submission in response to department of agriculture fisheries … · figure 6: minimum piomas...

62
Submission in Response to Department of Agriculture Fisheries and Forestry National Food Plan Green Paper Prepared by Paul Mahony Melbourne, Australia September 2012 “The urgent need for a general transition to a plant-based diet”

Upload: others

Post on 23-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Submission in Response to

Department of Agriculture Fisheries and Forestry

National Food Plan Green Paper

Prepared by Paul Mahony Melbourne, Australia

September 2012

“The urgent need for a general transition to a plant-based diet”

Page 2: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Introduction I welcome the opportunity to submit a paper in response to the National Food Plan (NFP) green paper prepared by the Department of Agriculture Fisheries and Forestry (DAFF). This paper focuses on the critical impact of animal agriculture on climate change. It also considers, in less detail: water usage; biodiversity loss; and land degradation. The key points are, firstly, that we will not overcome climate change without a general move toward a plant-based diet, in addition to action on fossil fuels and non-CO2 climate forcing agents. Secondly, governments and others need to inform the community of the environmental benefits to be derived from an appropriate diet. Thirdly, the pricing of animal agriculture products needs to incorporate costs which are currently externalities, in that the pricing needs to fully account for the environmental costs of such products. The submission includes material which has appeared in various articles and presentations I have prepared in recent years, as referred in the Further Reading section. New material in the submission includes charts showing the content of Australia’s overall food production for 2010/11 in terms of certain key nutrients. Although researchers referred to in this paper and elsewhere have utilised a range of approaches to measuring the impact of food production on the environment (under various conditions and with differing results), the findings almost invariably point to a continuum which places a red meat and dairy based diet at one end (i.e. with adverse effects) and a completely plant-based diet at another (i.e. with more favourable effects). Although fish and other seafood should also be avoided in order to cease the devastating impact of industrial fishing on our oceans, this submission does not address that issue. The submission also comments briefly on the question of health impacts of animal food products.

“. . . compared to its economic performance, the environmental impacts of the livestock sector are not being adequately addressed, despite the fact that major reductions in impact could be achieved at reasonable cost. The problem therefore lies mainly with institutional and political obstacles, and the lack of mechanisms to provide environmental feedback, ensure that externalities are accounted for and embed the stewardship of common property resources into the sector. Why is this so? First, civil society seems to have an inadequate understanding of the scope of the problem. Perhaps even among the majority of environmentalists and environmental policy makers, the truly enormous impact of the livestock sector on climate, biodiversity and water is not fully appreciated.” “Livestock’s Long Shadow”, United Nations Food & Agriculture Organization, November 2006

1

No information in the submission is intended to constitute nutritional or health advice.

Page 3: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012 2

Table of Contents

1. The Climate Change Emergency.............................................................................. 3

2. Animal Agriculture’s Impact.................................................................................. 13

General........................................................................................................................ 13 Inherent Inefficiency................................................................................................... 16 Scale ........................................................................................................................... 18 Greenhouse Gases....................................................................................................... 19 Land Clearing ............................................................................................................. 28 Water Usage ............................................................................................................... 30

3. Nutritional Value of Australian Food Production .................................................. 37

4. Health Issues........................................................................................................... 47

5. Pricing..................................................................................................................... 49

6. Conclusion.............................................................................................................. 50

Further Reading .............................................................................................................. 51

Appendix ........................................................................................................................ 52

References ...................................................................................................................... 55

Page 4: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

3

1. The Climate Change Emergency

" . . . there is no doubt in my mind that [climate change] is the greatest problem confronting mankind at this time and that it has reached the level of a state of emergency. . . . Education of the public is critical to ensure that they understand the dimensions of the tasks and the consequences of failure."

Professor David de Kretser, then Governor of Victoria, 20082

In late 2011, after many years of warnings from climate scientists, we were faced with very dramatic news on climate change, including:

• The extent of Arctic summer sea ice was reported to have been the second lowest on record.

3

• Russian scientists had reported "astonishing" and unprecedented releases of methane from permafrost along the seabed of the Siberian Arctic Shelf.

4

• The percentage increase in greenhouse gas emissions globally in 2010 was reported to have been the highest on record by a significant margin.

5

• The International Energy Agency reported that, without massive changes in energy infrastructure, "The world is on the brink of irreversible climate change . . . in five years global warming will hit a point of no return after which it will be impossible to reverse the process."

6

Paradoxically, and relevant to David de Kretser’s concerns about educating the public (see quotation above), media reporting of the issue had been waning in 2011 and prior years. The following chart depicts the extent of climate change reporting on the evening broadcast news in the United States by NBC, CBS and ABC.

7

Figure 1: Nightly Broadcast News Coverage of Climate Change (NBC, CBS and ABC)

Developments on climate change may have been alarming in 2011, but the situation has worsened significantly in 2012. The National Oceanic and Atmospheric Administration recently announced that July 2012 was the hottest month in the contiguous United States since record keeping began in 1895.

Page 5: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

4

However, in a study of major media outlets, only 8.7% of television segments and 25.5% of print articles reported on the July heat waves in the context of climate change.

8

Dramatic Reduction in Arctic Summer Sea Ice Another key development has been a dramatic fall in the extent of Arctic summer sea ice. It is difficult to overstate the seriousness of the melting that has occurred in this year's northern summer. Figures 2 – 4 below show the extent of Arctic summer sea ice melting for many years, including 2012. This year's melting has broken the previous record of 2007 by a significant margin. To put that into context, we can consider some comments published in 2008 about the northern summer of 2007.

9

• [Mark] Serreze [of the US National Snow and Ice Data Center] told the Guardian on 4 September: "It's amazing. It's simply fallen off a cliff and we're still losing ice."

• NSIDC research scientist Walt Meier told the Independent on 22 September that the 2007 ice extent was "the biggest drop from a previous record that we've ever had and it's really quite astounding . . . Certainly we've been on a downward trend for the last thirty years or so, but this is really accelerating the trend."

• The decline was 22 percent in two years, compared to 7 percent per decade between 1979 and 2005.

• The problem was not only the declining area, but also the thickness of the ice. In the early 1960's, it was around 3.5 metres. By 2008, that had reduced to 1 metre, with half the reduction occurring in the previous seven years.

As can be seen in Figures 2 - 4, the Arctic summer sea ice extent is reducing at what appears to be an accelerating rate. That appears to be consistent with the exponential trend shown in Figure 5. The National Snow and Ice Data Center reported on 19 September, 2012: “On September 16, Arctic sea ice appeared to have reached its minimum extent for the year of 3.41 million square kilometers (1.32 million square miles). This is the lowest seasonal minimum extent in the satellite record since 1979 and reinforces the long-term downward trend in Arctic ice extent”

10

Page 6: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

5

Figure 2: Arctic Sea Ice Extent (Area of ocean with at least 15% ice)

Figure 3: Arctic Sea Ice Extent for the month of September – 1979 - 2011

Page 7: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

6

Figure 4: Arctic Sea Ice Extent for the month of August – 1979 – 2012

Figure 5: Exponential extrapolation of the trend in sea ice reduction11

The exponential trending, indicating a potential loss of all summer Arctic sea ice by 2015, is consistent with recent comments from Peter Wadhams, professor of ocean physics at Cambridge University. On 30 August, 2012, David Spratt cited an article from the previous day in The Scotsman, which stated: "Peter Wadhams, professor of ocean physics at Cambridge University, who was branded 'alarmist' after he first detected 'substantial thinning' of sea ice in 1990, said: 'The entire ice cover is now on the point of collapse. The extra open water already created by the retreating

Page 8: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

7

ice allows bigger waves to be generated by storms, which are sweeping away the surviving ice. It is truly the case that it will be all gone by 2015. The consequences are enormous and represent a huge boost to global warming.'”

12

The implications of the Arctic summer sea ice retreating include the warming of exposed dark ocean, which absorbs solar radiation rather than reflecting it back to space. This leads to more warming and more melting of the sea ice in a self-perpetuating process. The exponential trend (Figure 5) that reflects such feedback mechanisms, is based on data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) at the Polar Science Center. As implied earlier, it is not just the area of Arctic sea ice that is diminishing, but the overall volume, including thickness. The chart below shows that the volume this year is 79% below the volume of 1979.

13

Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012

Why is this reduction in the extent of Arctic sea ice a problem?

• “The danger is that an ice-free state in the Arctic summer will kick the climate system into run-on warming and create an aberrant new climate state many, many degrees hotter . . . The Arctic sea-ice is the first domino and it is falling fast.” Spratt, D and Lawson, D, “Bubbling our way to the Apocalypse”, Rolling Stone, November 2008, pp. 53-55

14 (David Spratt is the co-author, with Philip Sutton, of

“Climate Code Red: the case for emergency action”, Scribe, 2008)

Page 9: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

8

• “The extra heating of the Arctic basin if all the floating ice melted would be 80 watts per square metre, which averaged over the whole Earth is an increase of one watt per square metre. To put this in perspective, the extra heat which will be absorbed when the floating ice has gone is nearly 70 per cent of the heating caused by all the carbon dioxide pollution now present.” Dr James Lovelock, “The Vanishing Face of Gaia: A final warning”, Penguin, 2009, p. 29

• “It is difficult to imagine how the Greenland ice sheet could survive if Arctic sea ice is lost entirely in the warm season.” Dr James Hansen, “Storms of my grandchildren”, Bloomsbury, 2009, p. 164

Greenland Ice Sheet As implied above, the warming of the Arctic Ocean has dramatic impacts on the Greenland ice sheet, adjacent to the Arctic sea ice. On that ice sheet, lakes are forming, which disappear down moulins (craters) to the bottom, a distance of more that two kilometres in many cases. The water cascading through the moulins warms the ice sheet and lubricates the base, contributing to further melting. There are many hundreds, possibly thousands, of moulins on the ice sheet. Here is an example from a 2011 expedition by researchers from the Cryospheric Processes Laboratory, City College, New York: Figure 7: Moulin on Greenland’s ice sheet

The researcher who provided the above image, Professor Marco Tedesco, recently reported that melting over the Greenland ice sheet had shattered the seasonal record four weeks before the close of the melting season. "With more yet to come in August, this year's overall melting will fall way above the old records. That's a goliath year - the greatest melt since satellite recording began in 1979."

15

The dynamic wet melting process currently occurring on Greenland also appears to be following a non-linear trend, which is not accounted for in the relatively modest projections of

Page 10: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

9

sea level rise published by the Intergovernmental Panel on Climate Change (IPCC), whose fourth assessment report projected sea-level rise of 0.19 – 0.59 metres by 2100.

16

The IPCC’s projection only allows for certain short feedback mechanisms, e.g. changes in water vapour; clouds; and sea ice. It does not allow for slow feedbacks, e.g. ice sheet dynamics; changes in vegetation cover; permafrost melting; and carbon-cycle feedbacks. Tim Flannery, Australian Climate Change Commissioner and former Australian of the Year, has said the IPCC is “painfully conservative” because it “works by consensus and includes government representatives from the United States, China and Saudi Arabia, all of whom must assent to every word of every finding”.

17

In “Storms of my grandchildren” (2009), James Hansen said:

18

“Greenland is now losing mass at a rate equivalent to 250 cubic kilometers of ice per year, and Antarctica is losing about half as much mass each year. The rate of ice sheet mass loss has doubled during the present decade. Sea level is now going up at a rate of about 3 centimeters per decade. But if ice sheet disintegration continues to double every decade, we will be faced with sea level rise of several meters this century.” Dr Hansen is the director of the NASA Goddard Institute for Space Studies and Adjunct Professor of Earth Sciences at Columbia University’s Earth Institute. He became widely known following his testimony on climate change to Congress in the 1980s that helped raise broad awareness of the global warming issue. Dr. Hansen was elected to the National Academy of Sciences in 1995 and, in 2001, received the Heinz Award for environment and the American Geophysical Union’s Roger Revelle Medal. He received the World Wildlife Federation’s Conservation Medal from the Duke of Edinburgh in 2006 and was designated by Time Magazine as one of the world’s 100 most influential people in 2006. In 2007 Dr. Hansen won the Dan David Prize in the field of Quest for Energy, the Leo Szilard Award of the American Physical Society for Use of Physics for the Benefit of Society, and the American Association for the Advancement of Science Award for Scientific Freedom and Responsibility.

19

Reconfirming earlier comments, Dr Hansen and fellow researcher Makiko Sato said in a 2011 paper (my bold formatting):

20

• Earth is poised to experience strong amplifying polar feedbacks in response to

moderate global warming.

• Thus goals to limit human-made warming to 2°C are not sufficient – they are prescriptions for disaster.

• Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks.

• We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend.

• Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multi-meter sea level rise this century.

This trend has been driven primarily by the increasing temperatures at higher latitudes, which far exceed the global average.

Page 11: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

10

Here is how it appeared in November, 2010, relative to the period 1951-1980:21

Figure 8: NASA GISS Surface Temperature Analysis (a)

Figure 9: NASA GISS Surface Temperature Analysis (b)

Note that the temperature changes are not uniform in the above images. However, there is an overall net warming, with significant warming in the critical northern latitudes. The Greenland ice sheet is over 2 kilometres thick and (as indicated above) was reported in 2009 to be losing more than 250 cubic kilometres of ice each year, after neither losing nor gaining significant mass as recently as the 1990’s. 250 cubic kilometres is equivalent to 0.71 metres of water covering an area the size of Germany. Total loss of the Greenland ice sheet would equate to around 7 metres of sea level rise.

22

The following image aims to add some context to the extent of ice sheet loss as of 2009.

Page 12: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

11

Figure 10: Depiction of annual reduction in Greenland’s ice sheet volume in the

context of an area the size of Germany

We have little time to rectify the damage that has occurred or the resulting atmospheric and planetary processes. Can we rely on governments to allow for scenarios such as those outlined by James Hansen? Based on a recent experience in Victoria, the answer may be “no”. On 6 June, 2012, The Age newspaper reported: “The Baillieu government will wind back rules making new property developments in seaside towns plan for sea-level rises caused by climate change, arguing they have hampered rural growth. . . . The changes, to be brought in later this month, will now require 20 centimetres of sea-level rise by 2040 to be considered in new urban development in coastal towns such as Lakes Entrance, Port Lonsdale and Port Fairy.”

23

The figure of 20 centimetres is at the bottom end of conservative projections released by the IPCC. Some less obvious risks involved in rising sea-levels:

� According to the Australian Climate Commission, very modest rises in sea-level, for example, 50 cm, can lead to very high multiplying factors – sometimes 100 times or more – in the frequency of occurrence of high sea-level events. A “high sea-level event” is described as an inundation event triggered by a combination of sea-level rise, a high tide and a storm surge or excessive run-off.

24

� According to Dr Andrew Glikson, earth and paleoclimate scientist at Australian

National University, further warming of the Greenland ice sheet and the west and east Antarctic ice sheets may lead to pulses of ice-melt water which will cool adjacent ocean basins. The bulk of the continents will continue to heat, due to a rise in greenhouse gases, feedbacks from fires, methane release from permafrost and reduction of CO2 intake by warming oceans. The resultant ocean-land temperature polarity generates storms, reflected in the title of James Hansen’s book, “Storms of my grandchildren”.

25

0.71 metres

Based on ice mass loss of 250 cubic km per annum

Page 13: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

12

� Related to the previous point, James Hansen reports that a ten percent increase in wind speeds increases the destructive potential of the wind by about one third.

26

� The warming of the Arctic also appears to be contributing to “extreme weather events

that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves” in mid latitudes.

27

The following words from former international oil, gas and coal industry executive, Ian Dunlop, highlight the gravity of our current predicament (with this writer’s bullets and bold formatting):

28

• Perhaps the greatest flaw in the climate debate has been our inability, or refusal, to address risk and uncertainty realistically.

• Scientists are giving increasingly urgent warnings on the mounting evidence of human-induced warming and the need for rapid carbon emission reductions.

