subject index - astm international

27
STP939-EB/Sep. 1987 Subject Index A Accelerating kinetics, 189 Activation energy, apparent recovery, 567-568 recrystallization, 575 Active slip systems, 635 Alloying additions, irradiation growth ef- fects, 73-78 delayed hydride cracking effects, 231-232 Alloys, 86, 101, 120 Alpha grains, 325, 330-331 Anisotropic parameters, correlation with reduction parameter, 656 Anisotropy, 101, 120, 631 ball rolling, 30 definition, 24 early work, 25 optical properties, 32 theory, 26-27 tube reducing, 30 tubing, 30 types, 24-25 Zircaloy, 23-33 Zircaloy-4 effects, 557-558 Zircaloy-4 strips, 114-115 see also Cold reduction, anisotropy effect; Pole figures; Preferred orientation Annealing, 663 after final cold-working, 425-426 parameters, 367,441-442 temperature effect before quench- ing, 423,425 temperature effect on Zircaloy-4 thin strips, 667, 670-671 upper t~-range after B-quenching, 425 Aqueous corrosion resistance and chemical inhomo- geneity size, 762, 766, 768- 770 weight gain versus probability of occurrence, 768-769 Zircaloy, 769 ASTM B 353, 29-30, 750 ASTM E 399, 581,583 ASTM E 813,584, 588 ASTM G 2,208, 244, 251,257,269, 367, 431,434 Atomic-diffusion coefficient, 16 Autoclave test, 243-256, 294, 364, 367 comparison of temperature re- sponse, standard heat-treated tubing, 253 frequency distribution of weight gains in single and multiple tests, 245 limitations, 255 parametric test series, 244, 246- 249 autoclave loading, 248-249 nodule coverage, 244, 246 pressure, 247 refreshment, 248 temperature, 246-247 time, 247 round-robin test Series, 249-251 survey, 244-245 weight gains, 333 versus nodule rating, 252 Zircaloy-2, final annealing tem- perature effect, 324 B Ball rolling, 30 807 Copyrighr ~ 1987 byASTM International www.astm.org

Upload: others

Post on 04-Feb-2022

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Subject Index - ASTM International

STP939-EB/Sep. 1987

Subject Index

A

Accelerating kinetics, 189 Activation energy, apparent

recovery, 567-568 recrystallization, 575

Active slip systems, 635 Alloying

additions, irradiation growth ef- fects, 73-78

delayed hydride cracking effects, 231-232

Alloys, 86, 101, 120 Alpha grains, 325, 330-331 Anisotropic parameters, correlation

with reduction parameter, 656

Anisotropy, 101, 120, 631 ball rolling, 30 definition, 24 early work, 25 optical properties, 32 theory, 26-27 tube reducing, 30 tubing, 30 types, 24-25 Zircaloy, 23-33 Zircaloy-4 effects, 557-558 Zircaloy-4 strips, 114-115 see also Cold reduction, anisotropy

effect; Pole figures; Preferred orientation

Annealing, 663 after final cold-working, 425-426 parameters, 367,441-442 temperature effect before quench-

ing, 423,425 temperature effect on Zircaloy-4

thin strips, 667, 670-671 upper t~-range after B-quenching,

425

Aqueous corrosion resistance and chemical inhomo-

geneity size, 762, 766, 768- 770

weight gain versus probability of occurrence, 768-769

Zircaloy, 769 ASTM B 353, 29-30, 750 ASTM E 399, 581,583 ASTM E 813,584, 588 ASTM G 2,208, 244, 251,257,269,

367, 431,434 Atomic-diffusion coefficient, 16 Autoclave test, 243-256, 294, 364,

367 comparison of temperature re-

sponse, standard heat-treated tubing, 253

frequency distribution of weight gains in single and multiple tests, 245

limitations, 255 parametric test series, 244, 246-

249 autoclave loading, 248-249 nodule coverage, 244, 246 pressure, 247 refreshment, 248 temperature, 246-247 time, 247

round-robin test Series, 249-251 survey, 244-245 weight gains, 333

versus nodule rating, 252 Zircaloy-2, final annealing tem-

perature effect, 324

B

Ball rolling, 30

807

Copyrighr ~ 1987 b y A S T M International www.astm.org

Page 2: Subject Index - ASTM International

808 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Ball swaging, 30 Bar quenching, comparison with bil­

let quenching, 358 Basketweave structure, 284-285, 291 Basquin's law, 602 Bauschinger effect, 647-648 Bending, Zircaloy-4 cladding tube

a-phase, 471 deformed under azimuthal tem­

perature difference and cool­ing, 472

/3-phase cladding oxidation, 506 decomposition, 94-95 disappearance, 521, 523 irregular penetration, 174, 176

|3-quenching, 28, 101, 284, 292, 305, 341-362

accumulation of temperature ef­fects after, 426

aggressive in-process, 362 alloy chemistry effects, 359 annealing in upper a-range, 425 billet quench, 344, 346, 349-350,

352-353 comparison of billet and bar, 358 experimental procedure, 343 hollow, 337, 351, 354, 359, 362 in-process, 357-359 microstructure, 371, 373

corrosion relationships, 360-362

Zircaloy-2, 308-311 Zircaloy clad produced by re-

crystallization annealing, 343-347

rates, 307 steam autoclave corrosion, 351,

357 temperature effect, 288-289 Zircaloy-2 and 4 differences, 359-

360 |3-treatment, 168 Biaxial creep, creep loci and, 121,

123 Biaxial deformation, 120 Billet quenching

|3-quenching, 344, 346, 349-350, 352-353

comparison with bar quenching, 358

Zircaloy-4, 434, 437 Boiling water reactor, 206-207, 243,

292, 307, 321, 341, 364, 387-388, 417-418, 419, 679, 734

cladding, 675 loss-of-coolant accident, 452 nodular corrosion, 257-258 spacer effect on nodular oxidation

of Zircaloy, 212-213 Brittle behavior

crack morphologies, 784-785 fracture site, expanding mandrel

tests, 790-791, 793-795 fracture surface morphologies,

776, 782-783, 786 zirconium alloy pressure tubes,

584-588 Burnup, nodular corrosion effect,

420 Burst pressure, versus normalized

annealing time, 444 Burst strain

versus azimuthal temperature dif­ference, Zircaloy-4 cladding tubes, 470, 473, 481

versus burst temperature, Zirca­loy-4 cladding tubes, 469, 482

initial iodine concentration effect, 459

Burst temperature, Zircaloy-4 clad­ding tube

versus burst pressure, 468 versus burst strain, 469 versus length change, 470

Burst test, 436 multi-rod, 473-475 transient, 551-553

CANDU-PHW pressure tubes, 189-202

behavior, 193-198

Page 3: Subject Index - ASTM International

SUBJECT INDEX 809

cold-worked deuterium concentration, 195-

197 oxidation, 193, 195

critical oxide thickness, 196-197, 204-205

delayed hydride cracking, 227-229 deuterium concentration, cold-

worked Zircaloy-2 and Zr-2.5Nb pressure tubes, 195-197

in-reactor service life, 205 long-term kinetics, 198, 200-202 operating conditions for tubes re­

moved from reactors, 194 oxidation pattern, inside surface

of cold-worked Zr-2.5Nb pressure tube, 198-199

Zircaloy-2 behavior, 190-191 Zr-2.5Nb, versus Zircaloy-2, 191-

193 see also specific alloys

CEA, 39

Cefilac, 39

Cesium/cadmium, stress corrosion cracking, 717, 725

Chemical inhomogeneity popula­tions, 748-774

aqueous corrosion resistance, 762, 766, 768-770

carbon, 774 chemical nature, 760-761, 767 cladding cross sections, 757-758,

763-765 cladding ID surfaces, 752-757

diffuse appearance, 752-755 sharp inhomogeneities, 754,

756-757 electron microprobe analysis, 753,

755 energy-dispersive X-ray analysis,

748, 751-752, 756, 758, 773 fraction of inhomogeneities that

contain iron, 767 iodine SCC threshold stress, 768 materials, 750-751

occurrence of individual elements, 767

occurrence of specific combina­tions of elements, 767

procedures, 751-752 size

and SCC resistance, 761-762, 768

distribution, 758-760, 766 surface roughness data, 751

Chlorination, 136 Clad ballooning, heat transfer effect,

472, 474-476 Cladding oxidation, 504-538

i8-phase, 506 experimental design and conduct,

505 fuel rods heated in argon and oxy­

gen as function of time, 506, 514-515

growth-rate equations, 506, 517 isothermal experiments, 506-517 metallic layer transformation as

