study of sofc operational behavior by applying in-situ ... · study of sofc operational behavior by...

23
2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA Study Study of SOFC Operational of SOFC Operational Behavior Behavior by by Applying Applying In In - - Situ Situ Diagnostic Diagnostic Methods Methods Günter Schiller, Wolfgang Bessler, Caroline Willich, K. Andreas Friedrich Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik Pfaffenwaldring 38-40, D-70569 Stuttgart 2010 Fuel Cell Seminar, October 18 – 21, 2010, San Antonio, TX, USA

Upload: ngodieu

Post on 16-Jun-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

StudyStudy of SOFC Operational of SOFC Operational BehaviorBehavior byby ApplyingApplyingInIn--SituSitu DiagnosticDiagnostic MethodsMethods

Günter Schiller, Wolfgang Bessler, Caroline Willich, K. Andreas Friedrich

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische ThermodynamikPfaffenwaldring 38-40, D-70569 Stuttgart

2010 Fuel Cell Seminar, October 18 – 21, 2010, San Antonio, TX, USA

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

SOFC SOFC Activities at Activities at

DLRDLR

Characterization of Short Stacks and

Stacks (ASC, MSC)

Development of Metal Supported Cells (MSC)

System TechnologySOFC Diagnostics

Fuelgas Air

SOFC Modeling

H2H2/CO

CH4

H2OCO2

anode

electrolyte

cathode

O2/N2N2

interconnect

interconnect

Ri Resistor Si Switch, Ii Local current

Segmentvoltage,impedance

UlocalZlocal

Segmentcurrent

UIZ

Detailed 2D model of MEA, channel, interconnector

R1 R3 R4R2

R5 R7 R8R6

S1 S3 S4S2

S5 S7 S8S6

I4I3I2I1

Detailed 2D model of MEA, channel, interconnector

R1 R3 R4R2

R5 R7 R8R6

S1 S3 S4S2

S5 S7 S8S6

I4I3I2I1

Cell current,voltage,

impedance

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Investigation of Degradation and Investigation of Degradation and CellCell FailuresFailures

•• Insufficient understanding of cell degradation and cell failuresInsufficient understanding of cell degradation and cell failures in in SOFC SOFC

•• Extensive experimental experience is not generally available Extensive experimental experience is not generally available which which would allow accurate analysis and improvementswould allow accurate analysis and improvements

•• Long term experiments are demanding and expensiveLong term experiments are demanding and expensive

•• Only few tools and diagnostic methods available for developers dOnly few tools and diagnostic methods available for developers due ue to the restrictions of the elevated temperaturesto the restrictions of the elevated temperatures

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

„„SophisticatedSophisticated““ ((nonnon--traditionaltraditional) ) InIn--situsitu DiagnosticsDiagnostics

•• ElectrochemicalElectrochemical impedanceimpedance spectroscopyspectroscopy on on stacksstacks

•• SpatiallySpatially resolvedresolved measuringmeasuring techniquestechniques forfor currentcurrent, , voltagevoltage, , temperaturetemperature

and gas and gas compositioncomposition

•• OpticalOptical imagingimaging

•• OpticalOptical spectroscopyspectroscopy

•• AcousticAcoustic emissionemission detectiondetection

•• XX--rayray tomographytomography

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

OutlineOutline

•• IntroductionIntroduction

•• Experimental Experimental setupsetup forfor spatiallyspatially resolvedresolved measurementsmeasurements

•• ExemplaryExemplary resultsresults of of spatiallyspatially resolvedresolved measurementsmeasurements::

•• MSC MSC cellcell

•• ASC ASC cellcell withwith high high fuelfuel utilizationutilization

•• ASC ASC cellcell withwith reformatereformate as as fuelfuel gasgas

•• Outlook: Outlook: OpticalOptical microscopymicroscopy and and RamanRaman spectroscopyspectroscopy

•• ConclusionConclusion

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

MotivationMotivation

Problems in planar cell technology: Problems in planar cell technology: •• Strong local variation of gas Strong local variation of gas

composition, temperature, andcomposition, temperature, andcurrent densitycurrent density

•• Distribution of electrical and Distribution of electrical and chemical potential dependent onchemical potential dependent onlocal concentrationslocal concentrations

This may lead to:This may lead to:•• Reduced efficiencyReduced efficiency•• Thermo mechanical stressThermo mechanical stress•• Degradation of electrodesDegradation of electrodes

Effects are difficult to understand due to the strong interdepenEffects are difficult to understand due to the strong interdependence of dence of gas composition, electrochemical performance and temperaturegas composition, electrochemical performance and temperature

