., and WILDENTHAL B.H., Bull. Am. Phys. Soc. 21 (1982) 697. LINDGREN R.A., FLANZ J.R., HICKS R.S., PARKER B., PETERSON G.A., LAWSON R.D., TEETERS W,, WILLIAMSON C.F., KOWALSKI S., MARUYAMA X.K., Phys. Rev. Lett. & (1981) 706. MILLENER J. and KURATH D., Nucl. Phys. A255 (1975) 315; MILLENER D.J., private communication. LAWSON, R.D., private communication. HALDERSON D., PHILPOTT R.J., CARR J.A., and PETROVICH F., Phys. Rev. C E (1981) 1095. LINDGREN R.A., WILLIAMSON C.F., and KOWALSKI S., Phys. Rev. Lett. (1978) 504. WISE J.E., Doctoral Thesis, University of Virginia, 1976. HEISENBERG J., to be published. LICHTENSTADT J., PAPANICOLAS C.N., SARGENT C.P., HEISENBERG J., and MCCARTHY J.S., Phys. Rev. Lett. 46 (1980) 858. HEIMAG, distorted wave code for magnetic states including high spin, obtained from J. Heisenberg. Modified by R.A. Lindgren to include HOWF. ROWE D.J., WONG S.S.M, and CHOW H., Nucl. ??hys. A298 (1978) 21. AMUSA A. and LAWSON R.D., Phys. Rev. Lett. 51 (1983) 103. EMERY G., these proceedings. ZAMICK L., accepted for publication in Phys. Rev. C. METSCH B.C., Ph.D. Thesis, Utrecht. DEVRIES H., private communication. LINDGREN R.A., PLUM M.A., HICKS R.S., PARKER B., PETERSON G.A., SXNGHAL R., WILLIAMSON C.F., and MARUYAMA X.K., Phys. Rev. Lett. 47 (1981) 1266. HAMMAMOTO I., LICHTENSTADT J., and BERTSCH G.F. , Phys. Lett. 96B (1980) 249. SUZUKI T. and HYUGA H., Nucl. Fhys. A402 (1983) 491. KREWALD S., and SPETH J., Phys. Rev. Lett. 45 (1980) 417. ANDERSON B.D., BALDWIN A.R., CHITTRAKARN T., LEBO C., MADEY R., WATSON J.W., and FOSTER C.C., Contribution 6.2 in these proceedings. DEWITT HUBERTS P.K.A., Nucl. Phys. A396 (1983) 71C. HENDERSON R.S., SPICER B.M., SVALBE J.D., OFFICER V.C., SHUTE G.G., DIVINE D.W., FRIESEL D.L. JONES W.P., and ATTARD A.C., Aust. J. Phys. 32 (1979) 411. LOVE W.G., private communication. HOLTKAMP D.B., BRAITHWAITE W.J., COTTINGAME W., GREENE S.J., JOSEPH R.J., MOORE C.F., MORRIS C.L., PIFFARETTI J., SICILANO E.R., and THIESSEN H.A., Phys. Rev. Lett. 45 (1980) 420. MADEY R., FAZELY A., ANDERSON B.D., BALDWIN A.R., KALENDA A.M., MCCARTHY R.J., TARDY P.C., WATSON J.M., BERTOZZI W., BUT1 T., FINN M., KORASH M., PUGH B., and FOSTER C.C., Phys. Rev. 25C (1982) 1715. Also see Phys. Rev. (1982) 1760. ADAMS G.S., BACHER A.D., EMERY G.T., JONES W?P., KOUZES R.S., MILLER D.W., PICKLESIMER A., and WALKER G.E., Phys. Rev. Lett. 2 (1977) 1387. OLMER C., BACHER A.D., EMERY G.T., JONES W.P., MILLER D.W., NANN H., SCHWARDT P., YEN S., DRAKE T.E., and SOBLE R.J., accepted for publication in Phys. Rev. C. OLMER C., ZEIDMAN B., GEESAMAN D.F., LEE T.S.H., SEGEL R.E., SWENSON L.W., BOUDRIE R.L., BLANPIED G.S., THIESSEN H.A., MORRIS C.L., and ANDERSON R.E., Phys. Rev. Lett. 43 (1979) 612.

ANDERSON B., FAZELY A., LEBO C., WATSON J.W., and MADEY R., Phys. Rev. 5 (1982) 1715. COMFORT J., KIENLE P., MILLER D.W., REHM K.E., and SEGEL R.E., Contribution 6.6 in these proceedings. OLMER C., et al., to be published. CARR J.A. and PETROVICH F., unpublished. ADAMS G.S., BACHER A.D., EMERY G.T., JONES W.P., MILLER D.W., LOVE W.G., and PETROVICH F., Phys. Lett. (1980) 23. GAZZALY M., FRANEY M.A., and HINTZ N., private communication. GEESAMAN D.F., ZEIDMAN B., OLMER C., BACHER A.D., EMERY G.T., GLOVER C.W., NANN H., JONES W.P., VANDERWERF S.Y., SEGEL R.E., and LINDGREN R., Bull. Am. Phys. Soc. 1 (1982) 697. LOVE W.G., SCOTT A., BAKER F.T., JONES W.P., and WIGGINS J.P., Phys. Lett. 73B (1978) 277; BERTSCH G., BORYSOWICZ J., MCMANUS H., and LOVE W.G., Nucl. Phys. A284 (1977) 399. YABE M., MORI A., KUBO K.-I., FUJIWARA M., HAYAKAWA S.-I., YAMAZAKI T., MORIXOBU S., KATAYAMA I., FUJITA Y., and IKEGAMI H., contribution to these proceedings. OLMER C., in "The Interaction between Medium-Energy Nucleons in Nuclei", ed, H.O. Meyer (A.I.P., N.Y., 1983). BROWN G.E., SPETH J., and WAMBACH J., Phys. Rev. Lett. 66 (1981) 1057.