• Officialdom chooses to ignore these warnings, preferring policy based on ‘political realism’, shorthand for hoping the problem will go away.

• Business, supposedly the experts on risk management, should take leadership, but have abrogated any responsibility, given that realistic action will require a fundamental redesign of the economic system, undermining established vested interests.

• The result is that nobody is seriously addressing the strategic risks to which we are exposed.

• The history of the last two decades has demonstrated that conventional politics and business are incapable of handling this issue in a realistic manner.

• Leadership is totally lacking in both arenas; global and national institutions are failing here, just as they are failing to address the financial crisis – on both counts economic growth is the problem, not the solution.

• Climate change is now a far bigger risk than any financial crisis and yet the real effort devoted to managing it is miniscule in comparison.

Ian Dunlop chaired the Australian Coal Association in 1987-88, chaired the Australian Greenhouse Office Experts Group on Emissions Trading from 1998-2000 and was CEO of the Australian Institute of Company Directors from 1997-2001. He is a Director of Australia21, Chairman of Safe Climate Australia, a Member of the Club of Rome and Fellow of the Centre for Policy Development. Similar concerns have been expressed by Dr Andrew Glikson (my capital letter formatting): “Contrarian claims by sceptics, misrepresenting direct observations in nature and ignoring the laws of physics, have been adopted by neoconservative political parties. A corporate media maintains a ‘balance’ between facts and fiction. The best that governments seem to do is devise cosmetic solutions, or promise further discussions, while time is running out. GOOD PLANETS ARE HARD TO COME BY.”

Page 14: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

13

2. Animal Agriculture’s Impact

General While DAFF’s NFP green paper acknowledges threats to Australia’s food supply from environmental problems, including climate change, it generally fails to acknowledge the negative role that food production plays in relation to those environmental problems. Within the food production system, animal agriculture is by far the most significant contributor to the problem. The key interrelated issues are: gross and inherent inefficiencies; scale; deforestation; greenhouse gas emissions; and water usage, all of which are referred to in more detail within this section. Some recognition of animal agriculture’s impact can be seen here:

United Nations Environment Programme:29

"Impacts from agriculture are expected to increase substantially due to population growth increasing consumption of animal products. Unlike fossil fuels, it is difficult to look for alternatives: people have to eat. A substantial reduction of impacts would only be possible with a substantial worldwide diet change, away from animal products." "Animal products cause more damage than [producing] construction minerals such as sand or cement, plastics or metals. Biomass and crops for animals are as damaging as [burning] fossil fuels." (Professor Edgar Hertwich, lead author)

Food and Agriculture Organization of the United Nations and World Health Organization:

30:

“[Animal food products place] an undue demand on land, water, and other resources required for intensive food production, which makes the typical Western diet not only undesirable from the standpoint of health but also environmentally unsustainable.”

Henning Steinfeld, United Nations Food & Agriculture Organization, 2006

“Livestock are one of the most significant contributors to today’s most serious environmental problems. Urgent action is required to remedy the situation.”

Dr James Hansen, Director of Goddard Institute for Space Studies, NASA31

“If you eat further down on the food chain rather than animals, which have produced many greenhouse gases, and used much energy in the process of growing that meat, you can actually make a bigger contribution in that way than just about anything. So that, in terms of individual action, is perhaps the best thing you can do.”

Dr Rajendra Pachauri, Chairman, Intergovernmental Panel on Climate Change32

“Please eat less meat - meat is a very carbon intensive commodity.”

Page 15: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

14

Here are further examples recognising animal agriculture’s detrimental impacts: 1. United Nations Food and Agriculture Organization:

The UN’s Food & Agriculture Organization (FAO)

33 says livestock production is one of the

major causes of the world's most pressing environmental problems, including (in addition to global warming and air pollution):

� loss of biodiversity;

� land degradation; and

� water pollution

Some key points from the FAO on biodiversity are:

� According to the Millennium Ecosystem Assessment (MEA) Report (2005b), the most important direct drivers of biodiversity loss are habitat change; climate change; invasive alien species; overexploitation; and pollution.

� Livestock play an important role in the current biodiversity crisis, as they contribute directly to all these drivers of biodiversity loss, at the local and global level.

� Livestock-related land use and land-use change modify or destroy ecosystems that are the habitats for given species.

� Terrestrial and aquatic ecosystems are affected by emissions into the environment (nutrient and pathogen discharge in marine and freshwater ecosystems, ammonia emissions and acid rain).

� The sector also directly affects biodiversity through invasive alien species (the livestock themselves and diseases for which they may be vectors) and overexploitation, for example through overgrazing and pasture plants.

2. Peter Singer and Jim Mason:

Australian ethicist and Princeton University Professor, Peter Singer, and co-author Jim Mason, have commented as follows on land degradation

34:

� The desire to create grazing land for cattle and sheep has been a major factor in

clearing forest and bushland all over the world.

� In Australia, since European settlement, 13 per cent of the land has been completely cleared of native vegetation, mostly for grazing animals, and a much larger area has been severely damaged by grazing.

� According to the World Resources Institute35

, overgrazing is the largest single cause of land degradation, world-wide. Much of this degradation occurs in the semi-arid areas used for cattle and sheep grazing in countries like Australia and the United States. Cattle are heavy animals with hard hooves, big appetites, and a digestive system that produces a lot of manure. Turned loose on fragile, semi-arid environments, they can soon devastate a landscape that has not evolved to cope with them.

� Professor Michael Archer (cited by Singer and Mason), Professor of Biological Sciences and Dean of the Faculty of Science at the University of New South Wales, and a former director of the Australian Museum, has pointed out that Australian agriculture contributes about 3 per cent of the country’s gross domestic product, but degrades over 61% of Australia’s lands.

Page 16: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

15

3. CSIRO and University of Sydney – Balancing Act Report:

The Balancing Act Report by the CSIRO and the University of Sydney showed that 92% of the total land degradation in Australia at that time was due to the beef, sheep and dairy industries. The other 132 economic sectors were responsible for the remaining 8%.

36

4. ABARE:

According to the Australian Bureau of Agricultural and Resource Economics (ABARE), “Beef production is widespread across Australia. In northern Australia, production is based mainly on native pastures on large properties; in the southern states, smaller properties with a high degree of pasture improvement predominate. Extensive grazing by sheep and cattle occupies approximately 60 per cent of the rangelands, which in turn represent about 80 per cent of Australia’s land area”.

37 Those comments indicate that

grazing, with all its destructive qualities (and after allowing for grazing which occurs outside the rangelands), almost certainly occurs across more than 50% of the continent.

That point has been confirmed by DAFF’s NFP green paper, which states on pages 59 and 60:

� Over half of Australia’s land is used for agricultural production comprising more than

59 per cent (457 million hectares) of the Australian continent in 2006

� Livestock grazing on natural vegetation and modified pastures is the dominant agricultural activity by area accounting for about 56 per cent or 428 million hectares of Australia.

� Other key agricultural uses, such as broadacre cropping (27 million hectares or 3.5 per cent) and horticulture (0.5 million hectares or 0.1 per cent) occupy a much smaller proportion of the land area.

� Intensive uses, which include intensive horticulture (such as glasshouses) and animal production, manufacturing, urban areas, transportation, mining and waste, occupied only 0.4 per cent (3 million hectares). The remaining areas (approximately 37 per cent or 283 million hectares) are allocated to nature conservation, protected areas including Indigenous uses, and other natural areas with minimal production use.

5. PBL Netherlands Environmental Assessment Agency

A study by the PBL Netherlands Environmental Assessment Agency reported that a global transition to a completely animal free diet is estimated to reduce climate change mitigation costs by around 80%. Removing meat from the diet would reduce the costs by around 70%. The report’s abstract states: “By using an integrated assessment model, we found a global food transition to less meat, or even a complete switch to plant-based protein food to have a dramatic effect on land use. Up to 2,700 Mha of pasture and 100 Mha of cropland could be abandoned, resulting in a large carbon uptake from regrowing vegetation. Additionally, methane and nitrous oxide emission would be reduced substantially.”

38

6. Stockholm International Water Institute

Very recently, scientists from the Stockholm International Water Institute reported that a dramatic reduction in animals as a food source may be necessary to secure world food supplies due to water shortages.

39

Page 17: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

16

One can ask why organisations such as Oxfam and World Vision continue their programs that enable well-meaning donors to supply animals to citizens of impoverished nations.

Inherent Inefficiency It takes many kilograms of plant-based food to produce one kilogram of animal-based food of comparable nutritional value, with significant impacts on energy inputs, emissions, water usage and land usage. The figures vary depending on the animal involved, the source of its food, climatic conditions and the like. However, whether it requires two or twenty kilograms of plant-based food to produce one kilogram of animal-based food, the inefficiencies are startling. That is particularly so when an almost uniform economic creed around the world for decades has been the need for increased efficiency in production, using the mantra of productivity growth. An example is the Australian Bureau of Statistics 2010 publication “Productivity and Progress”.

40

The following diagram is based on figures outlined in a paper presented at the 2002 Beef Improvement Federation Annual Meeting in Omaha, USA. That paper indicated that it required around 13 pounds of grain, fed to cattle, to produce one pound of meat.

41

Figure 11: Comparative Efficiency of Different Food Sources (1)

The diagram demonstrates the fact that, for any given quantity of plant-based food, far more people can be fed if that food goes directly to them, rather than via the digestive system of an animal. Looking at it another way, if we want to feed the same number of people using either production system, the plant based approach will require far fewer resources than the livestock alternative.

Page 18: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

17

Figure 12: Comparative Efficiency of Different Food Sources (2)

The additional resources required include:

� land, with clearing for grazing or feed crop production releasing carbon dioxide and creating an ongoing loss of carbon sequestration;

� nitrogen based fertilizer producing nitrous oxide (around 300 times more potent as a greenhouse gas than carbon dioxide);

� fugitive methane emissions from fertilizer production;

� emissions from farming and transportation;

� pesticides, herbicides and antibiotics;

� water used and polluted, including oceanic dead zones from nitrogen run-off. Two further measures of livestock’s inherent inefficiency are: (a) Information reported by Dr David Pimentel, Cornell University, USA in 2003:

42

� The US livestock population consumes more than 7 times as much grain as is

consumed directly by the entire American population. (US Department of Agriculture, 2001. Agricultural statistics, Washington, DC)

� The amount of grains fed to US livestock is sufficient to feed about 840 million people who follow a plant-based diet. (Dr David Pimentel, Cornell University, “Livestock production and energy use”, Cleveland CJ, ed. Encyclopedia of energy (in press). (Cited 2003)

We now have more than one billion under-nourished people in the world.

43 Quite apart

from the horrendous environmental impacts of livestock production, the willingness of the

Page 19: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

18

wealthy to allow others to starve while plant production is channelled through livestock is morally repugnant.

(b) Net Primary Productivity:

44

Two teams of Austrian researchers have shown that humans in 2000 appropriated 23.8 percent of the planet’s net primary productivity or annual plant growth. Of that amount, around 30 percent was used for paper production, construction and the like. 58 percent was fed to livestock and supplied 17 percent of human-kind’s global food calories. Only 12 percent was consumed directly by humans, providing 83 percent of calories. If an individual business were operating with the level of efficiency demonstrated by the Austrian teams’ work, it would almost certainly be closed or its methods radically overhauled.

How is it that we allow these levels of inefficiency in such a massive and critically important operation?

The image below depicts the comparison.

Figure 13: Comparative Efficiency of Different Food Sources (3)

45

Scale In a country of 22 million people, Australians in 2010/11 slaughtered, for human consumption:

46

� Cows: 8.1 million

� Sheep: 23.2 million

� Pigs: 4.6 million

� Chickens 550 million Globally, we slaughter around 60 billion land animals each year, including over 50 billion chickens.

47 This massive scale leads to the over-utilisation of resources referred to earlier.

Page 20: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

19

Greenhouse Gases 1. Food and Agriculture Organization of the United Nations The UN FAO’s “Livestock’s Long Shadow” report of 2006 indicated that livestock were responsible for around 18% of global greenhouse gas emissions, which was significantly more than global transport systems.

48

2. World Watch Institute: A report issued by the World Watch Institute in late 2009 and written by the former lead environmental adviser to the World Bank and another World Bank colleague, suggested that livestock are responsible for 51% of global greenhouse gas emissions.

49

It highlighted the following issues in the context of the UN FAO’s “Livestock's Long Shadow” report: � 20 year “global warming potential” (GWP) on methane (Refer to subsequent comments.)

� Land use, including foregone sequestration on land previously cleared

� Livestock respiration overwhelming photosynthesis in absorbing carbon

� Increased livestock production since 2002

� Corrections in documented under-counting

� More up to date emissions figures

� Corrections for use of Minnesota for source data

� Re-alignment of sectoral information

� Fluorocarbons for extended refrigeration

� Cooking at higher temperature and for longer periods

� Disposal of waste

� Production, distribution and disposal of by-products and packaging

� Carbon-intensive medical treatment of livestock-related illness Even removing the respiration factor, livestock would be responsible for around 43% of emissions. Some key issues in relation to the report are: (a) Land use, including foregone sequestration on land previously cleared:

The World Watch Institute report highlighted the fact that Livestock's Long Shadow did not allow for foregone sequestration on land cleared in the years prior to the reporting period. Australia’s National Greenhouse Inventory also does not allow for such foregone sequestration in any of its emissions figures. Furthermore, the Australian inventory reports livestock-related land clearing under the “land use, land use change and forestry” category (LULUCF), rather than agriculture or livestock, meaning that livestock’s impact is understated.

The authors of the World Watch Institute report suggest the possibility of allowing land that has been cleared for livestock grazing or feed crop production to regenerate as forest, thereby mitigating “as much as half (or even more) of anthropogenic GHGs” [greenhouse gases]. Alternatively, they suggest that the land could be used to grow crops for direct human consumption or crops that could be converted to biofuels, thereby reducing our reliance on coal. They have used the biofuel scenario in their calculations.

Page 21: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

20

(b) 20-year global warming potential (GWP): The World Watch Institute report used a 20-year GWP for methane (see subsequent comments), which may be more valid than the 100-year figure used by the UN FAO and most other reporting bodies, including Australia’s Department of Climate Change and Energy Efficiency. That is because methane, a critical factor in livestock’s greenhouse effects, generally breaks down in the atmosphere in 9–12 years. Accordingly, a 100-year GWP (which shows the average impact over a period of 100 years) greatly understates its shorter-term impact. Although methane may have a shorter life than carbon dioxide (which remains in the atmosphere for many hundreds of years), its impact can be long term if it contributes to us reaching tipping points that result in positive feedback loops with potentially irreversible and catastrophic consequences. On the positive side, the relatively short term nature of methane’s impact means that action on livestock production can be one of the most effective steps available to us in dealing with climate change. 3. Prof. Frank Mitloehner: Prof. Frank Mitloehner of University of California, Davis, has challenged various findings of the UN FAO’s “Livestock’s Long Shadow” report. The following guest post from the website of Adelaide University’s head of climate science, Prof. Barry Brook, relates to the work of Prof. Mitloehner. Extract from "Livestock and Climate Change - Status Update", 17/1/11, by Geoff Russell

50:

“The livestock industry has countered LLS [the UN FAO's "Livestock's Long Shadow" report]

with all manner of rubbish. For example the NSW Farmer’s Association ran a line which

confused US figures with global figures and left out nitrous oxide emissions altogether. Much

of this confusion comes from one Frank Mitloehner who has been trumpeting a 3 percent

figure at any journalist who will listen for some time now. While I’m sure Associate Professor

Mitloehner knows what he’s talking about, journalists and NSW Farmer’s Association people

tend to be easily confused.

Livestock methane emissions in the US are indeed about 3 percent of US emissions and are

well below the 14 percent global average figure of LLS … about half of which was nitrous

oxide as we saw in the first table.

