structural analysis of a hexagonal tube or ring …

60
STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING UNDER INTERNAL PRESSURE C. Do Flowers / '/ JUNE, 1966 BAlTELLE MEMORlAL INSTITUTE / PACIFIC NORTHWEST WOFUfORY

Upload: others

Post on 30-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING UNDER INTERNAL PRESSURE

C. Do Flowers / ' /

JUNE, 1966

BAlTELLE MEMORlAL INSTITUTE / PACIFIC NORTHWEST WOFUfORY

Page 2: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

LEGAL NOTICE This report was prepared QS an bccount of Government sponsored work. Nelther the B~8ited Stales,

nw the Commission, nor m y person acting on behulf of the Commission:

A. Makes any warranty or. reptarentation, expressed or implied, with respect tb the uccurocy, corn- ,

pieteness, or usefuhess of the informotion contained in this report, Or thot the use ,of onyminfrKmation, appnratus, mmethod, or process disclosed in this report may not infringe privately owned righbr or

B. Assumes ony liobilities with respect to the use of, or for damages resulting from the use of any informotion, apparatus, method, or process disclosed In this report.

As used in the above, 'person acting on behalf of the Cornmilon' inel~des any drnpbyee or controctor of the Commtbsion, or employes of such controctor, to the extent that such omployee or cw- trgctor of the Commission, or employee of such contractor prepares, disseminates, or provides access t ~ , any informotion pursuant to his employment or contract with the Commission, or his employment with such contractor.

I t PACIFIC NORTHWEST LABORATORY I

RICHLAND, WASHINGTON

operafed. by I 0AlTEl.G MEMORIAL INSTITUTE I

I for the

UNllED STATES ATOMIC ENERGY COMMISSION UNDEk CONTRA-CT AT(&-1 )-I830

I

I 1 MIII(IEP~V/FOUTIIE U. S. ATOMIC EW EAGY COMMISJION

Page 3: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL-263

UC-80, Reactor Technology

STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE

OR RING UNDER INTERNAL PRESSURE

BY C. D. Flowers

Development and Technology Engineering Sect ion FFTF Project

June, 1966

PACIFIC NORTHWEST LABORATORY RICHLAND, WASHINGTON

Page 4: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 5: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

T A B L E O F CONTENTS Page

N u m b e r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSTRACT !

I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUMMARY AND C O N C L U S I O N S

A N A L Y S I S

. . . . . . . . . . . . . . . . . . . . . . . A n a l y s i s M o d e l

. . . . . . . . . . . . . . . . . . Stresses A n d D e f l e c t i o n s

PROBLEM FORMULA T I ON

C a l c u l a t i o n O f Mo . . . . . . . . . . . . . . . . . . . . . Stresses . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . M a x i m u m C o r n e r Stresses I n H e x T u b e

. . . . . . . . . . . . . . . . . . . . . . . . . D e f l e c t i o n s

G R A P H I C A L R E S I L T S F O R HEXAGONAL T U B E . . . . . . . . . . . . . . D I S C U S S I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . NOMENCLATURE' . . . . . . . . . . . . . . . . . . . . . . . . . . ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . A P P E N D I X A . D E R I V A T I O N O F E Q U A T I O N S . . . . . . . . . . . . . . A P P E N D I X B . V E R I F I C A T I O N O F A S S U M P T I O N S . . . . . . . . . . . . R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 6: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 7: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 2 6 3

P r i n t e d i n USA. P r i c e $ 3 . 0 0 . A v a i l a b l e f rom t h e C l e a r i n g h o u s e f o r F e d e r a l S c i e n t i f i c a n d T e c h n i c a l I n f o r m a t i o n ,

N a t i o n a l Bu reau o f S t a n d a r d s , U . S . Depa r tmen t o f Commerce, S p r i n g f i e l d , V i r g i n i a

Page 8: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 9: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

STRUCTURAL ANALYSIS CF A HEXAGONAL TUBE OR R I N G UNDER INTERNAL PRESSUFB

ABSTRACT

The maximum s t r e s s i n hexagonal r e a c t o r tubes occurs a t t h e i n s i d e

sur face of t h e corner where t h e f i b e r s a r e i n tens ion . This maximum

s t r e s s c o n s i s t s p r imar i ly of t h e bending s t r e s s e s caused by t h e r i g i d i t y

of t h e corner . This corner r i g i d i t y induces bending of t h e wal l s , t hus

g iv ing maximum d e f l e c t i o n a t t h e middle of t he f l a t s i d e ,

An e l a s t i c s t r e s s and d e f l e c t i o n a n a l y s i s was made f o r a hexagonal

tube o r a hexagonal r f n g submitted t o a cons tant i n t e r n a l pressure load.

The a n a l y s i s assumes a homogeneous and i s o t r o p i c medium, and uses l i n e a r

small d e f l e c t i o n theory. A hyperbolic s t r e s s d i s t r i b u t i o n was assumed

f o r analyzing t h e corners of t h e tube o r r i n g .

A l l r e s u l t s a r e presented i n equat ion form. Also, f o r t he hexagonal

tube, t h e r e a r e p l o t s of maximum corner primary membrane p lus bending

s t r e s s , and maximum wal l d e f l e c t i o n ac ross t h e f l a t s . These graphs a r e

dimensionless, and a r e app l i cab le t o a use fu l range of hexagonal tube

s f zes .

INTRODUCTION

I n t e r e s t has been generated a t Battelle-Northwest f n hexagonal-shaped

tubes mainly because of t h e i r a p p l i c a t i o n t o f a s t f l u x , tube-type r e a c t o r s .

The p resen t conceptual core des ign of t h e Fas t Flux Tes t F a c f l f t y (FFTF)

fncorpora tes a hexagonal l a t t i c e which i s made up of skewed hexagonal

r e a c t o r tubes. These tubes have a hexagonal shape i n t h e core zone and

a c y l i n d ~ i c a l shape elsewhere. The r e a c t o r i s sodium cooled, and t h e

tubes func t ion a s high v e l o c i t y sodium flow condui t s which a r e exposed

Page 10: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

t o i n t e r n a l p re s su re loads . The skewed tube concept i s shown i n Figure 1

and t h e hexagonal core l a t t i c e i s shown i n Figure 2.

The use of skewed hexagonal r e a c t o r tubes provides a c l o s e l y packed

a r r a y which minimizes sodium volume between tubes i n t h e core zone, and

a l s o provides a good f u e l packing e f f i c i e n c y wi th in each tube . This

compact core i s a n a i d t o achieving t h e high f l u x t h a t i s des i r ed i n t h e

F'FTF. The low sodium coo lan t p re s su res t h a t a r e r equ i red a l s o make t h e

hex-shaped r e a c t o r tube f e a s i b l e . Since the r e a c t o r t ubes a r e submitted

t o t h i s i n t e r n a l pressure , a n e l a s t i c s t r u c t u r a l a n a l y s i s of t h e tubes

i s requi red a s a p a r t o f t h e conceptual i n v e s t i g a t i o n s o f core design.

Both pressure-induced s t r e s s e s and d e f l e c t i o n s a r e o f i n t e r e s t i n a

complete mechanical a n a l y s i s o f t h e tube. For the hexagonal tube under

i n t e r n a l pressure , t h e t o t a l primary s t r e s s c o n s i s t s of t h e gene ra l

membrane s t r e s s and t h e bending s t r e s s . The d i f f i c u l t y i n analyzing the

hexagonal tube comes from t h e presence of t he bending s t r e s s e s which a r e

caused by i n t e r n a l bending moments. These i n t e r n a l moments a l s o c o n t r i b u t e

t o t h e t o t a l outward d e f l e c t i o n of t h e tube wa l l s .

