sub-threshold sense amplifier (sa) compensation using auto-zeroing circuitry

49
Robu st Low Powe r VLSI Robust Low Power VLSI Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry 01/21/2014 Peter Beshay Department of Electrical Engineering University of Virginia, Charlottesville

Upload: ronia

Post on 23-Feb-2016

115 views

Category:

Documents


0 download

DESCRIPTION

Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry. Peter Beshay Department of Electrical Engineering University of Virginia, Charlottesville. 01/21/2014. Outline. Motivation Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion. Motivation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

RobustLowPowerVLSI

Sub-threshold Sense Amplifier (SA) Compensation Using Auto-zeroing Circuitry

01/21/2014

Peter BeshayDepartment of Electrical EngineeringUniversity of Virginia, Charlottesville

Page 2: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Outline Motivation Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

2

Page 3: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Motivation

3

Source: IdeaConnection.com

Source: groups.csail.edu/

Source: Implantable-device.com

Page 4: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Motivation

4

SRAM are used in implantable devices Contribute significantly to the total

System-on-chip (SOC) power consumption

SRAM Power Consumption (1)

(1) N. Verma, Phd thesis

Page 5: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Motivation

5

Minimum Energy occurs in sub-threshold [1]

Eactive = CVDD2

Etotal/operation minimized in sub-VT

Main LimitationsProcess Variations effect, Slow Speed

VDD (V)

Nor

mal

ized

Ene

rgy

(1) N. Verma, Phd thesisEnergy Consumption vs. VDD (1)

Page 6: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Motivation

6

Work Focus

Minimizing the energy of the read operation of sub-threshold SRAMs.

Sense Amplifier are utilized during the read operation of the SRAMs.

The intrinsic offset voltage of the SAs causes increased read energy and degraded performance of the SRAM read operation [2].

Page 7: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

7

Page 8: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Sense Amplifier

=1 if =0 Otherwise

𝑉 2

𝑨𝒏𝒂𝒍𝒐𝒈𝒚𝑉 1

𝑉 𝑜𝑢𝑡

Enable

Page 9: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

9

SA Offset Voltage

=1 if =0 Otherwise

𝑉 2

𝐕𝐨𝐟𝐟𝐬𝐞𝐭

𝑨𝒏𝒂𝒍𝒐𝒈𝒚

=1 if =0 Otherwise

𝑉 1

𝑉 2

𝑉 1

𝑉 𝑜𝑢𝑡

𝑉 𝑜𝑢𝑡

Enable

Enable

Page 10: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

10

=1 if =0 Otherwise

𝑉 2

𝐕𝐨𝐟𝐟𝐬𝐞𝐭

𝑨𝒏𝒂𝒍𝒐𝒈𝒚

=1 if =0 Otherwise

𝑉 1

𝑉 2

𝑉 1

𝐕𝐨𝐟𝐟𝐬𝐞𝐭

𝑉 𝑜𝑢𝑡

𝑉 𝑜𝑢𝑡

Enable

Enable

𝐎𝐜𝐜𝐮𝐫𝐞𝐧𝐜𝐞𝐬

SA Offset Voltage

Page 11: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

11

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

6T Bitcell 6T Bitcell 6T Bitcell

6T SRAM Read Operation

Page 12: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

12

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

6T Bitcell 6T Bitcell 6T Bitcell

6T SRAM Read Operation

Page 13: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

13

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

6T SRAM Read Operation

Page 14: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

14

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

6T SRAM Read Operation

Page 15: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

15

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

6T SRAM Read Operation

Page 16: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

16

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

WL=

WL

6T SRAM Read Operation

Page 17: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

17

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

6T SRAM Read Operation

Page 18: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

18

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

6T SRAM Read Operation

Page 19: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

19

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

∆V >

∆V

6T SRAM Read Operation

Page 20: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

20

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

SAE

∆V >

∆V

6T SRAM Read Operation

Page 21: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

21

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

SAE

∆V >

∆V

6T SRAM Read Operation

Page 22: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

22

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

∆V

6T SRAM Read Operation

Page 23: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

23

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

∆V

6T SRAM Read Operation

Page 24: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

24

...