It is common for US authors to confuse the US with the entire planet, but US livestock

methane emissions are below average for a number of unsurprising reasons:

1. US cattle are predominantly grain fed (producing less methane) than cattle on pasture.

2. The US ratio of cattle to people is about 1 to 3 compared to 1 to 1 in Brazil and well

above 1 to 1 in Australia.

3. US methane emissions from garbage are huge. In Australia, by comparison, and we are

not noted for frugality, our garbage methane emissions are 1/6th of our livestock

emissions. In the US, methane from garbage exceeds livestock methane.

4. The US imports about 10 percent (net) of its beef and almost all of its sheep meat … not

that they eat much. So the emissions from that beef don’t appear in US figures.

Page 22: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

21

5. Lastly, US advertisers and fast food chains may portray their home country as a

hamburger culture, but Americans actually eat twice as much chicken as beef and almost

no sheep meat at all. Australian ruminant meat intake is double that of the US.

It’s not so much that US livestock emissions are small, but that they are swamped by other

profligate consumption emissions.” 4. Percentage of Emissions: The emissions of different gases can be aggregated by converting them to carbon dioxide equivalents (CO2-e). They are converted by multiplying the mass of emissions by the appropriate global warming potentials (GWPs). GWPs represent the relative warming effect of a unit mass of the gas when compared with the same mass of CO2 over a specific period. A 20-year GWP is particularly important when considering the impact of livestock, because methane, a critical factor in livestock’s greenhouse effects, generally breaks down in the atmosphere in 9 – 12 years. Accordingly, a 100-year GWP (which shows the average impact over a period of 100 years) greatly understates methane’s shorter-term impact. For methane, the GWPs used by the UN’s Intergovernmental Panel on Climate Change (IPCC) are 21 for 100 years and 72 for 20 years. The UN Food & Agriculture Organization used a GWP of 23 for the 100 year time horizon in its 2006 “Livestock’s Long Shadow” report. Figure 14: Global Warming Potential (GWP) of Methane Based on a 20-year GWP, livestock in Australia produce more CO2-equivalent emissions than all our coal-fired power stations combined.

51

Although methane may have a shorter life than carbon dioxide (which remains in the atmosphere for many hundreds of years), its impact can be long term if it contributes to us reaching tipping points that result in positive feedback loops with potentially irreversible and catastrophic consequences. Other impacts of livestock production, such as deforestation for animal grazing, can have similarly devastating results. An example of a tipping point is the thawing of permafrost (frozen land) in Russia, Canada, Alaska and elsewhere, which causes the permafrost to release massive amounts of methane. More methane means more warming, more permafrost thawing, more methane release and

100 yrs

GWP of methane over 100 years is 21.GWP of methane over 100 years is 21.

20 yrs

GWP of methane over 20 years is 72.

12 yrs

Most of the methane breaks down within 12 years and is therefore non-existent over the final 88 years.

This more accurately reflects its shorter-term impact.

Most CO2-e measures of methane are based on a period of 100 years.

Short-term impacts become long-term if they contribute to us reaching tipping points.

Page 23: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

22

so on. This leads to runaway climate change, which no longer depends on emissions generated by humankind. The remaining comments in this section are based on a 100-year GWP, which understates livestock’s short-term impact. However, relative comparisons with other sectors can still be made that undoubtedly show the major effect of the livestock industry on the warming of our planet’s atmosphere. The greenhouse gas emissions intensity

i of carcass beef in 1999 (the latest available figures)

was more than twice that of aluminium smelting.52 To add some perspective, at the time the comparisons were produced, aluminium smelting consumed 16% of Australia’s (mainly coal-fired) electricity

53 while our annual tonnage of beef production was around 10% higher than

that of aluminium.54 & 55. The emissions intensity of various products can be depicted as

follows: Figure 15: Greenhouse Gas Emissions Intensity

In absolute terms, GHG emissions in Australia from beef alone are nearly double those of all non-ferrous metals, including aluminium, as illustrated in the following chart from the Australian Greenhouse Office’s National Greenhouse Inventory:

7

i Emissions intensity measures the tonnes of CO2-equivalent greenhouse gases per tonne of

commodity produced.

GHG Emissions Intensity (kg of GHG per kg of product)

0

10

20

30

40

50

60

Wheat Other grains

Sugar Cement,lime, etc

Steel Alumin-ium

Other non-

ferrousWool Sheep

meatBeef

GHG Emissions Intensity (kg of GHG per kg of product)

0

10

20

30

40

50

60

Wheat Other grains

Sugar Cement,lime, etc

Steel Alumin-ium

Other non-

ferrousWool Sheep

meatBeef

Based on conservative 100 year GWP

Page 24: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

23

Figure 16: Greenhouse Gas Emissions in Absolute Terms

The following comments in respect of aluminium’s energy usage add further perspective:

56

� “To phrase it in terms of the industry joke, aluminium is congealed electricity.” Mining

Weekly.com

� “Aluminium is the ultimate proxy for energy” Marius Kloppers, BHP Billiton CEO

Researchers at the University of Chicago have found that converting from a typical Western diet to a plant-based diet is 50% more effective in reducing GHG emissions than changing one’s car from a conventional sedan to a hybrid.

57

A Swedish study has provided GHG emissions intensity figures for a wide range of foods, including legumes, fruit and vegetables, commodities which are often overlooked in reports on this subject. It included CO2-e emissions involved in farming, transportation, processing, retailing, storage and preparation.

58

Some key points from the study were as follows:

� Beef is the least climate efficient way to produce protein, less efficient than

vegetables that are not recognised for their high protein content, such as green beans and carrots. Its emissions intensity ("Beef: domestic, fresh, cooked") is 30, as shown in the following chart, which compares it to various other products:

Page 25: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

24

0

5

10

15

20

25

30

35

Food Item

kg

CO

2-e

pe

r k

g o

f p

rod

uc

t

Carrots: domestic, fresh

Potatoes: cooked, domestic

Honey

Whole wheat: domestic, cooked

Apples: fresh, overseas by boat

Soybeans: cooked, overseas by boat

Milk: domestic, 4% fat

Sugar: domestic

Italian pasta: cooked

Oranges: fresh, overseas by boat

Rice: cooked

Green beans: South Europe, boiled

Herring: domestic, cooked

Vegetables: frozen, overseas by boat, boiled

Eggs: Swedish, cooked

Rapeseed oil: from Europe

Chicken: fresh, domestic, cooked

Cod: domestic, cooked

Pork: domestic, fresh, cooked

Cheese: domestic

Tropical fruit: fresh, overseas by plane

Beef: domestic, fresh, cooked

0

20

40

60

80

100

120

140

160

180

Food Item

Gra

ms

of

Pro

tein

pe

r K

G o

f G

HG

Em

iss

ion

s

Whole wheat domestic, cooked

Herring, domestic

Soya beans, cooked, overseas by boat

Eggs, domestic

Chicken, fresh, domestic

Italian pasta, cooked

Potatoes, cooked, domestic

Milk, domestic, 4% fat

Pork, domestic, fresh

Cheese, domestic

Cod, domestic

Rice, cooked

Carrots, domestic, fresh

Green beans, imported

Beef, domestic, fresh

Figure 17: Emissions intensity of various food products

� Stated another way, per kilogram of GHG emissions produced, carrots have more protein than beef. By the same measure, wheat has around thirteen times and soy beans around ten times more protein than beef, as demonstrated by the following chart:

Figure 18: Protein content per kilogram of greenhouse gas emissions

� It is more "climate efficient" to produce protein from vegetable sources than from animal sources.

� The emissions intensity of fruit and vegetables is usually less than or equal to 2.5, even if there is a significant amount of processing and transportation. Products transported by aeroplane are an exception, because emissions may be as large as for certain meats.

Page 26: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

25

� Some examples in regard to fruit: the emissions intensity figures are 0.82 and 1.2 for "Apples: fresh, overseas by boat" and "Oranges: fresh, overseas by boat" respectively. (Refer to the table below for emissions intensity figures for Australian fruit and vegetables.)

� The emissions intensity of foods rich in carbohydrates, such as potatoes, pasta and wheat is less than 1.1.

� For "Soybeans: cooked, overseas by boat", the figure is 0.92.

As a comparison to the Swedish study to the extent that it reported on fruit and vegetables, I have derived an overall emissions intensity figure of 0.1 for such items produced in Australia. The figure has been calculated from: (a) a measure of tonnes of 2002 CO2-e emissions per $m of revenue from Appendix D of the Department of Climate Change's 2008 CPRS Green Paper; and (b) revenue and tonnage figures for 2002 from the Australian Horticultural Statistics Handbook 2004.

Wherever used in the relevant publications, I have converted tonnes to kilograms for the purpose of our table.

Details are as follows:

Emissions Intensity of Fruit and Vegetables in Australia

Description Kg CO2-e per $m of

revenue 2002

59

$m of Rev 2002

60

Total Emissions

Kg produced 2002

61

Kg CO2-e per Kg produced

Fruit & Vegetables

86,000 5,975 513,850,000 5,346,154,000 0.10

Finally, to properly account for CO2-e emissions, we need to ask what we do with the energy which, according to the National Greenhouse Inventory, is the most significant contributor. The answer is that we use it in industry, in agriculture and in domestic homes. In order to properly break out the use of energy within Australia, and determine which industries use how much when all their inputs and outputs are taken into account, another kind of economic report is required. The CSIRO and the University of Sydney have produced such a report, entitled "Balancing Act – A Triple Bottom-Line Analysis of the Australian Economy".

62 The report analysed 135

sectors of the Australian economy, focusing on environmental, social and financial indicators. The report showed that when end-use was considered, animal industries at the time were responsible for over 30% of total greenhouse emissions in Australia, as follows:

Industry Sector Megatonnes CO2-e

Percent

Beef Cattle 122.5 23.6

Sheep & Shorn Wool 23.9 4.61

Dairy Cattle & Milk 8.8 1.7

Pigs 1.3 0.25

Page 27: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

26

Industry Sector Megatonnes CO2-e

Percent

Commercial Fishing 0.68 0.13

Meat Products 0.68 0.13

Other Dairy Products 0.59 0.11

Poultry & Eggs 0.58 0.11

Total 159.03 30.64

Australia’s National Greenhouse Inventory for 2008 indicated that electricity generation represented 37 per cent of Australia's emissions, compared to 10.7 per cent for livestock. The report indicated that livestock’s emissions were 59 mt. The livestock figure was based solely on enteric fermentation (which causes methane to be released, primarily through belching) and manure management (which releases methane and nitrous oxide). Adding emissions from livestock-related deforestation and savanna burning increases livestock’s emissions to 106 mt or 18% of the revised total. Using that figure and applying a 20-year GWP, the final percentage increases to 30%. Assumptions: � 85.1% of forest clearing was for livestock grazing

63; and

� 56.9% of savanna burning was for livestock

64.

In respect of the first assumption, it is helpful to note that the National Greenhouse Inventory’s land use change estimate for 2008 includes emissions and removals from all forest lands cleared that year as well as ongoing emissions from the loss of biomass and soil carbon on lands cleared over the previous twenty years. 5. Comparison with Coal-fired Power: Applying a 100-year GWP, Australia’s 2008 National Greenhouse Inventory reported 55.6 tonnes of CO2-equivalent (CO2-e) methane emissions from enteric fermentation by livestock. That equates to 190 tonnes of CO2-e emissions using a 20-year GWP, which is more than the emissions from coal-fired electricity generation (Figure 7, page 8). Such an approach was utilised in a late 2007 article in Australasian Science titled “Meat’s Carbon Hoofprint”.

65

The comparison only takes into account livestock’s methane emissions, and not: (i) nitrous oxide emissions from manure management;

(ii) deforestation for grazing and feed crop production; or (iii) savanna burning for livestock pasture and grazing; which is referred to in item 3 above. 6. Comments from the Climate Institute (with my underline for emphasis):

66

“It has been knows for decades that methane is a powerful greenhouse gas. Up to one third of the warming during the twentieth century may be attributable to methane. Since the eighteenth century, methane concentrations have risen 2.5 fold even as natural sources such

Page 28: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

27

as wetlands and wildlife declined. According to ice core analyses, concentrations are the highest they have been for around 650,000 years. For reasons poorly understood, methane levels stabilised for several years during the late 1990’s and early 2000’s, possibly as a result of a decline in the rate of tropical deforestation. In recent years, however, methane concentrations have resumed their rapid rise.” “Of the global anthropogenic sources of methane, ruminant livestock is one of the biggest. Fugitive emissions from coal mining, vegetation burning and other industries, as well as landfill sites, are also significant sources. It is worth noting that, globally, numbers of ruminant livestock continue to climb as world population and incomes - and hence demand – rise.” “While it is true that atmospheric methane is short-lived, it is continually being ‘topped up’ and, even more significantly, is some seventy-two times more potent than carbon dioxide when measured in a twenty-year timeframe. Suggestions that methane from livestock is not a significant greenhouse gas, while comforting to vested interests, are not based in science.”

Page 29: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

28

Land Clearing In Australia, since European settlement, we have cleared nearly 1 million square kilometres of our 7.7 million square kilometre land mass. Of the cleared land, around 70 percent has resulted from animal agriculture, including meat, dairy and wool.

67

Figure 19: Land cleared in Australia In Queensland alone, from 1988 to 2008, around 86,000 square kilometres of land was cleared, 91% of which (78,000 square kilometres) was for livestock pasture.

68 If we were to

draw a line 10 kilometres east of Melbourne’s GPO, it would almost take us to Balwyn Road, Balwyn. If we assumed that all the land north of that line was wooded vegetation, including forest, and we wanted to clear as much as was cleared in Queensland for livestock pasture in that twenty year period, how far would the 10 kilometre tract of land extend? Figure 20(a): 10 kilometre-wide tract of land to the east of Melbourne’s CBD

10 km

Original Map: Copyright 2010 Melway Publishing Pty Ltd. Reproduced from Melway Edition 38 with permission

Page 30: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

29

The 10 kilometre wide tract of land would extend between Melbourne and Cairns 3.3 times, i.e. a total distance of around 7,800 kilometres. Figure 20(b): The equivalent land area cleared in Queensland for livestock 1988 - 2008

Source:Derived from Bisshop, G. & Pavlidis, L, “Deforestation and land degradation in Queensland - The culprit”, Article 5, 16th Biennial Australian Association for Environmental Education Conference, Australian National University, Canberra, 26-30 September 2010

Original map: www.street-directory.com.au. Used with permission. (Cairns inserted by this presenter.)

Cairns

Page 31: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

30

Water Usage An example of animal agriculture’s high water usage can be found in the 2004/05 reporting period for the state of Victoria. In that period (one of two recent reporting periods) it was responsible for 51% of the state’s water consumption. The dairy industry alone was responsible for 34% of overall consumption. Direct water consumption by households only represented 8% of the state’s total consumption. Those consumption figures can be viewed graphically as follows, based on information from the Australian Bureau of Statistics:

69 & 70

Figure 21: Victorian Water Consumption 2004-05

According to Professor Wayne Meyer of the CSIRO

71, it takes between 715 and 750 litres of

water to produce 1 kg of wheat and between 1,550 and 2,000 litres to produce 1 kg of rice, compared to between 50,000 and 100,000 litres for 1 kg of beef. However, if we were to ask Australians whether rice should be grown in this country, most may say no, due to concerns over water consumption. Where is the concern over our massive beef industry?

72

Similar to Professor Meyer, David and Marcia Pimentel of Cornell University have reported that producing 1 kg of animal protein requires about 100 times more water than producing 1 kg of grain protein.

73

Some findings from Associate Professor Ian Rutherfurd of the University of Melbourne (based partly on information from Wayne Meyer, CSIRO) are as follows:

74

� 90% of the water consumed in households in Melbourne is embodied in the production of the food that comes into the house. In one sense, urban food consumers are also consuming rivers.

