structuredeterminationofcatalyticrnasandinvestigationsoftheir metalion … · 2020. 7. 31. ·...

6
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure Determination of Catalytic RNAs and Investigations of Their Metal Ion-Binding Properties Erat, M C ; Sigel, Roland K O Abstract: Naturally occurring RNA molecules exhibit many unexpected and fascinating properties in living cells like protein synthesis and transport, regulation of metabolic functions, and catalytic cleavage reactions. To understand this functional diversity, a detailed knowledge of RNA structure and metal ion-binding properties is crucial. In our research group, we address these problems by combining various biochemical, analytical and spectroscopic techniques. A large part of our work is devoted to the structure determination of catalytic RNA molecules, i.e. ribozymes, by NMR. Based on the three-dimensional structure, further experiments are carried out to understand in detail the efects of diferent metal ions on the local and global structure, as well as catalysis itself. DOI: https://doi.org/10.2533/000942905777675534 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-79691 Journal Article Published Version Originally published at: Erat, M C; Sigel, Roland K O (2005). Structure Determination of Catalytic RNAs and Investigations of Their Metal Ion-Binding Properties. CHIMIA International Journal for Chemistry, 59(11):817-821. DOI: https://doi.org/10.2533/000942905777675534

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Zurich Open Repository andArchiveUniversity of ZurichMain LibraryStrickhofstrasse 39CH-8057 Zurichwww.zora.uzh.ch

    Year: 2005

    Structure Determination of Catalytic RNAs and Investigations of TheirMetal Ion-Binding Properties

    Erat, M C ; Sigel, Roland K O

    Abstract: Naturally occurring RNA molecules exhibit many unexpected and fascinating properties inliving cells like protein synthesis and transport, regulation of metabolic functions, and catalytic cleavagereactions. To understand this functional diversity, a detailed knowledge of RNA structure and metalion-binding properties is crucial. In our research group, we address these problems by combining variousbiochemical, analytical and spectroscopic techniques. A large part of our work is devoted to the structuredetermination of catalytic RNA molecules, i.e. ribozymes, by NMR. Based on the three-dimensionalstructure, further experiments are carried out to understand in detail the effects of different metal ionson the local and global structure, as well as catalysis itself.

    DOI: https://doi.org/10.2533/000942905777675534

    Posted at the Zurich Open Repository and Archive, University of ZurichZORA URL: https://doi.org/10.5167/uzh-79691Journal ArticlePublished Version

    Originally published at:Erat, M C; Sigel, Roland K O (2005). Structure Determination of Catalytic RNAs and Investigations ofTheir Metal Ion-Binding Properties. CHIMIA International Journal for Chemistry, 59(11):817-821.DOI: https://doi.org/10.2533/000942905777675534

  • MODIFIEDOLIGONUCLEOTIDES 817CHIMIA2005,59,No.11

    Chimia 59 (2005) 817–821 © Schweizerische Chemische Gesellschaft

    ISSN 0009–4293

    Structure Determination of Catalytic RNAs and Investigations of Their Metal Ion-Binding Properties

    MichèleC.EratandRolandK.O.Sigel*

    Abstract: NaturallyoccurringRNAmoleculesexhibitmanyunexpectedandfascinatingpropertiesin livingcellssuchasproteinsynthesisandtransport,regulationofmetabolicfunctions,andcatalyticcleavagereactions.Toun-derstandthisfunctionaldiversity,adetailedknowledgeofRNAstructureandmetalion-bindingpropertiesiscrucial.Inourresearchgroup,weaddresstheseproblemsbycombiningvariousbiochemical,analyticalandspectrosco-pictechniques.AlargepartofourworkisdevotedtothestructuredeterminationofcatalyticRNAmolecules,i.e.ribozymes,byNMR.Basedonthethree-dimensionalstructure,furtherexperimentsarecarriedouttounderstandindetailtheeffectsofdifferentmetalionsonthelocalandglobalstructure,aswellascatalysisitself.

