substitutions on heterocycles

48
Catalysis of Substitution Reactions on Heterocycles Bound to a Solid Phase [email protected]

Upload: wbrill

Post on 12-Jun-2015

879 views

Category:

Documents


2 download

DESCRIPTION

Catalysis of substitution reactions on heterocycles bound to a solid phase Seminar in honor of Prof. Marv Caruthers, Boulder, CO, USA, 2001

TRANSCRIPT

Page 1: Substitutions On  Heterocycles

Catalysis of Substitution Reactions on Heterocycles Bound

to a Solid Phase

[email protected]

Page 2: Substitutions On  Heterocycles

Catalysis of Substitution Reactions on Heterocycles Bound

to a Solid Phase

O

Nuc

N

N NH

N

X

X

H,X

Nuc

Nuc Radical, Nuc

Page 3: Substitutions On  Heterocycles

Levoglucosan based Libraries

epoxide opening

epoxide opening

difficult alkylation or acylation

avoidglycosidic scissionO

O

XO

O

O

NH2

R1 R2

R3

Pd mediatedcoupling

Pd mediatedcoupling

Brill, W.-K.-D. et al. Tetrahedron Lett 39 (1998) 787-790

Brill, W. K.-D. et al. Synlett (1998) 1085-1090

Page 4: Substitutions On  Heterocycles

OO

OHOH

OH

OO

OTsTsO

OH

OO

OTsO

OO

OTs

OH

O

TsCl NaOMe

OH

BF3 . OEt2

LiOH

Derivatization of the Scaffold

cha2

96% 85%

40-90%

95%

O

O

R1

O

O

R1

OO

OO

O

O

R1

Li+

W. K.-D. Brill, June 96

Cerny Anhydride

Page 5: Substitutions On  Heterocycles

OO

O

OH

OTsO

O

R1

I

(CH2)10

R1:

The Hydrolysis of Levoglucosan Containing Esters

C(CH3)2

Li+

OO

OO

O

O

R1

I

(CH2)10

R1:

C(CH3)2

O

O

OO

O

O

O

O

OO

O

O

OO

OHO

LiOH, MeOH, H2O

Page 6: Substitutions On  Heterocycles

Schematic Representation of Resins

crosslink

shrunken resin(poorly solvated)

compound boundto the polymer

Reactions can only be performed, if reagents can diffuse through the gelphase of the beads. The polymer has to be solvated with the appropriate solvent to form such a phase.

swollen resin(solvated)

Page 7: Substitutions On  Heterocycles

OO

NH

OO

OORink

R2R2'NHLi+ Ph4B-

2,6-lutidine100°C

R1

> 90%

R2OHP4-t-Bu

dioxan, 60°C

> 90%

R2SHLiHMDSdioxane80°C

> 90%

OO

NH

OO

O OROHRink R1

OO

NH

OO

O SROHRink R1

OO

NH

OO

O NOH R

R

Rink R1 2'

2

2

2

ONH2

O

O

O

O

OO

OOR1

Li+

DIC, HOBT, DMF

levunbas16

Brill 1999Opening of Levoglucosan-2.3-epoxides with various Nucleophiles

N

N P

N

N

P

NMe2

NMe2Me2N

P NMe2

NMe2

NMe2

PMe2NNMe2

NMe2

P4-t-Bu:

Rink-linker:

Page 8: Substitutions On  Heterocycles

OO

O

O

O

NH OH

OTs

OO

O

O

O

NH O

OO

O

O

O

NOH

OO

O

O

O

NH

SOH

OO

H2NOH

OO

NH3

+

OHS

NH

O

OO

R

TFA-TFA

-

SNH

R

O

OO

T>80°C

+

TFA

DBUPhSH

T<80°C

TFA

Intera and Intramolecular Substitution on Levoglucosan-2,3-epoxide

levunibas4

Brill 1996

Page 9: Substitutions On  Heterocycles

O

OO

O

OH

O

NH

I

N

ORink

Palladium Mediated Coupling Reactions on the Spacer Residue

Pd(OAc)2, K2CO3H2O, dioxane,

110°C

84%O

OO

O

OH

O

NH

N

O

OMe

Rink

HO

HOB OCH3

Bu3Sn

cha11

O

OO

OO

NH

I

ORink

Pd2dba3, AsPh3dioxane, 110°C

80-90%O

OO

OO

NH

ORink

H

W. K.-D. Brill, June 96

O

OO

OO

NH

I

ORink

Pd(PPh3)2Cl2, CuINEt3, dioxane, rt.