function of time, 506, 516 microstructure, transient-heated

fuel-rod segments, 509, 518-520, 522-523

modeling results, 517, 521, 526, 528-536

isothermal experiments, 521, 526, 529-530

temperature transient experi­ments, 530-536

oxygen concentration distribution, interaction layers, 531-532, 534, 536

reaction-layer interfaces, move­ment as function of square root of time, 521, 529-530, 533, 535

reaction-zone thickness as func­tion of

heat-up rate, cool-down rate, and maximum temperature, 509, 524-525

maximum temperature, 509, 526-527

Page 4: Subject Index - ASTM International

810 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Cladding oxidation (cont.) reaction-zone thickness as func­

tion of {cont.) time, 506, 508, 510-513

sequence of external Zircaloy/oxy-gen and internal UOj/Zirca-loy interaction layers, 507

transient temperature experi­ments, 509, 518-527

Cladding tube, 292, 321, 539 sequence of operations, 342

Cold drawing, 149 Cold reduction, anisotropy effect,

653-662 procedure, 653-655 reduction parameter effects, 655-

657 tool design effect, 657-681

Cold-rolled Zircaloy-4 sheet, 555-575

anisotropy effects, 557-558 apparent activation energy evolu­

tion, 567-568 cold-rolling and measurement

temperature effects, 558-561 composition, 556 evolution of solid solution during

Stages I and II, 565 influence of elements in solid solu­

tion, 558 internal-friction experiments, 557,

562, 564 low temperature evolution, 562-

566 materials, 556 recovery, 566-571 recrystallization, 571-573 thermal treatments, 557 see also Thermoelectric power

measurements Cold rolling, 663 Cold working, 49, 431, 539, 653

effect on Zircaloy-4 thin strips, 666-669

irradiation growth effect, 60-63 Compressive properties, recrystal-

lized Zircaloy-4, 599-601

Constant opening angle, 593 Contractile strain ratio, 653-654,

662 Conversion yield, 136 Cookie-cutter electrode, 582 Coolability, deformed rod bundles,

480, 482, 484 Coolant flow direction, effect on flow

blockage, 474-478 Cooling, 451 Corrosion, 168, 206, 243, 292 Corrosion, 341

behavior of furnace /3-annealed tubing, 170-173

breakaway, 246-247 CANDU-PHW pressure tubes,

189 crud-induced localized, 257 effective parameter, versus Sn con­

tent, 380, 382 first generation of laser-treated

Zircaloy tubing, 177 ID versus OD, 447 intermetallic precipitates, 315,

317-318 long term, cold-worked Zircaloy-2

and Zr-2.5Nb pressure tubes, 198, 200

microstructure relationship, 360-362

nodular accelerated, 207 rate as function of reciprocal tem­

perature, 218 water chemistry effect, 190-191,

193 water-side, 417 Zircaloy-4 versus Zircaloy-2, 176,

178 Zr-2.5Nb, 189 see also Autoclave test; specific

types of corrosion Crack

critical length, 580 critical stress intensity factor, 580 elastic-plastic analysis, 592 growth rate, fatigue precracked

tubes, 710-711

Page 5: Subject Index - ASTM International

SUBJECT INDEX 811

morphologies, irradiated Zircaloy cladding, 780, 782, 784-785

Cracking prevention, 224 surface, 612 velocity dependence on stress in­

tensity factor, 224-225 see also Delayed hydride cracking

Crack initiation at chemical inhomogeneities, 749 during stress corrosion cracking,

717-733 active path mechanism, 717,

720, 725 annealing times, 720, 722 CH3I effectiveness in cracking-

resistant Zircaloy, 724, 729 incipient crack, 721, 731 intergranular cracking, 733 iodine reaction with silicone

rubber O-rings, 724-725 preheating effect on apparent

incubation time, 720, 724 procedure, 719 Rutherford backscattering spec­

tra, 720, 722 small ductile tears, 730 transgranular features, 724,

728-729 typical initiation sites, 720, 724,

726-727 vacuum annealing effect on tex­

ture after pickling, 720, 723 intergranular, 715

Crack propagation, 579, 700 expanding mandrel tests, 782,

784-785 incubation period, 715 internal gas-pressurization tests,

782 resistance to, 156-157

Crack resistance, CH3I effectiveness, 724, 729

Creep, 120, 168, 431, 597 cavitation, 629 compliance, 128 damage, 614, 629-630

diffusion-controlled, 7 isothermal/isobaric curves, Zirca-

loy-4, 461 recrystallized Zircaloy-4, 604

Creep elongation versus normalized annealing time,

444 versus yield strength, 440

Creep-fatigue cumulative damage, 606, 608-614

creep-then-fatigue sequence, 606, 608-610

fatigue-then-creep sequence, 606, 610-612

fatigue with hold time, 613-614 interaction, 597, 610

Creep loci crystallite orientation distribution

function, 123-125 CW-SR Zircaloy-4, 129-130 polycrystalline aggregate, 125,

128-129 ratios of hoop-to-axial strain-

rates, 131 recrystallized Zircaloy-4, 129-130,

132-133 shift from prism slip to basal slip,

132, 135 stress state, 129 total creep-rate, 128 Zircaloy, 120-135

Creep rupture test, 539, 551-553 deformation to failure, 704 under nominal stress, 608 Zircaloy-4 tube capsules, 464

Critical resolved shear stresses, 636 prism and pyramidal, temperature

dependence, 636, 639 Crystallite orientation, 120

distribution function, 123-125 Crystallographic texture, 23, 49, 51,

101, 120, 431, 653, 700 cold-rolled strips, 664-665 hydrostatically extruded and

drawn rods, 157-158, 165 intergranular crack initiation, 715 irradiation growth, 52-57, 93

Page 6: Subject Index - ASTM International

812 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Crystallographic texture (cont.) lower-bound predictions, 131 mechanical properties and, 666-

667 nodular corrosion, 389 recrystallized strips, 665-666 upper-bound predictions, 133 Zircaloy-4, 432, 434-435 Zr-2.5Nb pressure tubes, 88-89 see also Zircaloy-4 thin strips

Crystal plastic modeling. See Creep loci

c-Type Burger's vectors, 66-67, 70 Cubic Zr02 precipitates

dark-field stereopair images, 796 TEM microstructures, 787, 790-

791, 793 Cumulative damage, 597, 604, 606-

614 Cyclic behavior. See Zircaloy-4, cy­

clic behavior Cyclic creep, 617 CYGRO program, 6

D

Damage rate, 5 Deformation

failure morphology and, 744-745 models, 632 Zircaloy. See Zircaloy, deforma­

tion and fracture Degussa, 40 Delayed hydride cracking, 224-240

alloying effects, 231-232 crack initiation, 232-235

flaw depth requirements, 237 requirements, 236

crack propagation, 233-234, 236-237

crack velocity dependence on stress intensity

factor, 224-225 versus temperature, 233-236

examples, 225-229

flaws, 230, 237-238 hydrogen concentration, 230, 235,

237, 239 mechanism, 229 microstructure, 231-232 parameters of propagation, 237 prevention, 234-238 tensile stress, 230, 237-238 time dependency, 229-230

Density hydrostatically extruded and

drawn rods, 156-157, 163 Zirconium alloy strip, 116

Deuterium concentration in cold-worked Zir-

caloy-2 and Zr-2.5Nb pres­sure tubes, 195-197

pickup, garter springs, 204 Deutriding, 189 Dimple size, irradiation effect, 745-

746 Dislocation, 617

density, 49 Zr-2.5Nb pressure tubes, 89

loops, radiation-produced, 11 networks

cold-worked material, 545, 550 fully recrystallized material,

544, 549-550 structure

fatigued failed specimen, 624-625

irradiation growth, 94 substructure, 86, 629

formation and characteristics, 159, 166

Zr-2.5Nb pressure tubes, 89 Dislocation-climb-controlled creep,

7 Dissipative work, 123 Distribution function, 120 Dobes-Milicka's equation, 604-605 Dresden-2, 208-210 Ductile-brittle transition, 579

zirconium alloy pressure tubes, 594

Page 7: Subject Index - ASTM International

SUBJECT INDEX 813

Ductility irradiated ZircaIoy-2 cladding, 737 loss, slow tensile tests, 710, 712 low temperature, hydrogen up­

take, 463 Zircaloy-2, 590, 593 Zr-2.5Nb, 588-592

E

Economics, 35 Eighteen-grain model, 636, 638 Elastic-plastic fracture mechanics,

580 Elastic-plastic transition, 631, 652 Elastic strain, 602 Electrical resistivity

effect of recovery and recrystalliza-tion, 324

intermetallic precipitates, 313-314, 319

Electron microprobe analysis, chem­ical inhomogeneity popula­tions, 753, 755

Electron microscopy, 341 Electro-refining cell

internally heated, 138-139 laboratory-scale, 137-138

Embrittlement, 451, 585 loss-of-coolant accident, 460-466 by synergistic effects, 797