    Keywords:Affinityconstants·Metalions·NMR·Ribozymes·RNAstructure

    removal of non-coding intron sequences,theregulationofmetabolic functions,andeven the regulationof thecellcycle itself[1].SomeoftheseRNAsarenotonly‘pas-sively’ exhibiting their function by ‘just’bindingtootherbiomolecules,butperformalsocatalyticreactions.Theseso-calledri-bozymeswerediscoverednearly25yearsago [2][3]. Nowadays eleven differentclasses of naturally occurring ribozymesareknown, twoof themhavingbeendis-coveredonlylastyear[4][5].

    Ourresearchconcentratesontwoclass-esofthenaturallyoccurringRNAs:(i)ribo-switchesand(ii)groupIIintronribozymes.Theemphasisofthisshortreviewisonourstructural and analytical NMR studies ongroup II intron ribozymes;our riboswitchworkisonlybrieflyindicatedinthefollow-ingSection.

    2.Riboswitches

    Riboswitches are highly conservedRNA sequences occurring for example inthe5ʹ-UTR (seeAbbreviations)of certainmRNAs.TheybindsmallmetaboliteslikeFMN, SAM, TPP, guanine, adenine, andcoenzymeB12withahighdegreeofaffinityandspecificity[6][7].Uponbindingofthecorresponding metabolite, the riboswitchsequencepresumablyundergoesstructuralchanges[8]andinsomecasesevencleav-age of the RNA strand occurs [4]. Bothcleavage and structural changes inhibitbindingofthe5ʹ-UTRtotheribosome,and

    thusprohibittranslationtothecorrespond-ingprotein.Astheprotein(s)expressedbyamRNAisalwaysinvolvedineitherbio-synthesisortransportofthemetabolitethatbinds to the riboswitch, this new class ofRNAmoleculesconstitutesanelegantwayoffeedbackcontrolwithinlivingcells.

    Inourgroup,weworkwiththeso-calledB12riboswitch.Thisriboswitchconsistsofanabout200ntlongandhighlyconservedsequencelocatedinthe5ʹ-UTRofmRNAsassociatedwiththemetabolismandtrans-port of coenzyme B12 and vitamin B12,respectively[9].Ourinvestigationsencom-pass structural studies as well as bindingstudiesofcoenzymeB12anditsderivativestothisriboswitchsequenceinthepresenceofdifferentmetalions.

    3.GroupIIIntronRibozymes

    The main efforts of our research arepresently devoted to group II intron ribo-zymes.Theselargemolecularmachinesareself-splicingintrons,i.e.capableofcuttingthemselvesoutof theprecursorRNAandinasecondstepjoiningtheadjacentexonstoyieldthefinalmRNA–allwithout theaidofproteins (Fig.1). Inaddition, theseamazing molecules can insert themselvesagainintoRNAandevenDNA.Theoccur-rence,reactionmechanisms,andthediffer-entaspectsofmetalionbindingtogroupIIintronshavelatelybeenreviewed[10][11],thusonlyafewimportantpointsaresum-marizedbelow:

    *Correspondence:Prof.Dr.R.K.O.SigelUniversityofZürichInstituteofInorganicChemistryWinterthurerstrasse190CH-8057ZürichTel.:+41446354652Fax:+41446356802E-Mail:[email protected]://www.aci.unizh.ch/rna/

    1.Introduction

    Theresearch inour laboratoryfocusesontheinteractionofmetalionswithRNA,i.e.whichrolesdifferentMn+haveonfolding,structure, andcatalyticpropertiesof ribo-nucleicacids.LikeDNA,RNAisapoly-anionunderphysiologicalconditions,witheverybridgingphosphategroupaddingonenegativechargetotheoverallcharge.Itfol-lowsthatnucleicacidscannotoccurwith-outmetalionsbeingpresent.RNAfulfillsmanyfunctionsinalllivingorganismsandnew roles of these fascinating moleculesarediscoveredeveryyear.ThebestknownRNAsarecertainlymRNAandtRNA,butalsotheribosomeitselfismainlycomposedofRNA.