SAE

Row

Dec

oder

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

6T Bitcell

......…

BL= =

01

WL=

WL

B L ,BL

SAE

Pre-charge

∆V

𝑬𝒑𝒓𝒆𝒄𝒉𝒂𝒓𝒈𝒆=𝐂𝐁𝐋𝐕𝐃𝐃∆𝐕6T SRAM Read Operation

Page 25: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

PMOS-input Latch SA

𝐄𝐍BL 𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍Cross coupled inverter to latch the output

Sense the input voltage

Enable the SA

Precharge the output to VDD 25

Page 26: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

𝐄𝐍BL=0.45V 𝐁𝐋=𝟎 .𝟒𝐕

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

EN

OUT,

26

PMOS-input Latch SA

Page 27: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

𝐄𝐍BL=0.45V 𝐁𝐋=𝟎 .𝟒𝐕

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

EN

OUT,

V=

27

PMOS-input Latch SA

Page 28: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Offset Voltage

𝐄𝐍BL=0.5 =0.5

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

𝐈𝐃=𝐈𝟎𝐖𝐋 𝐞

𝐕𝐆𝐒−𝐕𝐭𝐡

𝐧𝐕𝐭𝐡𝐞𝐫𝐦𝐚𝐥 (𝟏−𝐞𝐕𝐃𝐒

𝐕 𝐭𝐡𝐞𝐫𝐦𝐚𝐥 )

∆ mismatch causes the currents to Be different, for zero differential input(BL=)

28

Page 29: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

29

Digital Auto-zeroing (DAZ)• We propose a digital auto-zeroing (DAZ) scheme

inspired by analog amplifier offset correction.

• The main advantages of the approach are• Near-zero offset after cancellation.• Suitable for sub-threshold operation due to the

repeated offset compensation phase.

• Several attempts have been made before to tackle the problem including:• Redundancy [3]

• Transistor upsizing [4]

• Digitally controlled compensation [5]

Page 30: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

30

Page 31: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Auto-zeroing in analog amplifiers• Amplification is done

in two phases

• Φ1: Sample the offset on a capacitor

• Φ2: Subtract the offset from the input signal

(2) K Kang et al, “Dynamic Offset Cancellation Technique” cse.psu.edu/~chip/course/analog/insoo/S04AmpOffset.ppt

Dynamic Offset Cancellation (2)

Page 32: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

DAZ Scheme

• Phase1 (ENR1)A zero differential input is applied to the sense amp.

• Phase2 (ENO)The SA resolves based on its intrinsic offset.

𝑉 𝑜𝑢𝑡

=0

𝑉 𝑜𝑢𝑡

=1

𝑇𝑢𝑛𝑒 h𝑡 𝑒𝑆𝐴

Page 33: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

DAZ Scheme

• Phase3 (ENR2)The differential input is applied to the sense amp.

• Phase4 (ENI)The SA resolves based on the differential input.

𝑉 𝑜𝑢𝑡

=0

𝑉 𝑜𝑢𝑡

=1

BL

BL

BL

BL

Page 34: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

DAZ Circuit

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

• DAZ circuit applied to a latch-based sense amp with PMOS inputs

• DAZ circuit uses a split-phase clock and charge pump (CP) feedback circuit for repetitive compensation.

Charge Pump

𝐂𝐩

Page 35: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

DAZ Circuit

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

Charge Pump

𝐂𝐩

• Transistors MC1 and MC2 control the drive strength of the right side of the SA.

• The CP controls the drive current in both MC1 and MC2 to equalize the strength of the SA right and left sides.

Page 36: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

DAZ Circuit

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

𝐄𝐍𝐈M11

ENO

ENR2

𝐄𝐍𝐑𝟐

M9

M10

M12

M13

CpCharge Pump

Page 37: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Phase 1

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

𝐄𝐍𝐈M11

ENO

ENR2

𝐄𝐍𝐑𝟐 M12

M13

Cp

M9

M10

ER1: A zero differential input is applied to the sense amp.