� Small changes in food choices could potentially lead to water savings that dwarf the savings that can come from changes in direct water consumption. Thus, river condition is, to some extent, a consequence of decisions made in urban supermarkets. The authors believe that this is an empowering observation.

Page 32: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

31

� Urban people, far from being isolated from the environment, make critical decisions about rivers, every day, in their consumption choices.

� The authors suggest four ways that consumers can dramatically reduce their indirect water consumption: (i) waste less food; (ii) select comparable products that use less water; (iii) substitute types of food that use more water for types that use less; and (iv) become a vegetarian. (The authors use the term "vegetarian" to mean a diet free of meat and dairy products.)

� A vegetarian diet can save households up to 35% of their total water usage. That is 13 times the volume of water that would be saved by not watering the garden. The environmental benefits of vegetarianism have been made for many years, and Renault (2003) suggests that an animal product based diet may need 10 times more water than a vegetarian diet.

75 Certainly the water efficiency of vegetable production is startling.

� Based on the estimated water consumption of the average Australian household compared to a vegetarian household (i.e. no meat or dairy products) as presented by the authors, subsequent calculations (not included in the research papers) indicate that the average Australian could save 2,592 litres per day, or 946,000 litres per annum, by changing to a vegetarian diet.

� That figure compares extremely favourably to the 17 litres per person per day (6,205 litres per person per annum) that was saved in Melbourne under Stage 3 water restrictions between 2005 and 2006.

76

� It also compares extremely favourably to the 20,000 litres per annum saved by using a 3 star showerhead and limiting showers to 4 minutes (not referred to in the research paper).

77

� The comparison can be viewed graphically as follows:

Figure 22: Comparative Water Savings

Much of Victoria’s enormous expenditure on new water-related infrastructure projects, along with the environmental and other consequences of such projects, could potentially have been avoided or reduced if consumers modified their diets. As indicated earlier, the figure of 50,000-100,000 litres has come from Prof. Wayne Meyer of the University of Adelaide and CSIRO.

78, 79 It is similar to the figures of Dr David Pimentel of

Cornell University80

. It is higher than figures from Prof. Arjen Hoekstra of the University of Twente and colleagues

81 (whose figures are used by the Water Footprint Network)

82, but Prof.

Hoekstra’s figures for meat are still many times higher than those for vegetables and grains. The Water Footprint Network is a non-profit foundation under Dutch law. The founding partners are: University of Twente, World Wildlife Fund, UNESCO-IHE Institute for Water

Page 33: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

32

Education, the Water Neutral Foundation, the World Business Council for Sustainable Development, the International Finance Corporation (part of the World Bank Group) and the Netherlands Water Partnership. In responding to queries regarding the differences between his figures and those of Prof. Meyer and Dr Pimentel, Prof Hoekstra has stated, “All authors agree the water footprint of beef is larger than the water footprint of pork or chicken and much larger than the water footprint of grains.”

83

Prof. Meyer has said (my underline), “While the numbers . . . were originally derived for irrigated pastures and therefore for fairly intense production the conversion of vegetative dry matter into meat is an intensive energy process and hence also an intense water requiring process. I suspect that if you do the same exercise on rain fed, extensive meat production that there may even be more water involved since feed conversion is likely to be lower, energy expended in gathering dry matter would be greater and soil evaporation losses may even be higher in the more sparsely vegetated dry land grazing.”

84

“Virtual water" figures attribute all rain on a beef cattle grazing pasture (for example) to beef production. This is due to the fact that all water has alternative uses, including environmental run-off such as replenishment of water tables. For a grazing pasture, it is used to grow grass to feed cattle. Far more nutrition would generally be derived from that land area if it were used to grow crops. Even in remote grazing lands, the available water sustains native vegetation. Making that vegetation, and hence the water that was essential for its growth, available to livestock can severely degrade the soil and negatively impact other aspects of the natural environment. Professor Meyer has stated: “Most commentators taking a meat production perspective identify only that water involved in the direct supply of water to the animal. However, the very large amount of water needed is associated with growing the feed (grass, grain and vegetative dry matter). To grow this vegetation dry matter for the animal to eat requires water; whether this comes from rain or irrigation is not immediately important.” The Water Footprint Network’s approach is as follows: “The water footprint of a product is an empirical indicator of how much water is consumed, when and where, measured over the whole supply chain of the product. The water footprint is a multidimensional indicator, showing volumes but also making explicit the type of water use (evaporation of rainwater, surface water or groundwater, or pollution of water) and the location and timing of water use. The water footprint of an individual, community or business, is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. The water footprint shows human appropriation of the world’s limited freshwater resources and thus provides a basis for assessing the impacts of goods and services on freshwater systems and formulating strategies to reduce those impacts.” The “water footprint” and “virtual water” approaches are similar in the context of food products themselves. The Water Footprint Network states, “in this context we can also speak about the ‘virtual water content’ of a product instead of its ‘water footprint’”. The main differences are: � The “water footprint” approach applies the methodology more widely by determining the

“water footprint” of an individual, a business, a country and the like.

� While “virtual water” simply refers to water volume, the “water footprint” is a multidimensional indicator, in that it determines where the water footprint is located, what source of water is used, and when the water is used.

Page 34: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

33

Based on the work of Prof. Meyer, Prof. Hoekstra, Dr Pimentel and their colleagues, the water efficiency of various plant products can be compared to beef, as shown on the following page.

Page 35: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

34

Figure 23: Per hectare nutritional value and water usage of different foods

Chart 4: Zinc per hectare (mg)

0

50,000

100,000

150,000

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

0

100,000

200,000

300,000

400,000

500,000

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0

10,000,000

20,000,000

30,000,000

40,000,000

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Producing this much nutrition per hectare . . . . . . causes us to use this much water per hectare (litres):

0

5,000,000

10,000,000

15,000,000

20,000,000

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

Chart 7: Based on CSIRO figures for beef, soy, wheat and rice and Water Footprint Network figures for potato

Chart 8: Based on Water Footprint Network figures

Chart 9: Based on figures from Dr David Pimentel, Cornell University and colleagues

Chart 1: Protein per hectare (gm)

Chart 2: Energy per hectare (kcal)

Chart 5: Omega 3 per hectare (mg)

Chart 6: Calcium per hectare (mg)

Legend:

Beef

Soy

Wheat

Rice

Pota to

Chart 3: Iron per hectare (kcal)

Page 36: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

35

The calculations for determining the level of nutrition per hectare in the charts have utilised information from the United States Department of Agriculture’s (USDA) National Nutrient Database for Standard Reference.

85 The assumed per hectare yield of beef (343 kg) has

been determined by utilising the gross energy output per hectare as reported by Spedding86

and the USDA energy value figures. The assumed per hectare soybean yield (2,804 kg) has been derived from the U.S. bushels per acre as reported by Nabors

87, and the USDA’s bushel

weight for soybeans of 60 pounds.88

The figures for wheat, rice and potato have been obtained from the Australian Bureau of Statistics Year Book 2008.

89 Please refer to further

comments on product yields below. Wide variations in product yield can apply, depending on the location and conditions in which products are grown, and some of the yields used for the above charts may be high for Australian conditions. For example, while the yield figure for beef (refer above) may be achievable in the more intensive cattle farming regions of Australia, the enormously widespread range of cattle grazing (including grazing in marginal areas) causes our average yield to be a small fraction of the figure assumed in the charts. In regard to soy beans, the Primary Industry Bank has reported an average yield for Australian production of 1,880 kg per hectare between 1993/94 and 1999/00.

90 Accordingly, as for beef,

the yields for soy may be at the upper end of the expected range. If lower yields were assumed for any product, the water usage figures would be lower, but so would the nutritional value. With the exception of vitamin B12, and subject to comments below regarding Omega-3 fatty acids, the comparisons include all the nutrients highlighted in Meat & Livestock Australia’s “five essential nutrients one amazing food” advertising campaign featuring the actor Sam Neill and an orangutan.

91 Vitamin B12 is perhaps the only nutrient that is significantly more difficult to obtain

directly from plants than from animals. However, it is easily produced from bacteria and supplemented in other food products, which is a far more natural approach than: (a) destroying rainforests and other natural environs; and (b) operating industrial livestock production systems; purely for animal food products. The charts do not distinguish between long chain (DHA and EPA) and short chain (ALA) Omega-3 fatty acids. However, the relative benefits of long chain over short chain varieties, and the benefits of Omega-3 fatty acids generally, have been questioned on the basis of statistical meta-analysis and other studies.

92

The tables in the Appendix provide the information for the charts in Figure 23. They demonstrate that a plant-based diet generally far exceeds animal-based alternatives in terms of nutritional yields and environmental benefits. Perhaps the only nutrient that is significantly more difficult to obtain directly from plants than animals is Vitamin B12. However, it is easily produced from bacteria, which is a far more natural approach than destroying rainforests and other natural environs, purely for animal agriculture. As indicated earlier, the findings reflect a key problem in using animal products to satisfy humankind's nutritional requirements, which is the inherently inefficient nature of the process. Wide variations in product yield can apply, depending on the location and conditions in which products are grown, and some of the yields shown may be high for Australian conditions. For example, the beef yield of 343kg per hectare per annum has been derived by using beef’s gross energy output per hectare as reported by Spedding

93 and the energy derived from a

quantity of beef as reported in the USDA National Nutrient Database for Standard Reference.

94

Page 37: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

36

The figure may be achievable in the more intensive cattle farming regions of Australia, but the enormously widespread range of cattle grazing, including grazing in marginal areas, causes our average yield to be significantly lower than reported in the table. The soybean yield of 2,804kg per hectare has been derived from the U.S. bushels per acre as reported by Nabors

95, and the USDA’s bushel weight for soybeans of 60 pounds.

96 For

Australian production, the Primary Industry Bank has reported an average yield of 1,880kg per hectare between 1993/94 and 1999/00.

97

The figures for wheat, rice and potato in the first table have been obtained from the Australian Bureau of Statistics Year Book 2008.

98

The sources utilised for the tables conservatively highlight the adverse effects of an animal based diet. All the sources reviewed show significant benefits of a plant-based diet relative to the animal-based alternative.

Page 38: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

37

3. Nutritional Value of Australian Food Production The charts on the following pages show the gross production of various nutrients in Australia. They are based on: (a) production figures from DAFF’s "Australian food statistics 2010-11"; and (b) nutritional information from the United States Department of Agriculture’s (USDA) National Nutrient Database for Standard Reference (referred to earlier). The tables include, for each specified nutrient, an indication of the percentages derived from animal and non-animal products. They include products that are exported and/or used as livestock feed. The inclusion of the latter means there is some double-counting of nutrients. However, given animal agriculture’s relatively low output levels for most nutrients, the double-counting does not appear to be significant.