    Other functions carried out by RNAsincludeprotein transport, splicing, i.e. the

  • MODIFIEDOLIGONUCLEOTIDES 818CHIMIA2005,59,No.11

    3.1.GeneralRemarksonGroupIIIntronRibozymes

    GroupIIintronsaredefined(i)bytheirsecondary structure consisting of six do-mains radiatingout froma centralwheel,(ii)byasetofhighlyconservednucleotidesand(iii)bytertiarycontactsspreadthrough-out thewhole intron (Fig.2).Thesecata-lyticRNAsarefoundinorganellargenesofplants,fungiandlowereukaryotesaswellas inbacteria [10].SomegroupII intronscontain an ORF encoding for a maturaseprotein with a reverse transcriptase and anucleotideexcisiondomain[10].Togetherwiththematurase,theseintronsactasmo-bilegeneticelementsthatcaninsertthem-selves intoDNAathomologousandevenheterologoussites.

    Basedonphylogeny,groupIIintronsarethoughttobeveryoldandtohaveplayedanimportantroleineukaryoticevolution[10]:Includingnuclearintrons,thetransposableLINEelementsandspliceosomalRNA,asmuchas30%ofthehumangenomemightstemfromancestralgroupII introns [12].Group II introns still show a rather closesequence relationship to the spliceosome,

    theeukaryoticsplicingmachinerythatcon-sistsoffiveRNAsand>100proteinsandisresponsiblefortheaccurateremovalofallintrons. It is surprising to see thatdespitetheir evident importance in evolution andtheirdirectroleinthecorrectexpressionofproteinsinmanyorganisms,relativelylittleisknownabout thestructureandcatalyticmechanismsofgroupIIintronribozymes.

    To perform the self-splicing reaction,groupIIintronsfoldintoacompactthree-dimensional structure. Out of the six do-mains,onlydomains1,5,and6(D1,D5,D6)togetherwiththelinkerregionsarees-sential for the complete splicing reaction:D1bindstheexonsequencesandprovidesthescaffoldforthethree-dimensionalstruc-ture,D5 isviewedas thecatalyticcenter,andD6harbors thebranchadenosine, the2ʹ-OHofwhich servesas thenucleophileinthefirststepofsplicing(Fig.1).Toper-formcatalysis,groupIIintronshaveaveryspecific need for metal ions as cofactors.Monovalent (usually Na+ or K+) as wellas divalent metal ions (usually Mg2+) areintrinsically tied to all RNAs for chargecompensation.Withoutmetalions,thehigh

    negative charge of the sugar-phosphatebackbone would prevent any higher-orderfoldingofRNAmolecules.Inaddition,atleastforthelargerribozymeslikethegroupII introns, more and more experimentalevidencesuggestsadirect involvementofdivalent metal ions in catalysis [11]. ThelittlethatisknownaboutmetalionbindingingroupIIintronshasbeenreviewed[11]and is therefore only briefly described inthenextSection.

    3.2.GeneralAspectsofMetalIonBindingtoRNA

    Metal ion binding to RNA moleculesdiffersconsiderablyfrombindingofmetalionsinmetalloproteins[13]:(i) Generally, proteins do not carry a

    large charge. Some domains may becharged, but folding to the correctthree-dimensional structure is pre-dominantly determined by a hydro-phobic collapse. In contrast, RNAsare highly negatively charged, asthey contain one phosphodiester pernucleotide.Itfollowsthatfoldingcanonlyoccurinthepresenceofsuitablecounterions,whicharepredominantlyalkalineionsaswellasMg2+asthesearemostabundantinlivingcells.

    (ii) Proteins consist of 20 amino acids.Among them, only four (Cys, Asp,Glu,His)comprisethemajorityofallmetalionbindingsites.Incontrast,ne-glectingallpost-transcriptionalmodi-fications, RNA consists of only fournucleotides, each of which containsseveral possible metal ion-coordinat-ing sites. RNA-metal ion binding isusually weak, and as a consequenceoften poorly defined. Nevertheless,RNAcanachieveasurprisinglyhighspecificitywithrespecttothesitesofmetalcoordinationaswellasthekindof metal ion involved: For example,small amounts of Ca2+ efficientlycompete with Mg2+ ions and inhibitthesplicingreactionofthegroupIIin-tronai5γininvitrosplicing[14][15].