An e l a s t i c s t r e s s and d e f l e c t i o n a n a l y s i s of a hexagonal box under

i n t e r n a l p re s su re has been c a r r i e d o u t previous ly . (2) Resu l t s of t h i s

p r i o r a n a l y s i s a r e a v a i l a b l e only i n equat ion form, and a r e not gene ra l

enough f o r convenient a p p l i c a t i o n t o t h e p resen t problem. Also, t h e

a n a l y s i s r e f e r r e d t o does not inc lude t h e p l a t e e f f e c t t h a t e x i s t s i n

t h e tube wal l s . The tube wa l l s a r e a c t u a l l y long p l a t e s and a r igo rous

a n a l y s i s should inc lude p l a t e theo ry a s wel l .

Page 11: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL

PiR r Sodium

Closed Loor, _

(Tubes Ilavt, Hrxagonal

\ \ C r o s s c c t i o n Through C o r r Rcgion)

Reac tor Zone

High P r e s s u r e T u b e s h e e t s

- 2 6 3

Flow

Sodium 1 low In

FIGURE 1. FFTF Skewed Tube S c h e m a t i c

Page 12: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

4 .5 in.

6 in. C losed Loop-Fue l ( 2 )

Open Loop-Mater ia l (8) k Neutron S o u r c e (1 )

4. 5 i n Loop -

T e s t :y (1)

5 in.

6 in. Open ~ o & ~ - ~ u e l (2 ) \ Safety Rod with M a t e r i a l s T e s t (3 )

0 Q D r i v e r F u e l T u b e s

Q with Zoned F u e l Loading

FIGURE 2. FFTF Hexagonal Core Lattice

Page 13: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

I n t h e present ana lys i s t h e s o l u t i o n i s more s t ra ight forward; t h e

maximum s t r e s s and d e f l e c t i o n equations a r e w r i t t e n i n a genera l form so

a s t o apply t o any hex-shaped tube o r r ing . Also, s ince t h e primary

i n t e r e s t i s i n t h e hex tube, dimensfonless s t r e s s and d e f l e c t i o n graphs

a r e presented f o r t h e convenience of the designer and include a range

of hexagonal tube s i z e s . The graphs a r e app l i cab le , wi th in t h e e l a s t i c

l i m i t , f o r any pressure and temperature loads. A p p r o p ~ i a t e p l a t e theory

terms a r e a l s o included i n t h e tube ana lys i s .

SUMMARY AND CONCLUSIONS

The maximum s t r e s s i n t h e hexagonal tube o r r i n g was found t o occur

a t t h e i n s i d e sur face of t h e corner where the f i b e r s a r e i n tens ion .

This maximum s t r e s s c o n s i s t s p r imar i ly of t h e bendfng s t r e s s e s t h a t

a r i s e due t o t h e r i g i d i t y of t h e corner . The maximum d e f l e c t i o n occurs

a t t he middle of t h e f l a t s ide and i s due p r imar i ly t o t h e bendfng of

t h e wa l l s s ince t h e corney i s f a i r l y r i g i d .

For the hexagonal r i n g t h e r e s u l t s a r e given only i n equation form.

However, s ince our primary i n t e r e s t i s i n tubes , t h e r e s u l t s f o r hexagonal

shaped tubes a r e presented i n g raph ica l form. Graphs f o r both maximum

corner s t r e s s ( ~ i ~ u r e 7) and ~naximum tube d e f l e c t i o n ac ross the f l a t s

( ~ i ~ u r e 8) a r e included. I t i s ~ecommended t h a t ~ / t r a t i o s 2 2 be used

when applying these graphs i n order t o e l iminate high s t r e s s c o n c e n t ~ a -

t f o n s i n t h e corners . The maximum s t r e s s graph can a l s o be used con-

venient ly t o determfne the necessary wal l th ickness and corner r a d i u s f o r

a tube submitted t o given pressure and t e m p e ~ a t u r e loads ,

Since the FFTF r e a c t o r tubes experience a wide v a r i e t y of loading

condi t ions (temperature bowing, tubesheet r eac t fons , middle support

Page 14: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 6 -

r e a c t i o n s , e t c .) , f w t h e r s tudy i s requi red before t h e f e a s i b i l i t y of t h e

hexagonal r e a c t o r tube can be determined.

ANALYSIS

Analysis Model

The model used i n t h i s a n a l y s i s i s shown i n Figure 3. The model

i s assumed t o be i n f i n i t e i n l eng th , homogeneous and i s o t r o p i c , and

t o have a uniform pressure (p) throughout t h e l eng th , Since t h e

a x i a l p re s su re drop i n a r e a l tube i s gradual , a cons tant p re s su re

assumption i s v a l i d . The tube c r o s s s e c t i o n can be broken i n t o two

primary elements--the f l a t wa l l s and the rounded corners , and,due t o

symmetry, h a l f of one wal l and h a l f of one corner w i l l be used f o r

a n a l y s i s , A free-body diagram of the model i s shown i n Figure 4.

A f o r c e and moment balance must f i rst be made on t h e model before

t h e s t r e s s e s and d e f l e c t i o n s can be determined. The only unknown term

i s t h e moment Moo The f o r c e s Px and P a r e e a s i l y determined from Y

equi l ibr ium, and t h e moment equat ions f o r t h e s t r a i g h t p o r t i o n and

f o r t h e curved por t fon can be w r i t t e n f n terms of M, which i s unknown.

Since sma l l - s t r a in l i n e a r e l a s t f c theo ry i s used, t h e moment M,

i s found by combining t h e s t r a i n energy o f bending of t h e two elements

and us ing C a s t i g l i a n o b theorem t o f ind t h e s lope a t x = 0 . By apply-

ing t h e proper boundary condition--that t he s lope a t x = 0 i s equal t o

zero--Mo can be obtained. Once Mo i s known, t h e s t r e s s and d e f l e c t i o n

a n a l y s i s can be made,

S t r e s s e s And Def lec t ions

F l a t Side: The s t r a i g h t p o r t i o n of t h e tube has been assumed a s

a f l a t p l a t e and t h e d i f f e r e n t i a l equat ion f o r t h e c y l i n d r i c a l bending

Page 15: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

SIGN CONVENTION

Outside o f tube

%kg@ Inside o f tube

F I G U R E 3 . Analytical Model

Page 16: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

FIGURE 4 . Free Body Diagram

Page 17: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

of p l a t e s a p p l i e s . The equa t ion is:

( ~ o m e n c l a t u r e l i s t on p. 30 ) (Ref. 6, p. 5 )

where D = f l e x u r a l r i g i d i t y of f l a t p l a t e .

The d e f l e c t i o n s a r e assumed t o be small i n comparison with t h e

th i ckness (y<t /2) , and s ince supe rpos i t i on can be used i n l l n e a r

e l a s t i c theory , d i r e c t s t r e s s P,/A i s combined with bending s t r e s s $0

g e t t h e t o t a l wa l l s t r e s s . Def lec t ions a r e obta ined by d i r e c t i n t e -

g r a t i o n of t h e gene ra l d i f f e r e n t i a l equat ion and a p p l i c a t i o n of t h e

necessary boundary cond i t i ons . The corner d e f l e c t i o n must f i rs t be

found and t h e second boundary cond i t i on (g iven below) must be app l i ed

t o determine t h e i n t e g r a t i o n cons tan t and t h e t o t a l d e f l e c t l o n

equat ion.

S ince we have a second o rde r d i f f e r e n t i a l equat ion, t h e necessary

boundary cond i t i ons f o r our f l a t p l a t e model can be s t a t e d .

