structure-activity 3d-qsar relationships3d.pdf · 3 computer-chemie-centrum universität...

39
1 Computer-Chemie-Centrum Universität Erlangen-Nürnberg 3D 3D- QSAR QSAR Tim Clark Computer-Chemie-Centrum Universität Erlangen-Nürnberg Nägelsbachstraße 25 91052 Erlangen Computer-Chemie-Centrum Universität Erlangen-Nürnberg Structure Structure-Activity Activity Relationships Relationships Chemical Chemical Structure Structure Biological activity QSAR Physical property QSPR Computer-Chemie-Centrum Universität Erlangen-Nürnberg Molecules Gases Perfect Crystals Liquids Polymers Crystal Defects Amorphous Solids Easy Diificult to impossible Small Medium Large Organic Inorganic Hybrid Equilibrium Fast (τ < ns) Intermediate Size Structure Energy Enthalpy Dipole Moments Polarizability Binding Energy IR Spectra Transition States Activation Energy NMR Spectra Elastic Modulus uv Spectra Free Energy Computer-Chemie-Centrum Universität Erlangen-Nürnberg QSPR QSPR Methods Methods for for Polymers Polymers The Van Krevelen Method o D. W. Van Krevelen, Properties of Polymers, 3rd ed., (Amsterdam, Elsevier, 1990). The Askadskii Method o Andrey A. Askadskii, Physical Properties of Polymers: Prediction and Control (Amsterdam, Gordon and Breach Publishers,1996). Connectivity Indices o Jozef Bicerano, Prediction of Polymer Properties (New York, Marcel Dekker, Inc., 1993).

Upload: trankiet

Post on 13-Aug-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    3D3D--QSARQSAR

    Tim ClarkComputer-Chemie-Centrum

    Universität Erlangen-NürnbergNägelsbachstraße 25

    91052 Erlangen

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    StructureStructure--ActivityActivityRelationshipsRelationships

    ChemicalChemicalStructureStructure

    BiologicalactivityQSAR

    Physicalproperty

    QSPR

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Molecules

    Gases

    Perfect Crystals

    Liquids

    Polymers

    Crystal Defects

    Amorphous Solids

    Easy

    Diificult to impossible

    Small

    Medium

    Large

    Organic

    Inorganic

    Hybrid

    Equilibrium

    Fast (τ < ns)

    Intermediate

    Size

    Structure

    Energy

    Enthalpy

    Dipole Moments

    Polarizability

    Binding Energy

    IR Spectra

    Transition States

    Activation Energy

    NMR Spectra

    Elastic Modulus

    uv Spectra

    Free Energy

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    QSPR QSPR MethodsMethods forfor PolymersPolymers• The Van Krevelen Method

    o D. W. Van Krevelen, Properties of Polymers, 3rd ed., (Amsterdam, Elsevier, 1990).

    • The Askadskii Methodo Andrey A. Askadskii, Physical Properties of

    Polymers: Prediction and Control (Amsterdam, Gordon and Breach Publishers,1996).

    • Connectivity Indiceso Jozef Bicerano, Prediction of Polymer

    Properties (New York, Marcel Dekker, Inc., 1993).

  • 2

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Van Van KrevelenKrevelen• The Van Krevelen method is a

    group-additive method• Each group in the monomer is

    assigned an additive increment• The target property is obtained

    by simply summing the increments due to each fragment in the monomer

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Van Van KrevelenKrevelen

    HC CH2

    n

    Polystyrene:

    HC

    CH2+

    Group 1

    Group 2

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Van Van KrevelenKrevelen (1)(1)Polystyrene:

    HC

    CH2+

    M=90.12V=82.15

    M=14.03V=15.85

    ( )

    1( )

    1

    N groups

    ii

    N groups

    ii

    MMV V

    ρ =

    =

    =∑

    Density, ρ

    -314.03 90.12 1.06 g cm15.85 82.15

    ρ += =+

    Exp. = 1.05 g cm-3

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Van Van KrevelenKrevelen (2)(2)Polystyrene:

    HC

    CH2+

    M=90.12Yg=3500

    M=14.03Yg=2700

    ( )

    ,1

    ( )

    1

    N groups

    g ig i

    g N groups

    ii

    YYT

    V M

    =

    =

    =∑

    Glass-transitiontemperature, Tg

    2700 3500 362 K14.03 90.12g

    T += =+

    Exp. = 373±2 K

  • 3

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Van Van KrevelenKrevelen (3)(3)• Advantages

    o Fast, easyo Usually accurate

    • Disadvantageso Missing parameters for new groupso Not applicable for random polymers or

    copolymers

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AskadskiiAskadskii• The Askadskii method treats each

    monomer as a series of harmonic oscillators

    • The thermal movement related to each harmonic oscillator is in turn related to the glass-transition temperature

    • After some manipulation, this concept leads to a simple additive model

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AskadskiiAskadskii

    ( / )

    1( / ) ( / )

    1 1

    N atoms groups

    ii

    g N atoms groups N atoms groups

    i i ii i

    VT

    a V b

    =

    = =

    ∆=

    ∆ +

    ∑ ∑

    Glass-transitiontemperature, Tg

    = van der Waals volume of atom or group , semiempirical coefficients

    i

    i i

    V ia b∆

    =

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Typical errorsTypical errors

    ±13.23%-Surface tension

    ±2.99%-Thermal decomposition temperature

    ±6.09%±5.22%Dielectric constant

    ±5.82%±3.71%Tg

    ±4.32%±7.21%Heat capacity (solid)

    ±5.12%±5.62%Heat capacity (liquid)

    ±1.02%±0.66%Refractive Index

    ±3.42%±1.58%Density

    AskadskiiVan KrevelenProperty

  • 4

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BiceranoBicerano• The Bicerano method is based on

    “electrotopological indices”, which were introduced by Kier and Hall:

    o Molecular Structure Description, L. B. Kier and L. H. Hall, Academic Press, San Diego, 1999.