Energy-dispersive X-ray analysis, 748, 751-752, 756, 758, 773

Enhancement factor, 217 Euler angles, 123-124 EXCEL

calandria tube, delayed hydride cracking, 227, 230-231

irradiation growth, 77, 79 Expanding mandrel tests, 675, 680-

682, 684-689 brittle-fracture site, 790-791, 793-

795 crack propagation, 782, 784-785 fracture surface morphologies,

783, 788-789

irradiated Zircaloy cladding, 778-779

method, 681-682 procedure, 684-685 purity, 688-689 results, 685-689 spent-fuel cladding results, 781 test matrix, 686 thickness, 689 tubing and foils used, 685 zirconium-barrier cladding, 680-

682, 684-689, 697 Extension creep curves, Zircaloy-4

cyclic behavior, 619, 622

Fabricated products, 35 Fabrication, 23 Failure elongation

temperature dependence, 738 unirradiated Zircaloy-2 cladding,

736 Failure morphology, 734

deformation and, 744-745 strain rate effect, 744

Fatigue continuous, 610 cumulative damage, 604, 606-609 curves, 603 damage, 614 with hold time, 613-614 low-cycle, 617 properties, 597

low cycle, recrystallized Zirca­loy-4, 601-603

resistance, hold-time in tension ef­fect, 614

Fatigue crack, 581 growth, 629

Fatigue-creep interaction, 610, 612 FEBA test, 482-484 Federal Republic of Germany, activi­

ties during 1950-1960, 40

Page 8: Subject Index - ASTM International

814 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

/-factors calculated versus experimental,

661 during reduction, 658

Fick equations, 528 Flaws, 224

delayed hydride cracking, 230, 237-238

FLIC, 18 Flow stress, 588, 590

J-resistance curve, 593 initial slope, 590, 593

tension and compression, 601 Fracture

analysis, hydrostatically extruded zirconium and Zircaloys, 153-154, 161

criterion, 580, 595 Zircaloy. See Zircaloy, deforma­

tion and fracture Fracture surface, 585

fatigue precracked tube, 710-711 morphologies

brittle behavior, 776, 782-783, 786

expanding mandrel tests, 783, 788-789

internal gas-pressurization tests, 782, 786

Zircaloy-2, 782, 786 SEM, 746 Zircaloy-2, 587

Fracture toughness, 579, 584-585, 595-596

ductile behavior data, 591 factors controlling, 592-593 hydrostatically extruded and

drawn rods, 155 hydrostatically extruded zirco­

nium and Zircaloys, 152-153, 155-160

maximum load versus tempera­ture, 586

SEM of stretched zone, 161 Framatome, 41 France, activities during 1950-1960,

37-40

FR-2 tests, 460, 477, 481 Fuel cladding, 417 Fuel rod, 539

Garter springs, deuterium pickup, 204

Grain boundaries, 700, 715, 770 anisotropy factor, 53 parameters, irradiation growth ef­

fects, 52-57 Grain shape

irradiation growth, 93-94 Zr-2.5Nb pressure tubes, 89

Grain size, 51, 291 cooling rate estimation, 317 irradiation growi:h, effect, 57-60 versus normalized annealing time,

443 subgrain, 554 yield strength and, 32-33, 439 Zircaloys, 293-294

Grid cell description, 103-104 irradiation-induced relaxation,

102-105 schematic, 102

Grid materials irradiation growth, 109-118 mechanical properties, 109-118

Grid spring materials, irradiation-in­duced relaxation, 105-109

Growth anisotropy factor, 53

H

Hafnium, 35 separation process, 39-40, 42

Hardening monotonous and cyclic curves, 601 static properties and, 611

Hardness hydrostatically extruded rod, 154,

161 intermetallic precipitates, 310,312

Page 9: Subject Index - ASTM International

SUBJECT INDEX 815

Heat flux, nodular oxidation effects, 207-214, 216-217

Heat treatment, 321, 364, 367, 387, 417

Heraeus, 40 High-a-phase region, 539 High-pressure steam test, 368-372,

419-420 accumulation of temperature ef­

fect after /3-quenching, 426-428

annealing after final cold-working, 425-

426 upper a-range after ;8-quench-

ing, 425 temperature effect before

quenching, 423-425 quenching rate effect, 424, 426 Zircaloy-4, 368-369

High temperature, 504, 539, 617 Hill's model, 632 History, 34-45

Belgium, 41 Campagnie Europeenee Ugine

Sandvik, 43-44 CEA, 39 Cefilac, 39 civil use, 36-37 Degussa, 40 Federal Republic of Germany, 40 France, 39-40 Heraeus, 40 Italy, 40-41 Jarrie, 42-43 Metallgesellschaft, 40 Military use, 36 Norway, 41 Pechiney, 39-40, 43 1950-1960 period, 37-41 1961-1970 period, 41-42 1971-1984 period, 43-45 prior to 1950, 35-36 Societe des Acieries d'Ugine, 37-

38, 42-43 Societe Industrielle du Zirconium,

41-42

Sweden, 41 Trefileries et Laminoirs du Havre,

39 United Kingdom, 36-37 Vallourec, 39

Hookes' law, 634 Hoop creep strain, 180-181 Hoop stress

distributions, 679 local, flaw effect, 680, 683 Zircaloy spent-fuel cladding, 782

Hydriding, 189 Hydride

cracking, unalloyed zirconium af­ter burnup,699

stress orientation, 29-30 Hydriding, zirconium alloy pressure

tubes, 581-582 Hydriding-dehydriding, 136 Hydrogen, 489

concentration, 224 delayed hydride cracking, 230,

235, 237, 239 time to failure effect, 233, 235

effect on oxidation kinetics, 500 pickup

furnace /3-annealed Zircaloy-4, 173

long-term, Zircaloy-2 and Zr-2.5Nb pressure tubes, 200-201

steam dilution, 492-493 steam test effect, 271-274 uptake, 190-191

cold-worked Zircaloy-2 and Zr-2.5Nb, after extended expo­sure in reactor, 200-201

low temperature ductilbility, 463

Zircaloy, 502 Zircaloy-2 pressure tubes, 202

Hydrostatic extrusion, influence on properties, 149-167

deformation work and strength parameter of stress and strain field, 160

density, 156-157, 163

Page 10: Subject Index - ASTM International

816 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Hydrostatic extrusion {cont.) density (cont.)

change versus reduction of cross-sectional area, 163

dislocation substructure, 159, 166 evolution characteristics of tex­

ture, 157-158, 165 experimental procedure, 150 fracture analysis, 153-154, 161 fracture characteristics, tensile

tests, 151-152, 155 fracture toughness, 152-153, 155-

160 generation of twins, 158 hardening, 154, 161 homogeneity of texture, 154, 156,

162 load versus displacement, 158-159 materials and preparation, 150 microvoid content, 147, 164 properties and microstructure

after annealing, 151, 153-154 after cold working, 150-152

resistance to crack propagation versus crack propagation, 156-157

tensile strength and ductility ver­sus reduction of cross-sec­tional area, 151

Impurities, 364 In-reactor corrosion, 247 Intergranular crack initiation, crys-

tallographic texture, 715 Intermetallic particles, 341

billet-quenching, 346, 350, 352-353

chemistry, 349 clusters, 327, 329, 345 crystal structure, 349 density and distribution, 374, 376-

377 hollow |3-quenched Zircaloy-2,

351, 354-355

lattice parameter, 349 mean size, 349 morphology, size, and distribu­

tion, 357-358 Zircaloy-2, distribution, 395-396,

398 Intermetallic phases, types, 333 Intermetallic precipitates, 307-320

activation energy and rate con­stant, 317

corrosion behavior, 315, 317-318 electrical resistivity, 313-314, 319 estimation of cooling rates during

i8-a transition from grain size, 317

experimental procedure, 308 hardness measurements, 310, 312 kinetics of nucleation and growth,