Boundary Condit ions

1. A t x = 0 , s lope = 0.

2. Def lec t ion of s t r a i g h t p o r t i o n a t X = L is equal t o d e f l e c t i o n

of corner a t 8 = C .

Corner: For determining d e f l e c t i o n s , t h e corner i s assumed f i x e d

a s shown i n Figure 3 I n assuming t h e corner i s f i x e d , we assume t h a t

t h e ex tens ion of t h e f l a t s i d e due t o t h e membrane t e n s l o n i s approxi-

mately enough t o al low t h e f l a t s i d e t o d e f l e c t outward and assume t h e

proper cu rva tu re , Also, t h e change i n l e n g t h of t h e s i d e due t o

d i r e c t membrane t e n s i o n i s q u i t e small i n comparison with t h e tube

wa l l de f l ec f ion . A sample c a l c u l a t i o n i n Appendix B shows t h i s

assumption t o be reasonable.

Page 18: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 10 -

The d e f l e c t i o n of t h e corner i s c a l c a l a t e d by us ing C a s t i g l i a n o 3 s

theorem tind a modi f ica t ion of t h e t o t a l s t r s i n energy equat ion f o r 3

t h i c k r i n g s (Ref. 4, p. 84 ) . We have included a f a c t o r of (I-'&) i n

t h e r i n g equat ion t o make it app l i cab le t o curved p l a t e s . This y i e l d s

t h e fo l lowinp t o t a l s t r a i n energy equa-tion:

2 2 t-- - . -

2AE AEI 2AG d s

The d e f l e c t i o n s due t o each of t h e l o a d s on t h e curved p o r t i o n

Py, Px, and ko shown i n Figure 5 a r e c a l c u l a t e d by us ing C a s t i g l i a n o ' s

theorem.

The t o t a l c c r a e r de f ' l e c t io r ; ,A , i s t h e n found by superpor:l+,b3n.

F ipo l ly , by apply ing t h e second boundary cond i t i oc , t h e i n t e g r a t i o n

constar,% and t h e t o t 2 1 deflection eciurt.icn f c r ti?? vwtili can be obtoS fie?.

To o b t a i n " Le cc rne r s i r e s e e s , c-.,rvcd F' - : te t heo ry (which i s

assumed t o be t h e same a s curved b a r . thecry f c r t h i s c s s e ) xi.1.l be

used. There a r e two methods of s c i ; r t i o n t h a t can be used 50 o b t a i n

t h e co rne r s t r e s s e s : (1) t h e hyperbol ic s t r e s s d i s t r i b u t i o n method

( R e f . 4, p. 65 ) , and (2) t h e exac t s t r e s s d i s t . r i b u t i o n method ( ~ e f . 5,

p . 61) . I n t h e f i rs t method it i s assumed t h a t t r a n s v e r s e c ros s s e c t i o n s

remain p lane and normal t o t h e c e n t e r l i n e and t h e t r a d i a l s t r e s s e s

a r e equa l t o zero. With t h e s e assumptions t h e d i s t r i b u t i o n of t h e

normal s t r e s s e s , re, over any c r o s s s e c t i o n fo l lows a hyperbol ic law.

Page 19: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 20: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL-263

- 12 - The second method assumes a s t r e s s func t ion of t h e form

= A i n r + ~r~ i n r + cr2 t D' (Ref. 5 9 p. 58)

which a p p l i e s t o a l l problems with axisymmetrical s t r e s s d i s t r i b u -

t i o n and no body fo rces . I n t h i s method t h e r a d i a l s t r e s s e s a r e not

neglected--which makes it t h e more exac t of the two methods.

However, according t o Timoshenko ( ~ e f . 5, p. 64) , t h e hyperbolic

s o l u t i o n g i v e s very accura te r e s u l t s f o r b / ~ ~ r a t i o s l e s s than

t h r e e o r fou r . Using b/Ri<4, t h e hyperbolic s o l u t i o n w i l l be

assumed t o be accura t e f o r ~ / t > 5 / 0 ,

I n most p r a c t i c a l a p p l i c a t i o n s , ~ / t r a t i o s of l e s s than 5/6 w i l l

no t be encountered a s t h i s w i l l letis t o high s t r e s s concent ra t ions

which a r e undas i rab le , FOP these reasons t h e hyperbolic s t r e s s d i s -

t r i b u t i o n method has been chosen t o analyze t h e co rne r s of t h e hexa-

gonal tube. From Timoshenko, Ref. 5, p. 64, it i s es t imated t h a t t h e

e r r o r introduced i n t h i s a n a l y s i s by using the hyperbolic s t r e s s d i s -

t r i b u t i o n method ( i n s t e a d of t he exac t method) should not exceed

f i v e percent . To show t h a t t h e r a d i a l s t r e s s e s a r e small i n compari-

son with t h e Q-s t resses , a sample c a l c u l a t i o n using t h e exac t method

has been made i n Appendix B.

PROBLEM FORMlJLlZ_T_=-:

Ca lcu la t ion Of Mo

By equi l ibr ium we g e t t h e f o r c e s per u n i t l eng th of tube

Px = p (LC + Ri) and

Py = p L

The moment.% i s unknown. However, t h e moment equat ions f o r t he

s t r a i g h t s e c t i o n and t h e curved s e c t i o n can be w r i t t e n i n terms of &be

Page 21: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

- 1 3 - BNWL- 203

The moment equat ion f o r t h e s t r a i g h t s e c t i o n pe r u n i t l eng th of tube

The moment equat ion f o r t h e curved s e c t i o n i s t h e sum of t h e moments

imposed by t h e loadings shown i n Figure 5. The p re s su re loading

causes no moment, so Me w i l l c o n s i s t o f moments induced by bo, Px-Pp,

and Py where n

Px-Pp = p ( L C + Ri)-pRi = p~n9 and Py = pL

From t h i r , t h e moment equat ion pe r u n i t l eng th o f tube f o r t he curved

s e c t i o n i s n

The moment, &, i n Equations (1) and (2) cannot be determined from

t h e condi t ions o f s t a t i c equilibrium, and t h e r e f o r e a n a d d i t i o n a l con-

d i t i o n must be used. The moment, &, can be determined by us ing s t r a i n

energy methods and t h e cond i t i on t h a t t h e s lope o r r o t a t i o n a t

x = 0 ( ~ o i n t o f a p p l i c a t i o n of M,) i s equal t o zero. C a s t i g l i a n o ' s

theorem f o r t h e s lope o r r o t a t i o n a t t h e p o i n t o f a p p l i c a t i o n o f M, i s

where )bo i s t h e s lope o r r o t a t i o n a t t h e s ec t ion , & i s t h e moment

a t t h e s e c t i o n and U i s t h e t o t a l bending s t r a i n energy of t h e member.

For t h e tube wal l , t h e s t r a i n energy equat ion f o r t h e bending o f f l a t

p l a t e s t o a c y l i n d r i c a l su r f ace i s

Page 22: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

where M i s t h e moment a t any s e c t i o n and D i s t h e f l e x u r a l r i g i d i t y

of a f l a t p l a t e .

The r e l a t i o n f o r D i s

(Ref. 6 , p. 5 )

Equation(&) a l s o holds f o r curved p l a t e s i f R / t >2 (Ref. 3,

p. 171) , b u t f o r R/t<2, a more e x a c t r e l a t i o n f o r t h e bending s t r a i n

energy i n a curved p l a t e i s

This equat ion i s found by us ing Hookefs Law and assuming t h a t

t h e l o n g i t u d i n a l s t r e s s i s equal t o zero i n t h e curved p l a t e . By

doing t h i s h e (1 - ) term appears f n the energy equat ion f o r t h e

curved p l a t e .