    • Topological indices are derived from molecular bonding graphs

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    DescriptorsDescriptors: 2D: 2D• Topological Descriptors

    o e.g. Kier und Hall:oχn :

    n different types of descriptor that describe mainly the branching in the molecule

    oκn:“shape” descriptors

    oE-States :“electronic“ descriptors that describe the acceptor properties of the atoms.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Topological indicesTopological indices• Graph-theoretical invariants

    • W Wiener Indexo Oldest topological indexo Corresponds to surface area of moleculeo Dij is the bond distance between atoms i

    and j

    1 1

    12

    N N

    iji j

    W D= =

    = ∑∑Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Topological indicesTopological indices• χ molecular connectivity index (Kier, Hall)

    o Possibility of molecules for bimolecular interaction

    o σi number of sigma electrons, hi number of connected hydrogens

    … and many more• Used frequently in published models but

    often of limited use in practical application due to difficult interpretation of descriptorso The inverse QSAR problem: going from model

    to compound

  • 5

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    KierKier and Hall and Hall TopologicalTopologicalIndicesIndices

    • Molecular connectivity chi and kappa indices (1995)

    o L. H. Hall and L. B. Kier, The Molecular Connectivity Chi and Kappa Shape Indexes in Structure-Property Modeling, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd (eds), VCH, New York, 1999.

    o Connectivity indices intended primarily to describe the molecular shape.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    χχ (connectivity) Indices: (connectivity) Indices: DefinitionsDefinitions

    = number of skeletal (non-hydrogen) neighbor atoms to atom i iδ

    ( )0

    1

    1N atoms

    i i

    χδ=

    = ∑

    Zeroth order chi index:

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    χχ (connectivity) Indices: (connectivity) Indices: DefinitionsDefinitions

    = number of skeletal (non-hydrogen) neighbor atoms to atom and are the two atoms involved in bond i i

    i j ijδ

    ( )1

    1

    1N bonds

    ij i j

    χδ δ=

    = ∑First order chi index:

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    χχ Indices: Heat of Indices: Heat of Atomization for Atomization for AlkanesAlkanes

    1 4

    4 5 5

    286.38 12.46 1.515

    1.142 2.474 2.026 114.38atom C P

    PC C PC

    H N χ χ

    χ χ χ

    ∆ = − +

    + − − +

    Higher order indices depend on paths (P) or clusters (C) in the molecular graph.

    Standard deviation to experiment = 0.46 kcal mol-1

  • 6

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    κκ (shape) Indices: Paths(shape) Indices: Paths

    141076

    131176

    6666

    3756

    4656

    3556

    4556

    3456

    3P2P1PNCMolecule

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    κκ (shape) Indices: (shape) Indices: DefinitionsDefinitions

    max min

    1

    , = maximum and minimum possible indicesof order for a given

    is the first order path number for molecule

    m m

    C

    i

    P Pm N

    P i

    ( )( )( )

    21 11 max min

    2 21 1

    12 C C

    i i

    N NP P

    P Pκ

    −= =

    First order kappa index:

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    κκ (shape) Indices: (shape) Indices: DefinitionsDefinitions

    max min

    1

    , = maximum and minimum possible indicesof order for a given

    is the first order path number for molecule

    m m

    C

    i

    P Pm N

    P i

    ( )( )( )

    ( )

    22 22 max min

    2 22 2

    1 22 C C

    i i

    N NP P

    P Pκ

    − −= =

    Second order kappa index:

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    κκ (shape) Indices: (shape) Indices: DefinitionsDefinitions

    ( )3 3

    3 max min23

    4

    i

    P P

    Pκ =

    Third order kappa index:

    ( )( )( )

    23

    23

    1 3 for is oddC C C

    i

    N NN

    − −=

    ( )( )( )

    23

    23

    2 3 for is evenC C C

    i

    N NN

    − −=

  • 7

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ElectrotopologicalElectrotopological Indices; the EIndices; the E--StateState

    = number of hydrogens bonded to atom

    ,

    where is the number of valence electrons for atom

    iv vi i i

    vi

    h i

    Z h

    Z i

    δ = −

    O

    O

    = 1, 1vδ δ =

    = 1, 6vδ δ =

    = 3, 4vδ δ =

    = 2, 6vδ δ =

    = 2, 2vδ δ =

    = 1, 1vδ δ =

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    δδ and and δδvv

    17sp316sp226sp15sp225sp3

    35sp324sp

    34sp244sp3δδvHybridizationAtom

    C

    C

    C

    N

    N

    N

    O

    O

    F

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Intrinsic (I) StatesIntrinsic (I) States

    ( )2 12 vNI δδ

    +

    =

    i jij

    ij

    I II

    r−

    ∆ =

    = principal quantum numberN

    = number of bonds between

    atoms and (the topological distance)

    ijr

    i j

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    The The ElectrotopologicalElectrotopological (E(E--)State)State

    ( )

    1

    N atoms

    i i ijj

    S I I=

    = + ∆∑= the E-State for atom S i

  • 8

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    EE--StatesStates

    O

    O

    1.78

    0.48

    1.38 4.41

    -0.20

    9.82

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BiceranoBicerano• The Bicerano method uses chi and

    kappa indices, I-states and E-statesto calculate the properties of polymers.

