study case; general solution for symmetrical faults

9
© Salvador Acevedo Study Case: General Solution for Symmetrical Faults The power system shown operates under steady-state conditions with E g1 =1 0° p.u. and E g2 =0.9 30° p.u. when a solid three-phase fault occurs at node 2. Obtain the transient short-circuit currents in lines, generators and transformers. Evaluate the transient node voltages V 1 f , V 2 f and V 3 f during the fault (transient period). GENERATOR-1 Xd=85% Xd'=25% Xd"=10% ra=1% TRANSFORMER-1 Y-Y Zt=0.01+j0.15 p.u. TRANSFORMER-2 Y-Y Zt=0.01+j0.20 p.u. GENERATOR-2 Xd=120% Xd'=40% Xd"=20% ra=2% Transmission line 1-2 Z=0.03+j0.4p.u. Transmission line 1-3 Z=0.05+j0.5 p.u. LOAD R=10 p.u. Transmission line 2-3 Z=0.05+j0.5 p.u. 1 2 3 Fault

Upload: guru-mishra

Post on 07-Nov-2015

3 views

Category:

Documents


1 download

DESCRIPTION

GENERAL SOLUTION

TRANSCRIPT

  • Salvador Acevedo

    Study Case: General Solution for Symmetrical Faults

    The power system shown operates under steady-state

    conditions with Eg1=1 0 p.u. and Eg2=0.9 30 p.u. when a solid three-phase fault occurs at node 2. Obtain the transient short-circuit currents in lines, generators and transformers. Evaluate the transient node voltages V1f, V2f and V3f during the fault (transient period).

    GENERATOR-1Xd=85%Xd'=25%Xd"=10%

    ra=1%

    TRANSFORMER-1Y-Y

    Zt=0.01+j0.15 p.u.

    TRANSFORMER-2Y-Y

    Zt=0.01+j0.20 p.u.

    GENERATOR-2Xd=120%Xd'=40%Xd"=20%

    ra=2%

    Transmission line 1-2Z=0.03+j0.4p.u.

    Transmission line 1-3Z=0.05+j0.5 p.u.

    LOADR=10 p.u.

    Transmission line 2-3Z=0.05+j0.5 p.u.

    1 2

    3

    Fault

  • Salvador Acevedo

    Step 1. Pre-Fault Solution

    +E1-

    zLoad

    +E2-

    zgt1

    z12

    z13

    zgt2

    z23

    i12

    i13 i23

    iG1 iG2

    +

    V1

    -

    +

    V2

    -

    +V3-

    I1 I2

    ygt1

    y12

    y13

    ygt2

    y23

    zgt1=zg1+zt1=0.02+j1z12=0.03+j0.4z13=z23=0.05+j0.5zgt2=zg2+zt2=0.03+j1.4zLoad=10E1=1

    E2=0.930

    ygt1=0.02-j0.9996y12=0.187-j2.486y13=y23=0.198-j1.980ygt2=0.0153-j0.714yload=0.1I1=0.02-j0.9996I2=0.333-j0.549

    Impedance diagram (all values in p.u.)

    Admittance diagram (all values in p.u.)

    To solve it, we use nodal analysis.

    Y Y YY Y YY Y Y

    V1V2V3

    J1J2J3

    -0.187+ j2.486 - 0.198+ j1.980

    -0.187 + j2.486 0.399 - j5.180 - 0.198+ j1.980 -0.198 + j1.980 -0.198+ j1.980

    V1

    V2V3

    11 12 13

    21 22 23

    31 32 33

    =

    -

    -

    =

    -

    -

    0 405 5466

    0496 3960

    0 02 09996

    0333 05490

    . .

    . .

    . .

    . .

    j

    j

    j

    j

    =

    V1V2

    V3

    0929 7 10916 10 2

    0920 7 2

    . .

    . .

    . .

  • Salvador Acevedo

    Pre-Fault Currents

    Line Currents:Line 1-2I12=y12 (V1-V2)

    I12 =(0.187-j2.486)(0.929 7.1- 0.916 10.2)

    I12 = 0.129 -151.9 p.u.

    Line 1-3I13=y13 (V1-V3)

    I13 =(0.198-j1.980)(0.929 7.1- 0.920 7.2)

    I13 = 0.019 -87.4 p.u.

    Line 2-3I23=y23 (V2-V3)

    I23 =(0.198-j1.980)(0.916 10.2- 0.920 7.2)

    I23 = 0.096 -18.9 p.u.

    Generator Currents:Generator 1

    IG1= I12 + I13 = 0.129 -151.9 + 0.019 -87.4

    IG1= 0.138 -144.6

    Generator 2

    IG2= -I12 + I23 = -0.129 -151.9 + 0.096 -18.9

    IG2= 0.224 -24.2

  • Salvador Acevedo

    Power Balance (Pre-Fault)

    To verify the solution, a real Power Balance is now calculated (as an exercise):

    Generated PowerGenerator 1 + Transformer 1:

    SG1=V1 IG1*= (0.929 7.1 )(0.138 144.6 )SG1= -0.113 + j 0.061PG1= - 0.113 (where the minus sign means this generator

    absorbs P=0.113 p.u. and therefore is acting as a motor)

    QG1=0.061

    Generator 2 + Transformer 2:

    SG2=V2 IG2*= (0.916 10.2)(0.224 24.2 )SG2=0.1986 - 0.0495iPG2= 0.1986QG2= - 0.0495 (this generator absorbs Q = 0.0495 p.u. and

    still generates P = 0.1987 p.u., therefore this machine acts as a generator)

  • Salvador Acevedo

    Power Balance (continued)

    Absorbed PowerLoad:PLoad=(V3)2/Rload=(0.920) 2*0.1=0.0846 p.u.