    (iii)Depending on their metabolic func-tion,proteinsbindandusealargeva-riety of different metal ions, rangingfromalkalineandalkalineearthmetalions to numerous d10 and transitionmetal ions [16]. In contrast, in natu-rally occurring RNAs, only Na+, K+

    andMg2+havesofarbeenidentifiedasnaturalcofactors.

    (iv)Mg2+isakineticallylabilemetalion.Thus,ifanexcessofpossiblecoordi-natingatomsispresent,Mg2+maynotbefixedtothesameatomsatalltimes.In addition, inner-sphere and outer-sphere,i.e.directandwater-mediatedbindingispossible.

    Taken together, the four points men-tionedaboveleadtothefollowingtwoma-

    Fig.1.Splicingofgroup II intron ribozymes.The intron isdepictedasablack line incorporating a highly conserved adenosine (A), the 2ʹ-OHofwhichactsas thenucleophile in the firststepofsplicing.Thetwoexonpiecesflankingtheintronareshownasgreyboxesthatarejoinedtogetherduringthesplicingprocess.Bothstepsarereversible.

    Fig.2.SecondarystructureofgroupII introns.TheconservedsecondarystructureofthegroupIIintronsai5γ found in the cox1 gene of S. cerevisiae (A) and Pl.lsu/2 located in the large ribosomal subunit of theAtlanticbrownalgaeP.littoralis(B)areshown.Sixdomains(D1–6)radiateoutfromacentralwheel.Uponfoldingtotheactivestructuremanytertiarycontactsareformed,whichareindicatedbyGreekletters.The5ʹ-splicesite ismarkedwithanasteriskandisdefineduponbasepairingoftwointronicsequencesEBS1andEBS2(exonbindingsite)withthecomplementaryexonicIBS1andIBS2(intronbindingsite)sequences.

  • MODIFIEDOLIGONUCLEOTIDES 819CHIMIA2005,59,No.11

    jorissuesforthedetectionofM2+bindingsitesinRNA:(a)Howtodetectthefewspe-cificbindingsiteswithinanoceanofunspe-cificallyboundionsofthesamekind?(b)HowtodetectK+orMg2+,bothofwhicharespectroscopicallysilent?

    Weapplyacombinedapproachofmeth-odsfromdifferentresearchfieldstoaddressand answer these questions regarding theroleofmetalionsinstructureandfoldingofRNAs[15][17–19].

    4.NMRStructureDetermination

    Inorder to investigatemetal ionbind-ing to RNAs, structures at atomic resolu-tionareneeded.Wefollowadualapproachtoachievethischallenginggoal,onebeingX-ray crystallography (in collaborationwith Dr. Eva Freisinger in our Institute)and the other NMR spectroscopy. NMRspectroscopy is a powerful tool to studythestructure, tertiaryinteractions,dynam-ics and requirements for metal ions ofRNAmolecules.Usually,RNAsof a sizebetween20and40nucleotidesarestudiedbyNMR.Nevertheless,recentlya30kDadimeric RNA structure (86 nt) has beensolvedathighresolutionsettingthefuturedirectionofNMRstructuredeterminationsofnucleicacids[20].Thefactthatthissizecorrespondstoonlyaboutonethirdofwhatisachievedwithproteinsnowadayscanbeattributed to the small number of protonspresent,tothelackindiversityofresiduesand consequently to the heavy overlap ofresonances(Fig.3A).

    AsanentiregroupIIintronistoolargetobestructurallyexaminedbyNMR,wein-vestigateindividuallythedifferentdomainsinvolvedincatalysis[17][19].First,thede-siredRNAissynthesizedinlargeamountsbyinvitrotranscription,asdescribedinourother contribution in this CHIMIA issue[21]. For a complete structure determina-tion by NMR, several samples of 0.5–1mM RNA in 220 μl 100% D2O or 90%H2O/10% D2O are needed (both naturalabundanceaswellas isotopically13C,15NenrichedRNA).