315-316 microstructure, 308-310 nodular corrosion, role, 395-408 nodule coverage, 317-318 stereologic characteristics, 318 thermal activation energies, 316 Zircaloy-2, 388 Zircaloy-4, 388

Internal-friction experiments, cold-rolled Zircaloy-4 sheets, 557

Internal gas-pressurization tests crack propagation, 782 irradiated Zircaloy cladding, 777 spent-fuel cladding results, 780

Intrinsic strength of the alloy, 17 Iodine-induced stress corrosion,

700-716 basal pole

intensity distribution, 704 orientation effect, 713

chemical inhomogeneity popula­tions, 748, 770-771

deformation to failure, 704 mechanism, 714

procedure and materials, 701-703 slow tensile tests, 703, 710, 712 susceptibility, 712-714 threshold stress, 768 time to failure, 705-709

Page 11: Subject Index - ASTM International

SUBJECT INDEX 817

see also Crack initiation, during stress corrosion cracking

Iodine zirconium high temperature growth, 77, 79 volume changes during irradia­

tion, 78-80 Irradiated Zircaloy cladding, 775-

801 chemical analysis, 779 crack morphologies, 780, 782,

784-785 expanding mandrel test, 778-779,

781 internal gas-pressurization tests,

777, 780 irradiation-induced segregation as

function of temperature, 797-798

post-test examination, 779 pseudo-stereopair, 793 SEM fractographs, 782-783, 786,

788-789 specimen geometry and prepara­

tion, 777 spent-fuel cladding, 777

Irradiation, 579 dimple size effect, 745-746 flux, nodular oxidation effect,

214-215 induced relaxation

grid cells, 102-105 grid spring materials, 105-109

nodular corrosion, effect, 408, 410 recrystallized Zircaloy-4, 54-55 zirconium alloy pressure tubes,

582-583 Zirconium alloy strip, 102 see also Zircaloy-2 cladding, irra­

diated recrystallized Irradiation creep, 5, 7, 54

additive thermal and irradiation components, 11

Irradiation growth, 5, 49-82, 101 alloying additions and impurities,

73-78 anisotropy factor, 99 annealed

Zircaloy, 64 Zr-2.5Nb, 75-78

cold work effect, 60-63 crystallographic texture, 52-57, 93 dislocation structure, 94 displacement damage rates, 52 effect of low levels of cold-work

and stress-relieving heat treatments, 56-57

effect of oxygen on high tempera­ture irradiation growth, 75

EXCEL, 77, 79 experimental procedure, 50-52 fractional recovery as a function of

cold work, 81 grain boundary

anisotropy factor, 53 parameter effects, 52-57

grain shape, 93-94 grain size effect, 57-60 grid materials, 109-118 growth anisotropy factor, 53 growth strain of Zr-0.1%Sn and

Zr-1.5%Sn alloys, 74, 76 microstructural changes to growth

breakaway, 66-70 microstructural effects, 86-99

crystallographic texture, 88-89 dislocation density, 89 dislocation substructure, 89 experimental procedure, 87-88 grain shape, 89 growth characteristics, 90-93 growth rate, 99 microstructure observed by

transmission electron micros­copy, 96

prism pole/-parameters, 88 ratios of axial to transverse

growth strain, 99 stage 1 behavior, 97 stage 2 behavior, 97-98 stage 3 behavior, 98 substructures, 89-90

neutron flux intensity and high fluences effects, 61-66, 82

polycrystalline materials, 52

Page 12: Subject Index - ASTM International

818 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Irradiation growth {cont.) recrystallized Zircaloy-2, 53-55 recrystallized Zircaloy-4 sheet, 64-

65,67 single crystals, 51 strain as function of fast neutron

fluence, 93-96 temperature dependence of break­

away growth, 64-65 test temperature and temperature

cycling effects, 70, 72-73 thermal stability, 79-81 volume changes, 78-80 Zircaloy-4, 113, 116-118 Zircaloy-2, grain size effect, 57-59 Zirconium alloy strip, 113

Isochronous annealing, microstruc-tural evolution stages, 563

Isothermal oxidation, 538 Italy, activities during 1950-1960,

40-41

Jarrie, 42-43 JMA law, 567 Jog-dragging model, 12 Johnson-Mehl-Avrami kinetic

model, 315 Johnson-Mehl-Avrami equation, 567 J-resistance curve, 579-580, 583

versus flow stress, 593 irradiation effect, 588 Zircaloy-2 containing radial hy­

drides, 589, 592 Zr-2.5Nb, 588-589

K

Kula-Lopata technique, 121

Laser beam beta heat treatment, Zir-caloy, 168-186

corrosion behavior of furnace 0-annealed tubing, 170-173

hoop creep strain, 180-181 inner surface temperature, 184 irregular (3-phase penetration

caused by short temperature transient, 174, 176

main components, 173 microstructure, 174-176 partial-wall )3 treatment, 173, 182 partial-wall penetration, 185 properties of final-sized laser-

treated tubing, 176-180 residual stresses, 184 stress-rupture data, 179 tensile properties, 178-179

Legendre theorem, 125 Life fraction, 597

versus stress amplitude, 2 Light water reactor, 451, 504 Linear elastic fracture mechanics,

580 Load cyclic tests, 618-622, 626 Load follow, 597 Loci, 120; see also Creep loci Loss-of-coolant accident (LOCA),

451-485, 489 coolability of deformed rod bun­

dles, 480, 482, 484 cooling, 451 core cooling acceptance criteria,

452 ECCS criteria, 466 embrittlement, 460-466 FR-2 in-pile tests, 460 materials, 690 metallographic cross section

nonbarrier Zircaloy, 693 Zr-barrier tube, 692

oxidation, 453-460 kinetics, 453

plastic deformation. See Plastic deformation

procedure, 689-691 results, 691 simulation multi-rod burst tests,

473-475 simulation ref lood tests in blocked

bundles, 483

Page 13: Subject Index - ASTM International

SUBJECT INDEX 819

temperature as function of time, 690

zirconium-barrier cladding, 689-691, 697

see also Zircaloy-4 Low-cycle fatigue, 617

M

Manson-Coffin's law, 603 Martensitic structures, 284, 287 Material condition, 539 Mechanical properties, 5, 23, 101,

631, 663 after annealing, 151, 153 after cold working, 150-151 evolution during recovery and re-

crystallization, 567-569 grid materials, 109-118 initial, bent beam materials, 107 texture effect, 666-667 Zircaloy-4, 432, 436, 439 zirconium alloy strip, 111-113

Mechanistic modeling. See Zircaloy,

deformation and fracture Melting, 284 Metallgesellschaft, 40 Metallography, Zircaloy-4, 496-499 Metallurgical bond, 675

tenacity, 676 zirconium-barrier cladding, 676-

678 zirconium-Zircaloy interface, 676-

677 Microhardness, irradiated Zircaloy-4

strips, 113 Microstructure, 49, 149, 284-291,

307, 321, 341, 364, 387, 489 after phase transformation, 287 as-laser-treated tubes, 174-176 |3 heat treatment, temperature ef­

fect, 288-289 i8-quenching, 371, 373 billet quenching, 437 cooling rate effect, 291 corrosion relationship, 360-362 delayed hydride cracking, 231-232

evolution stages, 563 high impurities content material,

288 high temperatures, 400 impurity effect, 287 intermetallic precipitates, 308-310 irradiation effects, 408, 410 low impurity content material, 288 material-bearing stringers, 288-

289 nodular corrosion, 369, 371, 373-

377 role of volatile impurities during

vacuum melting in stringer formation, 286

transient-heated fuel-rod seg­ments, 509, 518-520, 522-523

Zircaloy-4, 432, 434, 436 deformed cold-worded cladding

tube, 545, 547 deformed fully recrystallized

cladding tube, 544, 546 Zircaloy, produced by recrystalli-

zation annealing, 343-347 Microvoid content

versus displacement from fracture, 164

hydrostatically extruded and drawn rods, 157, 164

Miner's law, 614 Modeling, 504 Molten-salt electro-refining process,

137-140 bath choice, 140 bench-scale demonstrated unit,

138-140 studies on laboratory cell, 137-138 see also Zircaloy scrap refining

N

Necking formation process, localized deformation band, 745

Neutron diffraction, 631 Neutron flux, intensity effect on irra­

diation grovsrth, 61-66

Page 14: Subject Index - ASTM International

820 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Neutron irradiation, 5-7, 49 Nodular corrosion, 207, 307, 364-