80-90%O

OO

OO

NH

ORink

Page 10: Substitutions On  Heterocycles

O

OO

OONH

ORink

A Second Palladium Mediated Coupling Reaction on the Scaffold

HO

HOB OCH3

O

OO

OONH

OHNH

I

Rink

O

OO

OONH

OHNH

OCH3

Rink

OO

OONH2 OH

NH

OCH3

20% TFA

72% from aminoresin

I

H2N

Li+ Ph4B-

cha12

W. K.-D. Brill, June 96

Pd(OAc)2 K2CO3H2O, dioxane

Page 11: Substitutions On  Heterocycles

OO

NH

OO

O OROHRink R1

2

OO

NH

OO

O OROHRink R1

2

R3

ONH2

OO

O OROHR1

2

R3

How to avoid glycolysis:

1) conc. of TFA < 20%

2) solvent of TFA must have higher boiling point than TFA

3) resin must swell in solvent

a) 20% TFA in ClCH2CH2Clb) toluene before evaporation

R3-X

Schwesingerbase orKOtBu

Final Derivatizations and Cleavage

Page 12: Substitutions On  Heterocycles

The Synthesis of Purine Derivatives on Polymeric Supports

•Potential Targets

•Development of the Chemistry

•Designing the Synthesis

•Selection of Building Blocks

•The Sort & Combine Method

•Performing the Synthesis with IRORI-MiniKansTM

•Workup, Purification and Archiving

Page 13: Substitutions On  Heterocycles

NH N

NN

NH

R

R

R

NH

N N

NN

N

R

NH

H H

R

R NH N

NN

N

R

N

R

H

H

R

N N

NN

NH

R

R

R

NH

H

N N

NH

N

N

R

NH

H

R

R

Purines may bind to Proteins in different ways

They address nucleoside binding pockets

Page 14: Substitutions On  Heterocycles

Nucleoside Cofactors Lead us to Drug TargetsNucleoside Cofactors Lead us to Drug Targets

11. Many cofactors contain nucleoside motifs. Many cofactors contain nucleoside motifs

2. Nucleosides or nucleoside cofactors are involved in all important 2. Nucleosides or nucleoside cofactors are involved in all important cellular cellular processes.processes.

DNADNA synthesis synthesisRNARNA synthesis synthesisproteinprotein synthesis synthesiscarbohydratecarbohydrate synthesis and oligomerization synthesis and oligomerizationlipidlipid synthesis and processing synthesis and processingsynthesis of synthesis of homohomo and and heterocyclicheterocyclic aromaticsaromaticssignalingsignaling via phosphoylation and sulfatation via phosphoylation and sulfatationsignaling as signaling as second messengersecond messenger or or hormonehormonealkylationalkylation and and dealkylationdealkylation of DNA and other substrates. of DNA and other substrates.

3. Nucleoside binding sites are not optimized toward very tight binding! 3. Nucleoside binding sites are not optimized toward very tight binding!