Charge Pump

Page 38: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Phase 2

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

𝐄𝐍𝐈M11

ENO

ENR2

𝐄𝐍𝐑𝟐 M12

M13

Cp

M9

M10

ENO: The SA resolves based on its intrinsic offset.

Charge Pump

Page 39: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Phase 3

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

𝐄𝐍𝐈M11

ENO

ENR2

𝐄𝐍𝐑𝟐 M12

M13

Cp

M9

M10

ER2: The differential input is applied to the sense amp.

Charge Pump

∆v

Page 40: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Phase 4

𝐄𝐍

ENR1

𝐁𝐋

𝐄𝐍

OUT 𝐎𝐔𝐓

M5 M6

M1 M2

M3 M4

𝐄𝐍

ENR1

ENR2

ENI

BL

ENR2

ENI

MC2

MC1

𝐄𝐍𝐈M11

ENO

ENR2

𝐄𝐍𝐑𝟐 M12

M13

Cp

M9

M10

ENI: The SA resolves based on the differential input.

Charge Pump

Page 41: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

41

Precision• The precision of the scheme depends on the accuracy

of setting the voltage on the output capacitor (Cp).

Settling Time= 60us

Page 42: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

42

Offset Tuning • Accuracy (offset voltage) vs. settling time trade-off

through Cp tuning.

0 2 4 6 8 10 12 14 16 18 205

10

15

20

25

30

35

40

Min Achieved Offset (mV)

Settl

ing

Tim

e (u

s)

Cp=0.74pF

Cp=0.43pF

Cp=0.24pF

Cp=0.14pFCp=0.13pF

Page 43: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

43

Page 44: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

44

16kB SRAM Test-case• A 20mV DAZ SA is used in a 16kB SRAM with

1bank, 512 rows and 256 columns using commercial 45nm technology node [6].

• 10% reduction of the read energy• 24% reduction of the read delay

• 45nm technology test chip. • One regular SA array for benchmarking• DAZ SA array with Cp=32fF.

• DAZ circuit limits the absolute value of the maximum offset to 50 mV and provided 80% improvement in σ [6].

Chip Measurements

Page 45: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

45

Limitation• Area overhead (major concern in SRAM designs)

• 2.5X for 50mV offset compensation• Can be significant for small offsets

• Energy overhead of the continuous calibration (split phases, charge pump)• 3.5X the energy of a regular SA

• Sensitivity to split phase frequency.

Page 46: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

Outline Introduction DAZ Circuit 16kB SRAM Chip Measurements Conclusion

46

Page 47: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

47

Conclusion• We proposed a circuit that is capable of improving sense-amp offset to

near zero, which is valuable for sub-threshold operation due to the repeated calibration phase.

• Applying the scheme on a 16 kB SRAM in 45nm technology node showed a reduction in the total energy and delay of 10% and 24% respectively.

• Measurements from a test chip fabricated in 45 nm technology showed the circuit’s ability to limit the absolute maximum value of the offset voltage to 50 mV using a 32fF output capacitance.

Page 48: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

48

References 1. B. H. Calhoun et al. "Sub-threshold circuit design with shrinking CMOS

devices." ISCAS 2009. 2. J. Ryan et al. “Minimizing Offset for Latching Voltage-Mode Sense Amplifiers

for Sub-threshold Operation” ISQED 2008. 3. N. Verma et al. “A 256 kb 65 nm 8T Sub-threshold SRAM Employing

Sense-Amplifier Redundancy” ISSCC 2008. 4. L. Pileggi et al. “Mismatch Analysis & Statistical Design” CICC 2008. 5. M. Bhargava et al. “Low-Overhead, Digital Offset Compensated, SRAM Sense

Amplifiers” CICC 2009. 6. P. Beshay et al. "A Digital Auto-Zeroing Circuit to Reduce Offset in Sub-

Threshold Sense Amplifiers." JLPEA 2013

Page 49: Sub-threshold Sense Amplifier  (SA) Compensation  Using Auto-zeroing Circuitry

RobustLowPowerVLSI

49

Questions