    First, the best conditions for obtain-ing high-quality NMR spectra need to bedetermined by optimizing factors such astheRNAsequence,temperatureandpHaswell as concentrationsofmonovalent andpossiblydivalentmetalions.AlsotheRNAconcentration can be crucial, because ontheonehand,higherconcentrationsleadtoshortermeasurementtimes,butontheotherhandtheycanalsoleadtodimerizationofahairpinsequence,givingadouble-strandedstructure.Dimerscanoftenberemovedbygelfiltration[21]orcircumventedbydilu-tionof theRNAintoa largevolume(e.g.100ml)ofwater,followedbyheatingto95°Cforuptoonehourandsubsequentslow

    cooling to room temperature and concen-trationoftheRNAbyultrafiltration.Inthisinitial phase of a structure determinationmainly 1D spectra in D2O and 90% H2Oarerecordedtoobtainafirstindicationonthesamplequality.

    Once optimized conditions are found,2D1H,1H-NOESYspectrainD2O(Fig.3)and90%H2Oarerecorded.InthesespectraNuclearOverhausercrosspeaks(NOE)are

    observedbetweenprotonsthatarecloserinspace than 5–6 Å, yielding distance con-straints that are subsequently needed forstructurecalculation.Akeystepinassign-ingallresonancesistheso-called‘sequen-tialwalk’(Fig.3B):Thearomaticnucleo-base-protonsarecloseinspacenotonlytotheir intra-residue ribose H1ʹ, but also totheH1ʹoftheupstream5ʹ-nucleotide(Fig.3C).Thus, theconnectivityofnucleotidesalong a RNA strand can be established.Several recent reviews give a good over-view on the exact methodology of reso-nanceassignmentsforRNAs[22–26].Forfullassignmentofallpeaksandverificationthereof,aseriesof2D1H,1H-NOESYspec-trainD2OaswellasinH2Oarerecordedatdifferenttemperaturesandmixingtimes.Other special multidimensional NMR ex-periments give further information: JHNN-COSYexperimentsrevealtheexistenceofhydrogenbonds,residualdipolarcouplings(RDCs)yieldorientational restraints [27],and HCCH-COSY/TOCSY experimentsareneededtoidentifythespinsystemwith-inthesugarresidues.Forthelatterexperi-ments,13C,15N-enrichedRNAisrequired.AttheUniversityofZürich,weareintheluckyposition tohaveaccess toanexcel-lent NMR facility with high-field NMRmachinesrangingfrom500–700MHz,in-cludingcryoprobes toenhancesensitivity,enabling us to take advantage of the fulldiversityofpossibleexperiments.

    Once a set of distance and conforma-tional restraints iscollected,structurecal-culationisstartedfromaninitialstructurebyafullycomputationalsimulatedanneal-ingprotocol(X-PLORNIHpackage[28]),yieldingafirstsetofstructures.Theseout-putstructuresareanalyzedfordistanceandconformational violations, the input filescorrected and supplemented with furtherrestraints,beforeanextroundofsimulatedannealingisperformed(Scheme).Thiscy-cleisrepeateduntilatleast10%oftheout-putstructuresconverge(e.g.20outof200calculated structures) [17][19]. Usually, ar.m.s.d.of1–3Åforallheavyatomsofsuchan ensemble of 20 structures is obtained.Thisr.m.s.d.islargerthanforcomparableprotein structures,butone shouldkeep inmindthatRNAisnotascompactasapro-teinandthusmuchmoreflexible.

    Afterthedeterminationofthethree-di-mensionalstructureofaRNAmolecule,wefocusonitsbindingpropertiestometalionsandtheireffectonlocalstructures.

    5.InvestigationofMn+BindingtoRNA

    Asmentionedabove,themetalionsusu-allyassociatedwithnucleicacids(Na+,K+,andMg2+)arespectroscopicallysilentandthusdifficulttodetect.Nevertheless,there

    Fig. 3. Structure determination of RNAs byNMR. A) Typical 1H,1H-NOESY spectrum ofaRNAwith an evident small dispersion of theresonances clustering in specific regions. B)SectionofthespectrumframedinA)withtheso-called‘sequentialwalk’indicatedasablackline,connecting all nucleotides sequentially along ahelical RNA. C) Through-space connectivitiesof nucleotide protons along a RNA sequenceleadingtothe‘sequentialwalk’.