Page 15: Substitutions On  Heterocycles

i, ii: Attachment to the polymeriii: 6-Substitutioniv: 2-Substitutionv: Brominationvi: Stille couplingvii: Cleavage

Reaction Scheme

OH

N

NN

N

Cl

Cl

N

NN

N N

NN

N Cl

O CF3

O

N

NN

NH Cl

Cl

N

NN

NBr

N

NN

N N

NN

NH

Rink resin

R1

R2

R1

i ii

iii

iv

1 2

3

4

R1-H:

R2-E

6 5

1

23

4

56

7

8

9

7

R1

R2

v

R1

vi R3-SnBu3

8

R3

R2

R1

R3

R2

vii

9

Page 16: Substitutions On  Heterocycles

OH

N

NN

N

Cl

Cl

O CF3

O

N

NN

NH Cl

Cl

Rink resin

1 2

3

4

1

23

4

56

7

8

9

TFAA, 2,6-lutidine

4 eq.NMP

crystallization ofexcess

recycling

Immobilization of 2,6-dichloropurine

Page 17: Substitutions On  Heterocycles

Yield[%]Entry: Solvent Catalyst T [°C] Reaction

Time [h] Start.mat. Product

1 dioxane DIPEA 80 24 100 -2 2,6-lutidine/dioxane - 60 24 79.3 24.33 2,6-lutidine/NMP - 60 24 31.7 68.34 “ HNEt3

+ F3CCO2- 60 24 11.7 88.3

NH

F

Cl

NN

NH

N

Cl

N

F

Cl

NH N

NN

Cl

Cl

C6-Substitution

Page 18: Substitutions On  Heterocycles

N

N N

NCl

Cl

N

N NH

N

Cl

N N

N N

Cl

N

N N

N

Cl

6a

6b

R1

amines (R1-H):

4

R1

7a (95%)

7b (97%)

5a R1=

5b R1=

NMP, cat. H+, 2,6-lutidine

20%TFA

DCE

C6-Substitution

Reaction temperature has to be 53°C to avoid substitution on C2 forvery nucleophilic amines (N-CH2CH2NH2, C-CH2CH2NH2 piperazines, piperidines).

No C2-substitution even at 70°C: anilines, benzylamines, morpholin, primary amines with higher order of substitution on their Ca

Page 19: Substitutions On  Heterocycles

N

N N

N

Cl

N

N

Cl

N N

NN

N

O

N

N

Cl

NH

O

Pd-catalyst

N

N N

N

Cl

N

N

N N

NN

N

N

BOH

OH

Pd-catalyst

Solvent Base Cat. orPromotor Co-ligand

ReactionT [°C]

Time[h]

Yield[%]

NMP DIPEA - - 100 48 -NMP Cs2CO3 Pd(PCy3)2Cl2 - 100 “ 48.7

“ K3PO4 “ - “ “ 45.7“ Cs2CO3 Pd2dba3 P(tBu)3 “ “ 65.6“ K3PO4 “ “ “ “ 66.3*

Solvent Base Cat. orPromotor Co-ligand

ReactionT [°C]

Time[h]

Yield[%]

NMP K3PO4 Pd2dba3 P(tBu)3 100 48 84.5*

Sustitution on C2

* rest is starting mat.

Page 20: Substitutions On  Heterocycles

X'

L

L

PdAr

X"

L

L

PdAr

X"

B(OH)2

Ar

R

Pd

Ar-X'Ar-RX"-B(OH)2

PdLn

MX"

MX'R-B(OH)2

X'

L

L

PdAr

X"

L

L

PdAr

X"

NRR'

Ar

L

Pd

Ar-X'Ar-NRR'PdLn

MX"

MX'R-NHR'

X'' -

H+

•The mechanism for aminations and Suzuki-couplings is similar.•Amines and boronates couple under the same conditions•A wide selection of building blocks possible•Reaction temperatures compatible with Kans.

Sustitution on C2

Page 21: Substitutions On  Heterocycles

Br2

NNN

Br2

N+

Br N+

Br

solv. polar solvent

N N

NN

N

NR

R1 R1'

R2

R2'

N N

NN

N

NR

BrN N

NN

N

NR

R1 R1'

R2

R2'

N N

NN

N

NR

Br

EtOEt

yelloworange

soluble in benzene insoluble in benzene

solv.

Br2solv. Br+solv. + Br-solv.

solv.

