structure and adhesion of nickel–phosphorus coatings

5
254 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII Structure and adhesion of nickel–phosphorus coatings plated on the nitrided 1.2343 (WCL) steel Adam Zych * , Krzysztof Kulikowski, Beata Kucharska, Tadeusz Wierzchoń Wydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa; *[email protected] Modern industry expects comprehensive solutions in terms of ensuring adequate exploitation properties of materials, such as high hardness, wear resist- ance, fatigue strength and corrosion resistance in aggressive environments. These requirements can be met via surface treatments, especially vigorously developed in recent years hybrid technologies, which merge various methods in the aspect of composite layers production. Those layers are characterized by complementing or entirely new properties in comparison to layers or coatings manufactured in separate processes. In this study the plasma nitriding process and electroless nickel plating are combined. In the production of composite layers consisting of surface layer and coating, in this particular case it is essential to ensure good adhesion of the Ni(P) coating to nitrided substrate. This paper presents microstructure (light microscopy), microhardness (cross- section and surface), surface roughness and scratch test results after different variants and steps of treatment of heat treated 1.2343 (WCL) steel. The study was conducted on the nitrided layers varying in structure and surface topography due to grinding prior to electroless nickel plating. The results show that heat treatment subsequent to electroless nickel plating leads to increase in composite layers’ hardness and adhesion of Ni(P) coating to nitrided layer. Moreover, Ni(P) coating might act as a solid lubricant in some cases. Key words: plasma nitriding, electroless nickel plating, composite layers, hybrid surface treatment, adhesion. Inżynieria Materiałowa 6 (220) (2017) 254÷258 DOI 10.15199/28.2017.6.1 © Copyright SIGMA-NOT MATERIALS ENGINEERING 1. INTRODUCTION Modern industry requires use of materials with such properties as, high hardness, fatigue strength, wear and corrosion resistance. Surface engineering, especially recently developed hybrid tech- nologies, which involve the use of two or more surface treatments, allow to meet these requirements. These processes result in manu- facturing of composite layers with new, improved and comple- mentary properties when compared to layers produced in separate processes [1]. In this study hybrid method consists of plasma nitriding and electroless nickel plating. Plasma nitriding of steel processes allow producing nitrided layers of specified structure [2, 3], guarantee- ing increase in hardness, wear resistance and fatigue strength [1÷5]. Meanwhile, electroless nickel plating, which is widely used in in- dustry, enables the production of coatings characterized by high corrosion resistance. Subsequent heat treatment of the Ni(P) coating leads to its increased hardness and wear resistance [6, 7]. Production of composite layers consisting of nitrided layer and Ni(P) coating requires good adhesion of the coating to the nitrided substrate. In the study, the influence of nitrided layers’ structure (phase composition) and surface topography on adhesion of Ni(P) coating was investigated. The study includes results of tests on surfaces roughness, com- posite layers microstructure, as well as their hardness and adhesion. 2. EXPERIMENTAL PROCEDURE The material examined in the experiments was 1.2343 (WCL) steel with following chemical composition (mass %): C – 0.32÷0.42%, Cr – 4.5÷5.5%, Mn – 0.2÷0.6%, Si – 0.8÷1.2%, Mo – 1.2÷1.5%, V – 0.3÷0.5%, Fe – balance, hardened and tempered to hardness of 49 HRC. Specimens sized at Ø40×4.3 mm were subjected to glow discharge nitriding in the mixture of N 2 and H 2 (1:1) at a tempera- ture of 530°C and a pressure of 2.5 hPa for 6 h. Then, part of the samples were grinded on #220 or #800 abrasive paper in order to change surface roughness and to remove the outer zone of nitrided layer’s iron nitrides zone. The next stage of surface treatment was electroless nickel plat- ing process. During the process the thickness of the coating was controlled using the following equation: d m m S t p (1) where: d – coating’s thickness, m t – specimen’s mass in the moment of time, m p – initial mass, ρ – Ni(P) coating’s density (assuming 8.9 g/cm 3 ), S – specimen’s surface area. The aim of the process was to produce nickel–phosphorus coat- ing with thickness of 10 μm. For more accurate hardness measure- ments carried out before and after heat treatment, the reference sam- ple was also prepared (signed as REF). On this specimen, 20 μm thickness Ni(P) coating on non-nitrided substrate was produced. Electroless nickel – plating process was conducted in the bath con- sisting of: NaH 2 PO 2 H 2 O – 29.7 g/dm 3 , NiCl 2 ∙6H 2 O – 21.39 g/dm 3 ; Na 3 C 6 H 5 O 7 – 17.65 g/dm 3 , at the temperature of 90°C, at pH = 4.5, for 1 h. Subsequently, part of the samples with nickel–phosphorus coat- ing were subjected to heat treatment in the mixture of Ar and H 2 , at a temperature of 520°C for 2 h in order to induce precipitation of Ni 3 P, thus increasing hardness of the coating. [6, 8] Mitutoyo SJ-210 surface roughness measuring tool was used to determine surface roughness after grinding. Microhardness (HV0.2) of the samples after each stage of treat- ment was measured using Revetest© CSM Instruments device. Same device was used to conduct the scratch tests of produced coat- ings. Parameters of adhesion test were as follows: initial load – 1 N, final load – 30 N, loading rate – 10 N/min, scratch length – 5 mm, scratch speed – 1.72 mm/min, indenter type – Rockwell (rounding radius 0.2 mm), prescan and postscan load – 1 N. Metallographic observations were conducted using Nikon Eclipse LV150N light microscope. In order to reveal the composite layers’ microstructure, specimens were etched using 4% nital. Table 1 contains the list of examined samples and their treat- ments stages.