It i s shown i n Appendix B t h a t t h e e r r o r introduced i n calcu-

l a t i n g M, by us ing Equat ion(4)for t h e s t r a i n energy of t h e corner

in s t ead of t h e curved p l a t e energy equat ion i s l e s s t h a n one percent ,

A value of Z / t = P was used f o r t h e comparison and t h e discrepancy

was approximasely 0.7 percent . Based on t h i s , we w i l l use Equation(&)

f o r t h e s t r a i n energy due t o bending i n both t h e f l a t p l a t e and t h e

curved p l e t e .

Applying Cas t ig l i ano s t h e o ~ 6 . i (Eq. 3) t o Equation (4) over t h e

e n t i r e s t r u c t u r e , we g e t A ,'J

1 M - & X + L J M&%~ Jb- D bM 0 D

wal l aM0 corner

For t h e f l a t p l a t e t h e moment Mx i s

2 Mx = JZ- - Mo

2

Page 23: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

and t h e limits of i n t e g r a t i o n a r e from x = 0, L.

For t h e curved p l a t e t h e moment % i s

and t h e limits of i n t e g r a t i o n a r e from 0 = 0, v/6. Also, f o r t h e

curved por t ion d s = R d 8. For both ~ q u a t i o n s ( 1 ) and (2), @ = -1.

From these condi t ions , and from t h e condi t ion t h a t we can super-

impose t h e energy of t h e two -ec t ions , t h e r e l a t i o n f o r Mo becomes

( ~ e r i v s t i o n i n Appendix A)

This equat ion can be expressed i n t h e fol lowing dimensionless form:

A s an a i d i n using t h e s t r e s s and d e f l e c t i o n equat ions derived i n

Mo t h i s a n a l y s i s , -2 i s p l o t t e d a s a func t ion of (L/R) i n Figure 6 on PL

page 16 . Having completed t h e s t a t i c equi l ibr ium balance, we can now

solve f o r s t r e s s e s and d e f l e c t i o n s . S t r e s s e s

Wall S t r e s s e s : The combined bending s t r e s s and d i r e c t s t r e s s f o r

t h e c y l i n d r i c a l bending of p l a t e s i s

~ q u a t i o n ( 6 ) i s genera l and a p p l i e s t o a hexagonal r i n g a s we l l a s

t o a hexagonal tube ,

Page 24: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 25: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

For t h e hexagonal r i n g

Px = Load

Ax = Area of c r o s s sec t ion .

Mx = Bending moment a t any s e c t i o n of f l a t s ide .

y = Distance from c e n t r o i d a l a x i s t o f i b e r s where s t r e s s i s

des i red .

I = Moment of i n e r t i a of c ros s sec t ion .

For t h e s t r e s s per u n i t l eng th of t h e hexagonal tube, t h e terms

a r e a s fol lows

y = Same a s above.

Corner S t r e s s e s : The t o t a l corner s t r e s s c o n s i s t s of bending and

d i r e c t s t r e s s e s combined. The equat ion f o r pure bending s t r e s s i n a

curved p l a t e f s

-My 1

Cb = ~ e ( r t jl) ( R e f . 4, p . 67)

where y ' i s measured p o s f t i v e l y outward from the n e u t r a l a x i s . Since

i t i s more convenlent t o measure t h e f i b e r s from the een t ro fda l a x i s ,

t he fol lowing equat ions have been modified so t h a t y i s t h e d i s t ance

from t h e e e n t r o i d a l a x i s , measured p o s i t i v e outward.

For a rec tangular c ross sec t ion , t h e bending s t r e s s i n t h e corner

becomes

Page 26: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

where M = MQ and

Equation (9a) i s derived i n Appendix A .

The d i r e c t s t r e s s can be expressed by t h e fol lowing no ta t ion

The normal f o r c e Pn can b e s t be obtained by r e f e r r i n g t o Figure 5.

From Figure 5.

Pn = ( P ~ - P ~ ) ~ o s €J + Pp + P s i n @,or Y

Pn = pL O c o s 8 + pRi + pL s i n 8

and pL 0 cos 8 + pRj + pL s i n @

0 = 8, A

The t o t a l c o m e r s t r e s s can now be expressed a s the sum of t h e

bending and d i r e c t s t r e s s e s .

- -- pL fl cos 8 + pL s i n 8 + pRi c ~ T o t . A + Y8 AR [-1

Equation (9) f o r t h e corner s t r e s s e s i s genera l and w i l l apply t o a

hexagonal r i n g with r ec t angu la r c ross s e c t i o n a s wel l a s t o a

hexagonal tube. For s t r e s s e s per u n i t l eng th of t h e hexagonal tube ,

t h e a rea term ( A ) w i l l equal t h e th i ckness it). I t must be remem-

bered t h a t t h e s t r e s s equat ion, (7a), a p p l i e s only t o a hexagonal r i n g

when t h e p ing has a r ec t angu la r c r o s s sec t ion .

Maximum Corner S t r e s s e s I n Hexagonal Tube: The h ighes t s t r e s s e s

t h a t occur i n t h e hexagonal tube w i l l occur i n t h e corners and w i l l

be a t t h e i n s i d e and ou t s ide su r faces where t h e f i b e r s a r e i n t e n s i o n

Page 27: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 19 - and compression, respect ively . By maximizing Equation (9), the maximum

s t r e s s e s a re found t o occur a t t h e ins ide surface a t 8 = v/6, o r a t

t h e middle of t h e corner.

Maximum s t r e s s occurs a t

Q = V/6

Y = - - ( ~ t the corner, y i s measured pos i t ive outward from 2

t h e cent roidal axis . )

with A = t

therefore ,

Using a f i r s t approximation f o r Z (Z =(1/12t/R) , the maximum

s t r e s s equation can be wr i t t en i n the following dimensionless form

Equation(l0) i s derived i n Appendix A.

qua ti on (lo), using the f i r s t approximation f o r Z, i s appl icable

only f o r R/t>2 since the remaining terms i n t h e Z-series become

negl ig ib le . For ~ / t < _ 2 the s e r i e s f o r Z should be used, employing

a s many terms a s a r e necessary f o r the required accuracy. Usually,

t h e f i rs t two o r th ree terms of the s e r i e s a r e a l l t h a t a re needed,

A graph of omax/p versus L/R with R / t a s a parameter has been p lo t t ed

i n Figure 7.

Page 28: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 29: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 21 -

I t should be noted here t h a t t h e express ion P,/A f o r t h e d i r e c t

s t r e s s e s i s not e n t i r e l y c o r r e c t s ince t h i s r e l a t i o n i s only v a l i d

f o r a s t r a i g h t member. S ince we have a curved member, t h e s t r e s s on

t h e concave s i d e of t h e corner w i l l be somewhat l a r g e r than P/A. A

c o r r e c t i o n f a c t o r (K) f o r t h i s term i s suggested i n Reference 3 on

page 152, and i f t h e c o r r e c t i o n f a c t o r were included, Equation (10)

would be a s fo l lows

The c o r r e c t i o n f a c t o r (K) suggested i n Reference 3 i s a f u n c t i o n

of R / t and inc reases wi th decreasing R / t . The maximum value of K f o r

our range of R / t would be about 1 .7 ( ~ / t = 0.85) . The maximum e r r o r

introduced by l e t t i n g K = 1 (rnax. a t R / t = 0.85 and L/R = 1 f o r our

range) i s about -20 percent . That f s, f o r K = 1, t h e s t r e s s e s a t

most a r e 20 percent low. However, a s R / t and L/R become l a r g e r , t he

e r r o r goes t o zero very quickly. Since t h e e r r o r introduced by not

us ing t h e suggested c o r r e c t i o n f a c t o r i s of s i g n i f i c a n t magnitude

on ly f o r a small range of R / t and L/R, we have assumed K t o be equal

t o 1. The shaded r eg ion on t h e graph i n Figure 7 i n d i c a t e s t h e a rea

where t h e s t r e s s e s (K 1) a r e 10-20 percent l e s s than the s t r e s s e s

would be i f t h e suggested c o r r e c t i o n f a c t o r were used. The dashed

l i n e i n d i c a t e s t h e approximate 10-percent e r r o r . A l l o t h e r s t r e s s e s

ou t s ide of t h i s r eg ion can be assumed t o have no apprec iable e r r o r .