Page 39: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

38

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kpe

as

Ric

eM

un

g b

ea

ns

Na

vy

be

an

s

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

s

On

ion

sC

arr

ots

Asp

ara

gu

s

Bro

cco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psi

cu

m/c

hill

ies

Ca

bb

ag

eB

ea

ns

Oth

er

So

y b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rsN

ash

i

Avo

ca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/li

me

s/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

s

Alm

on

ds

Ma

ca

da

mia

Be

rrie

s

Be

ef

La

mb

Pig

me

at

Po

ultry

Wh

ole

milk

Ch

ee

se -

Ch

ed

da

rC

he

ese

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock

lob

ste

rA

ba

lon

eS

callo

ps

kc

al x

1,0

00

,00

0

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kpe

as

Ric

eM

un

g b

ea

ns

Na

vy b

ea

ns

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

tsA

spa

rag

us

Bro

cco

liC

au

liflo

we

rT

om

ato

es

Mu

shro

om

sL

ett

uce

Ca

psi

cum

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

rS

oy

be

an

sS

ug

ar

can

eP

ea

nu

tsA

pp

les

Pe

ars

Na

sh

iA

voca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/

lime

s/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Ch

ee

se -

Ch

ed

da

rC

he

ese

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock

lob

ste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

Figure 24: Energy Value of Australian Food Production 2010/11

� Animal products: 9%; Non-animal products: 91%

Figure 25: Protein Content of Australian Food Production 2010/11

� Animal products: 19%; Non-animal products: 81%

Page 40: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

39

0

200

400

600

800

1,000

1,200

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

s

Ric

eM

un

g b

ea

ns

Na

vy b

ea

ns

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

tsA

sp

ara

gu

s

Bro

cco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psic

um

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

r

So

y b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

s

Pe

ars

Na

sh

iA

vo

ca

do

Me

lon

sP

ine

ap

ple

s

Ba

na

na

sK

iwifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

s

Ma

ca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

t

Po

ultry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se

- N

on

-Ch

ed

da

r

Bu

tte

rE

gg

sT

un

aO

the

r fish

Pra

wn

s

Ro

ck lo

bste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

0

2,000

4,000

6,000

8,000

10,000

12,000

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

sR

ice

Mu

ng

be

an

s

Na

vy b

ea

ns

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

ts

Asp

ara

gu

sB

rocco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psic

um

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

rS

oy b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rsN

ash

i

Avo

ca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock lo

bste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

Figure 26: Zinc Content of Australian Food Production 2010/11

� Animal products: 14%; Non-animal products: 86%

Figure 27: Calcium Content of Australian Food Production 2010/11

� Animal products: 44%; Non-animal products: 56%

Page 41: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

40

0

200

400

600

800

1,000

1,200

1,400

1,600

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kpe

as

Ric

eM

un

g b

ea

ns

Na

vy b

ea

ns

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

tsA

spa

rag

us

Bro

cco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psic

um

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

rS

oy b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rsN

ash

iA

voca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock lo

bste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

0

5

10

15

20

25

30

35

40

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

sR

ice

Mu

ng

be

an

sN

avy

be

an

s

Fa

ba

be

an

sL

en

tils

Ba

rle

y

Oa

tsM

aiz

eS

org

hu

m

Tri

tica

leP

ota

toe

s

On

ion

sC

arr

ots

Asp

ara

gu

s

Bro

cco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psi

cu

m/c

hill

ies

Ca

bb

ag

eB

ea

ns

Oth

er

So

y b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rs

Na

sh

iA

voca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/

gra

pe

fru

itP

ea

ch

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

t

Po

ultry

Wh

ole

milk

Ch

ee

se -

Ch

ed

da

rC

he

ese

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock lo

bst

er

Ab

alo

ne

Sca

llop

sO

yste

rs

Kilo

gra

ms

Figure 28: Iron Content of Australian Food Production 2010/11

� Animal products: 3%; Non-animal products: 97%

Figure 29: Vitamin B12 Content of Australian Food Production 2010/11

� Animal products: 100%; Non-animal products: 0%

Page 42: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

41

0

2,000

4,000

6,000

8,000

10,000

12,000

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

sR

ice

Mu

ng

be

an

sN

avy

be

an

sF

ab

a b

ea

ns

Le

ntils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

tsA

sp

ara

gu

sB

rocc

oli

Ca

ulif

low

er

To

ma

toe

sM

ush

roo

ms

Le

ttu

ceC

ap

sic

um

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

rS

oy

be

an

sS

ug

ar

can

eP

ea

nu

tsA

pp

les

Pe

ars

Na

sh

i

Avo

cad

oM

elo

ns

Pin

ea

pp

les

Ba

na

na

sK

iwifr

uit

Ma

ng

oe

sT

ab

le a

nd

dri

ed

gra

pe

sO

ran

ge

sM

an

da

rin

sL

em

on

s/lim

es/

gra

pe

fru

itP

ea

che

sN

ect

ari

ne

s

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se -

No

n-C

he

dd

ar

Bu

tte

rE

gg

sT

un

aO

the

r fish

Pra

wn

sR

ock

lob

ste

rA

ba

lon

eS

ca

llop

sO

yst

ers

To

nn

es

0

20

40

60

80

100

120

140

160

180

200

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

s

Ric

eM

un

g b

ea

ns

Na

vy b

ea

ns

Fa

ba

be

an

sL

en

tils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

s

On

ion

sC

arr

ots

Asp

ara

gu

sB

rocco

li

Ca

ulif

low

er

To

ma

toe

sM

ush

roo

ms

Le

ttu

ce

Ca

psic

um

/ch

illie

sC

ab

ba

ge

Be

an

s

Oth

er

So

y b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rsN

ash

i

Avo

ca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

s

Alm

on

ds

Ma

ca

da

mia

Be

rrie

sB

ee

f

La

mb

Pig

me

at

Po

ultry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

s

Ro

ck lo

bste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

Figure 30: Omega 3 Content of Australian Food Production 2010/11

� Animal products: 41%; Non-animal products: 59%

Figure 31: Vitamin C Content of Australian Food Production 2010/11

� Animal products: 0.2%; Non-animal products: 99.8%

Page 43: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

42

0

5,000

10,000

15,000

20,000

25,000

30,000

Wh

ea

tL

up

ins

Fie

ld p

ea

sC

hic

kp

ea

sR

ice

Mu

ng

be

an

sN

avy b

ea

ns

Fa

ba

be

an

s

Le

ntils

Ba

rle

yO

ats

Ma

ize

So

rgh

um

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rro

ts

Asp

ara

gu

sB

rocco

liC

au

liflo

we

rT

om

ato

es

Mu

sh

roo

ms

Le

ttu

ce

Ca

psic

um

/ch

illie

sC

ab

ba

ge

Be

an

sO

the

rS

oy b

ea

ns

Su

ga

r ca

ne

Pe

an

uts

Ap

ple

sP

ea

rsN

ash

i

Avo

ca

do

Me

lon

sP

ine

ap

ple

sB

an

an

as

Kiw

ifru

itM

an

go

es

Ta

ble

an

d d

rie

d g

rap

es

Ora

ng

es

Ma

nd

ari

ns

Le

mo

ns/lim

es/g

rap

efr

uit

Pe

ach

es

Ne

cta

rin

es

Ap

rico

tsP

lum

sC

he

rrie

sA

lmo

nd

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Ch

ee

se

- C

he

dd

ar

Ch

ee

se

- N

on

-Ch

ed

da

rB

utt

er

Eg

gs

Tu

na

Oth

er

fish

Pra

wn

sR

ock lo

bste

rA

ba

lon

eS

ca

llop

sO

yste

rs

To

nn

es

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Wh

ea

tL

upin

sF

ield

pea

sC

hic

kp

ea

sR

ice

Mun

g b

ean

sN

avy b

ean

sF

ab

a b

ean

sL

entils

Ba

rle

yO

ats

Maiz

eS

org

hum

Tri

tica

leP

ota

toe

sO

nio

ns

Ca

rrots

Asp

ara

gu

sB

rocco

liC

au

liflo

we

rT

om

ato

es

Mush

room

sL

ett

uce

Ca

psic

um

/ch

illie

sC

ab

bag

eB

ean

sO

the

rS

oy b

ean

sS

ug

ar

can

eP

ea

nuts

Ap

ple

sP

ears

Nash

iA

vo

cad

oM

elo

ns

Pin

ea

pp

les

Ba

na

na

sK

iwifr

uit

Ma

ng

oe

sT

ab

le a

nd

dri

ed

gra

pe

sO

ran

ge

sM

an

da

rin

sLe

mo

ns/

lime

s/g

rap

efr

uit

Pe

ache

sN

ecta

rine

sA

pri

cots

Plu

ms

Ch

err

ies

Alm

ond

sM

aca

da

mia

Be

rrie

sB

ee

fL

am

bP

ig m

ea

tP

ou

ltry

Wh

ole

milk

Che

ese

- C

he

dda

rC

he

ese -

No

n-C

he

dda

rB

utte

rE

gg

sT

un

aO

the

r fis

hP

raw

ns

Rock lo

bst

er

Ab

alo

ne

Sca

llop

sO

yste

rs

To

nn

es

Figure 32: Magnesium Content of Australian Food Production 2010/11

� Animal products: 5%; Non-animal products: 95%

Figure 33: Potassium Content of Australian Food Production 2010/11

� Animal products: 11%; Non-animal products: 89%

Page 44: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

43

Notes to charts:

1. Milk 9,102 ML = 8,884 KT (1 litre = 976 g)

2. Vegetables, Fruit and Nuts: Figures from earlier years have been used where latest figures unavailable.

3. Poultry includes chicken, turkey and duck. Chicken's nutritional data has been used.

4. Trout has been used for "other fish" nutrition.

5. Eggs 247,384 dozen. Assumed weight per egg 60 g. Total weight of production 240 KT.

6. The "other" vegetable values are based on the average of listed vegetables other than potato.

7. Gouda cheese has been used for "non-cheddar".

8. The split of lettuce production is assumed to be 50% iceberg and 50% cos.

9. The figures for capsicums/chillies are based on red capsicum.

10. Nashi's figures are from "pears".

11. Strawberries used for "Berries".

12. The raw sugar yield of 12% is the Qld state average from Renouf, M.A. & Wegener, M.K., "Environmental life cycle assessment (LCA) of sugarcane production and processing in Australia", Proceedings of the Australian Society of Sugar Cane Technologists, 29, 2007, http://www.gpem.uq.edu.au/docs/CleanProd/LCA_sugarcane_Aus.pdf

13. The nutritional values used for maize are those of yellow corn.

14. For beef, lamb and pig meat, the charts are based on 55% of the tonnage reported in DAFF’s Australian Food Statistics. That tonnage is based on carcass weight. This approach is in line with Carbon Neutral’s estimate (referred to below) that 55% of the carcass is used as meat.

The appendix contains tables that demonstrate that a plant-based diet generally far exceeds animal-based alternatives in terms of nutritional yields and environmental benefits. Perhaps the only nutrient that is significantly more difficult to obtain directly from plants than animals is Vitamin B12. However, it is easily produced from bacteria, which is a far more natural approach than destroying rainforests and other natural environs, purely for animal agriculture. To a large extent, the findings reflect a key problem in using animal products to satisfy humankind's nutritional requirements, which is the inherently inefficient nature of the process. It takes many kilograms of plant-based food to produce one kilogram of animal-based food with comparable nutritional value, with significant impacts on energy inputs, emissions, water usage and land usage. The tables utilise various sources for information on factors such as product yields, GHG emissions and water usage. For example, water figures have been obtained from a paper by Hoekstra and Chapagain, who have reported that, in Australia, 17,112 litres of water are required to produce 1 kilogram of beef.

99 On the other hand, the CSIRO has reported a figure

of 50,000 to 100,000 litres, whilst Pimentel has reported 43,000 litres outside Australia.100

The greenhouse gas emissions intensity of beef has come from a paper by Annika Carlsson-Kanyama and Alejandro Gonzalez, who reported a figure of 30kg of GHG emissions per kilogram of product.

58 The Australian Greenhouse Office has reported a figure of 51.7kg.

The latter was based on carcass weight. As only around 55% of a carcass is used for meat, the figure for beef based on a kilogram of served meat at that time would have been approximately 94 kg. The level of livestock-related land clearing has since reduced. Taking those factors into account, the Carbon Neutral group in Perth, Western Australia, has recently estimated an emissions intensity figure for beef of 30.9.

Page 45: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

44

Carbon Neutral is a not for profit company whose aim is to measure, reduce and offset greenhouse gas emissions and implement revegetation projects

101. Here is an extract from

its calculations in respect of beef and veal: Emissions from Beef and Veal

The Department of Climate Change (2003, 93) reports that the total emissions intensity of a Beef carcass is 51.0 kg CO2e / kg. GHD (2008), among other sources report that on average, 55% of a beef carcass is used towards saleable products. The CSIRO (2005), reports that two thirds of the emissions associated with beef production in 1999 were associated with land clearing in Northern Australia. Because broad scale land clearing has been phased out in many states, particularly Queensland, the emissions factor has been divided by 3.

In 2008, beef prices range from $8 - $30 kg depending on the quality of the beef and other market factors. It is assumed that the average 2010 price for beef is $18. The factor for beef and veal is therefore calculated as follows:

Ghg (kg) / $ = emissions per kilo of carcass / fraction of carcass saleable x (1- portion attributable to land clearing) / price per kilo of meat Ghg (kg) / $ = 51 / 0.55 x 0.33333 / 18 Ghg (kg) / $ = 1.71715 Ghg (kg) / kg = 30.909066

End of Carbon Neutral's Calculations for Beef and Veal The people at Carbon Neutral may not be aware that a significant portion of the ongoing land clearing in Queensland (nearly 100,000 ha in total during 2008/09) is livestock related.

102 If

so, their estimate may have been higher. Emissions intensity figures for some alternative products have been reported as follows: � Wheat and other grains

103: 0.4

� Fruit and vegetables101

: 0.48855

� Potatoes104

: 0.45 (Domestic, cooked)

� Rice104

: 1.3 (Cooked)

� Soy beans104

: 0.92 (Transported by boat and cooked) Wide variations in product yield can apply, depending on the location and conditions in which products are grown, and some of the yields shown may be high for Australian conditions. For example, the beef yield of 343kg per hectare per annum has been derived by using beef’s gross energy output per hectare as reported by Spedding

105 and the energy derived from a

quantity of beef as reported in the USDA National Nutrient Database for Standard Reference.

106

The figure may be achievable in the more intensive cattle farming regions of Australia, but the enormously widespread range of cattle grazing, including grazing in marginal areas, causes our average yield to be significantly lower than reported in the table. The soybean yield of 2,804kg per hectare has been derived from the U.S. bushels per acre as reported by Nabors

107, and the USDA’s bushel weight for soybeans of 60 pounds.

108 For

Australian production, the Primary Industry Bank has reported an average yield of 1,880kg per hectare between 1993/94 and 1999/00.

109

The figures for wheat, rice and potato in the first table have been obtained from the Australian Bureau of Statistics Year Book 2008.

110

Page 46: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

45

The sources utilised for the tables conservatively highlight the adverse effects of an animal based diet. All the sources reviewed show significant benefits of a plant-based diet relative to the animal-based alternative. Certain information from the tables is summarised in the following charts, with some duplication in respect of Figure 23.

Page 47: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

46

Figure 34: Nutrition, Greenhouse Gas Emissions and Water Usage

Page 48: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

47

4. Health Issues The following authors and organisations have highlighted serious health concerns involving meat products: 1. Dr T. Colin Campbell and Thomas M. Campbell II, "The China Study"

111:

� Dr. Campbell is the Jacob Gould Schurman Professor Emeritus of Nutritional Biochemistry at Cornell University.

� The China Study website says, "The research project culminated in a 20-year partnership of Cornell University, Oxford University, and the Chinese Academy of Preventive Medicine, a survey of diseases and lifestyle factors in rural China and Taiwan. More commonly known as the China Study, 'this project eventually produced more than 8,000 statistically significant associations between various dietary factors and disease.'"

� Dr Campbell says, "People who ate the most animal-based foods got the most chronic disease ... People who ate the most plant-based foods were the healthiest and tended to avoid chronic disease. These results could not be ignored."

2. Physicians Committee for Responsible Medicine

112

� “Scientific research shows that health benefits increase as the amount of food from animal sources in the diet decreases, so vegan diets are the healthiest overall.”

� “The 9 essential amino acids, which cannot be produced by the body, must be obtained from the diet. A variety of grains, legumes, and vegetables can also provide all of the essential amino acids our bodies require. It was once thought that various plant foods had to be eaten together to get their full protein value, otherwise known as protein combining or protein complementing. We now know that intentional combining is not necessary to obtain all of the essential amino acids. As long as the diet contains a variety of grains, legumes, and vegetables, protein needs are easily met.”

� “With the traditional Western diet, the average American consumes about double the protein her or his body needs. Additionally, the main sources of protein consumed tend to be animal products, which are also high in fat and saturated fat.”

3. World Cancer Research Fund113

� “There is strong evidence that red and processed meats are causes of bowel cancer, and that there is no amount of processed meat that can be confidently shown not to increase risk.”

� “Aim to limit intake of red meat to less than 500g cooked weight (about 700-750g raw weight) a week. Try to avoid processed meats such as bacon, ham, salami, corned beef and some sausages.”

4. Harvard University114

� “Eating red meat is associated with a sharply increased risk of death from cancer and heart disease, according to a new study, and the more of it you eat, the greater the risk. The analysis, published online Monday in Archives of Internal Medicine, used data from two studies that involved 121,342 men and women who filled out questionnaires about health and diet from 1980 through 2006.”

Page 49: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

48

� “Previous studies have linked red meat consumption and mortality, but the new results suggest a surprisingly strong link.”

� “‘When you have these numbers in front of you, it’s pretty staggering,’ said the study’s lead author, Dr. Frank B. Hu, a professor of medicine at Harvard.”

5. Geoff Russell, "CSIRO Perfidy"

115:

� Researchers in the 1990s discovered the similarities between damage to lung DNA

from cigarettes and damage to bowel DNA caused by red meat: " . . . red meat induced . . . [a reaction in the bowel] similar to . . . cigarette smoke." UK medical researchers, 1996

� CSIRO research scientists, early 2006: "Earlier reports suggested that high intake of red or processed meats could be a risk factor [for bowel cancer]. Three large population studies have recently confirmed those earlier reports."

� Documents obtained under Freedom of Information legislation show that CSIRO researchers informed the CSIRO Board "Recent findings from [CSIRO] scientists have established that diets high in red meat, processed meats and the dairy protein casein can significantly increase the risk of bowel cancer." CSIRO scientists inform the CSIRO Board, April 2006

� Despite the above, CSIRO Total Wellbeing Diet, Book 2, October 2006: "Studies have shown that fresh red meat (beef and lamb) is not a significant risk factor for colorectal cancer."

6. American Dietetic Association

116

� “It is the position of the American Dietetic Association that appropriately planned vegetarian diets, including total vegetarian or vegan diets, are healthful, nutritionally adequate, and may provide health benefits in the prevention and treatment of certain diseases. Well-planned vegetarian diets are appropriate for individuals during all stages of the life cycle, including pregnancy, lactation, infancy, childhood, and adolescence, and for athletes. A vegetarian diet is defined as one that does not include meat (including fowl) or seafood, or products containing those foods.”

Page 50: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

49

5. Pricing

We need to ensure that we allocate our resources in an economically rational manner, in accordance with efficient market practices. Such a practise would be achieved by ensuring that current externalities are accounted for in the economic system through appropriate resource rents and charges. Consequences of the production and delivery process that pollute the commons, extract precious resources or rely on an unpaid monopoly use must be subject to fees, such that the public are compensated for these practices. Thus the price paid for goods and services would more fully reflect the total costs, including environmental costs, associated with their production and delivery. Governments can influence pricing through taxes on inputs, emissions trading schemes and the like. Due to the massive impact of animal agriculture on greenhouse gas emissions, it should be added to the Federal Government’s carbon tax. Government should also consider taking appropriate resource rents on water and other inputs that rightly belong to the community. With the high level of exports from our animal agricultural sector, we are currently effectively exporting, for example, massive amounts of our state’s precious water at prices which grossly understate its true value. In a 2005 article on the CSIRO and University of Sydney’s Balancing Act report, the Canberra Times stated, “Market prices for beef do not reflect the full environmental costs of production . . . and the Aussie meat pie certainly contributes its share to climate change and land clearing.”

