strong and electroweak matter 2004. helsinki, 16-19 june. angel gómez nicola universidad...

18
Strong and Electroweak Matter 2004. Helsinki, 16-19 June. Angel Gómez Nicola Universidad Complutense Madrid

Upload: aubrey-bell

Post on 04-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Strong and Electroweak Matter 2004. Helsinki, 16-19 June.

Angel Gómez Nicola

Universidad Complutense Madrid

Motivation

T>0 ChPT pion electromagnetic form factors

Thermal and poles

Motivation

After QGP hadronization and SB, the description of the meson gas must rely on Chiral Perturbation Theory

(model independent, chiral power counting p,T << 1 GeV )

Only NGB mesons (and photons) involved.

2 loops are O(p2) , divergences absorbed in 4 and so on.

...42 2422

6

Derivative and mass expansion

nonlinear -model

S.Weinberg, ‘79J.Gasser&H.Leutwyler ’84,’85

point towards Chiral Symmetry Restoration:

J.Gasser&H.Leutwyler ‘87

P.Gerber&H.Leutwyler ‘89

A.Bochkarev&J.Kapusta ‘96

A.Dobado, J.R.Peláez ’99 ’01.

0 50 100 150 200TemperatureHMeVL

0.2

0.4

0.6

0.8

1

<q q >€€€€€€€€€€€€€€€€€€€€€€€€€€€€€<qq >

o

SUH3LSUH2LSUH3Lpions

+ free K,h

< ss >€€€€€€€€€€€€€€€€€€€€€€€€€€€€< ss >

o

One loop ChPT

T

T=0

T

T=0

),...(),(, TfTqqP

)();(Im

)()();(Re

);(

6

62

22

pOTpg

pOTmTpg

Tpgmp

J.L.Goity&H.Leutwyler, ‘89

A.Schenk, ‘93

R.Pisarski&M.Tytgat, ‘96

D.Toublan, ‘97

J.M.Martinez Resco&M.A.Valle, ‘98

Pion dispersion law:

Nonequilibrium ChPT: f (t), amplification via parametric resonance.

AGN ‘01

However, ChPT alone cannot reproduce the light resonances (,, ...)

Needed to explain observed phenomena in RHIC.

K.Kajantie et al ’96C.Gale, J.Kapusta ’87 ‘91G.Q.Li,C.M.Ko,G.E.Brown ‘95H.J.Schulze, D.Blaschke ‘96,’03V.L.Eletsky et al ‘01

Enhancement consistent with a dropping

Mand a significant broadening in the hadron gas at freeze-out.

CHIRAL SYMMETRY BREAKING

UNITARITY+

Inverse Amplitude Method

““Thermal” polesThermal” poles

Dynamically generated (no explicit resonance fields)

OUR APPROACH

AGN, F.J.Llanes-Estrada, J.R.Peláez PLB550, 55 (2002), hep-ph/0405273A.Dobado, AGN, F.J.Llanes-Estrada, J.R.Peláez,

PRC66, 055201 (2002)

scattering amplitude and form factors in T > 0 SU(2) ChPT

Motivation

T>0 ChPT pion electromagnetic form factors

Thermal and poles

T>0 ChPT pion electromagnetic form factors

Pion form factors enter directly in the dilepton rate:

In the central region the dominant channel is pion annihilation:

e+

e-

e+

e-

~ + ...

)(),(),()()(2)2(2)2(

)( 21)4(

21*

21212

32

3

13

13

44qppppVppVEnEn

E

pd

E

pdqL

xqdd

dNBB

)()()0(0),( 2121 ppJppV EM

1

1)(

/

TEB eEn (thermal equilibrium)

At T>0 a more general structure is allowed:

),,(),,(),(

),,(),(

0000021

000210

kSSGkSkSSFkppV

kSSFkppV

sjsjj

t

k = p1 - p2

S = p1 + p2

|)|,(|||)|,(|)|,( 0)1(2

0)1(

0)1(

0 SSGSSSFSSFS sst

)1(

)1(, ,

1

s

st

GG

FF

s

st

ChPT to O(p4)

00 J

(At T = 0, Ft (S2)= Fs(S2), Gs = 0)

Related by gauge invariance to dispersion law in hot matter

T0 limit (J.Gasser&H.Leutwyler 1984).

Gauge invariance condition.