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

MeasurementMeasurement Setup Setup forfor SegmentedSegmented CellsCells

•• 16 16 galvanicallygalvanically isolated segmentsisolated segments•• Local and global iLocal and global i--V characteristicsV characteristics•• Local and global impedance Local and global impedance

measurementsmeasurements

•• Local temperature measurementsLocal temperature measurements•• Local fuel concentrationsLocal fuel concentrations•• Flexible design: substrateFlexible design: substrate--, anode, anode--, ,

and electrolyteand electrolyte--supported cellssupported cells•• CoCo-- and counterand counter--flowflow

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

SegmentedSegmented CellsCells

•• Anode supported cells: Anode supported cells: Segmented cathode Segmented cathode ((H.C.Starck/InDECH.C.Starck/InDEC))

•• Electrolyte supported cells: Electrolyte supported cells: Segmented cathode and Segmented cathode and anodeanode

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Test Test RigRig

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Power Power DensityDensity and and TemperatureTemperature Distribution of a Distribution of a Plasma Plasma SprayedSprayed CellCell

FuelAir•• P und T distribution at standard gas flow P und T distribution at standard gas flow

rates: 12,5/12,5//80 smlpm/cmrates: 12,5/12,5//80 smlpm/cm²²HH22/N/N22//Air, 800//Air, 800°°C, 0.7 V, C, 0.7 V,

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

Air Flow Fuel Flow

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

OCV OCV VoltageVoltage MeasurementMeasurement forfor Determination of Determination of HumidityHumidity

•• Voltage distribution at standard flow rates:Voltage distribution at standard flow rates:•• 50% H50% H22, 50% N, 50% N22 + 3% H+ 3% H22O, 0.08 SlpM/cmO, 0.08 SlpM/cm²² airair

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

fuel gas air

22

20 lnHO

OHrevrev pp

pzFRTUU

Nernst Nernst equationequation::

ProducedProduced waterwater::S4: 0.61%, S8: 0.72%, S4: 0.61%, S8: 0.72%, S12: 0.78%, S16: 3.30%S12: 0.78%, S16: 3.30%

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Power Power DensityDensity DistribututionDistributution underunder ConditionsConditionsof High of High FuelFuel UtilizationUtilization

Counter-flow

Anode: 33% H2, 1% H2O,

66% N2

Cathode: air

T = 800 °C

Cell voltage: 0.59 V

Fu = 80%

Lit.: Fuel Cells, 10 (3), 411-418 (2010)

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

AssessmentAssessment of of LocalLocal Performance Performance withwith SegmentedSegmented SOFCsSOFCs

ExperimentExperiment

ModelModelUlocalZlocal

UIZ

UlocalZlocal

UIZ

16segments

Global Global behaviorbehavior

LocalLocalbehaviorbehavior

CellCell cancan bebe locallylocally in in criticalcritical conditionsconditions!!

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Variation of Variation of LoadLoad -- ReformateReformate

Anode supported cell, LSCF cathode, 73,96 cm², gas concentrations (current density equivalent): 54.9% N2, 16.7% H2, 16.5% CO, 6,6% CH4, 2.2% CO2, 3.2% H2O (0.552 A/cm²), 0.02 SlpM/cm² air

0,0

50,0

100,0

150,0

200,0

250,0

300,0

Segment 9 Segment 10 Segment 11 Segment 12

pow

er d

ensi

ty p

[mW

/cm

²]

0,0

15,0

30,0

45,0

60,0

75,0

90,0

fuel

util

isat

ion

fu [%

]

p(i) 100 mA/cm² p(i) 200 mA/cm² p(i) 400 mA/cm² p(i) 435 mA/cm²

fu 100 mA/cm² fu 200 mA/cm² fu 400 mA/cm² fu 435 mA/cm²

fu

100

200

400435

100

200

400435

Pow

er d

ensi

tym

W/c

m2

Fuel

util

isat

ion

(%)

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Alteration of Alteration of thethe Gas Gas CompositionComposition at at 435 mA/cm435 mA/cm²²

0

0,05

0,1

0,15

0,2

0,25

0,3

Segment 9 Segment 10 Segment 11 Segment 12

Gas

konz

entra

tion

/ %

H2 CO CH4 CO2 H2O

Con

cent

ratio

n/ %

H2

10 11 12

CO

CH4

H2O

CO2

9

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Alteration of Alteration of thethe Gas Gas CompositionComposition at at 100 mA/cm100 mA/cm²²

0

0,05

0,1

0,15

0,2

0,25

0,3

Segment 9 Segment 10 Segment 11 Segment 12

Gas

konz

entra

tion

/ %

H2 CO CH4 CO2 H2O

KS4X050609-7 in Metallischem Gehäuse; Substrat: Anodensubstrat, aktive Zellfläche:73,78 cm²,A: 542 µm NiO/YSZ, E: 14 µm YSZ + YDC,