117

Also, “Instead of being influenced by high-powered advertising, celebrity endorsement, habit or cheapness, we should be making choices based on minimising our contribution to land degradation, excessive water use and climate change.” The article quoted the leader of the team that prepared the report, CSIRO researcher, Dr Barney Foran, as saying, “'We need to be a lot better educated about what we buy. It's our consumption that drives the economy. We cannot blame governments all the time, when we are part of the equation.'' The article cited the report itself by stating, ''One of the insights emerging from this analysis is that the prices consumers pay for primary production items do not reflect the full value of the natural resources embodied in their production chains.” It quoted Dr Foran as saying, “We should be paying more for products that have a high environmental account balance. The consumer should be expected to pay a realistic price for food so that we play a part in fixing up the bush, instead of sitting in town and wringing our hands about it

Page 51: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

50

6. Conclusion The world’s population is running out of time to avoid the catastrophic effects of runaway climate change. Subjects such as diet must not be regarded as taboo, and must feature heavily in the choices that we make in order to save our planet for all species and future generations. We can no longer regard food choices as being personal when the impacts of these choices have far reaching consequences for our environment. I trust that this paper and the others referred to in it contribute to the NFP Green Paper discussion in a meaningful way, and that strong measures are taken to immediately alleviate climate change and other detrimental effects of animal agriculture. It would be helpful if the government informed the community that they can have a significant environmental impact by modifying their diets. Such an approach would help balance the efforts of groups such as Meat & Livestock Australia (MLA), who were named the 2007 advertiser of the year at the Australian Writers & Art Directors awards, for its work in promoting red meat sales domestically and internationally

118.

No one could validly complain if well-informed consumers decided to purchase fewer meat and dairy products for environmental reasons. After all, efficient markets rely on decision-makers being well informed. To mislead the public of the actual causes of climate change or water shortages is worse than doing nothing at all. It deflects action away from those measures that would help to solve the pressing environmental problems that we face.

Page 52: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

51

Further Reading As stated in the Introduction, this submission includes material which has appeared in various articles and presentations I have prepared in recent years. They include: � “Climate of Opportunity” submission to Victorian State Government, June 2008

(http://tinyurl.com/9b8t58v)

� Submission in response to Victorian State Government’s climate change green paper, prepared on behalf of Vegetarian Network Victoria (now Vegetarian Victoria), September 2009 (http://tinyurl.com/8v69zk9)

� Some environmental impacts of animal agriculture – Part 1, December 2010 update (http://tinyurl.com/8vj3lc7)

� Some environmental impacts of animal agriculture – Part 2, December 2010 update (http://tinyurl.com/8aeoo4h)

� Comments on Meat & Livestock Australia’s “myth busters” and other claims, updated 25 April 2012 (http://tinyurl.com/7dhapts)

� Presentation: “Solar or Soy: which is better for the planet? (A review of animal agriculture’s impact), first presented February 2011, this version June 2011 (http://tinyurl.com/cdkqqyv)

� Presentation: “Climate change tipping points and their implications”, first presented March 2012 (http://tinyurl.com/72bd6bf)

� "Solar or Soy: which is better for the planet" (parts 1-6) via http://vivalavegan.net/community/articles.html

� "Have the dominoes begun to fall?" (http://tinyurl.com/7rme5nv)

� "Relax, have a cigarette and forget about climate change" (http://tinyurl.com/c3jl33c)

� “Climate change: Two presentations and an alarming update” (http://tinyurl.com/8z5w4ly)

Page 53: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

52

Nutrient or Energy343 2,804 2,023 9,820 35,857

10,295 2,580 1,275 12,766 16,136

5,872,315 5,906,002 3,213,253 10,036,040 8,964,286

Nutrient level per

kilo

Grams:

Nutrient level

per kilo

Grams:

Nutrient level

per kilo

Grams:

Nutrient level

per kilo

Grams:

Nutrient level

per kilo

Grams:

1,000 1,000 1,000 1,000 1,000Protein (g) 268.9 395.9 111.7 26.6 25.1Energy (kcal) 3,479.0 4,511.6 3,425.5 1,297.5 929.8Carbohydrates (g) 0.0 327.3 752.1 281.6 211.4Dietary Fibre (g) 0.0 80.8 94.7 3.8 22.1Omega 6 (LA) (mg) 6,399.2 107,645.3 9,329.8 620.3 431.4Omega 3 (ALA) (mg) 2,399.2 14,430.2 750.0 129.7 130.1Vitamin A (IU) 0.0 0.0 0.0 0.0 100.0Vitamin C (mg) 0.0 45.9 0.0 0.0 96.0Vitamin E (IU) 0.0 0.0 12.8 0.6 0.3Vitamin K (mcg) 0.0 369.8 24.5 0.0 20.1Thiamin (mg) 0.8 4.1 4.3 1.9 0.7Riboflavin (mg) 2.5 7.6 3.2 0.0 0.3Niacin (mg) 24.4 10.5 48.9 14.6 14.0Vitamin B6 (mg) 2.5 2.3 4.3 0.6 3.0Folate (mcg) 50.0 2,052.3 779.8 579.7 279.9Vitamin B12 (mcg) 23.1 0.0 0.0 0.0 0.0Pantothenic Acid (mg) 2.9 4.7 9.6 3.8 3.7Choline (mg) 1,029.4 1,200.0 230.9 20.9 147.8Calcium (mg) 129.8 1,401.2 400.0 100.0 149.8Copper (mg) 1.3 11.0 4.3 0.6 1.3Fluoride (mg) 0.0 0.0 0.0 410.8 0.0Iron (mg) 31.5 39.5 34.0 12.0 10.7Magnesium (mg) 200.0 2,279.1 1,223.4 120.3 279.9Manganese (mg) 0.0 22.1 31.9 4.4 2.3Phosphorus (mg) 2,029.4 6,488.4 3,787.2 430.4 699.0Potassium (mg) 2,340.3 13,639.5 3,893.6 350.0 5,351.2Sodium (mg) 0.0 19.8 0.0 10.1 100.0Selenium (mcg) 249.2 193.0 706.4 75.3 4.0Zinc (mg) 84.9 47.7 26.6 5.1 3.7

Source of nutritional data: USDA National Nutrient Database for Standard Reference from http://www.ars.usda.gov/Services/docs.htm?docid=8964 and via http://www.nutritiondata.com/

Nutrient level

per ha

2,765,759

899,427

33,338,7487,579,169

12,741,139

PotatoYield (kg/ha)

GHG per ha (kg)Water per ha (litres)

WheatYield (kg/ha)

92,281

GHG per ha (kg)Water per ha (litres)

Nutrient level

per ha

Nutrient level

per ha

GHG per ha (kg)Water per ha (litres)

1,193,883

RiceYield (kg/ha)

GHG per ha (kg)Water per ha (litres)

Nutrient level

per ha

261,038

Yield (kg/ha)Beef

0

0

2,195,996823,318

00

00

288865

8,363865

17,1587,930

1,009

353,26344,554

4330

10,81468,634

0696,432

803,1320

85,50429,126

226,025

6,931,4231,521,900

191,583

18,878,4421,517,594

00

25,83149,510

8,6106,458

99,0208,610

1,577,8680

19,374

467,118

2,475,508

64,578

809,384

8,6100

1,429,33753,815

7,663,313

7,878,5750

68,884

37,291

6,090,8861,274,114

00

6,2150

18,6460

142,9496,215

5,693,1140

37,291

205,101982,000

6,2154,033,658

118,0891,180,886

43,5064,226,329

3,437,00099,443

739,60849,722

791,495

15,470,1394,665,026

3,585,7143,441,806

11,992719,541

23,98511,992

503,679107,931

10,037,6020

131,916

5,300,6215,372,575

47,9690

383,75510,037,602

83,94625,064,023

191,877,6883,585,714

143,908131,916

SoyYield (kg/ha)

GHG per ha (kg)Water per ha (litres)

Nutrient level

per ha

1,110,335

12,652,272917,942

226,632

301,877,34340,467,705

0128,805

01,036,965

11,41321,196

29,3486,522

5,755,4790

13,044

3,365,2443,929,378

30,9790

110,8706,391,354

61,95718,195,793

38,250,29755,435

541,309133,697

Appendix

Inputs and Outputs per Hectare of Sample Products (Refer to previous pages for sources of product yields, GHG emissions and water usage figures):

Page 54: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

53

Product Gross Energy

Output (MJ) per

Hectare per Year1

No. of People

Fed per Hectare2

Daily kcal

Equivalent

No. fed

based on

30 year old male

whose daily

energy

expenditure is

(kcal):

kcal per kg of

product3

Equivalent kg of

product

(daily yield per

hectare)

kg of GHG

Emissions

per kg of

product4

kg of GHG

Emissions

per hectare per

day

Hectares

required to feed

100 people

kg of GHG

Emissions per

day

to feed

100 people

Litres of Water

per kg of

product5

Litres of Water

per hectare per

day

Litres of Water

per day to feed

100 People

(Rounded)

2,848

Potatoes 102,000 22 66,746 23.4 930 71.77 0.45 32.30 4.3 138 250 17,942 77,000

Rice 88,000 19 57,585 20.2 1,300 44.30 1.30 57.58 4.9 285 1,022 45,270 224,000

Wheat 70,000 15 45,806 16.1 3,400 13.47 0.63 8.49 6.2 53 1,588 21,394 133,000

Pork 14,000 3 9,161 3.2 2,470 3.71 9.30 34.49 31.1 1,072 5,909 21,916 681,000

Milk 9,000 2 5,889 2.1 600 9.82 1.00 9.82 48.4 475 915 8,981 434,000

Chicken 7,000 2 4,581 1.6 2,390 1.92 4.30 8.24 62.2 512 2,914 5,585 347,000

Beef 5,000 1 3,272 1.1 3,480 0.94 30.00 28.21 87.0 2,455 17,112 16,089 1,400,000

Additional Notes:

(c) Alternative water usage figures produced by the CSIRO show higher water usage from beef (50,000-100,000 litres), potatoes (500 litres) and paddy rice (1,550 litres) and a lower figure for wheat (750 litres). (Ref: Meyer, W. "Water for food - the continuing debate" ,

http://www.clw.csiro.au/publications/water_for_food.pdf)

(d) The table assumes that an individual's energy requirements are obtained from a single food source.

4. Source: Carlsson-Kanyama, A. & Gonzalez, A.D. "Potential Contributions of Food Consumption Patterns to Climate Change" , The American Journal of Clinical Nutrition, Vol. 89, No. 5, pp. 1704S-1709S, May 2009, http://www.ajcn.org/cgi/content/abstract/89/5/1704S

5. Source: Hoekstra, A.Y. & Chapagain, A.K. "Water footprints of nations: Water use by people as a function of their consumption pattern" , Water Resource Management, 2006, DO1 10.1007/s11269-006-9039-x (Tables 1 & 2),

http://www.waterfootprint.org/Reports/Hoekstra_and_Chapagain_2006.pdf. The rice figure is for paddy rice. The figures for husked rice and broken rice are 1,327 and 1,525 respectively

(a) The GHG emissions figures are based on a 100-year GWP (global warming potential). A 20-year GWP would increase the emissions intensity of beef.

(b) Alternative emissions intensity figures produced by the Australian Greenhouse Office (now incorporated within the Dept of Climate Change) show more emissions from beef and less from pork, whilst calculations based on information in Appendix D of the Dept of Climate

Change's Carbon Pollution Reduction Scheme July 2008 Green Paper and "The Australian Horticulture Statistics Handbook 2004" by Horticulture Australia Ltd show lower figures for fruit and vegetables.

Notes:

1. Source: Spedding CRW 1990 in Lewis b, Assmann G (eds) "Social & Economic contexts of coronary prevention" , London: Current Medical Literature, cited in Stanton, R "The coming diet revolution" 2007,

http://www.eatwelltas.org.au/PDFs/sustainability_and_diet.pps#334,69,the balanced diet

2. Ibid. (Provided for comparison purposes)

3. Although nutritiondata.com indicates that 1kg of potato has 93 calories, the USDA nutrition database (from which nutritiondata.com draws its data) confirms it is 93 kcal. The same approach applies to other products.

Land area, greenhouse gas emissions and water usage by product (Sources are shown here, in addition to the end of the paper, for convenience): Using the energy output per hectare of various food products as a base, the following table shows: (i) land area; (ii) GHG emissions per day; and (iii) litres of water per day; involved in feeding one hundred people.

Page 55: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

54

Nutrient or Energy Tofu 100g

Soy Nuts 50g

Kidney Beans 50g

Brocolli 80g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

Avocado 50g

W'meal Bread 130g

Soymilk 400g

Shortfall Chicken 200g

Brocolli 50g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

Avocado 50g

W'meal Bread 130g

Milk 400g

Shortfall Beef 200g

Brocolli 50g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

Avocado 50g

W'meal Bread 130g

Milk 400g

Shortfall Tofu 100g

Soy Nuts 50g

Brocolli 50g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

Avocado 50g

W'meal Bread 130g

Soymilk 400g

Egg 60g

Shortfall Chicken 200g

Brocolli 50g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

Avocado 50g

W'meal Bread 130g

Milk 400g

Egg 60g

Shortfall Beef 200g

Brocolli 50g

Carrot 50g

Potato 150g

Almonds 50g

Banana 150g

Orange 150g

Oats 80g

Quinoa 100g

Cooked Spinach 100g

Dried Apricots 65g

W'meal Bread 130g

Milk 400g

Egg 60g

Shortfall

% of Daily Requirement % of Daily Requirement % of Daily Requirement % of Daily Requirement % of Daily Requirement % of Daily Requirement

Protein 64 g 159% 0% 187% 0% 182% 0% 177% 0% 198% 0% 194% 0%

Energy1 2848 kcal 82% -18% 78% -22% 86% -14% 85% -15% 81% -19% 89% -11%

Carbohydrates 130 g 251% 0% 218% 0% 218% 0% 251% 0% 219% 0% 219% 0%

Dietary Fibre 38 g 158% 0% 131% 0% 131% 0% 158% 0% 131% 0% 131% 0%

Omega 6 (LA) 17,000 mg 161% 0% 88% -12% 66% -34% 165% 0% 92% -8% 70% -30%

Omega 3 (ALA) 1,600 mg 176% 0% 68% -32% 67% -33% 178% 0% 71% -29% 70% -30%

Vitamin A 3,000 IU 777% 0% 789% 0% 782% 0% 786% 0% 798% 0% 792% 0%

Vitamin C 90 mg 220% 0% 218% 0% 218% 0% 220% 0% 218% 0% 218% 0%

Vitamin E 15 mg 153% 0% 156% 0% 150% 0% 293% 0% 296% 0% 290% 0%

Vitamin K 120 mcg 589% 0% 562% 0% 558% 0% 590% 0% 562% 0% 558% 0%

Thiamin 1.2 mg 150% 0% 126% 0% 140% 0% 165% 0% 141% 0% 155% 0%

Riboflavin 1.3 mg 167% 0% 202% 0% 177% 0% 190% 0% 225% 0% 200% 0%

Niacin 16 mg 117% 0% 191% 0% 133% 0% 117% 0% 191% 0% 133% 0%

Vitamin B6 1.3 mg 217% 0% 253% 0% 227% 0% 221% 0% 257% 0% 232% 0%

Folate 400 mcg 195% 0% 151% 0% 150% 0% 202% 0% 158% 0% 157% 0%

Vitamin B12 2.4 mcg 0% -100% 72% -28% 230% 0% 33% -68% 105% 0% 263% 0%

Pantothenic Acid 5 mg 138% 0% 169% 0% 131% 0% 155% 0% 186% 0% 147% 0%

Choline 550 mg 101% 0% 59% -41% 96% -4% 128% 0% 86% -14% 123% 0%

Calcium 1,000 mg 115% 0% 89% -11% 86% -14% 118% 0% 92% -8% 89% -11%

Copper 0.9 mg 466% 0% 265% 0% 293% 0% 473% 0% 271% 0% 299% 0%

Fluoride2 4,000 mcg 1% -99% 1% -99% 1% -99% 1% -99% 1% -99% 1% -99%

Iron 8.0 mg 343% 0% 260% 0% 307% 0% 356% 0% 273% 0% 321% 0%

Magnesium 400 mg 230% 0% 177% 0% 176% 0% 232% 0% 179% 0% 178% 0%

Manganese 2.3 mg 555% 0% 405% 0% 405% 0% 555% 0% 405% 0% 405% 0%

Phosphorus 700 mg 309% 0% 265% 0% 276% 0% 325% 0% 281% 0% 292% 0%

Potassium 4,700 mg 123% 0% 111% 0% 111% 0% 125% 0% 113% 0% 113% 0%

Selenium 55 mcg 254% 0% 226% 0% 253% 0% 288% 0% 261% 0% 288% 0%

Zinc 11 mg 141% 0% 147% 0% 256% 0% 147% 0% 153% 0% 262% 0%

Legend: = Relevant to plant-based and possibly animal-based diet. = Relevant to animal-based diet only.