2,6-lutidine

rapid equilibrationwith solvent

5 h, rt., DMF

R1 R1'

R2

R2'

R1 R1'

R2

R2'

pentane

Two Types of Bromine Complexes Were Investigated

Synthesis:

Reactivity:

Page 22: Substitutions On  Heterocycles

Entry Resin Conditions Time [h] Bromine content1 Merrifield Br-complex, NMP, 2,6 lutidine 3x 241 <0.3 %2 Merrifield Br-complex benzene,

2,6-lutidine24 1.1% 0.14mmol/g

3 product ofentry 2

sat. KOtBu, dioxane 88°C 72 <0.3%

1) Three consecutive treatments.

Modification of the Polymeric Support by the Brominating agent

N

Br2

Bromine-complex

Br-content of resin, treated with the Bromine Complex (EA)

N

Br2

Br

Page 23: Substitutions On  Heterocycles

no reaction:

Rink

N N

NN

Cl

Cl

Rink

N N

NN

N

Cl

R1 R1'

Rink

N N

NN

N

NHAc

R1 R1'

Rink

N N

NN

N

N

R1 R1'

R2

R2'

completeconversion:

side reactions: not tolerated groups: activated aromatics: brominationamines: many oxidation products

N

Br2

Reactivity of the Bromine Complex with Purines:

Solvent: NMP

R1: H, alkyl, R1’: alkylR2: H, alkyl, R2’: H, alkyltolerated groups: CONR2, CONRH CONH2,ether functions, aromatics moredeactivated than Bn

5% conversion

Page 24: Substitutions On  Heterocycles

The Reactivity of the Bromine Complex in dry Benzene: N

Br2• disproportionation is very slow• little electrophilic substitution• oxidizing power is enhanced relative to reactions in NMP

Selective side reactions:

Rink

N N

NN

N

NH

HR

R

N N

NN

N

NH

HR

RO

Br

Rink'

N

Br2

benzene

Rink

N N

NN

N

N

N

O

N

O

N N

NN

N

N

O

N

O

N

HO

HO

Br

Rink'

N

Br2

benzene

Page 25: Substitutions On  Heterocycles

The Reactivity of the Bromine Complex in wet Benzene: N

Br2

Rink

N N

NN

N

NH

HR

R

N N

NN

N

NH2

HR

BrN

Br2Rink'

benzeneH2O

Side chain oxidations are not mediaded by the solid phase.They work are observed also in solution phase.

Page 26: Substitutions On  Heterocycles

N N

NN

N

N

BrBr

N N

NN

N

NH

OBr

N N

NN

N

NH2

Br

Br

N N

NN

N+

N

Br

H

R1"R1'

R2'

N N

NN

N

N

Br

R1 R1"

R2'

N N

NN

N

NH

Br

BrBr

R1"R1'¨

R2' N N

NN

N

N

Br

HBr

R1' R1"

R2'

R1' R1"

R2'

R1' R1"

R2'

R1 R1"

i

ii

ii

Proposed Mechanism for the Modification at C2

i: Br2-complex; ii: H2O

Page 27: Substitutions On  Heterocycles

Attempted Synthesis to Yield 2,6,8-Trisubstituted Purines

NH N

NN

NH

Cl

NH N

NN

Cl

Cl

NH N

NN

NH

N

N

O

NH N

NN

NH

N

N

O

Br

NH N

NN

NH

N

N

O

Dehalogenationduring Suzuki couling

conditions

ArB(OH)2

Pd-cat

Page 28: Substitutions On  Heterocycles

Entry Solvent Cu cat. Pd cat. Co-ligandProduct

yield[%]

dehalog.[%]

1 dioxane - Pd2dba3 As(Ph)3 - >52 NMP CuO Pd2dba3 dpppf no reaction3 NMP Cu(OAc)2 Pd2dba3 dppp - 91.6

4 NMPO

Bu

Et

O

2

Cu2+

Pd2dba3 dppp 51.5 48.5

5 NMP CuI Pd2dba3 dppp 20 -

6 NMP S

CuO

O Pd2dba3 dppp 35.7 64.1

7 NMP Cu2O - - no reaction8 NMP Cu2O Pd(OAc)2 dppp >98 -

SnBu3

N

NN

NBr

NH

NH N

NN

N

NH

NH N

NN

N

NH

NHcat.