    • E.g molar volume:

    0 0 1

    1

    3.64277 9.798697 8.85282921.693912 0.978655

    v

    vMV

    VN

    χ χ χ

    χ

    = + −

    + +

    ( )

    ( ) ( ) ( ) ( ) ( )

    where24 18 5 7 16

    2 3 5 5 11 7( 1)MV Si S silfone Cl Br

    backbone ester ether carbonate C C cyc fused

    N N N N N N

    N N N N N N− −

    =

    = − − − −

    + + + + − − −

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Typical errorsTypical errors

    ±13.23%

    ±2.99%

    ±6.09%

    ±5.82%

    ±4.32%

    ±5.12%

    ±1.02%

    ±3.42%

    Askadskii

    --Surface tension

    --Thermal decomposition temperature

    ±1.77%±5.22%Dielectric constant

    ±5.57%±3.71%Tg

    ±5.57%±7.21%Heat capacity (solid)

    ±5.55%±5.62%Heat capacity (liquid)

    ±0.63%±0.66%Refractive Index

    ±2.10%±1.58%Density

    BiceranoVan KrevelenProperty

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Internet Internet SourcesSources• Properties available

    o http://www.dtwassociates.com/?phb_list_of_properties

    • Interactive demo for Askadskiicalculationso http://mzchem.com/index.wm?opt=8&subopt=0&page=main_1_7.h

    tm

    • Handbook with calculation detailso http://www.chemcad.fr/produits/documentation/dtwassociates-

    ppphand/ppphb_dug.pdf

  • 9

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BCUT BCUT DescriptorsDescriptorsAdjacency matrix:

    •Diagonal elements:•Atomic number•Atomic charge•Atomic polarizabililty•H-bond properties

    •Off-diagonal elements•(Lewis bond orders)/10 for bonded atoms•0.001 for all other elements

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BCUT BCUT DescriptorsDescriptors

    8.001.1.001.001.001.001.001.001.001

    8.2.001.001.001.001.001.001.001

    6.001.001.001.1.001.001.001

    6.001.001.001.001.1.001

    7.15.001.001.001.15

    6.15.001.001.001

    6.15.001.001

    6.15.001

    6.15

    6

    N

    O

    O H

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BCUT BCUT DescriptorsDescriptors• Eigenvalues of the adjacency matrix• The highest and the lowest eigenvalues are useful ADME descriptors

    • BCUTs may be either 2D, as described above, or 3D

    • BCUTs are also known as Burden Eigenvalue descriptors

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    3D3D--QSAR and QSPRQSAR and QSPR

  • 10

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    WhatWhat isis ChemicalChemicalStructureStructure??

    • 2D-Structureo Atoms, Bonds (“Connection Tables“)

    • 3D-Structureo Atomso Coordinates

    • Molecular surfaces

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Molecular StructureMolecular Structure

    CH3

    HH2N

    HO OSMILES: N[C@@H](C)C(=O)O (L-Alanine)

    CH3

    HH2N

    HO O

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Molecular StructureMolecular Structure

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Molecular StructureMolecular Structure

  • 11

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    3D3D--QSARQSAR

    • 3D must be better than 2D (?)o We know the “real” structure of the

    moleculeo Therefore, we also know exactly its

    binding propertieso ….. but do we ??

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Multiple MinimaMultiple Minima

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    TheThe TargetTarget MoleculeMolecule

    N

    O

    ZrN

    O

    CH2Ph

    PhH2C

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    TheThe TargetTarget MoleculeMolecule

    -142 -144 -146 -148 -150 -152 -154 -156 -158 -160

    Heat of Formation (kcal mol-1)

    0

    1

    2

    -161.9

  • 12

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    An Easy MoleculeAn Easy MoleculeCH3

    Cl

    Br O

    CH3

    H3C

    H3C

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    C8

    C9C10

    C10a

    C7a

    C7

    C11

    C11a

    C6a

    C6

    C12

    C12a

    C5a

    C5

    C1

    C2

    C3

    C4

    OH

    H3C

    O OH

    NMe2

    OHO

    OH

    O

    NH2

    OH

    C8

    C9C10

    C10a

    C7a

    C7

    C11

    C11a

    C6a

    C6

    C12

    C12a

    C5a

    C5

    C1

    C2

    C3

    C4

    OH

    H3C

    O OH

    NMe2

    OHO

    O

    O

    NH2

    OH

    Tetracycline Tetracycline –– a nota not--soso--easy easy MoleculeMolecule

    D AC B

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    TwoTwo ConformationsConformations(just (just forfor thethe rings)rings)

    “Extended”• Favored by Solvation• More stable in solution

    “Twisted”• More stable in vacuo• Consistently 2.5 –3.0

    kcal mol-1 less stablethan extended in water

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    SixSix TautomersTautomers