Upload: others

Post on 13-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structure and adhesion of nickel–phosphorus coatings

254 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Structure and adhesion of nickel–phosphorus coatings plated on the nitrided 1.2343 (WCL) steel

Adam Zych*, Krzysztof Kulikowski, Beata Kucharska, Tadeusz WierzchońWydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa; *[email protected]

Modern industry expects comprehensive solutions in terms of ensuring adequate exploitation properties of materials, such as high hardness, wear resist-ance, fatigue strength and corrosion resistance in aggressive environments. These requirements can be met via surface treatments, especially vigorously developed in recent years hybrid technologies, which merge various methods in the aspect of composite layers production. Those layers are characterized by complementing or entirely new properties in comparison to layers or coatings manufactured in separate processes. In this study the plasma nitriding process and electroless nickel plating are combined. In the production of composite layers consisting of surface layer and coating, in this particular case it is essential to ensure good adhesion of the Ni(P) coating to nitrided substrate. This paper presents microstructure (light microscopy), microhardness (cross-section and surface), surface roughness and scratch test results after different variants and steps of treatment of heat treated 1.2343 (WCL) steel. The study was conducted on the nitrided layers varying in structure and surface topography due to grinding prior to electroless nickel plating. The results show that heat treatment subsequent to electroless nickel plating leads to increase in composite layers’ hardness and adhesion of Ni(P) coating to nitrided layer. Moreover, Ni(P) coating might act as a solid lubricant in some cases.

Key words: plasma nitriding, electroless nickel plating, composite layers, hybrid surface treatment, adhesion.

Inżynieria Materiałowa 6 (220) (2017) 254÷258DOI 10.15199/28.2017.6.1© Copyright SIGMA-NOT MATERIALS ENGINEERING

1. INTRODUCTION

Modern industry requires use of materials with such properties as, high hardness, fatigue strength, wear and corrosion resistance. Surface engineering, especially recently developed hybrid tech-nologies, which involve the use of two or more surface treatments, allow to meet these requirements. These processes result in manu-facturing of composite layers with new, improved and comple-mentary properties when compared to layers produced in separate processes [1].

In this study hybrid method consists of plasma nitriding and electroless nickel plating. Plasma nitriding of steel processes allow producing nitrided layers of specified structure [2, 3], guarantee-ing increase in hardness, wear resistance and fatigue strength [1÷5]. Meanwhile, electroless nickel plating, which is widely used in in-dustry, enables the production of coatings characterized by high corrosion resistance. Subsequent heat treatment of the Ni(P) coating leads to its increased hardness and wear resistance [6, 7].