429, 431 alloying elements impact, 379-384 alpha-recrystallized Zircaloy, 388 archive sample investigation, 421-

423 autoclave tests, 367 burnup effect, 420 concentration of solute elements of

grain matrices, 403, 409-410 critical particle diameter, 336 crystallographic texture, 389 data separation to identify mate­

rial and reactor influences, 420-421

determination, 418-419 electrochemical model, 388-389 experimental procedures, 389-390 high pressure steam tests, 368-372 impurity elements impact, 384-

385 influence of fabrication sequence,

441 initiation and growth, 361 in-reactor/ex-reactor comparison,

390-393 irradiation effect, 408, 410 materials, 419 mechanism, 329 mechanistic effect of solute ele­

ments, 400-401 microscopic analysis, 367-368 microstructural examinations, 418 microstructure, 369, 371, 373-377 models for solute distribution and

nodular oxide nucleation and growth, 410-413

normalized, 421-423. versus normalized annealing time,

445 out-of-pile simulation, 419 processing, 365-366 resistance, 321-337

intermetallic particle clusters, 327

materials, 322 SEM microstructure, 324-328 specimen preparation for SEM

and STEM, 322 specimens for metallography,

322 STEM microstructure, 325,

327, 330-332,334-335 types of intermetallic phases,

333 role of intermetallic precipitate

and solute distribution, 395-408

surface preparation effect, 283 susceptibility, 318

frequency of chemically inho-mogeneous sites, 769

thermochemical variable impact, 374, 378-379

versus volumetric mean size of pre­cipitates, 424

weight gain versus distance from the surface

for, 438, 440 parameter X effect, 380, 383 sponge zirconium strip, as func­

tion of annealing time, 401, 403

from static autoclave tests ver­sus parameter X, 380-381

white sheet, 416 Zircaloy, 341 Zircaloy-4, 431, 434, 436-438 see also Autoclave test; Steam test;

specific Zircaloys Nodular oxidation, 206-223

average maximum coverage, 281 BWR spacer effect, 212-213 heat flux, 207-214, 216-217 incremental rate, 217 irradiation flux effect, 214-215 model, 219-220 nodular growth rate, 219-220 O2 concentration, 214-215, 217,

220-221 quantitative description, 215-220

Page 15: Subject Index - ASTM International

SUBJECT INDEX 821

temperature effect, 215, 218-219 UO2, 208-210 Zircaloy, BWR spacer effect, 212-

213 Zircaloy-2, 208, 211-212

Nodular oxide granular, 413 nucleation and growth, 390-393

models, 410-413 sites, 393-394 steps leading to, 411-412

Zircaloy-4, 403, 409 Nodule coverage, 317-318 Nodulea, 168, 341 Norton creep equation, 539 Norton's equation, 604-605 Nuclear fuel cladding, 5 Nucleation, 307

O

Orientation basal pole effect, 165, 713 distribution functions, 125-127

using three pole figures, 135 preferred, 23, 25-26

Oxidation, 451, 489 computer codes for modeling,

457-458 hydrogen dissolved in oxide layers,

502 isothermal, 538

kinetics, 493-496 Zircaloy-4, 491-492

Zircaloy-4, 628 see also Loss-of-coolant accident,

oxidation; Nodular oxidation; Zircaloy-4, oxidation

Oxygen, 504 concentration

distribution in interaction lay­ers, 531-532, 534, 536

nodular corrosion, weight gain, 384-385

nodular oxidation effect, 214-215, 217, 220-221

steam test effect, 270-272

Parallel plate structure, 284-285, 291

Pechiney, 39-40, 43 PECLOX model, 504-505, 517, 521,

528, 530, 532-533 theoretical basis, 528

Pellet-cladding interaction, 33, 675, 679, 717-718, 749, 775

Percentage uptake, 189 Perforated fuel rod, zirconium-bar­

rier cladding, 691, 694-696 Phase, 168 Phase transformation, 284, 364

cooling rate effect, 291 stringers and microstructure after,

287 Phase transition, cooling rate estima­

tion from grain size, 317 Physical properties, 149 Plasma melting, 136 Plastic deformation, 451, 466, 468-

480, 539-554, 606 a-phase, 470-471 application to nonstationary tem­

perature conditions, 547-549 coolant flow direction on flow

blockage, 474-478 heat transfer effect on clad bal­

looning, 472, 474-476 high a-phase region, 540 in-pile and out-of-pile behavior,

477, 480-482 multi-rod behavior, 471-473 partly recrystallized material,

550-551 procedure, 540-541 single-rod behavior, 466, 468-473 strain rate dependency

initial yield strength, 542-543 true stress, 541-542

under azimuthal temperature dif­ference and cooling, 470-472

Page 16: Subject Index - ASTM International

822 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Plastic deformation (cont.) see also Burst temperature; Struc­

ture parameter Plastic strain, 603, 634

radial, 654 Plate, 23 Pole figures, 23, 25-26

basal cold-rolled Zircaloy sheet, 665 intensity distribution, 704 orientation effect, 713 resolved fraction, 53 rod-textured Zircaloy-2, 636-

637 Zircaloy-4, 434-435

hydrostatically extruded and drawn rods, 154, 156, 162

inverse, 26 macro, 32-33 micro, 32-33 orientation density versus reduc­

tion of cross-sectional area, 165

Zircaloy-4, 114-115, 121-122 Polycrystal equations, textured zirco­

nium alloys, 635 Polycrystalline aggregate, creep

model, 125, 128-129 Polycrystalline deformation, 631-

632 Polycrystalline materials, irradiation

growth, 52 Polycrystalline zirconium, effects of

temperature on growth, 72-74

Power-cooling mismatch tests, 460 Power-law constitutive relationship,

128 Precipitates, 321, 387, 775

morphology, 307 nucleation and growth, 307

Pre-creep, 606 Pre-fatigue, 612 Preferred orientation, 23, 25-26 Pressure

autoclave test, 247 steam test, 263, 265, 267-268

Pressure tubes, 189, 579 Pressurized water reactor, 5, 307,

387, 451, 539 Prism pole/-parameters, 88 Proton migration theory, 329 Pseudo-stereopair, 793

Q-ratio, 120 Quenching, 364, 431

parameters, 367 rate effect, 424, 426

Q-value, 653

Radiation effects, 387 Radiation hardening, Zircaloy, 18 Reaction kinetics, 489, 504 REBEKA multi-rod burst tests, 475 Recovery, 555

cold-rolled Zircaloy-4 sheets, 566-571

kinetics carbon content effect, 571 cold-rolling effects, 568-570

mechanisms, 555 relative TEP evolution, 566 TEP applications, 559, 562

Recrystallization, 49, 120, 431, 555 cold-rolled Zircaloy-4 sheets, 571-

573 kinetics, 572-574

carbon content effect, 572-573 derived from TEP and mechani­

cal properties measurements, 572, 574

recrystallized volume fraction, 571 relative TEP evolution, 566 TEP applications, 559, 562

Recrystallized Zircaloy-4, 597-616 creep behavior, 604 creep loci, 129-130, 132-133 creep-strained specimens, tension

and compression stress changes, 609

Page 17: Subject Index - ASTM International

SUBJECT INDEX 823

damage cumulation, 604, 606-614 irradiation growth, 64-65, 67 low cycle fatigue behavior, 601-

603 material and methods, 598-599 metallographic examination, 614-

615 tensile and compressive proper­

ties, 599-601 Reduction in area, 653-654 Reduction parameter, anisotropy ef­

fects, 655-657 Reduction processes, 39-40 Residual strain

comparison of calculated and ex­perimental values, 646-647

evolution, 648 grains of different orientation, 646

Residual stress, 49, 631 evolution during tensile deforma­

tion, 641, 643-647 as function of increment in flow

stress, 642-643 for grains of different orientations,

643-645 intergranular, 729 room temperature, 637, 640 textured zirconium alloys, 635

Robinson's law, 614 Rocking, 30 Rod bundles, deformed, coolability,

480, 482, 484 Rupture behavior, Zircaloy-4, 619-

620 Rutherford backscattering spectra,

crack initiation during stress corrosion cracking, 720, 722

SAF2D, 679 Second phase, 86, 364 Second-phase morphology, 94-95 Second-phase particles, 292-306,