+

Substitution on C8

P P

dppp:

Page 29: Substitutions On  Heterocycles

Selection of Buildingblocks:1) Size and shape constraints: selection of privileged structures based on modeling previous screening results, docking excercises

2) Availability of building blocks: emphasis on proprietary building blocks, commercial building blocks 3) Chemtox considerations:exclusion of: -NO2,-NO,-N2

+, I, -I=O, -N3, heavy metals, alkylating agents, acylating agents, hydrazines, SH, aniline-functions in product

4) Tests of building blocks (several hundred reactions)

5) Generation of a virtual library with the building blocks which work:Agreement to rule of 5 checked, exclusion of dramatic outliers

6) Final selection for Synthesis

Page 30: Substitutions On  Heterocycles

The Synthesis is performed on PS-Beads

PS-beads 60 mg per Kan

Rf -transponderswith unique IDRead only !Reading interval: 0.1sRF-frequency: 125 KHzReading distance : 1 cm

reusable many times !

1 cm1 per Kan

Now all Kans can be distinguished

Page 31: Substitutions On  Heterocycles

The Sort and Combine Strategy

• 5 Building Blocks : A, B, C, D, E

• 5 Vessels:1 2 3 4 5

How to make 125 single moleculeshaving 3 points of diversity

using :

Page 32: Substitutions On  Heterocycles

1st and 2nd Combinatorial Step 125 MiniKansTM with Rf Transponders sorted into 5 reaction flasks