Production of composite layers consisting of nitrided layer and Ni(P) coating requires good adhesion of the coating to the nitrided substrate. In the study, the influence of nitrided layers’ structure (phase composition) and surface topography on adhesion of Ni(P) coating was investigated.

The study includes results of tests on surfaces roughness, com-posite layers microstructure, as well as their hardness and adhesion.

2. EXPERIMENTAL PROCEDURE

The material examined in the experiments was 1.2343 (WCL) steel with following chemical composition (mass %): C – 0.32÷0.42%, Cr – 4.5÷5.5%, Mn – 0.2÷0.6%, Si – 0.8÷1.2%, Mo – 1.2÷1.5%, V – 0.3÷0.5%, Fe – balance, hardened and tempered to hardness of 49 HRC. Specimens sized at Ø40×4.3 mm were subjected to glow discharge nitriding in the mixture of N2 and H2 (1:1) at a tempera-ture of 530°C and a pressure of 2.5 hPa for 6 h. Then, part of the samples were grinded on #220 or #800 abrasive paper in order to change surface roughness and to remove the outer zone of nitrided layer’s iron nitrides zone.

The next stage of surface treatment was electroless nickel plat-ing process. During the process the thickness of the coating was controlled using the following equation:

d

m mS

t p

(1)

where: d – coating’s thickness, mt – specimen’s mass in the moment of time, mp – initial mass, ρ – Ni(P) coating’s density (assuming 8.9 g/cm3), S – specimen’s surface area.

The aim of the process was to produce nickel–phosphorus coat-ing with thickness of 10 μm. For more accurate hardness measure-ments carried out before and after heat treatment, the reference sam-ple was also prepared (signed as REF). On this specimen, 20 μm thickness Ni(P) coating on non-nitrided substrate was produced. Electroless nickel – plating process was conducted in the bath con-sisting of: NaH2PO2 H2O – 29.7 g/dm3, NiCl2∙6H2O – 21.39 g/dm3; Na3C6H5O7 – 17.65 g/dm3, at the temperature of 90°C, at pH = 4.5, for 1 h.

Subsequently, part of the samples with nickel–phosphorus coat-ing were subjected to heat treatment in the mixture of Ar and H2, at a temperature of 520°C for 2 h in order to induce precipitation of Ni3P, thus increasing hardness of the coating. [6, 8]

Mitutoyo SJ-210 surface roughness measuring tool was used to determine surface roughness after grinding.

Microhardness (HV0.2) of the samples after each stage of treat-ment was measured using Revetest© CSM Instruments device. Same device was used to conduct the scratch tests of produced coat-ings. Parameters of adhesion test were as follows: initial load – 1 N, final load – 30 N, loading rate – 10 N/min, scratch length – 5 mm, scratch speed – 1.72 mm/min, indenter type – Rockwell (rounding radius 0.2 mm), prescan and postscan load – 1 N. Metallographic observations were conducted using Nikon Eclipse LV150N light microscope. In order to reveal the composite layers’ microstructure, specimens were etched using 4% nital.

Table 1 contains the list of examined samples and their treat-ments stages.

Page 2: Structure and adhesion of nickel–phosphorus coatings

NR 6/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 255

3. RESULTS AND DISCUSSION

Figure 1 shows the distribution of microhardness on cross-section of plasma nitrided sample (specimen No. 1). Hardness changes from approx. 1100 HV0.2 in distance of 20 μm from surface to ap-prox. 550 HV0.2 in the core. Hardness changes smoothly from sur-face to the core.

Microstructure of the layer (Fig. 2) after plasma nitriding process (specimen No. 1) reveals the presence of iron nitrides of approx. 8 μm of thickness. Hardness distribution on cross-section analysis and microscopic observations indicate that diffusion zone has ap-prox. 120 μm of thickness.

Subsequently to plasma nitriding process, part of the samples underwent mechanical grinding in order to change surface area and nitrided layer’s structure. Specimens No. 2 and 5 were left in as-nitrided condition, specimens No. 3 and 6 underwent grinding on #220 abrasive paper, whereas specimens No. 4 and 7 were grinded on #800 abrasive paper. (Tab. 1). Nitrided specimens, both ungrind-ed and subjected to grinding on #220 abrasive paper are character-ized by similar values of Ra parameter of approx. 0.2 μm, while those grinded on #800 abrasive paper, as expected, have lower sur-face roughness – approx. 0.08 μm.