374, 376 chemical composition, 298, 327,

332

Cr/Fe ratios, 301, 303 crystal structure, 300 diameters of Zr(Cr, Fe) and Zr(Ni,

Fe) particles, 301 fuel rod average oxide thickness as

function of mean diameter, 300, 303

as function of Zr content, 302 materials and experimental proce­

dure, 293-294 mean particle diameter, 296, 299 morphology, 294-296 oxide thickness, 305 particle composition, 296, 299,

302 plate-shaped, 329 produced by recrystallization an­

nealing, 343 rod average oxide thickness versus

the ra t ion , 301, 304 SEM micrographs, 324, 326, 328 size distributions, 294-295, 324,

327 statistical distribution, 438 STEM analysis, 292, 294, 305 STEM micrographs, 327, 332,

334-335 volume fraction of precipitates,

300 Zircaloy-4, 434, 436, 438

Selected-area diffraction patterns, 783, 786-787

SEM microstructure, Zircaloy-2, nodu­

lar corrosion resistance, 324-328

specimen preparation, 322 Severe fuel damage, 504 Shear strain-rate, 128 Shear stress, 128 Sheet, 23 Short time creep test, Zircaloy-4,

436, 440 SIMS, 401 Single crystal yield surface, 631

textured zirconium alloys, 633-634

Page 18: Subject Index - ASTM International

824 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Single-grain equations, textured zir­conium alloys, 634-635

Slip, 120 Slow tensile tests

ductility loss, 710, 712 iodine-induced stress corrosion,

703, 710, 712 Societe Industrielle du Zirconium,

41-42 Solute-dislocation interactions, 555 Solutes, 49, 387 Spacer-grid, 101

improved heat transfer around, 476

Spent-fuel cladding, 775 characterization, 776 expanding mandrel tests results,

781 experimental procedure, 777 internal gas-pressurization stress

rupture test results, 780 Spring relaxation, 101 304 stainless steel

chemical composition, 619 load cycling, 626 stress ratio-lifetime curves, 620,

623 Steam-dilution experiment, 497-

498, 500 Steam reaction, 489 Steam test, 257-283

applications, 276-278 autoclave loop, 259 autoclave startup procedure ef­

fects, 266-271 comparison of in-reactor and two-

step ex-reactor corrosion, 275-276

experimental procedure, 258-260 GE two-step steam test, 273-276

develop, 273-275 reproducibility, 275-276 test parameter specifications,

275, 277 hydrogen effect, 271-274 loop flow rate effects, 265-266,

269

occurrence frequency distribution, 280

oxygen effect, 270-272 parameters used in hydrogen addi­

tion experiments, 273 parametric studies, 260 temperature effects, 260-261 temperature range of autoclave,

282-283 test duration, 260, 263-266 test pressure effects, 263, 265,

267-268 weight gains of Zircaloy-2

as function of autoclave startup procedure, 270-271

as function of flow rate, 269 as function of oxygen content,

271-272 as function of system pressure,

267 as function of test duration,

260, 263-264 as function of test temperature,

260-261 non-hydrogenated and hydro-

genated inlet steam, 272-274 tested in etched or prefilmed

condition, 273, 275 two-step test procedure, 276,

279-280 Steam UO2, 504 Stefan equations, 528 STEM analysis, 292, 294, 305

microstructure, Zircaloy-2, nodu­lar "^corrosion resistance, 325, 327, 330-332, 334-335

specimen preparation, 322 studies, 333

Strain anisotropy, bending of Zircaloy-4

cladding in the a-phase, 471 dependency on time temperature,

and initial stress, 548-549 elastic, 602 plastic. See Plastic strain thermal. See Thermal strain total, 603

Page 19: Subject Index - ASTM International

SUBJECT INDEX 825

Strain aging, 555 Zircaloy-2, 627 zirconium oxide, 627

Strain cyclic tests, 618, 621, 623-624, 626-627

Strain hardening, 606 exponent, 734

effects of irradiation, test tem­perature and strain rate, 742-743

Strain rate, 5,9 correlation with initial material

condition, 543-547 failure morphology effect, 744 initial yield strength dependency,

542-543 intermediate region, 16 Norton creep equation, 543 sensitivity, 734 tensile strength effect, 738 true stress dependency, 541-542 Zircaloy-2 cladding, 743-744

Strain ratio contractile. See Contractile strain

ratio differential, 658 local, 662 tool curvature section, 659-660

Strength, 168 Stress, 5, 9, 224 Stress amplitude

at end of fatigue damaging se­quence, 609, 611

versus life fraction, 2 Stress corrosion cracking

resistance and chemical inhomo-geneity size, 761-762, 768

see also Chemical inhomogeneity populations; Crack initiation, during stress corrosion crack­ing

Stress intensity factor, 583, 585 cracking velocity dependence on,

224-225 critical, 580

Stress localization, zirconium-bar­rier cladding, 679-681

Stress ratio-lifetime curves 304 stainless steel, 620, 623 Zircaloy-4, 619-620

Stress relaxation, 597 kinetics, 613

Stress-relief, 101 Stress reorientation, hydrides in Zir-

caloy cladding, 29-30 Stress response, Zircaloy-4, 621, 623 Stress rupture failure, 239 Stress-rupture tests, Zircaloy-4 tube

capsules, 461, 465 Stress-strain curves, 600

irradiated recrystallized Zircaloy-2 cladding, 746

textured zirconium alloys, 637, 640-642

Stress-strain hysteresis loop, 647-648 Stringer

after phase transformation, 287 button samples, 291 formation role of volatile impuri­

ties during vacuum melting, 286

a-Zr{0), 496 Structure parameter, 539, 544-546,

548-549 comparison of creep rupture tests

and transient burst tests, 553 dependency on normalized initial

stress, 550, 552 versus normalized stress and ex­

tended normalized annealing time, 551

Superlattice reflection, 783, 787

Taylor's model, 632 Tear modules, hydrostatically ex­

truded and drawn rods, 155 Temperature, 49

autoclave test, 246-247 Tensile properties, 88, 734

Zircaloy-2, 178-179 Zircaloy-4, 178-179

irradiated strip, 111-112

Page 20: Subject Index - ASTM International

826 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Tensile strength, 431 versus reduction of cross-sectional

area, 151 strain rate effect, 738

Tensile stress delayed hydride cracking, 230,

237-238 recrystallized Zircaloy-4, 599-601

Tensile tests characteristics of fractures, 151-

152, 155 zirconium alloy pressure tubes,

584 Test reproducibility, 257 Textured zirconium alloys, 631-625

active slip systems, 635 arbitrary stress, 633 Bauschinger effect, 647-648 polycrystal equations, 635 residual stress, 635

evolution during tensile defor­mation, 641, 643-647

residual thermal strains, 636, 638 residual thermal stress, 636, 639 single crystal yield surface, 633-

634 single-grain equations, 634-635 stress-strain curves, 637, 640-642 stress-strain hysteresis loop, 647-

648 Taylor's model, 632 thermal stress, 636-639 twinning, 651 uniaxial deformation, 637, 640-

641 Texture. See Crystallographic tex­

ture Thermal stability, 49

irradiation growth, 79-81 Thermal strain, 634

residual, 636, 638 Thermal stress, 631

residual, 636, 639 textured zirconium alloys, 636-

639 Thermoelectric power, 555 Thermoelectric power measurements

apparatus, 557 application to study of recovery

and recrystallization, 559, 562

cold-rolled Zircaloy-4 sheets, 556-557

comparison with hardness evolu­tion, 562

relative, variation with orientation from rolling direction, 558

reversibility of evolutions due to agings at low temperature, 563

Thick oxide, 189, 191,216 Tool design, anisotropy effect, 657-

681 Transformation, 168 Transient burst tests, 539, 551-553 Tube reducing, 30 Tubing, 23, 168

fabrication, 30-31 Twinning, textured zirconium alloys,

651

U

Uniaxial deformation, textured zir­conium alloys, 637, 640-641

Uniform corrosion, 431 versus normalized annealing time,

445 Zircaloy-4, 434, 438, 440, 442

United Kingdom, activities prior to 1950, 36-37

United Kingdom Atomic Energy Au­thority, 36

UO2 nodular oxidation, 208-210 steam, 504

UOz/Zry interaction, 505-506, 508 oxygen saturation, 506

Vacuum melting, stringer formation, 286

Vallourec, 39

Page 21: Subject Index - ASTM International

SUBJECT INDEX 827

Volume change, 49 irradiation growth, 78-80

W

Water chemistry, effect on corrosion and hydriding, 190-191, 193

Weertman pile-up mechanism, 7 Work softening, 649

Yield strength, 539 fluence dependence, 741-742 versus grain size, 439 initial

strain rate dependency, 542-543 structure parameter depen­

dency, 552 irradiated Zircaloy-2 cladding,

737, 741 versus normalized annealing time,

443 unirradiated Zircaloy-2 cladding,

736 Zircaloy-4, 436, 439

Young's modulus, 734 defined, 739-740 fluence dependence, 740 irradiated recrystallized Zircaloy-2