K: 28 µm LSCF, Kontaktierung: 30 µm LSP16+Pt3600,Integral, Gasflüsse: 0,552 A/cm² Stromdichteäquivalent (54,9% N2, 16,7% H2,

16,5% CO, 6,6%CH4, 2,2%CO2, 3,2% H20) // 0,08 SlpM/cm² Luft, 800 °C, 100 mA/cm²

Metallic housing, anode substrate, active area 73.78 cm²Anode: 542 µm NiO/YSZ, Electrolyte: 14 µm YSZ + YDC,Cathode: 28 µm LSCFOperation conditions: 0.10 A/cm² - Anode = 5.52(54.9% N2, 16.7% H2, 16.5% CO, 6.6% CH4, 2.2% CO2, 3.2% H2O0.08 Nlpm/cm² Air, 800°C)

Con

cent

ratio

n/ %

9 10 11 12

H2

CO

H2O CO2CH4

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Potential Potential forfor OpticalOptical SpectroscopiesSpectroscopies

Raman spectroscopyRaman spectroscopyLaser Doppler Anemometry (LDA)Laser Doppler Anemometry (LDA)Particle Image Particle Image VelocimetryVelocimetry (PIV)(PIV)FastFast--Fourier Infrared (FTIR)Fourier Infrared (FTIR)Coherent AntiCoherent Anti--Stokes Raman Spectroscopy (CARS)Stokes Raman Spectroscopy (CARS)Electronic Speckle Pattern Electronic Speckle Pattern InterferometryInterferometry (ESPI)(ESPI)

Digital CCD camera

Distance microscope(resolution1 µm)

Quarz window

Transparentflow field

Imagingspectrograph

Lenses/filter

Pulsed Nd:YAG laser(532 nm, 10 ns)

Open tube(5 mm)

a) In situ microscopy b) In situ Raman laser diagnostics

15 cm

Heat & radiation shield

SOFC

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Setup Setup forfor 1D1D--Raman Raman SpectroscopySpectroscopy

3 double pulse 3 double pulse Nd:YAGNd:YAG PIV 400 PIV 400 laserlaser systemssystemsλλ = 532 nm= 532 nmRepetition rate: 10 HzRepetition rate: 10 HzSingle pulse: E Single pulse: E ≤≤ 350 mJ / 350 mJ / ~~7 ns7 nsPulse Pulse energyenergy: 6 x 300 mJ : 6 x 300 mJ Pulse Pulse lengthlength: : ~380 ns ~380 ns

(temporal (temporal resolutionresolution))

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Transparent Transparent FlowfieldFlowfield forfor SOFCSOFC

Top view

Side view

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Experimental Setup Experimental Setup forfor RamanRaman SpectroscopySpectroscopy MeasurementsMeasurements

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

CellCell HousingHousing withwith Transparent Transparent FlowfieldFlowfield in Hot in Hot FurnaceFurnace

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

Setup Setup forfor InIn--SituSitu OpticalOptical MicroscopyMicroscopy

2010 Fuel Cell Seminar, October 18 - 21, 2010, San Antonio, TX, USA

ConclusionConclusion

•• InIn--situsitu diagnosticdiagnostic techniquestechniques allowallow forfor a a largelylargely extendedextended insightinsightintointo fuelfuel cellcell processesprocesses (fundamental (fundamental understandingunderstanding, , optimizationoptimization of of flowflow fieldfield))

•• TheThe potential of potential of spatiallyspatially resolvedresolved diagnosticsdiagnostics was was demonstrateddemonstrated withwith somesomeexemplaryexemplary resultsresults

•• TheThe obtainedobtained datadata cancan bebe usedused forfor modelingmodeling and and simulationsimulation forfor identificationidentification of of criticalcritical operatingoperating conditionsconditions

•• StrongStrong gradientsgradients of gas of gas concentrationsconcentrations and and currentcurrent densitydensity particularlyparticularly at at operationoperation withwith high high fuelfuel utilizationutilization maymay resultresult in in locallylocally criticalcritical operatingoperatingbehaviorbehavior

•• Additional Additional inin--situsitu diagnosticdiagnostic methodsmethods such as such as opticaloptical microscopymicroscopy and gasand gas--phasephase RamanRaman spectroscopyspectroscopy areare currentlycurrently builtbuilt up to up to provideprovide furtherfurther informationinformationforfor thethe understandingunderstanding of of cellcell reactionsreactions and and processesprocesses