    OH O OOHOH

    O

    NH2

    OH

    NMe2HH

    CH3HO

    OH O OOHOH

    O

    NH2

    O

    NHMe2HH

    CH3HO

    OH OH OOOH

    O

    NH2

    O

    NHMe2HH

    CH3HO

    OH O OOOH

    O

    NH2

    OH

    NHMe2HH

    CH3HO

    OH O OOOH

    OH

    NH2

    O

    NHMe2HH

    CH3HO

    OH O OHOOH

    O

    NH2

    O

    NHMe2HH

    CH3HO

    N

    1.7

    Energy (kcal mol-1)

    0.0

    2.6

    ~ 6

    6.4

    Ze

    Zd

    Zc

    Zb

    Za

  • 13

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    BombykolBombykol• Sexual Pheromone of the silkworm bombyx

    morio 11 rotatable bondso Roughly 8,000 conformations

    OH

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Biological ConformationBiological Conformation

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    3D 3D SimilaritySimilarity TechniquesTechniques• Search for similarity with the target

    pharmacophore• Pure shape similarity (www.eyesopen.com)• Electrostatic similarity and similarity of the

    electron density (Sanz, Carbo, Richards)Carbo Index:

    2 2

    A BAB

    A B

    P P dR

    P d P d

    τ

    τ τ=

    ∫∫ ∫

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    How Much Difference Does How Much Difference Does Conformation Make?Conformation Make?

    350 400 450 500 550Predicted boiling point

    -17

    -16

    -15

    -14

    -13

    -12

    -11

    -10

    -9

    AM

    1 H

    eat o

    f For

    mat

    ion

    (kca

    l mol

    -1)

    H2NNH

    NH2

    Boltzmann-averagedpredicted boiling point = 444±36°

  • 14

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Where do we get 3DWhere do we get 3D--Structures?Structures?

    • X-Ray crystal structures• 2D-3D conversion

    o CORINAo CONCORD

    • Geometry optimizationo Force-Fieldo QM

    o Semiempiricalo Density Functionalo Ab initio

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ClassicalClassical MechanicsMechanics (Force (Force Fields)Fields)

    • “Atoms and springs” mechanical model of molecules

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Potential Functions Potential Functions bond stretch bond stretch undund angle bendangle bend

    • Bond stretch

    • Angle bend

    0 2( )stretch stretchV k r r= −0 2( )bend bendV k θ θ= −

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Potential Potential FunctionsFunctionsTorsionsTorsions

    N = Periodicity of the barrier (e.g. Ethane = 3)

    One torsionalcontribution per ABCD combination

    [ ]1 cos( )tors torsV k Nφ= +

  • 15

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Potential Potential FunctionsFunctionsvan der van der WaalsWaals//repulsionrepulsion

    D = van derWaals-well depth,

    R = van derWaals-Radius

    12 6

    . 2A B A BvdW A BAB AB

    R R R RV D Dr r

    ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Potential Potential FunctionsFunctionsvan der van der WaalsWaals//repulsionrepulsion

    Distance

    Pote

    ntia

    l Ene

    rgy

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Potential Functions Potential Functions Coulomb InteractionsCoulomb Interactions

    • Charge-charge

    • Dipole-Dipole

    i jCoulomb

    ij

    q qV

    rε=

    Bond dipole

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ForceForce--FieldField methodsmethods• Molecular Mechanics:

    o Structures and energies can be more exact than experiment.

    o Very well suited for conformational problems, relative stability of isomers etc.

    o Cannot extrapolate; are only aplicable for classes of compounds that are experimentally well characterized.

    o Usually not suitable for reactions.

  • 16

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ForceForce--FieldField methodsmethods• Conjugated π-systems:

    o Each π-System requires its own force fieldo The force field for a π-bond depends on the

    bond ordero A simple MO-technique is used to calculate

    bond orders

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ForceForce--FieldField methodsmethods

    • Molecular dynamics:o Long simulations are necessary in order

    to obtain good statistical samplingo Systems (e.g. enzyme + water) are often

    very large (> 10.000 atoms)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Conformational SearchingConformational Searching• A molecule with N three-fold rotatable bonds

    has 3N possible conformations that must be searched

    • If we need 1 µsec for each conformation, we need one hour for a molecule with 20 rotatable bonds, 8×1013 years for one with 50

    • A molecule with 50 rotatable bonds corresponds to (Gly)25

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Conformational SearchingConformational Searching• Simulated annealing to find the most stable (“global”) minimum

    • “Dead-end” search algorithms to eliminate high-energy conformations early

    • Stochastic search algorithms such as GAs

    • Still only possible with force fields

  • 17

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ForceForce--FieldField methodsmethods• Molecular dynamics:

    o Movements of the atoms (or molecules) are calculated from the forces and velocities

    o Integration over long simulation times gives thermodynamic quantities

    o “Global” minima can be found by Simulated Annealing

    o reliable thermodynamic quantities can be obtained from Free Energy Perturbation (FEP) calculations

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Molecular DynamicsMolecular Dynamics• Solve Newton’s equations of motion by numerical

    integration for the classical mechanical molecular model• Need to include solvent molecules for biological systems• Often use periodic boundary conditions to avoid edge

    effects• “long” simulations are of the order of 10 nanoseconds• “interesting” protein movements are of the order of

    microseconds to milliseconds• Bottleneck are the long-range Coulomb interactions (use

    Particle-Mesh Ewald, PME)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ForceForce--FieldField methodsmethods• Monte-Carlo (MC):

    o Random movements are tried and selected according to a thermodynamic test (Boltzmann-distribution).

    o Simulations usually reach equilibrium fatserthan MD.

    o No kinetic information is available.o Can be used for Simulated Annealing or Free