5 x A--5 x A--5 x A--5 x A--5 x A--

5 x B--5 x B--5 x B--5 x B--5 x B--

5 x C--5 x C--5 x C--5 x C--5 x C--

5 x D--5 x D--5 x D--5 x D--5 x D--

5 x E--5 x E--5 x E--5 x E--5 x E--

Washing 125 KansTM in bulk

2nd Redistribution into 5 reaction flasks

5 x AA-5 x BA-5 x CA-5 x DA-5 x EA-

5 x AB-5 x BB-5 x CB-5 x DB-5 x EB-

5 x AC-5 x BC-5 x CC-5 x DC-5 x EC-

5 x AD-5 x BD-5 x CD-5 x DD-5 x ED-

5 x AE-5 x BE-5 x CE-5 x DE-5 x EE-

Washing 125 KansTM in bulk

3

21

45

Page 33: Substitutions On  Heterocycles

Flasks 3rd: Redistribution into 5 Reaction

1 x AEB1 x BEB1 x CEB1 x DEB1 x EEB

1 x AEC1 x BEC1 x CEC1 x DEC1 x EEC

1 x AED1 x BED1 x CED1 x DED1 x EED

1 x AEE1 x BEE1 x CEE1 x DEE1 x EEE

Washing 125 KansTM in bulk then order into Racks : one Kan in one tube

1 x AEA1 x BEA1 x CEA1 x DEA1 x EEA

1 x ADA1 x BDA1 x CDA1 x DDA1 x EDA

1 x ACA1 x BCA1 x CCA1 x DCA1 x ECA

1 x ABA1 x BBA1 x CBA1 x DBA1 x EBA

1 x AAA1 x BAA1 x CAA1 x DAA1 x EAA

1 x ADB1 x BDB1 x CDB1 x DDB1 x EDB

1 x ACB1 x BCB1 x CCB1 x DCB1 x ECB

1 x ABB1 x BBB1 x CBB1 x DBB1 x EBB

1 x AAB1 x BAB1 x CAB1 x DAB1 x EAB

1 x ADC1 x BDC1 x CDC1 x DDC1 x EDC

1 x ACC1 x BCC1 x CCC1 x DCC1 x ECC

1 x ABC1 x BBC1 x CBC1 x DBC1 x EBC

1 x AAC1 x BAC1 x CAC1 x DAC1 x EAC

1 x ADD1 x BDD1 x CDD1 x DDD1 x EDD

1 x ACD1 x BCD1 x CCD1 x DCD1 x ECD

1 x ABD1 x BBD1 x CBD1 x DBD1 x EBD

1 x AAD1 x BAD1 x CAD1 x DAD1 x EAD

1 x ADE1 x BDE1 x CDE1 x DDE1 x EDE

1 x ACE1 x BCE1 x CCE1 x DCE1 x ECE

1 x ABE1 x BBE1 x CBE1 x DBE1 x EBE

1 x AAE1 x BAE1 x CAE1 x DAE1 x EAE

1

2

3

4

5

Page 34: Substitutions On  Heterocycles

Automatic Sampler

(Hamilton)

SynthManPlan

synthesis

Plan synthesis

Perform synthesis

Perform synthesis

Purify & Analyze

compounds

Purify & Analyze

compounds

Archive data & stock

Archive data & stock

HPLC

Weighing full

Dilution

Import BB

MS

Import Compounds

Family data

Reagent data

Method data

Salt data

Barcodes

Working Sheet

Preparereagents

Preparereagents

Component

Database

Family Database

2.

1.

9

16.

8.

7.15.

6.

5.

3.

4.

14.

13.12.

10.

Archive Databases

Archive Databases

HPLC (Millennium

)

Structural Analysis

Automatic weighing

(MicroWeight)

Automated Sorting

(Kan Sort)

Software for Controlling of the Production, Purification and Analyzing Process

Weighing empty

Sort to flasks and racks

LC-MS (MicroMass

)11.

prep. LC

Page 35: Substitutions On  Heterocycles

Immobilization of 2,6-Dichloropurine

Page 36: Substitutions On  Heterocycles

Addition of Resin slurry to IRORI MiniKans

Page 37: Substitutions On  Heterocycles

Sort & Combinetransponder

Sort Kans

redistribute

Page 38: Substitutions On  Heterocycles

Washing of KansTM in Bulk

By R. Gallarini, S. Vinzenz,W. Brill

Page 39: Substitutions On  Heterocycles

Sorting of Kans Into Racks prior to Cleavage: Last step of Sort-and-Combine Method

Page 40: Substitutions On  Heterocycles

TFA

Transponder

TFA-Cleavage

Page 41: Substitutions On  Heterocycles

Preparative HPLC-MS Purification

• LC-MS, MicroMass “platform LC”• Gilson-Autosampler adapted to hold 2 Novartis

Mega Racks = 192 samples• Capacity: 2 units with up to 384 samples• HPLC columns: 5 cm length, 2 cm diameter, 5 µm

C18• Gradient: optimized for each library• Expected MS-Peak is delivered into 10 mL glass

tube

Micromass, UK http://www.micromass.co.uk

Page 42: Substitutions On  Heterocycles

MicroMass LC-MSHPLC-MScorrelation of fractions with expected mass

fractionlocation

LC-fractions

crude reactionmixtures

location of crude reaction mixtures, expected mass

Page 43: Substitutions On  Heterocycles

High-throughput purification

Crude sample

Fraction collection by LC/MS

Result of purification

Confirmation of identity

HPLC/UV purity : 20% HPLC/UV purity : >95%

Page 44: Substitutions On  Heterocycles

Evaporation

Page 45: Substitutions On  Heterocycles

Automated weighing system

Throughput: 1 rack / hr

Page 46: Substitutions On  Heterocycles

Recycling of used Kans

By S. Vinzenz,W.Brill

Page 47: Substitutions On  Heterocycles

Batch-Registration of Compounds by Synthman

Page 48: Substitutions On  Heterocycles

Achnowledgement

Modeling: E. Jacoby

Synthman: R. Fäh, H.-P. Moessner

Synthesis: S. Müller, J. Schaub, C. Riva-Toniolo*, D. Tirefort**

Purification & Registration: F. Gombert, G. Lerch, H. Wettstein

Hardware: S. Vinzenz, R. Gallarini

General: A. DeMesmaeker, J. Zimmermann, S. Wendeborn