  • MODIFIEDOLIGONUCLEOTIDES 820CHIMIA2005,59,No.11

    areseveralwaystoexaminemetalionbind-ingtoRNA.RecentlywehaveshownthatgroupIIintronspossessnumerousspecificMn+bindingsiteswithinthecatalyticcoreofthefoldedRNAmoleculebypartiallyre-placingMg2+withTb(III)[18][29].Tb(III)replacesMg2+atitsbindingsitesandleadsto a hydrolytic cleavage of the phosphatesugarbackbone,whenboundintheminorgroove. If Mg2+ is replaced with Fe2+/3+,cleavage occurs through a radical mecha-nism(‘Fentoncleavage’)andthusirrespec-tiveofthebindingsite[30].

    Afurtherwaytodetectmetalionbind-ing are so-called thio-rescue experiments.Here, one of the non-bridging phosphateoxygens is replaced by a sulfur. If Mg2+

    bindingtothissiteisessentialforcatalysis(orfolding),theactivityoftheribozymeisreduceddue to the loweraffinityofMg2+towardsthesoftersulfurligand[31].UponadditionofmorethiophilicmetalionslikeCd2+orZn2+,whichcoordinatereadilytosulfur, ribozyme activity may be restored[32]. Indeed, such experiments are notunequivocal and often rescue is observedalsowithmetal ions that arehardlymorethiophilicthanMg2+,likeMn2+,butwhichhaveahigheroverallaffinity[31].TogainabetterunderstandingontheeffectofsulfurwithinRNAoligonucleotidesonstructure,hydrogenbonding,andmetalionbinding,weperformNMRstudiesonsuchmodifiedRNAs[33].

    NMRspectroscopyenablesustodirect-lymonitorMg2+bindingtoRNA[17][19].Additionof increasingamountsofMgCl2to a RNA solution leads to changes inchemical shifts of specific protons (Fig.4B).ThesechangescaneitherbecausedbydirectMg2+bindingataneighboringatom,orbyaslightstructuralchangeinlocalge-ometryuponMg2+bindingnearby.Byfit-tingtheexperimentaldatatoa1:1bindingmodel,affinityconstantsforMg2+bindingcanbecalculated[17][19].WecouldshowthatRNAhairpinslikeD5[29]orD6[17]bind3–5Mg2+ionsatspecificsiteswitharatherhighaffinity. Interestingly, someofthesesitesareveryclosetothecatalyticallyimportantnucleotides implyingapossiblecatalyticroleoftheseions.Consideringthechargerepulsionbetweenmetalionscloseinspace,itisremarkablethatnucleicacidshavetheabilitytobindmetalionstoseveralsitesincloseproximity,aswecouldshowbypotentiometricpHtitrations[34].

    Metal ions not only bind passively toRNAbutcanleadtoasubstantialdecreasein pKa values of nucleotide functionalgroups [35], a change in hydrogen bond-ingproperties[35],orperhapsevenastruc-turalchange.We investigate thesevariouseffectsbyfluorescencespectroscopy[36],Scheme.

    Fig.4.Solutionstructuresandmetal ionbindingpropertiesofcatalyticdomainsofgroupII intronribozymes.A)SchematicsecondarystructureofagroupIIintrontogetherwiththesolutionstructuresofD5[19]andpartofD6[17],assolvedinourlaboratory(PDBcodes1R2Pand2AHT).B)ChangeofthechemicalshiftofaH2protonwithinD6upontitrationwithMgCl2.Theexperimentaldataisfittoa1:1bindingmodeltogivetheaffinityconstantKA=112±26M

    –1(logKA=2.05±0.10).

  • MODIFIEDOLIGONUCLEOTIDES 821CHIMIA2005,59,No.11

    biochemical activity assays [14][15], po-tentiometric pH titrations [37], as well asbyNMR[17][19].Byapplying thiscom-bined approach we make use of the indi-vidualadvantages thateachof these tech-niquesoffers.Ideally,wetherebyachieveafullcharacterizationoftheroleofspecificmetalionsinthestructureandfunctionofourRNA.