    Energy Perturbation –calculations.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Monte Carlo Calculations: an exampleMonte Carlo Calculations: an example

    • The “dartboard method” for calculating π

    x

    y

    • green area = π r2/4• integrate over the greenarea for r=1 → π /4

    • ∴

    ( )1 1

    0 0

    4 ,x y

    f x y dxdyπ= =

    = ∫ ∫

    ( ) ( )2 2, 1 if 1f x y x y= + ≤0 otherwise=

    ••

    • •

    ••

  • 18

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Monte Carlo Calculations: an exampleMonte Carlo Calculations: an example

    • Calculate π

    • where

    ( )1 1

    10 0

    44 ( , ) ,N

    i iix y

    f x y dxdy f x yN

    π== =

    = ≈ ∑∫ ∫

    ( ) 2 2, 1 if 1f x y x y= + ≤0 otherwise =

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Monte Carlo Calculations: an exampleMonte Carlo Calculations: an example

    3.141592654

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ErrorsErrors

    1 500 1000 1500 2000

    Number of Cycles/106

    -15

    -13

    -11

    -9

    -7

    Log 1

    0(er

    ror)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Calculational Techniques: Calculational Techniques: Property PredictionProperty Prediction

    1. Quantitative Structure-Activity and Structure-Property-Relationships (QSAR and QSPR)

    2. Free-Energy Perturbation Calculations (MD or MC)

    3. Kinetic or mesoscopic modeling

  • 19

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MolecularMolecular Orbital Orbital MethodsMethods• Linear Combination of Atomic Orbitals (LCAO)o Molecular orbitals (MOs) are calculated

    as linear combinations of atomic orbitals(AOs) .

    o AOs are usually known as the basis set .o This approximation was introduced by

    Erich Hückel.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MolecularMolecular Orbital Orbital MethodsMethods• Linear Combination of Atomic Orbitals (LCAO)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HHüückelckel--TheoryTheory

    • “π-only”-Theory (each atom is represented by a single p-Orbital, hydrogens are ignored).

    • Overlap (β) between bonded atoms is constant, otherwise zero.

    • Hückel-theory is a one-electron theory.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HHüückelckel--TheoryTheory: : EthyleneEthylene

  • 20

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HHüückelckel--MatrixMatrix

    C2 C3

    C4

    C1

    H

    H

    H

    H

    H

    H

    1

    αβ00C4βαβ0C30βαβC200βαC1C4C3C2C1

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HHüückelckel--MatrixMatrix

    αβ00C4βαβ0C30βαβC200βαC1C4C3C2C1

    Diagonal-isation

    -.37170.6015-.60150.3717ϕ4

    0.6015-.3717-.37170.6015ϕ3

    -.6015-.37170.37170.6015ϕ2

    0.37170.60150.60150.3717ϕ1

    α+1.618β

    α+0.618β

    α-0.618β

    α-1.618β

    ψ4ψ3ψ2ψ1

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ButadieneButadiene--MOsMOs

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MolecularMolecular Orbital Orbital MethodsMethods• Self Consistent Field (SCF)

    o Each electron “feels” the mean field of all the others (also known as the mean-field approximation).

    o The SCF-problem ca.o Elektron-Elektron-Abstoßung wird durch

    die SCF-Methode überschätzt.

  • 21

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MolecularMolecular Orbital Orbital MethodsMethods• Self Consistent Field (SCF)

    e-

    e-e-

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MOMO--MethodsMethods• Pople-Pariser-Parr (PPP)

    o SCFo π-onlyo For planar moleculeso Used mainly for absorption spoectra

    (still used extensively in industry!)o Very strongly parameterized

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MOMO--MethodsMethods• Complete Neglect of Differential Overlap

    (CNDO)o J. A. Pople, R. Segal, J. Chem. Phys. 1965, 43,

    S136-S149. o 3-dimensional theory (σ- and π-systems)o LCAO-SCFo Only the repulsion integrals (µµ|λλ) are

    considered and are all equal for a given elemento p-Orbitals are treated as if they were s- for

    the two-electron integrals

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CNDOCNDO--IntegralsIntegrals• Of all the possible integrals (µν⏐λσ), only (µµ⏐λλ) are used

    AB(µµ λλ)=γ

    AA A AIP EAγ = −

    ( )2AA BB

    ABAB AA BBrγ γγ

    γ γ+

    =+ +

  • 22

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MOMO--MethodsMethods• Intermediate Neglect of Differential

    Overlap (INDO)o J. A. Pople, D. L. Beveridge und P. A. Dobosh, J.

    Chem. Phys. 1967, 47, 2026 – 2033.o 3-dimensional theorie (σ- und π-systems)o LCAO-SCFo Only the repulsion integrals (µµ|λλ) are

    considered and are all equal for a given elemento One-center integrals are parameterized

    according to their type

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    INDOINDO--IntegralsIntegrals• Of all the possible integrals (µν⏐λσ), only (µµ⏐λλ) are used

    • 5 Types :

    •Gss•Gsp•Gpp•Gp2

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MOMO--MethodenMethoden• Neglect of Diatomic Differential Overlap (NDDO)o J. A. Popleo 3-dimensional theory (σ- and π-systems)o LCAO-SCFo Of all the repulsion integrals, only

    (µν|λσ) (µ and ν are on the same atom and λ and σ are also on one atom) are used

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    NDDONDDO--IntegralsIntegrals• Of all the possible integrals (µν⏐λσ), only those in which µ and ν are on the same atom and λ and σare also centered on one atom are considered.