Thermal perturbative unitarity in the c.o.m. frame (see later)

T>0 ChPT calculation to O(p4):

2 one loop 4 tree level(including renormalization)

0

2

02

0

),0(6

charge Effective )0,0(

S

t

TT

tT

Sd

SSdF

Qr

SSFQ

2

0

20 fm 45.0 , 1 rQ

Model independent !

Confirms Dominguez et al ’94 (QCD sum rules)

The pion electromagnetic charge radius at T>0

22

3

3

2/32

)2(3)(

3

4)(

mknkd

Tn

rTV

B

T

(rough) deconfinement estimate:

1)()( cc TnTV

MeV 200cT

Charge screening

2/3

0

2

3

4)0( rV

MeV 265cT

Kapusta

H.A.Weldon ’92

Enhancement Absorption

Thermal perturbative unitarity:

Likewise, for the thermal amplitude:

220

)0(00

)1( )()();(Im SaSTSa IJTIJ

)()()();(Im 0)0(2

0)0(

1100)1( SFSaSTSF T )2( mE

Consider c.om. frame ( , back to back dileptons)21 pp

2thermal phase space:

(1+nB)2 nB2

)2/(214

1)( 020

2

0 SnS

mS BT

0

)0,()0,( 0)1(

0)1(

SFSF st

I=J=1 scattering partial wave

1 to lowest order

Motivation

T>0 ChPT pion electromagnetic form factors

Thermal and polesThermal and poles

Excellent T=0 data description up to 1 GeV energies and resonance generationas s poles in the complex amplitude.

T.N.Truong, ‘88A.Dobado, M.J.Herrero,T.N.Truong, ‘90

A.Dobado&J.R.Peláez, ’93,’97J.A.Oller, E.Oset, J.R.Peláez, ’99

A.Dobado, M.J.Herrero, E.Ruiz Morales ‘00AGN&J.R.Peláez ‘02

Unitarization: The Inverse Amplitude Method

Exact unitarity at T>0

11Im IAMIAMT

IAM FaF

)(Im Im12

TIAMIJ

IAMIJT

IAMIJ aaa

+ ChPT matching at low energies

)1()0(

)1(1

aaa

FFIAM

IAM

Valid to O(nB) (only 2 thermal states, dilute gas).

);()(

)();(

0)1(2

0)0(

2 20

)0(

0 TSaSa

SaTSa IAM

IJ

);();(Re)(

);(Re1);( 011

0)1(

1120

)0(11

0)1(

0 TSaTSaSa

TSFTSF IAMIAM

1 2 3 40.3, 5.6, 3.4, 4.3l l l l

SU(2) 4 constants from T=0 fit of phase shifts:

300 400 500 600 700 800 900 1000

ReH"#######spoleL=MHMeVL- 250

- 200

- 150

- 100

- 50

0mIH"####### s elopL=-G2HVeML T=100 MeV

T=200 MeV

T=25 MeV

T=100 MeV

T=125 MeVPole evolution withTemperature :

r pole

s pole

(770)

Thermal and poles

I=J=0 I=J=1

2nB (M/2) 0.3

Consistent with Chiral Symmetry Restoration::

M Mm (m(T) much softer)

first by phase space but decreases as Mm suppresses 2decay. (similar results to T.Hatsuda, T.Kunihiro et al, ’98,’00)

*

Small M change at low T (VMD*). Further decrease consistent with phenomenological estimates and observed behaviour (STAR )

* M.Dey, V.L.Eletsky&B.L.Ioffe, 1990

Significant broadening as required by dilepton data.

The unitarized form factor

Peak reduction and spreading around M compatible with dilepton spectrum (nB contributions alone overestimate data) and other calculations including explicitly resonances under VMD assumption (C.Song and V.Koch, ’96)

m= 139.6 MeV f= 92.4 MeV

6 18l

(T=0 formfactor fit)

Chiral Perturbation Theory provides model-independent predictions for meson gas properties.

In one-loop ChPT, we have calculated scattering amplitudes and the two independent form factors, checking gauge invariance and thermal unitarity. The electromagnetic pion radius grows for T>100 MeV, favouring a deconfinement temperature Tc~200 MeV.

Imposing unitarity in SU(2) allows to describe the thermal and poles in the amplitudes and form factors. Our results show a clear increase of (T) and a slow M (T) reduction consistently with theoretical and experimental analysis, including dilepton data. (T) and M (T) behave according to Chiral Symmetry Restoration.

Angular dependence, plasma expansion, +- e+e , baryon density, hadronic photon spectrum, ...