    Real Power dissipated in lines:line 1-2: P=I12 2 * Rline12=(0.129) 2(0.03)=0.0005

    line 1-3: P=I13 2 * Rline13=(0.019) 2(0.05)=0.00002

    line 2-3: P=I23 2 * Rline23=(0.096) 2(0.05)=0.00046

    The power balance is:

    Pgenerated=Pabsorbed

    PG2=PLoad+Pline12+Pline13+Pline23+Pabsorbed-G1

    0.1986=0.0846+0.0005+0.00002+0.0004+0.113=0.1986

    Note: Nodal analysis has been used to find the operating conditions of the system before the fault. In practice, a Load-flow solution would have been used instead.

  • Salvador Acevedo

    Step 2. Fault at Bus 2 (Thvenin Contribution)

    To simulate a Fault at Bus 2, we will add the pre-fault response to the Thvenin Contribution.

    We use a source equal to the pre-fault voltage at point 2 and set all the original sources to zero. To solve this network for the transient period, we require the use of transient values for the machines impedances.

    The machine impedances for the transient period are:zg1=0.01 + j 0.25, zg2=0.03 + j0.4

    Including transformers:zgt1=(0.01+0.01)+j(0.25+0.15)=0.02 + j 0.40zgt2=(0.02+0.01)+j(0.40+0.20)=0.03 + j 0.60

    The matrix [YBUS] and its inverse [ZBUS] become:

    [ ]

    Yj

    j

    Z Yj

    j

    BUS

    BUS BUS

    =-

    -

    = =+

    +

    -

    0509 6 960

    0 496 3 960

    0 020 0 275

    0 061 0 487

    1

    . .

    . .

    . .

    . .

    - 0.187 + j2.486 - 0.198 + j1.980- 0.187 + j2.486 0.468 - j6.129 - 0.198 + j1.980

    - 0.198 + j1.980 - 0.198 + j1.980

    0.014 + j0.186 0.023+ j0.2290.014 + j0.186 0.024 + j0.319 0.025+ j0.2510.023+ j0.229 0.025+ j0.251

  • Salvador Acevedo

    Thvenin Contribution (step 2)

    DDD

    D

    D

    D

    D

    DD

    VVV

    VVfV

    Z If

    VVfV

    Z Z ZZ Z ZZ Z Z

    If

    V Z Z If Z Z IfV Vf Z

    BUS

    123

    1

    3

    0

    0

    1

    3

    0

    0

    1 0 02

    11 12 13

    21 22 23

    31 32 33

    11 12 13 12

    = -

    = -

    -

    =

    -

    = + - + = -= - =

    from where:( )

    12 22 23 22

    31 32 33 32

    22 22

    22

    0 03 0 0

    + - + = -= + - + = -

    =--

    = =

    =

    ( )( )

    Z If Z Z IfV Z Z If Z Z If

    IfVfZ

    VfZ

    VfZ

    Z Z

    Thev

    Thev

    D

    * Note that only elements from column ' P' are needed.

    From the second equation:

    where is the Thevenin impedance for a fault at node 2.

    Fault current and changes in voltages are now obtained inin the following way:

  • Salvador Acevedo

    Thvenin Contribution (step 2)

    Fault current and changes in voltages are now calculated.The Thvenin Impedance for a fault at bus 2 is:

    Z = Z = 0.024 + j0.319

    Using the pre - fault voltage at node 2:V = V = 0.916 10.2

    we find the fault current:

    I'VZ

    0.916 10.2 0.024 + j0.319

    0.916 10.2 0.320 85.6

    The voltage changes at the other nodes are found from:V = Z (-I' ) = (0.014 + j0.186)(V = Z (-I' ) = (0.024 + j0.319)(

    22 Thev

    f 2

    ff

    22

    1 12 f

    2 22 f

    = =

    =

    = -

    - + - +

    2 862 754

    2 862 75 4 1802 862 754 180

    . .

    . . ). . )

    DDDV = Z (-I' ) = (0.025+ j0.251)(

    V = Z (-I' )V = Z (-I' ) =V = Z (-I' ) =

    3 32 f

    1 12 f

    2 22 f

    3 32 f

    2 862 754 180

    0533 169 70 916 169 80 723 1712

    . . )

    . .. .. .

    - +

    = - - = - -

    DDD

    Vf

  • Salvador Acevedo

    Step 3. Fault Conditions

    Adding results from steps 1 and 2, we obtain the faulted voltagesat each node:

    V V + V = 0.929 7.1 +0.533 -169.7 = 0.398 2.7

    V V + V = 0.916 10.2 +0.916 - 169.8 = 0

    V V + V = 0.920 7.2 +0.723 -171.2 = 0.199 1.3

    The current contributions from the lines during the fault are:

    I' V V 0.398 2.7I' V

    f 01

    f 02

    3f 0

    3

    12f 1f 2f

    32f

    1

    2

    3

    1

    2

    12

    32

    0187 2 486 0 0 992 82 9

    =

    =

    =

    = - = - - = - =

    D

    D

    D

    y jy

    ( ) ( . . )( ) . .( 3f 2f

    g2f f 12f 32f

    V 0.398 2.7

    The generator contribution is found by Kirchhoff Currents Lawat the faulted node:

    I' I' I' I'

    - = - - = -

    = - - = -

    ) ( . . )( ) . .

    . .

    0198 1980 0 0 395 830

    1497 685

    j

    1

    2

    3

    I12f '

    I32f 'Ig2f '

    If '=2.862-75.4

    All quantities have been calculated in per unit.Results are for phase a.