    • The same 5 types (for an sp-basis set) as for INDO

    • Integrals are calculated as a multipole-multipoleinteraction (up to quadrupole)

    • Also available for d-orbitals

  • 23

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Semiempirical Semiempirical MOMO--MethodsMethods

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    NDDONDDO--Methods(Methods(s,ps,p))MNDO MNDO/H§

    AM1§ PM5§,¶PM3§,¥≡ ≅

    § Gaußian functions added to the core-core repulsion¥ Classical torsional potential used for amide bonds (C-N) to correct the rotation barrier¶ Classical two-center dispersion potential

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO• M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc., 99, 4899, (1977).o NDDO-based methodo Element-specific parameterizationo Multipole approximation for the two-

    electron integrals o s-, p-Basis seto “Frozen core”-approximation

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDO: MNDO: ImprpovementsImprpovementsoverover MINDO/3MINDO/3

    o Geometries – especially bond angles -are reproduced better than in MINDO/3.

    o Heats of formation are generally more accurate.

    o MINDO/3’s strong tendency to make non-classical bridged structures is corrected.

  • 24

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO--WeaknessesWeaknesses• Rotation barriers are too low

    • π-Systems are often calculated to be non-planar

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO--WeaknessesWeaknesses• Rotation barriers are too low• π-Systems are often calculated to be non-planar

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO--WeaknessesWeaknesses• Repulsion between lone pairs is too weak

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO--WeaknessesWeaknesses• Hydrogens bonds do not exist in MNDO

  • 25

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO--WeaknessesWeaknesses• Rings are generally too flat with inversion barriers that are too low. Cyclobutane is predicted to be planar.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MNDOMNDO-- ““Periodic TablePeriodic Table““

    H, He, Li, Be, B, C, N, O, FNa, Mg, Al, Si, P, S, Cl K, Ca,

    Zn, Ge, Br Cd, Sn, IHg, Pb

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1AM1• (Austin Model 1) M.J.S. Dewaret.al. J. Am. Chem. Soc.,107 3902 (1985).o Quantum mechanically almost identical

    to MNDOo Core-core repulsion modified by

    additional Gaussian functions as introduced in MNDO/H by Burstein and Isaev

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1: AM1: ImprovementsImprovements OverOverMNDOMNDO

    o Rotation barriers are higher than in MNDO, but still too low.

    o π-Systems are reproduced better than in MNDO, but are often still not completely planar.

    o Hydrogens bonds give roughly the right energies – however, the geometry is wrong.

  • 26

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1AM1--WeaknessesWeaknesses• Geometries of hydrogen bonds

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1AM1--WeaknessesWeaknesses• Very poor geometries for P- and S-compounds

    • Very poor energies for hypervalent compounds including sulfones

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1AM1--WeaknessesWeaknesses• The energies of nitro-compounds are reproduced poorly.

    • Alkyl amines are too flat.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AM1AM1--””Periodic TablePeriodic Table““

    HB, C, N, O, F

    Na, Mg, Al, Si, P, S, Cl Zn, Ge, Br

    Sn, IHg

  • 27

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PM3PM3• (Parameterized Method 3) J.J.P. Stewart, J. Comp. Chem., 10, 209 (1989); 12, 320 (1991).o Quantum mechanically identical to AM1o Automatic parameterisation with more

    degrees of freedom than for AM1o Parameterized with special attention

    paid to hypervalent compounds, hydrogen bonds and nitro-compounds

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PM3: PM3: ImprovementsImprovements OverOverAM1AM1

    o Geometries for P- und S-compounds are better

    o Geometries for hydrogen bonds are improved over AM1

    o Results optimized for nitro-compounds

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PM3PM3--WeaknessesWeaknesses• Amide-CN-rotation barrieren are extremely small (force-field correction).

    • Amide-nitrogens are calculated to be pyramidal.

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PM3PM3--WeaknessesWeaknesses

    • Rotation barriers are far too low.

    • π-Systems are often calculated to be non-planar.

    • Rings are too flat.

  • 28

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PM3PM3--””Periodic TablePeriodic Table““

    H, He, Li, Be, B, C, N, O, FNa, Mg, Al, Si, P, S, Cl

    Ca,Zn,Ga,Ge,As,Se,BrCd,In,Sn,Sb, Te, IHg, Tl,Pb, Bi

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    NDDONDDO--MethodsMethods ((s,p,ds,p,d))MNDO MNDO/d

    AM1

    PM3

    AM1(d)

    Voityuk und Rösch, nur Mo

    AM1(d)

    V, Fe, Cu, Mo, Pd, Ag, Pt

    FujitsuPM3-tmWave-functionFirst-row transition metals(only parameterized for geometries)

    Al, Si, P, S, Cl, Br, I

    AM1*

    Erlangen, H-F, Al-Cl, Ti, Zr, Mo

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Ab Ab initioinitio--MOMO--MethodsMethods

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HartreeHartree--FockFock--LimitLimitenergy

    experiment

    SCF-energies

    Hartree-Fock limit

    Correlation energy

  • 29

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CorrelationCorrelation• Dynamic correlation

    o Results directly from the overestimation of electron-electron repulsion in SCF-Theory.

    • Non-dynamic (static) correlationo Only significant in systems with near-

    degenerate partially occupied orbitals(e.g. biradicals).