    6.ConcludingRemarks

    In contrast to the traditional view ofribonucleicacidsasmereworkingcopiesofthegenome,rapidlyincreasingexperi-mentalevidenceattributesa largevarietyofspecificcellularfunctionstoRNA,in-cluding protein transport and synthesis,metabolic regulation, and even catalyticreactions [1]. The polyanionic characterof RNA makes charge compensation in-dispensable.Thisisusuallyaccomplishedbyweakandunspecificbindingofmono-anddivalentmetalionstothephosphate–sugarbackbone.Ontheotherhand,RNAemploys distinct metal ions to stabilizehigherorderstructuresandtoactdirectlyascofactorsinRNA-catalysis[13].Thesemetalions,usuallyMg2+,bindwithanex-ceptionallyhighdegreeofspecificityandaffinitytotheirassignedsites.

    Asindicatedabove,theresearchinourlaboratory focuseson the characterizationofthesemetalionsandtheirrolesinfold-ingandfunctionintwospecificclassesofnaturally occurring RNAs: riboswitchesandgroupIIintronribozymes.Thisreviewsummarizesour recentNMRstudieswiththegroupIIintronribozymeai5γ.Wehavesolved the solution structures of domain5 (D5) [19] comprising the catalytic cen-ter as well as of a shortened construct ofthebranch-pointdomain6(D6)[17].Thepreceding pages provide an overview ofthedifferentstepsthatleadtothestructuredetermination of these two RNA hairpinsbyNMR.

    Subsequent to the structure determina-tion,wearestudyingtheeffectofdifferentdivalentmetal ionsonthesetwoimportantdomainsandtheirability tocarryout theirfunctionaswellastoinvolvethemselvesintertiary interactionswithotherpartsof theintron.Tothisend,weapplyawiderangeoftechniques,includingNMR,X-raycrys-tallography,fluorescence,UVandCDspec-troscopy,biochemicalassaysandpotentio-metricpH-titrationstogaininsightintothediverserolesthatmetalionscanplayinRNA

    structure and function.With our work, wehopetoshedlightontheroleofmetalionsinRNAandtoemphasizethenecessitytoin-tegratethefieldsofchemistryandstructuralbiologyforgainingabetterunderstandingofthesefascinatingmolecules.

    AbbreviationsAsp,asparticacid;Cys,cysteine;EBS,

    exon binding site; FMN, flavin mononu-cleotide;Glu,glutamicacid;His,histidine;IBS,intronbindingsite;mRNA,messengerRNA; ORF, open reading frame; r.m.s.d.,root mean square deviation; SAM, S-adenosylmethionine; TPP, thiamine pyro-phosphate; tRNA, transfer RNA; 5ʹ-UTR,5ʹ-untranslatedregion.

    AcknowledgementsWe thank Dr. Eva Freisinger for careful

    reading, helpful comments and discussionsregarding this manuscript. R.K.O.S. thanks alltheenthusiasticmembersofhisresearchgroup:MichèleErat,MayaFurler,SofiaGallo,Dr.BerndKnobloch, Daniela Kruschel, Miriam Steiner,and Veronica Zelenay for their devoted workand valuable contributions. Financial supportby the Swiss National Science Foundation(SNF-Förderungsprofessur PP-002-68733/1) isgratefullyacknowledged.

    Received:August23,2005

    [1] R.F. Gesteland, T.R. Cech, J.F. Atkins,‘TheRNAWorld’,Vol.37,2nded.,ColdSpringHarborPress,1999.

    [2] K. Kruger, P.J. Grabowski,A.J. Zaug, J.Sands,D.E.Gottschling,T.R.Cech,Cell1982,31,147–157.

    [3] C. Guerrier-Takada, K. Gardiner, T.Marsh,N.Pace,S.Altman,Cell1983,35,849–857.

    [4] W.C.Winkler,A.Nahvi,J.A.Collins,R.R.Breaker,Nature2004,428,281–286.

    [5] A.Teixeira,A.Tahiri-Alaoui,S.West,B.Thomas,A. Ramadass, I. Martianov, M.Dye,W.James,N.J.Proudfoot,A.Akou-litchev,Nature2004,432,526–530.