Def lec t ions

The maximum d e f l e c t i o n of t h e hexagonal tube w i l l be a t t h e

Page 30: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

middle of t h e f l a t s i d e o f t h e tube o r a t x = 0 on our model. We s t a r t

with t h e genera l equat ion f o r c y l i n d r i c a l bending of t h e tube wa l l

which i s a f l a t p l a t e . The gene ra l equat ion i s

11 M = D dy/dx = D y (11)

Rewriting Equat ion(l l ) and inc luding t h e moment equat ion f o r t h e

s i d e g ives

I n t e g r a t i o n of Equation(12) t o g e t t h e s lope y i e l d s

Using t h e boundary condition--at x = 0, t he s lope y s equals zero, we

g e t C1 = 0.

Now, i n t e g r a t i n g t o g e t t h e d e f l e c t i o n , we g e t

To eva lua te C2 t h e d e f l e c t i o n of t h e f l a t s i d e a t x = L must be

equated t o t h e d e f l e c t i o n of t h e curved p o r t i o n a t 8 = 0 .

To o b t a i n t h e corner d e f l e c t i o n s t r a i n , energy methods and

Cas t ig l i ano* theorem w i l l be used. The t o t a l s t r a i n energy equat ion

f o r a curved p l a t e i s

2 2 11-Q)M ~2 ( ~ - V ~ ) M N dv2

=l[Z,eR += - AER + -1 ds

(Ref. 4, p a 84)

The (I-$) term i s included t o account f o r t h e p l a t e e f f e c t . For a

2 - r i n g a n a l y s i s (1-3 ) - 1.

To o b t a i n de f l ec t ions , C a s t i g l i a n o s s theorem w i l l be used: t h i s

g ives the d e f l e c t i o n due t o t h e load F. The d e f l e c t i o n s due t o each

Page 31: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

of t h e loads shown i n Figure 4 w i l l be determined and added t o o b t a i n

t h e t o t a l d e f l e c t i o n of t h e corner .

The pressure load on t h e curved p o r t i o n causes no r e l a t i v e de-

f l e c t i o n of t h e end of t h e corner . Therefore, s ince t h e corner has

been assumed f ixed a t t h e middle, t h e p res su re on t h e curved member

causes no d e f l e c t i o n a t t h e end. The d e r i v a t i o n s of a l l fol lowing

equat ions can be found i n Appendix A .

Deflec t ion due t o Py:

For t h e load Py we g e t

Mpy = PyR s i n Q

N ~ Y = Py Sin P = pL

Y

Since P l i e s along t h e l i n e of des i red d e f l e c t i o n , no dummy load i s Y

required. S u b s t i t u t i o n i n t o Equation (14) y i e l d s

Deflect ion due t o Px:

To ob ta in t h e d e f l e c t i o n i n t h e des i r ed d i r e c t i o n f o r t h i s load,

a dummy load Q i s needed a t Q = 0 i n t h e Py d i r e c t i o n .

For Px, inc luding t h e d m y load , we g e t

Mpx = -PxR(l-cos €4) + QR s i n €3

Npx = Px cos 8 + Q s i n 8 P, = pL \17

vpx = -P, s i n 8 + Q cos Q

Page 32: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

S u b s t i t u t i o n i n t o Equation (14) y i e l d s

Def l ec t ion due t o moment Q . 0

Again, a dummy load F i s needed t o g e t t h e d e f l e c t i o n i n t h e

des i r ed d i r e c t i o n .

For t h e moment & , inc luding t h e dummy load , we g e t 0

M = Meo + FR s i n 'J

N = F s i n Q

V = F c o s Q

S u b s t i t u t i o n i n t o ~ ~ u a t i o n ( l 4 ) ~ i e l d s

Equations (151, (16), and (17) a r e app l i cab le t o a hexagonal r i n g pro-

vided t h e c o r r e c t l oads Fy, Px and % a r e used i n t h e equat ions . 0

To g e t t h e t o t a l d e f l e c t i o n of t h e corner (A) , Equations (151, (16),

and (17) a r e added. This y i e l d s t h e fol lowing equat ion f o r t h e t o t a l

corner d e f l e c t i o n .

where R

(Ref. A, p o 70) t

F i n a l l y , we must go back t o ~ ~ u a t i o n ( l 3 ) and equate the d e f l e c t i o n s

o f t h e corner and t h e wa l l a t x = L t o o b t a i n t h e i n t e g r a t i o n con-

s tant ,C2. Applying t h e boundary condi t ion we can say

y = A a t x = L

Page 33: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

This gives the following equation f o r C2

Now, the t o t a l d e f l e c t i o n equation f o r the tube wall can be

wr i t t en a s

Since the maximun def lec t ion i s known t o occur a t x = 0, the

maximum def lec t ion equation i s

Equation(20) i s applicable t o e f t h e r a hexagonal r i n g o r t o a hexa-

gonal tube. FOP the r ing , the f l e x u r a l r i g i d i t y D ( f o r p la tes ) i s

replaced by EI, The maximum def lec t ion equation f o r the tube wall (per

u n i t length of tube) can be w r i t t e n i n a dimensionless form s imi la r t o

the dimensionless s t r e s s equation. To obta in t h i s equation, l e t

A = t

3

With the proper subs t i tu t ions , Equation (20) y i e l d s the following

dimensionless equation

where ~ / e = Same a s before, and UE/G = 2 (I+ v) . This gives the maximum def lec t ion i n the funct ional form

Page 34: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

Equation (21), der ived i n Appendix A, i s app l i cab le t o any s i z e

hexagonal tube made of any l i n e a r l y e l a s t i c , i s o t r o p i c and homogeneous

ma te r i a l .

The t o t a l maximum tube d e f l e c t i o n ( A T ) ac ross t h e f l a t s i s o f

prime i n t e r e s t and i s merely twice t h e d e f l e c t i o n of one wal l ( E ~ . 21 ) ,

To o b t a i n a genera l and use fu l graph f o r t o t a l maximum tube

d e f l e c t i o n ( s i m i l a r t o Figure 7 f o r t he s t r e s s e s ) , we have assumed a

value of 0.3 f o r PoissonP s r a t i o (v ) . The r e s u l t i n g graph (Figure 8

on page 27) g ives A ~ E / ~ L versus L/% with ~ / t a s a parameter.

GRAPHICAL RESULTS FOR HEXAGONAL TUBE UNDER INTERNAL PRESSURE

Figure 6: M,/~L' Versus L/it f o r Hex Tube

Figure 9 ! Maximum Corner S t r e s s i n Hex Tube

Figure 8: Maximum Hex Tube Deflect ion Across F l a t s

DISCUSSION

The gene ra l equat ions derived i n t h i s r e p o r t a r e app l i cab le t o

e i t h e r a hexagonal tube o r a hexagonal r i n g submitted t o a cons tant ,

uniform i n t e r n a l pressure load. However, t h e equat ion f o r t h e corner

bending s t r e s s ( ~ q . 79) w i l l on ly apply t o t h e tube and t o a hexagonal

r i n g with a r ec t angu la r c ross sec t ion . A s o l u t i o n f o r corner s t r e s s e s i n

r i n g s with o t h e r c r o s s s e c t i o n s can be found i n Reference 3, Also, s ince

ou r primary i n t e r e s t i s i n hexagonal tubes , t he maximum s t r e s s and de-

f l e c t i o n equat ions and corresponding graphs apply only t o hexagonal tubes .