The hardness of specimens (HV0.2) was measured after grind-ing, subsequently the electroless nickel plating was conducted. Part of the samples with Ni(P) coating were subjected to coating’s heat treatment. Figure 4 shows the microstructure of produced compos-ite layers, whereas Figure 5 contains microhardness test results after each stage of treatment.

Microscopic observations of the cross-section of specimen No. 2, ungrinded after plasma nitriding, revealed presence of iron ni-trides zone beneath the nickel–phosphorus coating. On specimens No. 3 and 4 grinded respectively on #220 and #800 abrasive papers prior to electroless nickel plating, the composite layers were found consisting of diffusion zone of nitrided layer and Ni(P) coating. Specimens No. 5, 6 and 7 were prepared in a similar manner, except for heat treatment subsequent to nickel-plating. The thickness of Ni(P) coating is approx. 10 μm.

Following the electroless nickel plating, hardness of the com-posite layers decreased, when compared to hardness of the nitrided layer, reaching the value of approx. 550 HV0.2. Heat treatment of the composite layer conducted at the temperature of 520°C for 2 h increased its hardness to approx. 850 HV0.2. This is attributed to phase transitions occurring in the Ni(P) coating during heat treat-ment process. As-plated coating consists of β and γ phases, which transform into α and intermetallic phase Ni3P when subjected to annealing [6, 8].

Figure 6 contains results of adhesion tests (scratch test) of nick-el–phosphorus coating to the substrate. The highest critical load, that leads to coating’s delamination, was observed on specimen No.

Table 1. List of examined samplesTabela 1. Zestawienie badanych próbek

No. Plasma nitriding

Grinding (prior nickeling) Electroless nickel plating

Heat treatmentnone #220 #800

1 + + — — — —

2 + + — — + +

3 + — + — + +

4 + — — + + +

5 + + — — + —

6 + — + — + —

7 + — — + + —

REF — — — — + —/+

Fig. 1. Microhardness profile on cross-section of nitrided 1.2343 (WCL) steelRys. 1. Profil mikrotwardości na przekroju poprzecznym azotowanej stali 1.2343 (WCL)

Fig. 2. Microstructure of 1.2343 (WCL) steel after plasma nitridingRys. 2. Mikrostruktura stali 1.2343 (WCL) po azotowaniu jarzeniowym

Fig. 3. Surface roughness after grindingRys. 3. Chropowatość powierzchni próbek po szlifowaniu

2, where composite layer consists of nitrided layer with iron nitrides zone and Ni(P) coating. When critical load was reached, the coat-ing’s spalling occurs. Similar failure was observed for other heat treated composite layers, however these coatings delaminated un-der lower loads (specimens 3 and 4).

Microscopic observations of scratch marks on specimen No. 5 (plasma nitrided, ungrinded, not subjected to composite layer’s heat treatment) revealed that presumably the coating was spread on the substrate, without signs of delamination.

Page 3: Structure and adhesion of nickel–phosphorus coatings

256 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Fig. 4. Microstructure of composite layers produced by plasma nitriding, electroless nickel plating and Ni(P) coating’s heat treatment. Samples: No. 2 (ungrinded), No. 3 (grinded on #220 abrasive paper) and No. 4 (grinded on #800 abrasive paper) respectivelyRys. 4. Mikrostruktura warstw kompozytowych uzyskanych w wyniku azotowania jarzeniowego, bezprądowego niklowania chemicznego i obróbki cieplnej powłoki Ni(P). Próbki odpowiednio nr 2 (nieszlifowana), nr 3 (szlifowana na papierze ściernym #220) i nr 4 (szlifowana na papierze ściernym #800)

Fig. 5. Surface microhardness after each step of treatment; PN + G stands for plasma nitriding and grinding, EN and EN + HT for elec-troless nickel plating and electroless nickel plating after heat treat-ment respectivelyRys. 5. Mikrotwardość powierzchniowa po poszczególnych etapach ob-róbki powierzchni; PN + G oznacza azotowanie jarzeniowe i szlifowanie, EN oraz EN + HT oznaczają odpowiednio bezprądowe niklowanie che-miczne oraz bezprądowe niklowanie chemiczne i obróbkę cieplną