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Dynamic CorrelationDynamic Correlation• Semiempirical MO-Methods

    o Is included by scaling the one- and two-center integrals.

    • Semiempirical CI-Calculationso Therefore only treat static correlationo … and are therefore easily interpreted

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    abab initioinitio MO TheoryMO Theory• Approximate solution to the time-independent

    electronic Schrödinger equationo Linear Combination of Atomic Orbitals (LCAO)o Usually single Hartree-Fock reference configuration

    based on a single Slater determinanto Correlation included either perturbationally (MPn) or

    using Coupled-Cluster theory (e.g. CCSD(T))

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    abab initioinitio MO Theory: MO Theory: ApproximationsApproximations

    • Linear Combination of Atomic Orbitals (LCAO)

    +

  • 30

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    abab initioinitio MO Theory: MO Theory: ApproximationsApproximations

    • Slater Determinants and Self-Consistent-Field Theoryo Multi-electron wavefunction is approximated as a

    series of one-electron wavefunctions (orbitals)o Each electron interacts with the mean field of

    all other electrons (Hartree-Fock Theory)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HartreeHartree--FockFock--LimitLimit

    Ener

    gy →

    SCF-energies

    Hartree-Fock limit

    Correlation energy

    Experiment

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ab ab initioinitio ComputationalComputationalLevelsLevels

    Correlation →

    Basi

    s Se

    t →

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    abab initioinitio MO TheoryMO Theory• The method can be improved systematically so that

    convergence of the results can be recognized• Therefore, extrapolation schemes give very high

    accuracy• Scaling of methods with correlation is typically worse

    than N4• Linear scaling (often local) methods are now available

    for many techniques• Limit for problems that need extensive geometry

    optimizations or second derivatives lies by about 200 atoms

  • 31

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Density Functional Theory Density Functional Theory (DFT)(DFT)

    • The properties of a molecule can be derived from its ground-state electron density (1st Hohenburg-Kohn theorem)o Correlation is treated implicitly as a correction to the energy of

    a uniform electron gaso Usually necessary to integrate the density numericallyo The energy is given by a functional of the electron densityo This functional is unknowno DFT is usually performed analogously to Hartree-Fock theory

    using Kohn-Sham orbitals• Moderately parallel because of the numerical

    integrations (4-8 processors)• Roughly 102 faster than comparable ab initio for large

    systems

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Semiempirical MOSemiempirical MO--TheoryTheory• Usually based on the NDDO approximation

    o Current methods introduced in the 70’so Up to 104 faster than DFTo Scales with N3 but most implementations are closer to N2o Applications with 1,000 atoms are not unusual, 500 standardo Linear scaling can be attained either by divide-and-conquer or by

    localized MO-techniqueso Correlation is treated implicitly by scaling the two-electron

    integralso Heavily parameterized to fit experimental data

    o Heats of Formationo Ionization potentialso Dipole momentso Molecular structures

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Semiempirical Semiempirical GeometryGeometryOptimizationOptimization

    • 177 atoms• no symmetry

    • initial geometry from a GUI-builder

    •Elapsed time (single 2 GHz Xeon under Windows) 60 minutes

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Weaknesses of Semiempirical Weaknesses of Semiempirical MOMO--TheoryTheory

    • Parameterized – extrapolation can lead to wild and unpredictable errors

    • Weak interactions (dispersion) not reproduced at allo but not in DFT either

    • Hydrogen bonds either not reproduced (MNDO), wrong geometry (AM1) or wrong energy (PM3)

    • Bond rotation barriers are too low• Nitrogen pyramidalization etc. is a problem

  • 32

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    How do we use 3DHow do we use 3D--Information?Information?

    • QSAR usually requires that we describe each molecule with a fixed number of descriptors

    • …. but molecules have different numbers of atoms

    • Three possible strategies:o Specific descriptorso Global descriptorso Grids

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Specific DescriptorsSpecific Descriptors• Require a knowledge of what is important. E.g.o “Bite” angles for diphosphine ligandso HOMO energies (or coefficients) for

    reactions with electrophileso Spin densities for radical reactionso Atomic charges for important atomso Double-bond order

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ZieglerZiegler--NattaNatta

    ZrRActivity depends onthis angle (linear QSAR)

    Local model,only works forzirconium!

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Global DescriptorsGlobal Descriptors• Describe a fundamental property of the

    molecule that hopefully is related to the target property or activityo Molecular weight, volume, surface area,

    polarizability, dipole moment, refractive index ……

    o Descriptors constructed (invented) to describe molecular properties

    o Similarity

  • 33

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    3D 3D SimilaritySimilarity TechniquesTechniques• Search for similarity with the target

    pharmacophore• Pure shape similarity (www.eyesopen.com)• Electrostatic similarity and similarity of the

    electron density (Sanz, Carbo, Richards)Carbo Index:

    2 2

    A BAB

    A B

    P P dR

    P d P d

    τ

    τ τ=

    ∫∫ ∫

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    DescriptorsDescriptors: 3D: 3D• Atomic coordinates

    o Autocorrelationo MORSE-Codes

    • Molecular surfaceso Polar surface areao Statistical descriptors of the

    electrostatioc potential at the surface (Politzer, Murray)

    o Surface Autocorrelations (Gasteiger)

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Surface descriptorsSurface descriptors• Fast Polar Surface Area Calculation (Ertl)• Calculate a local property (usually the MEP)

    at the surface of the molecule (triangulated)