Equations t h a t apply t o hexagonal r i n g s a r e noted throughout t h e a n a l y s i s .

Page 35: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

FIGURE 8. Maximum I ~ C X ; I ~ O I I ~ ~ T u h ~ f l ~ c t ion Across F l a t s

Page 36: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

2 For t h e r i n g app l i ca t ion , the (1-v ) term i s equal t o one, A i s the

c ross-sec t ional a rea of t h e r i n g , and EI r ep laces t h e f l e x u r a l r i g i d i t y

f o r p l a t e s , D, Expected Accuracy

Varying accuracy can be expected f o r t h e d i f f e r e n t graphs and

t h e i r corresponding equat ions . These w i l l be d iscussed sepa ra t e ly .

2 The graph i n Figure 6 , bIo/pL versus (L/R), a s explained i n

Appendix B, i s very accura te and no more than 1 o r 2 percent e r r o r

can be expected.

The accuracy of t h e maximum s t r e s s e s p l o t t e d i n Figure 7 v a r i e s

i n d i f f e r e n t reg ions of t h e graph. A s was explained be fo re , Refer-

ence 3 claims t h a t t he e r r o r i n t h e shaded r eg ion of t h e graph

exceeds 10 percent--with t h e maximum e r r o r approximately equa l t o

20 percent . However, ou t s ide of t h e shaded region , i n Figure 7,

t h e accuracy should be w i t h i n 5 percent , with t h e r e s u l t s f o r t he

l a r g e r R / t and L/R r a t i o s being t h e most accura te . O u r s t r e s s re-

s a l t s a l s o compare very we l l wi th t h e r e s u l t s obtained i n Reference 2.

The accuracy of t he maximum d e f l e c t i o n equat ions and t h e cor-

responding graph i n Figure 8 i s hard t o p i n down. It 3s shown i n

Appendix B t h a t t h e d e f l e c t i o n s i n Figure 8 a r e approximately 5

percent low s i n c e the change i n l e n g t h of t h e tube wal l s due t o t h e

d i r e c t membrane s t r e s s was not included. The main source of e r r o r

i s encountered i n t h e corner s ince any d e f l e c t i o n o r r o t a t i o n of t h e

corner w i l l become magnified a t t h e c e n t e r of t h e wa l l and t h u s can

change t h e t o t a l maxirflum d e f l e c t i o n of t he wa l l by a n apprec iable

amount. Also, s ince it i s impossible t o a c t u a l l y make a p e r f e c t

Page 37: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 29 -

corner , t h e maximum tube wa l l d e f l e c t i o n may vary g r e a t l y f o r d i f f e r -

e n t tubes. For a w e l l cons t ruc ted tube wi th t i g h t corner to l e rances ,

it i s est imated t h a t t h e maximum d e f l e c t i o n p l o t i n Figure 8 should

be accura te t o approximately 20 percent o r l e s s .

Page 38: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

NOMENCLATURE

A,Ax = Cross-sect ional a rea of a hexagonal r i n g o r of a u n i t length

of t h e hexagonal tube

b = Outside r a d i u s a t corner

D = Flexura l r i g i d i t y of p l a t e

E = Young's Modulus

e = Distance between c e n t r o i d a l and n e u t r a l a x i s a t t h e corner

G = Shear Modulus = ~ / 2 ( 1 +v I = Moment of i n e r t i a of r i n g c ross s e c t i o n

L = One-half t h e l eng th of f l a t s i d e of tube

M = Bending moment

N = Membrane load i n wa l l and corner

P = I n t e r n a l pressure

P = Force on a s e c t i o n of t h e tube wal l o r corner

r , R = Corner r ad ius t o n e u t r a l a x i s , and mean corner r ad ius

Ri = I n s i d e r a d i u s a t t he corner

t = Tube wal l t h i ckness

U = S t r a i n energy

V = Shear f o r c e on tube wall a t corner

0 = Angular coordinate a t t h e corner

Y = Slope of s e c t i o n of tube wall

Y , y , b , A = Deflec t ion

u = S t r e s s

v = Poisson ' s r a t i o

a = Nonuniform shear s t r e s s d i s t r i b u t i o n f a c t o r , a = 1.2 f o r a r ec t angu la r c r o s s sec t ion . )

Page 39: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

ACKNOWLEDGEMENT

The author wishes t o thank M. T . Jakub f o r h i s t echn ica l a s s i s t -

ance i n the formulation of t h i s analys is .

Page 40: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

- 32 -

APPENDIX A

DERIVATION OF EQUATIONS

M- Equation U

For t h e wall

M = g - M i n t e g r a t e from x = o , L 2 0 '

For t h e corner

M - - M~ + ~ L R ( s i n o + JS cos o - 6 ) , i n t e g r a t e from - 2

71 0 = o , g , with dx = RdO.

a M - - For both moment equations - - 1 a M 0

Boundary Condition -- Slope = 0 a t point of app l i ca t ion of Mo.

6 cos 0 - 611 RdO

In tegra t ion y ie lds

Solving f o r Mo

Corner S t r e s s

The equation f o r pure bending s t r e s s i n a curved p l a t e i s

Page 41: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

For a rec tangular cross section,which i s what we have

and

e = R - r .

I f we l e t

Then we have

It i s more convenient t o measure from t h e cen t ro ida l a x i s when loca t ing

f i b e r s , so t h e d is tance from t h i s a x i s w i l l be c a l l e d y and w i l l be meas-

ured (+) outward.

Therefore

From t h i s a more s p e c i f i c s t r e s s r e l a t i o n can be obtained. Subs t i tu t ing

i n t o Equation ( 7 ) we ge t

Page 42: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

Where

M = M0 - - - Mo + p L ~ ( s i n O + 6 Cos 0 - 6 ) 2

Maximum Corner S t r e s s

The maximum corner stress occurs a t

A = t ( f o r t u b e )

Therefore, s u b s t i t u t i n g i n t o t h e genera l Equation ( 9 ) we g e t

p~ 6 cos 2 + p~ s i n + p~~ " t rnax

0 max

0 max 2L + Ri - =

P t

Since

- Ri

- R - - we f i n a l l y g e t 2

Page 43: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

To obta in Equation ( l o ) , we s u b s t i t u t e t h e first approximation f o r Z

i n t o t h e above equation.

Corner Deflection

The der ivat ion of t h e de f lec t ion equations f o r t h e loads P y , Px, and

MO follows.

0

Py Deflection

Loads f o r t o t a l s t r a i n energy, Equation (14)

v~ = P cos 0 Y

Y

Subst i tu t ing i n t o energy equation we ge t

- v2) p2 R~ s i n 2 0 p2 s i n 2 O (P R s i n 0 ) (P s i n 0 ) Y + Y - =I" [" 2 AEeR 2 AE

AER

i

I n t h e curved por t ion ds = Rd0. Since t h e corner i s f ixed a t t h e middle

ll we in tegra te from 0 = 0 t o O = 5.