Fig. 6. Critical loads values at which coating’s delamination occuredRys. 6. Wartości obciążeń krytycznych, przy których następowała dela-minacja powłoki

Fig. 7. Surface scratch marks after adhesion test for specimens No. 2, 5 and 6 (Tab. 1)Rys. 7. Ślady zarysowania powierzchni po badaniu przyczepności na próbkach nr 2, 5 i 6 (tab. 1)

As plated Ni(P) coatings produced on nitrided and grinded sub-strate (specimens No. 6 and 7), had low adhesion to the substrate. The value of the critical load was approx. 7÷8 N. These coatings, however, maintained cohesion at the moment of adhesion loss (Fig. 7).

Page 4: Structure and adhesion of nickel–phosphorus coatings

NR 6/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 257

4. CONCLUSIONSApplying the hybrid surface treatments of plasma nitriding, elec-troless nickel plating and subsequent heat treatment results in pro-duction of composite layers consisting of nitrided layer’s diffusion zone with thickness of 120 μm and, depending on variant, with (specimen No. 2) or without (specimen No. 4) 8 μm of iron nitrides + 10 μm of Ni(P) coating with precipitations of intermetallic phase Ni3P.

Heat treatment has the biggest influence on adhesion of nickel–phosphorus coating to the nitrided substrate. Coatings subjected to annealing at the temperature of 520°C for 2 h have significantly higher adhesion and hardness (approx. 850 HV0.2).

Parameters such as hardness, surface roughness and structure of nitrided layer, affect the Ni(P) coating’s adhesion to a lesser extent. An exception occurs in specimen No. 5 where nickel–phosphorus coating, not subjected to heat treatment, was produced on the iron nitrides zone, i.e. relatively hard substrate (approx. 1150 HV0.2). In this case the coating acted as solid lubricant.

Conducted examinations showed that heat treated nickel–phos-phorus coatings are characterized by good adhesion to nitrided lay-ers, both with or without iron nitrides zone.

Proposed material solution is promising, considering good cor-rosion resistance of nickel–phosphorus coatings, including oxida-tion at elevated temperature [7, 8].

REFERENCES

[1] Wierzchoń T.: Structure and properties of multicomponent and compos-ite layers produced by combined surface engineering methods. Surface & Coatings Technology 180–181 (2004) 458÷464.

[2] Kula P.: Inżynieria warstwy wierzchniej. Wydawnictwo Politechniki Łódzkiej, Łódź (2000).

[3] Burakowski T., Wierzchoń T.: Surface engineering of metals, principles, equipments, technologies. CRC press Boca Raton, London (1999).

[4] Morita T., Inoue K., Ding X., Usui Y., Ikenaga M.: Effect of hybrid surface treatment composed of nitriding and DLC coating on friction-wear proper-ties and fatigue strength of alloy steel. Materials Science & Engineering A 661 (2016) 105÷114.

[5] Winck L., Ferreira J., Araujo J., Manfrinato M., da Silva C.: Surface ni-triding influence on the fatigue life behavior of ASTM A743 steel type CA6NM. Surface & Coatings Technology 232 (2013) 844÷850.

[6] Parkinson R.: Properties and applications of electroless nickel. Nickel De-velopement Institute, NiDI Technical Series No. 10 081 (1997).

[7] Funatani K., Kurosawa K.: Composite coatings improve engines. Ad-vanced Materials & Processes 12 (1994) 27÷29.

[8] Wierzchoń T., Rudnicki R., Bogdański A., Fleszar A., Maranda-Niedbała A., Hering M., Niedbała R.: Opracowanie podstaw technologii wytwarza-nia warstw wieloskładnikowych antykorozyjnych i antyściernych na bazie kobaltu, niklu i chromu. Prace Naukowe Politechniki Warszawskiej z. 8 (1998) 23÷33.