Source: USDA National Nutrient Database for Standard Reference from http://www.ars.usda.gov/Services/docs.htm?docid=8964 and via http://www.nutritiondata.com/

Notes: 1. As the nutritional requirements are based on a relatively high energy user, some additional high-energy food sources would be utilised in order to meet daily requirements.

2. Fluoride is often obtained from other sources, such as fortified drinking water.

Amount Required by 30 year old

male, 178 cm tall, weighing 80 kg

and living a "somewhat active"

lifestyle:

Nutritional value of foods: sample comparison of diets

Page 56: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

55

References 1 Food and Agriculture Organization of the United Nations, 2006 “Livestock’s Long Shadow –

Environmental Issues and Concerns”, Rome 2 Dr David De Kretser, then Governor of Victoria, launching the book “Climate Code Red: the case

for emergency action”, 2008, http://www.climatecodered.org/p/book.html 3 National Snow and Ice Data Center, “September 2011 compared to past years ”

http://nsidc.org/arcticseaicenews/2011/10/ 4 Connor, S., “Vast methane 'plumes' seen in Arctic ocean as sea ice retreats”, The Independent, 13

December, 2011, http://www.independent.co.uk/news/science/vast-methane-plumes-seen-in-arctic-ocean-as-sea-ice-retreats-6276278.html (Accessed 4 February 2012)

5 Borenstein, S., “Biggest jump ever in global warming gases”, The Age, 4 Nov, 2012, http://news.theage.com.au/breaking-news-world/biggest-jump-ever-in-global-warming-gases-20111104-1myf5.html and Katharine Hayhoe, Atmospheric Scientist, cited in Brook, B. “Depressing climate-related trends – But who gets It?”, 6 Nov 2011, http://bravenewclimate.com/2011/11/06/depressing-climate-trends/, Original http://twitpic.com/7b8v2j

6 Vale, P. "Climate Change: World Reaches Point Of No Return In Five Years, Say Scientists", The Huffington Post UK, 9 Nov 2011, updated 9 January, 2012, http://www.huffingtonpost.co.uk/2011/11/09/climate-change-five-years_n_1084052.html

7 Brulle, R., cited in Romm, J, "Network News Coverage of Climate Change Collapsed in 2011", Climate Progress, 9 January, 2012, http://thinkprogress.org/climate/2012/01/09/400795/network-news-coverage-of-climate-change-collapsed-in-2011/

8 Media Matters for America, "Study: TV Media Ignore Climate Change In Coverage Of Record

July Heat", 15 August, 2012, http://mediamatters.org/research/2012/08/15/tv-media-ignore-climate-change-in-coverage-of-r/189366"

9 Spratt, D & Sutton, P, "Climate Code Red: the case for emergency action" (Scribe), 2008, pp. 12-13

10 National Snow and Ice Data Center, “Arctic sea ice extent settles at record seasonal minimum", 19 September, 2012, http://nsidc.org/arcticseaicenews/2012/09/arctic-sea-ice-extent-settles-at-record-seasonal-minimum/

11 From Brook, B. “Depressing climate-related trends – but who gets it?”, 6 Nov 2011 http://bravenewclimate.com/2011/11/06/depressing-climate-trends/ based on Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) graphs from the Polar Science Center of the Applied Physics Laboratory at the University of Washington, http://psc.apl.washington.edu/wordpress/research/projects/arctic-sea-ice-volume-anomaly/, reported in http://neven1.typepad.com/blog/2011/10/piomas-september-2011-volume-record-lower-still.html

12 Spratt, D. "Big call: Cambridge prof. predicts Arctic summer sea ice ‘all gone by 2015’”, 30 August, 2012, http://www.climatecodered.org/2012/08/big-call-cambridge-prof-predicts-arctic.html

13 Chart by L. Hamilton, based on Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) data from the Polar Science Center http://psc.apl.washington.edu/wordpress/research/projects/arctic-sea-ice-volume-anomaly/, cited in Romm, J, “Experts Warn Of ‘Near Ice-Free Arctic In Summer’ In A Decade”, 6 September, 2012, The Energy Collective, http://theenergycollective.com/josephromm/110216/death-spiral-watch-experts-warn-near-ice-free-arctic-summer-decade-if-volume-trend and Spratt, D. “On thin ice:

Time-frame to save the Arctic is melting away”, 5 September, 2012, Renew Economy, http://reneweconomy.com.au/2012/on-thin-ice-time-frame-to-save-the-arctic-is-melting-away-88494

14 Spratt, D and Lawson, D, “Bubbling our way to the Apocalypse”, Rolling Stone, November 2008, pp. 53-55

15 "Greenland Melting Breaks Record Four Weeks Before Season's End", ScienceDaily, 15 August, 2012, http://www.sciencedaily.com/releases/2012/08/120815121318.htm

16 Steffen, W, “The Critical Decade: Climate Science, risks and responses”, Climate Commission, p. 12 http://climatecommission.gov.au/topics/the-critical-decade/

Page 57: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

56

17 Flannery, T, “Now or Never: A sustainable future for Australia”, Quarterly Essay 31, September

2008, http://www.quarterlyessay.com/issue/now-or-never-sustainable-future-australia 18 Hansen, J, “Storms of my grandchildren”, Bloomsbury, 2008, p. 287 19 The Huffington Post, “Dr James Hansen”, http://www.huffingtonpost.com/dr-james-hansen 20 Hansen, J and Sato, M, “Paleoclimate implications for human-made climate change”, Cornell

University Library, 20 July, 2011, http://arxiv.org/abs/1105.0968v2 21 NASA GISS (Goddard Institute for Space Studies) Surface Temperature Analysis,

http://data.giss.nasa.gov/cgi-bin/gistemp/do_nmap.py?year_last=2012&month_last=1&sat=4&sst=1&type=anoms&mean_gen=11&year1=2010&year2=2010&base1=1951&base2=1980&radius=1200&pol=reg

22 Hansen, J., “Storms of my granchildren”, pp. 255-256 and p. 287. (An alternative ice loss figure to the quoted figure of 250 cubic km from p. 287 had been shown on p. 255 but the correct figure has been confirmed as 250 cubic km in emails of 15/6/11 and 16/6/11.)

23 Arup, T, “State eases sea level regulations”, The Age, 6 June 2012, http://www.theage.com.au/victoria/state-eases-sea-level-regulations-20120605-1zu9i.html

24 Steffen, W, “The Critical Decade: Climate Science, risks and responses”, Climate Commission, p. 23 http://climatecommission.gov.au/topics/the-critical-decade/

25 Glikson, A., “As emissions rise, we may be heading for an ice-free planet”, The Conversation, 18 January, 2012, http://theconversation.edu.au/as-emissions-rise-we-may-be-heading-for-an-ice-free-planet-4893

26 Hansen, J, ibid, p. 253 27 Romm, J, “How The Arctic Death Spiral Fuels A ‘Wicked Backlash On Our Weather’”, Climate

Progress, 25 September, 2012, http://thinkprogress.org/climate/2012/09/25/904311/how-the-arctic-death-spiral-fuels-a-wicked-backlash-on-our-weather/

28 “Interview with Ian Dunlop”, Australian Centre for Leadership for Women, 8 March, 2012, http://www.leadershipforwomen.com.au/transform/aclw-articles-published/expert-climate-change-panel/item/ian-dunlop

29 Carus, F, “UN urges global move to meat and dairy-free diet”, The Guardian (Environment, Food), 2 June 2010, http://www.guardian.co.uk/environment/2010/jun/02/un-report-meat-free-diet

30 Food and Agriculture Organization of the United Nations and World Health Organization, “Human Vitamin and Mineral Requirements: Report of a joint FAO/WHO expert consultation

Bangkok, Thailand”, 2001, pp. 14, ftp://ftp.fao.org/docrep/fao/004/y2809e/y2809e00.pdf and http://www.fao.org/docrep/004/Y2809E/y2809e08.htm

31 Russell, G, “Dietary Guidelines Committee ignores climate change”, 24 March 2012, http://bravenewclimate.com/2012/03/24/dietary-gc-ignores-cc/

32 Anon., “Lifestyle changes can curb climate change: IPCC chief”, 16 January, 2008, http://www.abc.net.au/news/stories/2008/01/16/2139349.htm?section=world

33 Food and Agriculture Organization of the United Nations, 2006 “Livestock’s Long Shadow –

Environmental Issues and Concerns”, Rome 34 Singer, P & Mason, J, “The Ethics of What We Eat” (2006), Text Publishing Company, pp. 215 &

216 35 Australian Bureau of Statistics, “Themes – Environment, Land and Soil, Agriculture”, citing

World Resources Institute, World Resources, 1998-99: A Guide to the Global Environment, Washington, DC, 1998, p. 157, cited in “The Ethics of What We Eat” (2006), Singer, P & Mason, J, Text Publishing Company, p. 216

36 The University of Sydney and CSIRO, 2005, “Balancing Act – A Triple Bottom Line Analysis of

the Australian Economy”, http://www.csiro.au/resources/BalancingAct, cited in “A hamburger at

what price?”, an interview with Bruce Poon by Claudette Vaughan,

http://www.vnv.org.au/site/index.php?option=com_content&task=view&id=122&Itemid=61 37 Australian Bureau of Agricultural and Resource Economics (ABARE), “Agricultural Economies

of Australia & New Zealand: Beef Industry Overview”, as at 9 July, 2008 38 Elke Stehfest, Lex Bouwman, Detlef P. van Vuuren, Michel G. J. den Elzen, Bas Eickhout and Pavel

Kabat, “Climate benefits of changing diet” Climatic Change, Volume 95, Numbers 1-2 (2009), 83-102, DOI: 10.1007/s10584-008-9534-6, http://www.springerlink.com/content/053gx71816jq2648/ and http://www.pbl.nl/en/publications/2009/Climate-benefits-of-changing-diet

Page 58: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

57

39 Vidal, J., "Water shortages to hit food supply", The Age, 28 August, 2012,

http://www.theage.com.au/world/water-shortages-to-hit-food-supply-20120827-24wlc.html 40 Australian Bureau of Statistics, 1370.0 - Measures of Australia's Progress, 2010, “Productivity and

Progress”, 15th September, 2010, http://www.abs.gov.au/ausstats/[email protected]/2f762f95845417aeca25706c00834efa/0b4689c4956acc61ca25779e001c4788!OpenDocument

41 Derived from W.O. Herring and J.K. Bertrand, “Multi-trait Prediction of Feed Conversion in

Feedlot Cattle”, Proceedings from the 34th Annual Beef Improvement Federation Annual Meeting, Omaha, NE, July 10-13, 2002, www.bifconference.com/bif2002/BIFsymposium_pdfs/Herring_02BIF.pdf, cited in Singer, P & Mason, J, “The Ethics of What We Eat” (2006), Text Publishing Company, p. 210

42 Pimentel, D. & Pimentel M. “Sustainability of meat-based and plant-based diets and the

environment”, American Journal of Clinical Nutrition, Vol. 78, No. 3, 660S-663S, September 2003, http://www.ajcn.org/content/78/3/660S.full.pdf

43 Food and Agriculture Organization of the United Nations Media Centre, “1.02 billion people

hungry”, http://www.fao.org/news/story/en/item/20568/icode/ 44 Fridolin Krausmann, Karl-Heinz Erb, Simone Gingrich , Christian Lauk , Helmut Haberl, “Global

patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply,

consumption and constraints”, Ecological Economics, Volume 65, Issue 3, 15 April 2008, Pages 471–487, http://www.sciencedirect.com/science/article/pii/S0921800907004053 and Helmut Haberl, K. Heinz Erb, Fridolin Krausmann, Veronika Gaube, Alberte Bondeau, Christoph Plutzar, Simone Gingrich, Wolfgang Lucht, and Marina Fischer-Kowalski, “Quantifying and mapping the

human appropriation of net primary production in earth's terrestrial ecosystems”, PNAS July 31, 2007 vol. 104 no. 31 12942-12947, http://www.pnas.org/content/104/31/12942.full. Both articles cited in Russell, G. “Burning the biosphere, boverty blues (Part 1)”, 5 January, 2010, http://bravenewclimate.com/2010/01/05/boverty-blues-p1/

45 Derived from Fridolin Krausmann, et al “Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints” and Helmut Haberl, et al “Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems”, cited in Russell, G. “Burning the biosphere, boverty blues (Part 1)”, http://bravenewclimate.com/2010/01/05/boverty-blues-p1/

46 Dept of Agriculture, Fisheries and Forestry, “Australian Food Statistics 2010-11”, http://www.daff.gov.au/__data/assets/pdf_file/0015/2144103/aust-food-statistics-2011-1023july12.pdf

47 UN FAO cited in Earth Policy Institute book_wote_ch3_13.xls, http://www.earth-policy.org 48 Food and Agriculture Organization of the United Nations, 2006 “Livestock’s Long Shadow –

Environmental Issues and Concerns”, Rome 49 Goodland, R & Anhang, J, “Livestock and Climate Change - What if the key actors in climate

change are cows, pigs, and chickens?”, World Watch, Nov/Dec, 2009, pp 10-19, http://www.worldwatch.org/files/pdf/Livestock%20and%20Climate%20Change.pdf (Note: Robert Goodland was formerly lead environmental adviser at the World Bank. Jeff Anhang is a research officer and environmental specialist at the World Bank Group’s International Finance Corporation.)