Page 44: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

In tegra t ing and rearranging terms we get

Applying Cas t ig l i ano ' s Theorem we ge t t h e de f lec t ion

Px Deflect ion

To obta in t h e de f lec t ion i n t h e y d i r e c t i o n a dummy load Q must be

applied a t O = 0 i n t h e P d i rec t ion . Y

The required loads become

$ = - PxR(l - cos 0) + QR s i n O X

N~ = P cos O + Q s i n O X

X

v~ = - P s i n O + Q cos O X

X

- - aM - R s i n o a Q

_ - :: - s i n o

- = av cos O aa

Where

I n t h i s case , i n order f o r Cast ig l iano 's Theorem t o apply, we must in te -

g r a t e t h e t o t a l energy equation with respect t o t h e dummy load Q. This gives

t h e following equation.

Page 45: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

Subst i tu t ing i n t h e proper terms and l e t t i n g Q = %when in tegra t ing you

ge t t h e de f lec t ion equation f o r P . X

MO Deflection 0

Again a dummy load F i n t h e P d i rec t ion i s needed t o obta in t h e Y

desired def lec t ion.

The required loads become

M = Mg + FR s i n O 0

N = F s i n O

V = F cos O

- - aM - R s i n o aF

- - aN - s i n Q a F

a v - - a F

- cos 0

Where

Subst i tu t ing t h e values i n t o t h e t o t a l energy equation, d i f f e r e n t i a t i n g

ll with respect t o F,and in tegra t ing from O = 0 t o Q = c w e ge t

l T

6 - - MO

0

a N a M ' c[" a M N a N M - + N - - + - - - a F aF AE aF AER aF (1 - v 2 )

Page 46: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

Which y i e l d s

The t o t a l corner d e f l e c t i o n ( A ) i s t h e sum o f t h e ind iv idua l d e f l e c t i o n s

due t o t h e loads Py , Px, and M, . 0

S u b s t i t u t i n g t h e c o r r e c t va lues f o r P Px, and Me we g e t Y ' 0

Maximum W a l l Def lec t ion

The maximum t u b e wal l d e f l e c t i o n i s

Y max

Page 47: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

Y a E - ~ [ 0 . 0 3 ( ~ ) ( 1 - v2) - 0.292(1 - v2) + 0 . 2 6 2 ( ~ )

max - AE

Per u n i t length of t h e tube we l e t

Subs t i tu t ing these values i n t o t h e above equation we ge t

Y - a E - @! [,.03(!)(1 - v2) - 0.292(1 - v2) + 0.2621T) max ET

Rearranging t h e above equation we ge t

Page 48: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

- 40 -

APPENDIX B

Fixed Corner Assumption

The f l a t s i d e o f t h e tube w i l l undergo a change i n l eng th due t o

t h e d i r e c t membrane s t r e s s e s i n t h e wall , thus al lowing t h e corner t o

move r a d i a l l y outward. P a r t of t h i s change i n l eng th w i l l be taken up

by t h e outward d e f l e c t i o n and cu rva tu re .o f t h e tube wall . If t h e out-

ward d e f l e c t i o n accounts f o r a l l of t h e change i n l eng th of t h e s i d e ,

t h e corner w i l 1 , i n e f fec t , remain f ixed and w i l l not d e f l e c t . A r e l a t i o n

f o r t he change i n l eng th o f t h e f l a t s i d e can be derived a s fol lows:

o x = %/t

where Px = pL 0

o r ox = pL D/t The u n i t s t r a i n of a f l a t p l a t e i s now w r i t t e n f o r t h e wal l (Ref-

erence 6 , P O 5)

Ex = (1-3) ax@

To o b t a i n t h e t o t a l change i n l eng th of t h e f l a t s ide , we mul t ip ly

t h e u n i t s t r a i n t imes t h e length of t h e f l a t s ide .

o r upon s u b s t i t u t i o n

a L = ~ ~ s ~ . ( I - - ? ) ( P L ~ / E ~ )

For corner movement, t h e component o f A L i n t h e d i r e c t i o n o f de-

f l e c t i o n of t he ad jacen t tube wa l l i s of concern and i s

Page 49: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 41 -

For t h e e f f e c t on t h e t o t a l tube d e f l e c t i o n ( ac ross t h e f l a t s ) , a s

p l o t t e d i n Figure 8, we must mul t ip ly Equation (B-2) by 2 t o g e t

Neglecting any negat ive e f f e c t due t o t h e curva ture of t h e wa l l s

(which d e f i n i t e l y e x i s t s ) , Equation (B-3) w i l l add t o t h e t o t a l de f l ec -

t i o n of t h e tube (Figure 8 ) .

A sample c a l c u l a t i o n w i l l be made t o compare t h e a d d i t i o n a l def lec-

t i o n given by Equatfon (B-3) with the d e f l e c t i o n i n Figure 8 f o r which

t h e corner was assumed f ixed .

Sample Ca lcu la t ion

A l a r g e , thin-walled tube , wi th small corner r a d i u s and high in-

t e r n a l pressure , w i l l be used s ince t h i s w i l l g ive a r e l a t i v e l y l a r g e

change i n wal l length .

Tube Dimensions, In. Loading Conditions & Mater ia l Prop.

L = 2.5 p = 100 p s i

t = 0.25

R = 0.25 v = 0.3, ( 1 4 ) = 0.91

6 E = 20 x 1 0 p s i

L/R = 10,R/t = 1

From Figure 8 we can g e t t h e t o t a l tube d e f l e c t i o n wfth the corner

assumed f ixed

s A TE - - *I, - 1050, o r

AT = 13.1 x = 0.131 in.

Page 50: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 42 -

Using equation (B-3) we can ca lcu la te the def lec t ion due the change

i n length of the walls.

= 0.000683 in.

The t o t a l de f lec t i cn including ALy i s then

= 0.0131 + 0.000683

dT = 0.01378

The di f ference between the value i n Figure 8 and the value j u s t cal-

culated i s

0.00068? % Difference = 0.01378 x 100 = 4.95%

If the e f f e c t of the curvature were included, t h i s d i f ference would

be smaller yet .

Since the e r ro r introduced by assuming the corner t o be f ixed i s

small, the r e s u l t s neglect the membrane expansion,as it i s within the

accuracy of de f lec t ion r e s u l t s (see is cuss ion).

Corner Radial S t resses

I n the previous so lu t ion f o r f i b e r s t resses , it was assumed t h a t

plane cross sect ions remained plane and t h a t r a d i a l s t r e s s e s were equal

t o zero. I n r e a l i t y , r a d i a l s t r e s s e s a re present .

The exact solut ion, using s t r e s s functions i n Reference 5, w i l l be

used t o ca lcu la te the r a d i a l s t resses .

The f irst case i s f o r bending moments only.

Page 51: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

From Reference 5, p. 63, we g e t

where

M = -PxR (Reference 1, p. 16) 0

r = Any rad ius where s t r e s s i s des i r ed .

The second case i s f o r shear load, P only. Y' D

(3r = ( 2 Ar - 2B t -) s i n 0 (Reference 5, p. 74) P~ r3

where

b and N = R: -b2 t (R: -t b2) l n - R i

The t h i r d case i s f o r a n end load Px and a n end moment M' = PxR.

The moment M' i s r equ i red t o s a t i s f y t h e end condi t ions on t h e curved

beam. Since t h i s a d d i t i o n a l moment i s included here , it was sub t r ac t ed

from Mg t o o b t a i n t h e moment M i n Equation (B-4). When the r a d i a l 0

s t r e s s e s a r e superimposed, we w i l l g e t t h e c o r r e c t t o t a l r a d i a l s t r e s s .