Page 5: Structure and adhesion of nickel–phosphorus coatings

258 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Struktura i przyczepność powłok niklowych do stali 1.2343 (WCL) po procesie azotowania jarzeniowego

Adam Zych*, Krzysztof Kulikowski, Beata Kucharska, Tadeusz WierzchońWydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa; *[email protected]

Inżynieria Materiałowa 6 (220) (2017) 254÷258DOI 10.15199/28.2017.6.1© Copyright SIGMA-NOT MATERIALS ENGINEERING

Słowa kluczowe: azotowanie jarzeniowe, niklowanie chemiczne, warstwy kompozytowe, hybrydowe obróbki powierzchniowe, adhezja.

1. CEL PRACY

Celem badań było określenie wpływu struktury, twardości oraz roz-winięcia powierzchni warstwy azotowanej na stali 1.2343, a także procesu obróbki cieplnej powłoki Ni(P) na przyczepność powło-ki niklowo-fosforowej do azotowanego podłoża. W pracy zawarto wyniki badań chropowatości powierzchni, mikrostruktury warstw kompozytowych, ich twardości oraz przyczepności.

2. METODYKA BADAŃ

Do badań użyto stali 1.2343 (WCL) ulepszonej cieplnie. Próbki w kształcie krążków o wymiarach Ø20×4,3 mm poddano procesowi azotowania jarzeniowego w temperaturze 530°C, w atmosferze robo-czej N2 + H2 (1:1) pod ciśnieniem 2,5 hPa, przez 6 h. W celu zmia-ny chropowatości oraz usunięcia zewnętrznej strefy azotków żelaza część próbek poddano szlifowaniu na papierze ściernym #220 lub #800. Kolejnym etapem obróbki powierzchni był proces niklowania chemicznego, przeprowadzony w kąpieli o składzie: NaH2PO2∙H2O (29,7 g/dm3), NiCl2∙6H2O (21,39 g/dm3), Na3C6H5O7 (17,65 g/dm3), w temperaturze 90°C, przy pH = 4,5, w ciągu 1 h. Część próbek z po-włoką Ni(P) poddano obróbce cieplnej w temperaturze 520°C przez 2 h w atmosferze ochronnej (Ar + H2). Chropowatość powierzchni zmierzono na urządzeniu Mitutoyo SJ-210. Mikrotwardość (HV0,2) próbek po kolejnych etapach obróbki określono, wykorzystując urządzenie Revetest© firmy CSM Instruments. Na tym samym urzą-dzeniu wykonano badanie przyczepności wytworzonych powłok do podłoża (scratch test). Badania metalograficzne przeprowadzono na mikroskopie świetlnym Nikon Eclipse LV150N. Zgłady metalogra-ficzne wytrawiono nitalem (4%). W tabeli 1 znajduje się zestawienie próbek i etapów obróbki, jakim zostały poddane.

3. WYNIKI BADAŃ

Na rysunku 1 przedstawiono profil mikrotwardości na przekroju prób-ki po procesie azotowania jarzeniowego. Twardość zmienia się od ok. 1100 HV0,2 w odległości 20 µm od powierzchni do ok. 550 HV0,2 w rdzeniu, tj. stali 1.2343 (WCL) po obróbce cieplnej. Mikrostruktura warstwy azotowanej (rys. 2) ujawnia występowanie strefy azotków żelaza o grubości ok. 8 µm. Analiza mikrotwardości na przekroju oraz obserwacje mikroskopowe wykazują, że strefa dyfuzyjna cha-rakteryzuje się grubością ok. 120 µm. Po azotowaniu jarzeniowym część próbek poddano szlifowaniu w celu rozwinięcia powierzchni i zmiany struktury warstwy azotowanej (tab. 1). Próbki nieszlifowane oraz szlifowane na papierze #220 charakteryzują się wartością para-metru Ra ok. 0,2 µm, natomiast w przypadku próbek szlifowanych na papierze #800 chropowatość wynosi ok. 0,08 µm (rys. 3). Po szli-fowaniu próbek zmierzono ich twardość powierzchniową (HV0,2), a następnie przeprowadzono niklowanie chemiczne, po zakończeniu którego część próbek obrobiono cieplnie. Mikrostrukturę wytworzo-nych warstw kompozytowych przedstawiono na rysunku 4, natomiast wyniki pomiarów mikrotwardości po zakończeniu poszczególnych