    • “Murray-Politzer” descriptorso Use the statistical properties of the distribution

    of the values of the local property as descriptors• Autocorrelation (Gasteiger)

    o Use the distance between triangulation points to create a “spectrum”

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Murray/Murray/PolitzerPolitzer--DescriptorsDescriptors

    m ethane trim ethylam ine bis-T rifluorom ethylPhosphinic acid

    σ 2tot = 5 .4 σ 2tot = 446.6 σ 2tot = 651.0ν = 0 .144 ν = 0 .009 ν = 0 .246

    Total variance = σ2tot ; balance parameter = ν

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

  • 34

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    AutocorrelationAutocorrelation• Usually used for time-series:

    • Can be used with distances r:

    ( )1

    n

    j j ij

    i a aρ +=

    =∑

    ( )1 1

    ( )n n

    i j iji j

    r a a f r rρ= =

    = −∑∑

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Surface AutocorrelationsSurface Autocorrelationsdifferentorientations

    differentside-chainconformations

    differentpoint densities

    differentdistanceintervals

    differentatomic radii

    differentsurfaces

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PCA of Surface AutocorrelationPCA of Surface Autocorrelation

    High activity

    * Intermediate activity

    + Low activity

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    MolecularMolecular SurfacesSurfaces

    Van der Waals Conolly (SES)

  • 35

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    De NovoDe Novo Ligand DesignLigand Design

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PharmacophoresPharmacophores

    • Pharmacophores are two- or three-dimensional arrays of binding features that are associated with the desired biological activity

    • The following example shows the use of a pharmacophore search for 17β-hydroxysteroid dehydrogenase

    • The natural substrate is estradiol

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    EstradiolEstradiol DockedDocked in in 1717ββ--hydroxysteroid dehydrogenasehydroxysteroid dehydrogenase

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    EstradiolEstradiol PharmacophorePharmacophore

  • 36

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    FlavoneFlavone HitHit

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Multiple HitsMultiple Hits

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    PharmacophorePharmacophore in in thethe Binding Binding PocketPocket

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ComparativeComparative MolecularMolecularFieldField Analysis (Analysis (CoMFACoMFA))

    N

    N

    N

    O

    N

    N

    N

    H-bond acceptors

    Hydrophobicgroup

  • 37

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CoMFACoMFA GridGrid

    www.kubinyi.de

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CoMFACoMFA AnalysisAnalysis

    www.kubinyi.de

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CoMFACoMFA ResultsResults

    www.kubinyi.de

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    CoMFACoMFA

    • Steric• Green: + • Yellow: –

    • Electrostatic (positive)• Blue: +• Red: –

    H. Lanig, W. Utz, P. Gmeiner, J. Med. Chem. 2001, 44, 1151-1157.

  • 38

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    HighHigh--ThroughputThroughput DockingDocking

    • Dock rigid or flexible ligands into the receptor (usually rigid)

    • Precalculate grid of properties for the receptor to speed up searching

    • Evaluate the results using a scoring function

    • What is a scoring function?

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    ScoringScoring FunctionsFunctionsH2O H2O H2Oreceptor ligand receptor:ligand+

    ( ) ( ) ( ) ( )0/ /

    HB Ion

    lipo lipo rot rot aro aro aro aro

    G G G f r f G f r fG A G N G N

    α α∆ = ∆ + ∆ ∆ ∆ + ∆ ∆ ∆

    +∆ + ∆ + ∆ ∆∑ ∑

    LUDI Scoring Function:

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Salt bridgesH-Bonds

    ScoringScoring FunctionsFunctions

    -10 0 .69 kcal m olG∆ = −

    ( ) ( ) ( ) ( )0/ /

    HB Ion

    lipo lipo rot rot aro aro aro aro

    G G G f r f G f r fG A G N G N

    α α∆ = ∆ + ∆ ∆ ∆ + ∆ ∆ ∆

    +∆ + ∆ + ∆ ∆∑ ∑

    -10.76 kcal molHBG∆ = −-11 .45 kcal m olIonG∆ = −

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    Rotatable bonds

    π-Stackinghydrophobic

    ( ) ( ) ( ) ( )0/ /

    HB Ion

    lipo lipo rot rot aro aro aro aro

    G G G f r f G f r fG A G N G N

    α α∆ = ∆ + ∆ ∆ ∆ + ∆ ∆ ∆

    +∆ + ∆ + ∆ ∆∑ ∑

    ScoringScoring FunctionsFunctions

    -10.03 kcal mollipoG∆ = −

    -1/ 0.00 kcal molaro aroG∆ =

    -10 .22 kcal m olrotG∆ = −

  • 39

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    FreeFree--EnergyEnergy PerturbationPerturbation (FEP)(FEP)

    A(gas) B(gas)

    A(bound) B(bound)

    experimentallyknown

    target

    calculate

    calculate?Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    FreeFree--EnergyEnergy PerturbationPerturbation

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    FreeFree--Energy perturbationEnergy perturbation

    • Mutate as slowly as possible• Mutate in both directions (the results must be the same)

    • Can only do very small changes in structure

    • If it’s good, it’s very, very good

    Computer-Chemie-Centrum Universität Erlangen-Nürnberg

    SummarySummary• 2D-Descriptors may be able to describe

    geometry changes• 3D-Descriptors can be very sensitive to

    conformation for QSAR but are often less so for QSPR

    • 3D-Methods often require alignment• … and the problem of multiple

    conformations and/or tautomers remains unsolved