    [6] A.G. Vitreschak, D.A. Rodionov, A.A.Mironov,M.S.Gelfand,TrendsGenetics2004,20,44–50.

    [7] M. Mandal, R.R. Breaker, Nature Rev.Mol.CellBiol.2004,5,451–463.

    [8] J.K. Soukup, G.A. Soukup, Curr. Opin.Struct.Biol.2004,14,344–349.

    [9] A. Nahvi, J.E. Barrick, R.R. Breaker,NucleicAcidsRes.2004,32,143–150.

    [10] K. Lehmann, U. Schmidt, Critical Rev.Biochem.Mol.Biol.2003,38,249–303.

    [11] R.K.O.Sigel,Eur.J.Inorg.Chem.2005,12,2281–2292.

    [12] J.D.Boeke,GenomeRes.2003,13,1975–1983.

    [13] R.K.O. Sigel, A.M. Pyle, submitted forpublication.

    [14] M.C. Erat, M. Wächter, R.K.O. Sigel,Chimia2004,58,479.

    [15] M.C. Erat, O. Fedorova, R.K.O. Sigel,submittedforpublication.

    [16] I.Bertini,A.Sigel,H.Sigel,Eds.‘Hand-bookonMetalloproteins’,MarcelDekkerInc.,NewYork,2001.

    [17] M.C.Erat,O.Zerbe,T.Fox,R.K.O.Sigel,submittedforpublication.

    [18] R.K.O.Sigel,A.Vaidya,A.M.Pyle,Nat.Struct.Biol.2000,7,1111–1116.

    [19] R.K.O. Sigel, D.G. Sashital, D.L.Abra-movitz, A.G. Palmer III, S.E. Butcher,A.M.Pyle,Nat.Struct.Mol.Biol.2004,11,187–192.

    [20] J.H.Davis,M.Tonelli,L.G.Scott,L.Jae-ger,J.R.Williamson,S.E.Butcher,J.Mol.Biol.2005,351,371–382.

    [21] S.Gallo,M.Furler,R.K.O.Sigel,Chimia2005,59,812–816.

    [22] G.Varani,F.Aboulela,F.H.T.Allain,Prog.Nucl.Mag.Res.Sp.1996,29,51–127.

    [23] S.S.Wijmenga,B.N.M.vanBuuren,Prog.Nucl.Mag.Res.Sp.1998,32,287–387.

    [24] J.Cromsigt,B.vanBuuren,J.Schleucher,S. Wijmenga, Methods Enzymol. 2001,338,371–399.

    [25] B. Furtig, C. Richter, J. Wohnert, H.Schwalbe, ChemBioChem 2003, 4, 936–962.

    [26] T.Dieckmann,J.Feigon,J.Biomol.NMR1997,9,259–272.

    [27] H.J.Zhou,A.Vermeulen,F.M.Jucker,A.Pardi,Biopolymers1999,52,168–180.

    [28] C.D. Schwieters, J.J. Kuszewski, N.Tjandra,G.M.Clore,J.Magn.Res.2003,160,65–73.

    [29] R.K.O.Sigel,A.M.Pyle,Met.IonsBiol.Syst.2003,40,477–512.

    [30] C.Berens,B.Streicher,R.Schroeder,W.Hillen,Chem.Biol.1998,5,163–175.

    [31] R.K.O. Sigel, B. Song, H. Sigel, J. Am.Chem.Soc.1997,119,744–755.

    [32] P.M. Gordon, J.A. Piccirilli, Nat. Struct.Biol.2001,8,893–898.

    [33] B.Knobloch,R.K.O.Sigel, results tobepublished.

    [34] B.Knobloch,R.K.O.Sigel,B.Lippert,H.Sigel, Angew. Chem., Int. Ed. 2004, 43,3793–3795.

    [35] R.K.O.Sigel,E.Freisinger,B.Lippert,J.Biol.Inorg.Chem.2000,5,287–299.

    [36] M. Steiner, R.K.O. Sigel, results to bepublished.

    [37] B. Knobloch, D. Suliga, A. Okruszek,R.K.O. Sigel, Chem. Eur. J. 2005, 11,4163–4170.