50 Russell, G., “Livestock and Climate Change … Status update”, 17 January, 2011, http://bravenewclimate.com/2011/01/17/livestock-and-climate-change-status-update/

51 Brook, Prof. Barry and Russell, Geoff, “Meat’s Carbon Hoofprint”, Australasian Science, Nov/Dec 2007, pp. 37-39, http://www.control.com.au/bi2007/2810Brook.pdf

52 George Wilkenfeld & Associates Pty Ltd and Energy Strategies, National Greenhouse Gas Inventory 1990, 1995, 1999, End Use Allocation of Emissions Report to the Australian Greenhouse Office, 2003 (Figure 7.7, p. 111), http://www.climatechange.gov.au/inventory/enduse/pubs/endusereport-volume1.pdf and http://www.climatechange.gov.au/inventory/enduse/index.html (Figure S2)

53 Hamilton, C, “Scorcher: The Dirty Politics of Climate Change”, (2007) Black Inc Agenda, p. 40 54 Knapp, Ron, Australian Aluminium Council, Letter 10 April 2008 to Prof Ross Garnaut, Garnaut

Climate Change Review (Table 3), http://www.garnautreview.org.au/CA25734E0016A131/WebObj/D0846236ETSSubmission-

Page 59: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

58

AustralianAluminiumCouncil/$File/D08%2046236%20ETS%20Submission%20-%20Australian%20Aluminium%20Council.pdf

55 Australian Bureau of Statistics, “Report 7215.0 – Livestock Products Australia”, Dec 2006, p. 20 56 Campbell, K., "Energy crunch constraining aluminium expansions”, 27 February, 2006,

www.miningweekly.com, http://www.miningweekly.com/article/energy-crunch-constraining-aluminum-expansions-2006-02-27

57 Eshel, Asst Prof Gidon and Martin, Asst Prof Pamela, University of Chicago, cited in “It’s better

to green your diet than your car”, New Scientist, 17 Dec 2005, Issue 2530, p. 19 58 Carlsson-Kanyama, A. & Gonzalez, A.D. "Potential Contributions of Food Consumption Patterns

to Climate Change", The American Journal of Clinical Nutrition, Vol. 89, No. 5, pp. 1704S-1709S, May 2009, http://www.ajcn.org/cgi/content/abstract/89/5/1704S

59 Australian Government, Department of Climate Change, "Appendix D Analysis of the emissions

intensity of Australian industries - Carbon Pollution Reduction Scheme Green Paper 2008", p. 500, http://www.climatechange.gov.au/greenpaper/report/pubs/greenpaper-appendixd.pdf

60 Horticulture Australia Limited "The Australian Horticulture Statistics Handbook 2004", pp 9 & 10 http://www.horticulture.com.au/docs/industry/Statistics_Handbook.pdf

61 Ibid. 62 The University of Sydney and CSIRO, 2005, "Balancing Act – A Triple Bottom Line Analysis of

the Australian Economy", http://www.cse.csiro.au/research/balancingact/ 63 George Wilkenfeld & Associates Pty Ltd and Energy Strategies, “National Greenhouse Gas

Inventory 1990, 1995, 1999, End Use Allocation of Emissions Report to the Australian

Greenhouse Office, 2003, Volume 1”, p. 88 and Table 5.5, p. 85 64 George Wilkenfeld & Associates Pty Ltd and Energy Strategies, ibid, Table 5.2, p. 83. 65 Brook, Prof. Barry and Russell, Geoff, “Meat’s Carbon Hoofprint”, Australasian Science,

Nov/Dec 2007, pp. 37-39, http://www.control.com.au/bi2007/2810Brook.pdf 66 The Climate Institute, “Towards Climate-Friendly Farming”, October 2009,

http://www.climateinstitute.org.au/images/reports/agreport.pdf 67 Map - National Biodiversity Strategy Review Task Group, “Australia’s Biodiversity Conservation

Strategy 2010–2020”, Figure A10.1, p. 91. Other information derived from Russell, G. “The

global food system and climate change – Part 1”, 9 Oct 2008, www.bravenewclimate.com, which utilised: Dept. of Sustainability, Environment, Water, Population and Communities, State of the Environment Report 2006, Indicator: LD-01 The proportion and area of native vegetation and changes over time, March 2009; and ABS, 4613.0 “Australia’s Environment: Issues and Trends”, Jan 2010; and ABS 1301.0 Australian Year Book 2008, since updated for 2009-10, 16.13 Area of crops.

68 Derived from Bisshop, G. & Pavlidis, L, “Deforestation and land degradation in Queensland -

The culprit”, Article 5, 16th Biennial Australian Association for Environmental Education Conference, Australian National University, Canberra, 26-30 September 2010. Original maps: Melbourne Copyright 2010 Melway Publishing Pty Ltd. Reproduced from Melway Edition 38 with permission; Australia www.street-directory.com.au. Used with permission. (Cairns inserted by this writer.)

69 Australian Bureau of Statistics, Water Account, Australia, 2004-05, 4610.0, Media Release 112/2006, November 28, 2006, http://www.abs.gov.au/ausstats/[email protected]/mediareleasesbyTopic/CF764A3639384FDCCA257233007975B7?OpenDocument# and http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/DE8E081CDE6116D6CA25727900069279/$File/46100_2004-05_pt2.pdf (accessed 21 March 2009)

70 Australian Bureau of Statistics, Water Use on Australian Farms, 2004-05, 4618.0 http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/22F0E63FEA4A8B63CA2571B500752B52/$File/46180_2004-05.pdff (accessed 21 March 2009)

71 Meyer, W. 1997 "Water for Food - The Continuing Debate"

http://www.clw.csiro.au/publications/water_for_food.pdf (accessed 21 March, 2009) 72 Meat & Livestock Australia “Fast Facts 2008: Australia’s Beef Industry”,

http://www.mla.com.au/NR/rdonlyres/3EF73ECB-4FBB-4455-A561-14CC636D7ADB/0/BeefFastFacts2008.pdf

Page 60: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

59

73 Pimentel, D & Pimentel, M, "Sustainability of meat-based and plant-based diets and the

environment", American Journal of Clinical Nutrition 2003; 78 (suppl): 660S-3S, http://www.ajcn.org/cgi/content/abstract/78/3/660S (accessed 21 March, 2009) (Download full

PDF version from right of screen in referenced web page.) 74 Ian Rutherfurd, School of Social and Environmental Enquiry, University of Melbourne, Amelia

Tsang and Siao Khee Tan, Department of Civil and Environmental Engineering, University of Melbourne (2007) “City people eat rivers: estimating the virtual water consumed by people in a

large Australian city”,

http://www.csu.edu.au/research/ilws/news/events/5asm/docs/proceedings/Rutherfurd_Ian_348.pdf (accessed 21 March, 2009)

75 Renault, D. (2003) “Virtual Water Value in Food Supply Management”, Houille Blanche-Revue Internationale De L Eau (1): 80-85, cited in “City people eat rivers: estimating the virtual water consumed by people in a large Australian city”, Ian Rutherfurd, Amelia Tsang and Siao Khee Tan, 2007

76 Media Release by the then Minister for the Environment, John Thwaites, 1 December, 2006, cited in “City people eat rivers: estimating the virtual water consumed by people in a large Australian

city”, Ian Rutherfurd, Amelia Tsang and Siao Khee Tan, 2007 77 City West Water, “Making Waves”, Edition 32, April-June 2007,

https://citywestwater.com.au/residential/docs/makingwaves_april_-_june.pdf 78 CSIRO Media Release 97/259, 23 Dec 1997 “Eat the right food – and help save Australia’s

water”, http://www.csiro.au/communication/mediarel/mr1997/mr97259.htm 79 Meyer, W, 1997 "Water for Food - The Continuing Debate" 80 Pimentel, D.; Berger, B; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon,

E.; Abbett, E.; and Nandagopal, S. “Water Resources, Agriculture, and the Environment”, July 2004, http://ecommons.cornell.edu/bitstream/1813/352/1/pimentel_report_04-1.pdf

81 Hoekstra, A.Y. & Chapagain, A.K. "Water footprints of nations: Water use by people as a function

of their consumption pattern", Water Resource Management, 2006, DO1 10.1007/s11269-006-9039-x (Tables 1 & 2), http://www.waterfootprint.org/Reports/Hoekstra_and_Chapagain_2006.pdf

82 The Water Footprint Network, http://www.waterfootprint.org/?page=files/home 83 Hoekstra, A, Email correspondence 9 Sep, 2009. 84 Meyer, W, “Water and meat producers”, Nov 2007 and updated Dec 2007 and Jun 2008 85 USDA National Nutrient Database for Standard Reference via Nutrition Data at

http://www.nutritiondata.com 86 Spedding CRW 1990 in Lewis b, Assmann G (eds) "Social & Economic contexts of coronary

prevention", London: Current Medical Literature, cited in Stanton, R "The coming diet revolution" 2007, http://www.eatwelltas.org.au/PDFs/sustainability_and_diet.pps#334,69,the balanced diet

87 Nabors, R. "U.S. soybean yield declines", Delta Farm Express, 20 Aug '09, http://deltafarmpress.com/soybeans/soybean-declines-0820/

88 Beuerlein, J. "Bushels, Test Weights and Calculations AGF-503-00", Ohio State University FactSheet, http://ohioline.osu.edu/agf-fact/0503.html

89 ABS 1301.0 - Year Book Australia, 2008 Table 16.9 Selected Crops - 2005-06: http://www.abs.gov.au/ausstats/[email protected]/bb8db737e2af84b8ca2571780015701e/3310BE70A640767DCA2573D20010BB7D?opendocument

90 Primary Industry Bank of Australia Ltd, “Positioning Australian Soybeans in a World Market”, p. 3, Dec 2001, http://www.australianoilseeds.com/__data/assets/pdf_file/0017/647/GFsoybean_oz.pdf

91 Meat & Livestock Australia, “Five essential nutrients one amazing food campaign”, 7 July 2009, http://webcache.googleusercontent.com/search?q=cache:7SWyE7E_xuwJ:www.mla.com.au/General/Market-Release-Imported/Five-essential-nutrients-one-amazing-food-campaign+&cd=2&hl=en&ct=clnk&gl=au

92 O’Connell, S, “Omega-3: Fishy claims for fish oil”, New Scientist, Issue 2760, 20 May 2010; http://www.newscientist.com/article/mg20627601.400-omega3-fishy-claims-for-fish-oil.html; Knoll, N, “Nomad people baffle with good health in spite of malnourishment”, Institute of Nutrition of the Friedrich Schiller University Jena, 17 May 2010, http://www.eurekalert.org/pub_releases/2010-05/fj-npb051710.php; Hooper L, Harrison RA, Summerbell CD, Moore H, Worthington HV, Ness A, Capps N, Davey Smith G, Riemersma R,

Page 61: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

60

Ebrahim S, “There is not enough evidence to say that people should stop taking rich sources of

omega 3 fats, but further high quality trials are needed to confirm the previously suggested

protective effect of omega 3 fats for those at increased cardiovascular risk”, Cochrane Summaries, 21 January 2009, http://summaries.cochrane.org/CD003177/there-is-not-enough-evidence-to-say-that-people-should-stop-taking-rich-sources-of-omega-3-fats-but-further-high-quality-trials-are-needed-to-confirm-the-previously-suggested-protective-effect-of-omega-3-fats-for-those-at-increased-cardiovascular, cited in Russell, G, “Trawling for snake oil”, 25 May 2010, Brave New Climate, http://bravenewclimate.com/2010/05/25/trawling-for-snake-oil/

93 Spedding CRW 1990 in Lewis b, Assmann G (eds) "Social & Economic contexts of coronary

prevention", London: Current Medical Literature, cited in Stanton, R "The coming diet revolution" 2007, http://www.eatwelltas.org.au/PDFs/sustainability_and_diet.pps#334,69,the balanced diet

94 USDA National Nutrient Database for Standard Reference at http://www.nal.usda.gov/fnic/foodcomp/search/http://www.nal.usda.gov/fnic/foodcomp/search/ and via Nutrition Data at http://www.nutritiondata.com

95 Nabors, R. "U.S. soybean yield declines", Delta Farm Express, 20 Aug '09, http://deltafarmpress.com/soybeans/soybean-declines-0820/ (accessed 31 Aug '09)

96 Beuerlein, J. "Bushels, Test Weights and Calculations AGF-503-00", Ohio State University FactSheet, http://ohioline.osu.edu/agf-fact/0503.html (accessed 31 Aug '09)

97 Primary Industry Bank of Australia Ltd, “Positioning Australian Soybeans in a World Market”, p. 3, Dec 2001, http://www.australianoilseeds.com/__data/assets/pdf_file/0017/647/GFsoybean_oz.pdf (accessed 20 September 2009)

98 ABS 1301.0 - Year Book Australia, 2008 Table 16.9 Selected Crops - 2005-06: http://www.abs.gov.au/ausstats/[email protected]/bb8db737e2af84b8ca2571780015701e/3310BE70A640767DCA2573D20010BB7D?opendocument

99 Hoekstra, A.Y. & Chapagain, A.K. "Water footprints of nations: Water use by people as a function

of their consumption pattern", Water Resource Management, 2006, DO1 10.1007/s11269-006-9039-x (Tables 1 & 2), http://www.waterfootprint.org/Reports/Hoekstra_and_Chapagain_2006.pdf (accessed 19 September 2009)

100 Pimentel, D.; Berger, B; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; and Nandagopal, S. “Water Resources, Agriculture, and the Environment”, July 2004, http://www.ker.co.nz/pdf/pimentel_report_04-1.pdf (accessed 29 September 2009)

101 Carbon Neutral Ltd, http://www.carbonneutral.com.au/carbon-calculator/research-and-references/129-food-calculation-methodology.html?tmpl=component&print=1&layout=default&page

102 Vegetation Management, Department of Environment and Resource Management, 2010 “Analysis

of Woody Vegetation Clearing Rates in Queensland Supplementary report to Land cover change in

Queensland 2008-09”, http://www.derm.qld.gov.au/slats/pdf/slats_report_and_regions_0809/slats-sup-rpt-08-09-w.pdf

103 George Wilkenfeld & Associates Pty Ltd and Energy Strategies, ibid, Table S5, p. vii 104 Carlsson-Kanyama, A. & Gonzalez, A.D. "Potential Contributions of Food Consumption Patterns to Climate

Change", The American Journal of Clinical Nutrition, Vol. 89, No. 5, pp. 1704S-1709S, May 2009, http://www.ajcn.org/cgi/content/full/89/5/1704S

105 Spedding CRW 1990 in Lewis b, Assmann G (eds) "Social & Economic contexts of coronary

prevention", London: Current Medical Literature, cited in Stanton, R "The coming diet revolution" 2007, http://www.eatwelltas.org.au/PDFs/sustainability_and_diet.pps#334,69,the balanced diet

106 USDA National Nutrient Database for Standard Reference at http://www.nal.usda.gov/fnic/foodcomp/search/http://www.nal.usda.gov/fnic/foodcomp/search/ and via Nutrition Data at http://www.nutritiondata.com

107 Nabors, R. "U.S. soybean yield declines", Delta Farm Express, 20 Aug '09, http://deltafarmpress.com/soybeans/soybean-declines-0820/ (accessed 31 Aug '09)

108 Beuerlein, J. "Bushels, Test Weights and Calculations AGF-503-00", Ohio State University FactSheet, http://ohioline.osu.edu/agf-fact/0503.html (accessed 31 Aug '09)

109 Primary Industry Bank of Australia Ltd, “Positioning Australian Soybeans in a World Market”, p. 3, Dec 2001, http://www.australianoilseeds.com/__data/assets/pdf_file/0017/647/GFsoybean_oz.pdf (accessed 20 September 2009)

Page 62: Submission in Response to Department of Agriculture Fisheries … · Figure 6: Minimum PIOMAS Arctic sea ice volume to 25 August 2012 Why is this reduction in the extent of Arctic

Paul Mahony | Melbourne Australia | Response to National Food Plan Green Paper, September, 2012

61

110 ABS 1301.0 - Year Book Australia, 2008 Table 16.9 Selected Crops - 2005-06:

http://www.abs.gov.au/ausstats/[email protected]/bb8db737e2af84b8ca2571780015701e/3310BE70A640767DCA2573D20010BB7D?opendocument

111 Campbell, T.C. & Campbell, T.M. “The China Study”, Wakefield Press, 2007, http://www.thechinastudy.com/

112 Physicians Committee for Responsible Medicine, http://www.pcrm.org/about/about/about-pcrm; http://www.pcrm.org/health/diets/vegdiets/how-can-i-get-enough-protein-the-protein-myth http://www.pcrm.org/health/diets/vegdiets/vegetarian-foods-powerful-for-health

113 World Cancer Research Fund, http://www.wcrf.org/cancer_research/expert_report/recommendations.php

114 Bakalar, N., “Risks: More Red Meat, More Mortality”, The New York Times, 12 March, 2012, http://www.nytimes.com/2012/03/13/health/research/red-meat-linked-to-cancer-and-heart-disease.html?_r=1&scp=2&sq=red%20meat%20harvard&st=cse#

115 Russell, G., “CSIRO Perfidy”, Vivid Publishing, 2009, http://www.perfidy.com.au/ 116 Craig, W.J., Mangels, A.R., American Dietetic Association, “Position of the American Dietetic

Association: vegetarian diets.”, J Am Diet Assoc. 2009 Jul;109(7):1266-82, http://www.ncbi.nlm.nih.gov/pubmed/19562864

117 Anon., “Counting the Ecological Cost”, The Canberra Times, 29/05/2005, http://canberra.yourguide.com.au/news/local/news/news-features/the-environment-counting-the-ecological-cost/526410.aspx

118 Canning, S., “Feed the market meat: ads maintain demand”, The Australian, 10 December, 2007,

Australia/New Zealand Reference Centre, Accession No. 200712101038733227