cladding, 736, 739-740 temperature dependence, 741

Zircaloy, 364, 387, 504, 653, 675, 717

alpha recrystallized, nodular cor­rosion resistance, 388

amorphous Zr(Fe, Cr)2 precipi­tates, 70-71

annealed, irradiation growth, 64 anisotropy. See Anisotropy, Zirca­

loy aqueous corrosion, 769 basketweave structure, 284-285 chemical composition, 344

cold-worked, 7-8 concentration of major solute/im­

purity elements, 390 corrosion

rate, as function of reciprocal temperature, 218

second-phase particles, 292-306 creep loci. See Creep loci deformation and fracture, 5-20

annealed and cold-worked, 9-10 atomic-diffusion coefficient, 16 climb of dislocations over fixed

obstacles, 15 experimental and theoretical

background, 6-13 general proposed model, 17-18 high-stress region, 14-15 in-pile properties, 14 in-pile relaxation rates, 9-10 in-pile tests, 8 intermediate-stress region, 15-

17 intrinsic strength of the alloy, 17 jog-dragging model, 12 low-stress region, 13-14 mechanical deformation model,

18-19 model development, 13-18 Piercy's analysis, 11-12 radiation-enhanced diffusion,

16 radiation hardening, 18 radiation-produced dislocation

loops, 11 strain rate, 9 stress, 9 uniaxial, fixed-stress, in-pile

and unirradiated creep tests, 10-11

first-generation laser-treated, cor­rosion data, 177

gaseous stringers, 286 grain matrices of alpha recrystal­

lized, 410-411 grain size, 293-294

and yield strength, 32-33 hydrogen uptake, 502

Page 22: Subject Index - ASTM International

828 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Zircaloy {cont.) irradiation creep, 7 laser /3-treated, corrosion data,

181 macro-grain, 32-33 metallographic determination of

interaction layer thickness, 506, 508

microstructure, immediately after laser treatment, 175

neutron irradiation, 6-7 nodular corrosion, 341 nodular oxidation. See Nodular

oxidation oxide weight gain, 294 parallel plate structure, 284-285 pellet cladding interaction, 33 relative concentrations of sinks, 7 scrap refining, 136-145

electro-deposit, 141-144 flowsheets for recycling on non-

remeltable scrap, 145 optimum conditions for electro-

refining, 139 particle size analysis, 142 purity, 141-142 space-time yield, 140-141 specific energy consumption,

140-141 see also Molten-salt electro-re­

fining process transus beta/beta + silicide, 289 uniaxial creep tests, 8 uniform oxide growth rates, 204 see also Laser beam beta heat

treatment, Zircaloy; Steam test

Zircaloy-2, 23, 579 activation energy and rate con­

stant, 317 autoclave test. See Autoclave test behavior, 190-191 beta quenching, 28 billet-quenched, 346, 349-350 brittle behavior, 586-587 chemical composition, 293 cold-worked, 9

irradiated in ATR and DIDO reactors, 62-63

microstructural parameters, 61-62

pressure tubes, 202 containing radial hydrides, /-resis­

tance curve, 589, 592 corrosion versus weight gain,

HPST, 422-423 creep rates, 9 crystal structures, 300-301 deformation, 635

work and strength parameter of stress and strain field, 160

degree of ellipticity, 28 degree of matrix supersaturation,

303 dislocation microstructures, 66,

68-69 ductility, 590, 593 effect of low levels of cold-work

and stress-relieving heat treatments on irradiation growth, 56-57

electrical resistivity change during isothermal annealing, 313-314

failure probability, 235 fracture surfaces, 587 grain size effect on irradiation

growth, 57-59 hardness change during isother­

mal annealing, 312 high alpha temperature annealing,

336 high temperature growth, 77, 79 hollow /3-quenched, intermetallic

particles, 351, 354-355 hydrogen uptake, 190-191 in-reactor service life, 205 intermetallic particle

clusters, 345 distribution, 395-396, 398

intermetallic precipitates, 388 irradiation growth, cold-worked

and cold-worked/stress-re­lieved, 61-62

Page 23: Subject Index - ASTM International

SUBJECT INDEX 829

laser beam beta heat treatment, 169

microdiffraction, 346 microhardness distribution, 161 microstructure

after rapid |8-quenching, 308-311

annealed rods, 154 jS-quenched, 359-360 rods hydrostatically extruded

and drawn, 152 nodular corrosion. See Nodular

corrosion / nodular oxidation, 208, 211-212 nodular oxide, 3 9 0 - 3 ^

growth as function of exposure time, 390, 392

normalized particle size and auto­clave data, 360

occurrence frequency distribution, 280

polycrystalline, basal pole concen­tration, 27

post-transition corrosion data, la­ser /3-treated tubing, 178

pressure tubes cold-worked, 193, 195-197 stages in corrosion kinetics, 190 water chemistry effect on in-re-

actor corrosion, 192-193 versus Zr-2.5Nb, 191-193

produced by recrystallization an­nealing, 343-344

recrystallized irradiation growth, 53-55 temperature dependence of

breakaway growi:h, 64-65 relative mass intensity of solute el­

ements, 407 relative solute concentrations in

precipitate-free grain matri­ces, 408

rod textured, eighteen-grain

model, 636, 638 second-phase volume fractions,

329 single crystals, 31

solute concentrations in grain ma­trix, 411

spheroidal-type precipitates, 400 steady-state irradiation growth as

function of dislocation den­sity, 61, 63

steam test, 259 strain aging, 627 TEM, 399 temperature cycling and irradia­

tion growth, 73 tensile properties, 178-179 test claddings, manufacturing

characteristics, 293 twinning, 651 weight gains

annealing temperature and, 396-397

etched or prefilmed condition, 273, 275

final annealing temperature ef­fect, 324

as function of autoclave startup procedure, 270-271

as function of flow rate, 269 as function of oxygen content,

271-272 as function of system pressure,

267 as function of test duration,

260, 263-264 as function of test temperature,

260-261 non-hydrogenated and hydro-

genated inlet steam, 272-274 precipitate number density, 396 steam autoclave test, 357 temperature effect, 323 using two-step test procedure,

276, 279-280 yielding creep, 11 zirconium-lined, 400-404

Zircaloy-4, 101, 431-447, 539 activation energy and rate con­

stant, 317 anisotropy, 114-115 autoclave test. See Autoclave test

Page 24: Subject Index - ASTM International

830 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Zircalay-4 (cont.) basal pole figure, 434-435 i3-quenched, 113 j3 treatment, 432 billet quenching, 349, 351-353,

434, 437 burst strain

versus azimuthal temperature difference, 477, 481

versus burst temperature, 469, 482

cladding tubes versus azimuthal temperature difference, 470, 473

initial iodine concentration ef­fect, 459

burst temperature versus burst pressure, 468

changes in infrared emissivity, 503 chemical composition, 619 cladding deformation and flow

blockage under reversed flow, 477-478 under unidirectional flow, 477,

479 cladding tube

deformation, influence of heat transfer, 474, 476

length change versus burst tem­perature, 470

cold-rolling effect on absolute TEP, 560

creep loci, 129-130, 132-133 critical oxide thickness, 204-205 crystallographic texture, 121-122,

432, 434-435 cyclic behavior, 617-630

extension creep curves, 619, 622 load cycling, 619-622, 626 load-extension behavior, 619,

621 materials, 618-619 microstructural observations,

624-626 procedure, 618 strain cycling, 621, 623-624,

626, 627

deformation sensitivity to temperature, 469 wire texture, 157

density, 157 ductility of tubes, 431 Euler plot representing ODF, 126 experimental procedure, 432, 434 fabrication and history, 366 fabrication sequences, 432 /-factors, 436 furnace /S-annealed tubing, 170-