etapów na rysunku 5. Obserwacje mikroskopowe przeprowadzone na przekroju poprzecznym próbki nr 2, nieszlifowanej po procesie azoto-wania jarzeniowego, wykazały występowanie strefy azotków żelaza pod powłoką niklową. Na próbkach nr 3 i 4 szlifowanych po proce-sie azotowania jarzeniowego na papierach ściernych — odpowiednio #220 i #800 — stwierdzono, że warstwa kompozytowa składa się ze strefy dyfuzyjnej warstwy azotowanej oraz powłoki Ni(P). Próbki nr 5, 6 i 7 zostały przygotowane analogicznie, z wyjątkiem obróbki cieplnej powłoki Ni(P). Grubość wytworzonej powłoki Ni(P) wyno-siła ok. 10 µm. Po procesie niklowania chemicznego twardość wy-tworzonych warstw kompozytowych zmalała w porównaniu z twar-dością warstwy azotowanej, osiągając wartość zbliżoną do powłoki niklowej (ok. 550 HV0,2). Przeprowadzenie procesu obróbki cieplnej w temperaturze 520°C przez 2 h pozwoliło na zwiększenie twardości powłoki niklowej, a co za tym idzie warstwy kompozytowej do ok. 850 HV0,2. Rysunek 6 przedstawia wyniki badań przyczepności po-włoki niklowej do podłoża. Największe obciążenie krytyczne odno-towano dla próbki nr 2, czyli warstwy kompozytowej składającej się z warstwy azotowanej ze strefą azotków żelaza oraz powłoki Ni(P). Przy osiągnięciu wartości krytycznej obciążenia następuje odpryski-wanie powłoki, przy czym ubytki te są znacznej wielkości. Podobny charakter zniszczenia obserwowano dla pozostałych próbek podda-nych obróbce cieplnej po niklowaniu chemicznym, jednakże usu-wanie powłoki z podłoża następowało przy mniejszych wartościach obciążenia. W przypadku próbki nr 5, azotowanej jarzeniowo, nieszli-fowanej i bez obróbki cieplnej powłoki Ni(P), obserwacje mikrosko-powe śladu wytarcia pozwoliły ustalić, że prawdopodobnie doszło do rozsmarowania powłoki po podłożu. Powłoki bez obróbki cieplnej, wytworzone na szlifowanym, azotowanym podłożu (próbki nr 6 i 7), charakteryzowały się małą adhezją. Obciążenie krytyczne wynosiło ok. 7÷8 N. Powłoki te zachowywały jednak kohezję w momencie utraty przyczepności do podłoża (rys. 7).

4. PODSUMOWANIE

Zastosowanie procesu hybrydowego składającego się z azotowania ja-rzeniowego, niklowania chemicznego oraz obróbki cieplnej umożliwia wytwarzanie warstw kompozytowych typu powłoka niklowo-fosfo-rowa o grubości ok. 10 μm z wydzieleniami fazy międzymetalicznej Ni3P + warstwa azotowana składająca się, zależnie od wariantu, ze stre-fy azotków żelaza o grubości ok. 8 μm i strefy roztworowej o grubości ok. 120 μm (próbka nr 2) lub wyłącznie strefy roztworowej (próbki nr 3 oraz 4). Największy wpływ na przyczepność powłoki Ni(P) do azotowanego podłoża ma zastosowanie obróbki cieplnej. Powłoki pod-dane wygrzewaniu w temperaturze 520°C przez 2 h charakteryzują się znacznie lepszą przyczepnością i większą twardością powierzchniową (rzędu 850 HV0,2). Parametry takie jak struktura warstwy azotowanej, twardość i chropowatość podłoża mają znacznie mniejszy wpływ na adhezję powłoki Ni(P) do powierzchni warstwy azotowanej. Wyjątek stanowi próbka nr 5, tj. z powłoką Ni(P) wytworzoną na strefie azot-ków żelaza, a więc na dość twardym podłożu (1150 HV0,2), bez ob-róbki cieplnej. W tym przypadku powłoka pełniła rolę smaru stałego.