The equat ion f o r t h e r a d i a l s t r e s s e s caused by Px i s der ived i n Refer-

ence 1, i n d e t a i l . Thfs equat ion i s

2B orpi = ( 2 ~ r - - t a) cos 0 r3 r

where t h e cons tan t s a r e

Page 52: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

and

The fou r th case i s f o r t h e r a d i a l s t r e s s e s caused by t h e p res su re ( p )

on t h e i n s i d e su r face of t h e corner . 2

- (1 - 5 ) (Reference 5, p. 60) P - b2-Rf

I f we l e t d = b/Ri and m = r /Ri, a l l of t he above r a d i a l s t r e s s equa-

t i o n s can be w r i t t e n a s

where

NM = ~ $ [ ( d ~ - l ) ~ - ld2 ( l n c I )~ ] ,

and Py = pL

A s expla ined i n Reference 1, t h e maximum r a d i a l s t r e s s e s w i l l occur

m 2 - - 6d d2 + 1 + J d 4 + 14dL + 1

f o r Equations (B-8, B-9, B-10).

The maximum pres su re r a d i a l s t r e s s quati ti on B-7) w i l l occur a t

r = R i . A sample c a l c u l a t i o n w i l l now be made t o compare t h e magnitudes

o f t h e r a d i a l s t r e s s e s and t h e memb~ane s t r e s s e s given i n Figure 7.

Page 53: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

Sample Calculat ion

Tube Dimensions

L = 2,5

Load Condf t fons

p = 50 p s i

From Figure 7 , t h e rr~aximwa membrane s t r e s s i s read a s

&ax/p = 275; Ul,lax = >9P950 p s i P

For t h i s partfculap. tube the rna.rfnm ~ a d i a l s t r e s s e s w i l l occur a t

m = 1.72, o r m = 1.311

and the mximm r a d i a l s t r a sses w e w calcula ted a s

crp =-50.2 p s i

o'pY = 755 p s i

or, = 178 p s i

OrPx = -50 p s i

I t i s apparent t h a t the r a d i a l s t r e s s e s a r e q u i t e small i n comparison

with t h e membrane s t r e s s e s . It should be noted t h a t a t the ins ide

surface ( a t r = R ~ ) , t he only r a d i a l s t r e s s i s t h a t caused by pressure,O, P

quati ti on B-7l0 A l l o thar r a d i a l s t r e s s e s a r e equal t o zero.

A t i n s ide surface

Page 54: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

Error I n M, Derivat ion

To f i n d t h e e r r o r introduced i n t h e de r iva t ion of Mo, we must f i r s t

reder ive %, using the more exact r e l a t i o n f o r the bending s t r a i n energy

i n a curved p l a t e which i s

We can then compare t h e two equations by using a small R / t t o see

how much e r r o r i s present .

New Derivation: The s t r a i n energy equation f o r a f l a t p l a t e a p p l i e s

t o the wall . The euqation is

U =(iM2/2D) dx

and the slope i s

I n t h e equat ion f o r the bending s t r a i n energy i n a curved p l a t e ,

d s = RdQ and the slope i s

Superimposing t h e s lopes i n Equations (B-11) and (B-12), t h e t o t a l s lope

a t x = 0 due t o Mo becomes

AEe corner

The r e l a t i o n s f o r M and the i n t e g r a t i o n l i m i t s a r e the same a s f o r

t h e previous M, der iva t ion , Now, applying the boundary condi t ion t h a t

t h e slope i s zero a t x = 0 , we g e t

Page 55: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

- 47 -

In tegrat ing, we ge t

For a un i t length of tube, we can say

A = t,

e RZ --

- 1 t z j and

Subst i tu t ing these values i n t o Equation (B-lh), we can obtain the

following dimensionless equation f o r Mo

t s (k)? (t) (Y) + (i$O()(l- %3@] (B-15)

A sample ca lcu la t ion f o r small R / t , using Equation (B-15), w i l l

now be made and the r e s u l t s w i l l be compared with those given i n Figure 6.

Sample Calculat ion

Let R / t = 1, Z = 0.098, L/R = 10, = 0.3

Subs t i tu t ing i n to Equatfon (B-15), w s ge t

This value compares with 0.184 f o r the same tube from the graph i n Figure 6 ,

Since t h i s d i f ference i s so small, we have used the f l a t p l a t e energy

equation f o r the corner i n ca lcula t ing Moo The value chosen f o r ~ / t has

l i t t l e e f f e c t on the r e s u l t s given i n Figure 6,

Page 56: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

REFERENCES

1. L. Goodman. "Structural Analysis of A Square Box Under In te rna l Pressure,It NAA-SR-TDR-7470, Atomics Internat ional , 06-08-62.

2. L. Goodman. "Structural Analysis of A Hexagonal Box Under In te rna l Pressure,I1 NAA-SR-MEMO-8670, Atomics Internat ional , 06-26-63.

3. F. B. Seely and J. 0. Smith. Advanced Mechanics Of Materials, John Wiley & Sons, Inc., New York, 1959.

4. S. Timoshenko. Strength Of Materials, D. Van Nostrand and Co., Princeton, New Jersey, 1941, Par t 11.

5. S. Timoshenko and J. N. Goodier. Theory Of E l a s t i c i t y , McGraw-Hill, New York, 1951.

6. So Timoshenko and S . Woinowsky-Krieger. Theory Of P la tes And Shel ls , McGraw-Hill, New York, 1959.

Page 57: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 263

DISTRIBUTION

No. o f Copies

2 5 Atomic Energy Commission, Washington D i v i s i o n of R e a c t o r Development Technology

J . J . Morab i to

D i v i s i o n o f T e c h n i c a l I n f o r m a t i o n E x t e n s i o n

D i v i s i o n of T e c h n i c a l I n f o r m a t i o n E x t e n s i o n

U K / U . S . F a s t Reac to r Exchange (12) EURATOM/U.S. F a s t R e a c t o r Exchange (35)

Douglas U n i t e d N u c l e a r , I n c .

C . L . Abel J . T . Baker W . A . Crossman T . C . H a l l M . M . McCartney (2)

Genera l Atomic D i v i s i o n

D . Coburn

Genera l E l e c t r i c Company, P l e a s a n t o n

L . Wi lk inson

Genera l E l e c t r i c Company, R i c h l a n d

D , W . C u r t i s s C . Gibbons J . C . Larrew GE F i l e Copy

Genera l E l e c t r i c Company, San J o s e Advanced P r o d u c t s O p e r a t i o n

J . H . F i e l d

Isochem I n c .

R . E . Olson

R ich land O p e r a t i o n s O f f i c e

L . R . Lucas (2) R . K . Sharp T e c h n i c a l I n f o r m a t i o n L i b r a r y

Page 58: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …
Page 59: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …

BNWL- 2 6 3

No. o f Covies

1 U n i v e r s i t y o f C a l i f o r n i a , L ivermore

James Hadley

3 7 B a t t e l l e - N o r t h w e s t

D . T . Aase F . W . Albaugh E . R . A s t l e y J . M . Ba tch W . A . Burns P. D . Cohn R . F. C o r l e t t G . J , C r a n d a l l G . M . Dalen J , M , Davidson D. R . Doman R . V . D u l i n L . M . F inch C . D . F lowers G . L . Fox F. C . Fox

F I . H a r t y R . J . Hennig D . L . Hovorka M . T . Jakub L . W . Lang W . B . McDonald K . R . Merckx L . T . P e d e r s e n R . E . P e t e r s o n W , E . Roake D . E . Simpson K , G o Toyoda J . M . Yatabe F . R . Zaloudek T e c h n i c a l I n f o r m a t i o n F i l e s ( 5 ) T e c h n i c a l P u b l i c a t i o n s ( 2 )

Page 60: STRUCTURAL ANALYSIS OF A HEXAGONAL TUBE OR RING …