173 corrosion data, 172 hydrogen pickup data, 173 micrographs, 171

grain size, final size recrystallized tubes, 436, 438

high pressure steam tests, 368-369 high temperature steam oxidation

comparison of mass increase during LOCA-similar tran­sients with those of isothermal exposure, 458

mass increase after different hy­pothetical accident tran­sients, 457

mass increase versus time of ex­posure, 455

parabolic rate constant versus reaction temperature, 456

hoop creep strain data, 180-181 ingot size and composition, 365 intermetallic particles, 347-348 intermetallic precipitates, 388 irradiated, tensile properties, 111-

112 irradiated microhardness, 113 irradiation growth, 113, 116-118

as function of cold work and fluence, 60

isothermal/isobaric capsule tests, 461, 463, 465

isothermal/isobaric creep curves, 461

isothermal oxidation, 491-492 kinetics, 493-496

laser |3-treated, 169

Page 25: Subject Index - ASTM International

SUBJECT INDEX 831

stress rupture data, 179 mechanical properties, 432, 436,

439 melting, 496 microstructure, 110, 432, 434, 436

after quenching from /S-phase, 427

iS-quenched, 359-360 deformed cold-worked cladding

tube, 545, 547 deformed fully recrystallized

cladding tube, 544, 546 microvoid content, 157 nodular corrosion, 431, 434, 436-

438 susceptibility, 318

nodular oxide, 390-391, 403, 409 normalized particle size and auto­

clave data, 361 oxidation, 489-503, 628

apparatus, 490 experimental procedure, 489-

493 hydrogen effect on kinetics, 500 metallography, 496-499 parabolic-rate constants, oxide

layer growth, 494-495 steam-dilution experiment,

497-498, 500 steam oxidation in hydrogen,

492-493 temperature gradients, 492

oxidized tube capsules, crack pat­tern, 461-462

pole figures, 114-115, 121-122 inverse, 162

post-transition corrosion data, la­ser i3-treated tubing, 178

pressure tubes delayed hydride cracking, 227,

229 hydrogen pickup, 200-201 long-term corrosion, cold-

worked, 198, 200 out-reactor corrosion, 191-192

processing schedules, 433 produced by recrystallization an­

nealing, 344 recrystallized

Euler plot representing ODF, 127

irradiation growth, 54-55, 64-65,67

recrystallized. See Recrystallized Zircaloy-4

rupture behavior, 619-620 second-phase particles, 434, 436,

438 shell stage, 434, 436 steam oxidation, 453 strain rate dependency

initial yield strength, 542-543 true stress, 541-542

stress ratio-lifetime curves, 619-620

stress response, 621, 623 tensile properties, 178-179 tube wall after double-sided steam

oxidation, 454 uniform corrosion, 434, 438, 440,

442 UO2 and oxygen reaction-zone

thicknesses, 506, 510-513 weight gains

annealing temperature and, 396-397

precipitate number density, 396 refreshed high pressure steam,

374, 378-379 steam autoclave test, 357

see also Cold-rolled Zircaloy-4 sheets

Zircaloy-4 bar, chemical analysis, 598

Zircaloy cladding hydride stress orientation, 29-30 inhomogeneity distributions, 749-

750 see also Iodine-induced stress cor­

rosion; Loss-of-coolant acci­dent

Zircaloy-2 cladding irradiated recrystallized, 734-742

Page 26: Subject Index - ASTM International

832 ZIRCONIUM IN THE NUCLEAR INDUSTRY: SEVENTH SYMPOSIUM

Zircaloy-2 cladding (cont.) irradiated recrystallized (cont.)

effects of irradiation, test tem­perature, and strain rate on strain hardening exponent, 742-743

failure elongation temperature dependence, 738

irradiation conditions, 735 irradiation effect on dimple size,

745-746 materials, 735 procedure, 735-736 specimen appearances after

testing, 739 strain rate effect, 743-744

failure morphology, 744 tensile strengths, 738

strength and ductility, irradi­ated specimens, 737

strength and failure elongation, unirradiated specimens, 736

stress-strain curve, 737, 740-743, 746

Young's modulus, 736, 739-740 Zircaloy-4 cladding tubes, 700

material condition of laboratory-annealed, 540-541

Zircaloy-4 fuel rod cladding, load in double-ended cold leg break LOCA, 452

Zircaloy sheet, cold-rolled, basal pole figure, 665

Zircaloy-4 sheet annealed textures, 666 see also Cold-rolled Zircaloy sheet

Zircaloy-4 thin strips, 663-672 annealing temperature effect, 667,

670-671 cold working influence, 666-669 material, 663-664 textures

cold-rolled strips, 664-665 evolution, 672 mechanical properties and,

666-667 recrystallized strips, 665-666

Zircaloy-4 tube capsule isothermal/isobaric creep-rupture

tests, 461, 464 stress-rupture tests, 461, 465

Zircaloy-2 tubing, expanding man­drel test, 686, 688

Zirconium absolute TEP, evolution with tem­

perature, 559 concentration depth profile, 406 concentration of major solute/im­

purity elements, 390 white sheet oxide, 416

Zirconium alloy, 49, 243, 364, 489 textured. See Textured zirconium

alloys see also Delayed hydride cracking

Zirconium alloy pressure tubes, 579-596

brittle behavior, 584-588 ductile-brittle transition, 594 factors controlling fracture tough­

ness, 592-593 flow stress, 588, 590 fracture criterion, 580 hydriding, 581-582 irradiation, 582-583 leak-before-break, 579 load deflection curves, ductile and

brittle specimens, 584 procedures, 583-584 tensile tests, 584 test specimens, 581

Zirconium alloy strip, 101-119 density, 116 initial mechanical properties of

bent beam materials, 107 irradiation conditions, 102 irradiation growth, 113 mechanical properties, 111-113 unrelaxed stress ratio

irradiated bent beam materials, 108

irradiated cells, 104-105 see also specific alloys, 113

Zirconium-barrier cladding, 675-699

Page 27: Subject Index - ASTM International

SUBJECT INDEX 833

bond effect, 679-683 expanding mandrel tests, 680-

682, 684-689, 697 hoop stress distributions, 679

local, flaw effect, 680, 683 irradiated, 677-678 loss-of-coolant accident, 689-691,

697 metallurgical bond, 676-678 metallurgically bonded Zr-barrier

tubing and nonbarrier Zirca-loy tubing, 684

nonbonded Zr-foil liners in Zirca-loy tubing, 684

perforated fuel rod, 691, 694-696 power ramp, 679, 682 stress localization, 679-681

Zirconium carbide, 284, 290 Zirconium chloride, 284 Zirconium cubes, dimensional

changes, 80, 82 Zirconium hydride, 579, 581-582

bulk, TEM microstructures, 793 local concentration, 770

Zirconium oxide, 362, 412-413, 453, 491-492

growth on Zircaloy-4, 493-494 parabolic-rate constants, 494-495 precipitates, TEM microstruc­

tures, 783, 786-787, 790-791 stability and nature under nonirra-

diation conditions, 801 strain aging, 627 time-temperature dependence of

embrittlement, 463 Zirconium phosphide, 284, 290 Zirconium silicide, 284, 289-290 Zirconium sponge, 35, 37-38, 41-42

commercial purity, 681 irradiation growth, 75 low oxygen, 699

corrosion, 401-402 photomicrographs, 401, 404-

405

microstructure, 393-394 production in France, 38 weight gain as function of anneal­

ing time, 401, 403 Zirconium-Zircaloy interface, metal­

lurgical bond, 676-677 Zr-8.6A1 alloys, irradiation growth,

78,80 Zr-2.5Nb, 579

as-extended, microstructure, 89-90

delayed hydride cracking, 227, 229, 232-233

dislocations, 89 ductility, 588-592 failure probability, 232-234 fuel element, delayed hydride

cracking, 226-227 high temperature growth, 77, 79 in-reactor service life, 205 irradiation growth, 75-78 /-resistance curve, 588-589 versus Zircaloy-2, 191-193 see also Irradiation growth, micro-

structural effects Zr-2.5Nb pressure tube

cold-worked, 202 deuterium concentration, 195-

197 long-term corrosion, 198, 200 oxidation, 193, 195

current specifications, 88 delayed hydride cracking, 225,

227-228 flow diagram of production routes,

87 hydrogen pickup, 200-201 kinetics, 192 metallurgical characteristics, 89 out-reactor corrosion, 191-192 oxidation pattern on inside sur­

face, 198-199 substructure, 90-92