subvisible particle characterization: why simply counting shadows leaves you in the dark

11
Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark Amber Fradkin, Ph.D. Associate Director, R&D [email protected] 2500 Central Avenue Boulder, CO 80301, USA kbibiopharma.com

Upload: kbi-biopharma

Post on 11-Jan-2017

174 views

Category:

Health & Medicine


1 download

TRANSCRIPT

Page 1: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

Amber Fradkin, Ph.D.Associate Director, R&D

[email protected]

2500 Central AvenueBoulder, CO 80301, USA

kbibiopharma.com

Page 2: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Article  

Subvisible  Particle  Characterization:    Why  Simply  Counting  Shadows  Leaves  You  in  the  Dark  

  Amber  Fradkin,  Ph.D.                   Associate  Director,  R&D                 2500  Central  Avenue                       Boulder,  CO  80301,  USA                                                                          [email protected]              Summary    Significant  advances  in  analytical  technology  over  the  past  few  years  have  improved  the  quantification  and  characterization  capabilities  for  subvisible  (  1  -­‐  100  µm)  and  submicron  particles  (≤1  µm).    As  the  technology  continues  to  improve  so  do  the  expectations  of  regulatory  agencies  for  sponsors  to  characterize  particles  in  these  size  ranges.      However,  multiple  orthogonal  methods  are  required  to  span  the  entire  range  and  accurately  characterize  the  particle  profile.    Each  instrument  has  its  own  limitations  based  on  detection  method  and  properties  of  therapeutic  protein  products  that  must  be  well  understood  to  generate  high  quality  data.    KBI  Biopharma  has  extensive  experience  with  particle  detection  methods,  as  well  as,  in-­‐depth  particle  data  analysis.    KBI’s  Particle  Characterization  Core  team  can  help  choose  appropriate  orthogonal  particle  to  combine  in  order  to  accurately  quantify,  characterize  and  identify  particles  in  specific  therapeutic  protein  products  for  all  size  ranges  based  on  clients’  needs.      

Analysis  of  Subvisible  Particles    

The  quantification  of  subvisible  particles  in  injectable  therapeutic  protein  products,  primarily  out  of  concern  on  the  presence  of  extrinsic  particulate  contaminants,  has  been  established  by  the  US  and  European  Pharmacopeias  under  Chapter  <788>  and  2.9.19,  respectively.    In  accordance  with  these  Rules  and  Procedures,      limits  established  for  subvisible  particulate  content  were  calculated  based  on  the  risk  of  ≥  10  µm  and  ≥  25  µm  particles  blocking  certain  percentages  of  blood  vessels  in  the  lungs  following  intravascular  infusion.    Since  their  publication,  a  shift  in  the  industry  has  moved  towards  more  convenient  administrations  such  as  subcutaneous  and  intramuscular  injections.    This  shift  opened  a  discussion  of  the  relevance  of  the  pharmacopeia  chapters,  specifically  for  protein  therapeutics.    Over  the  past  decade,  a  substantial  amount  of  work  has  been  published  that  investigates  the  propensity  of  proteins  to  aggregate  and  form  subvisible  particulates  (1-­‐5)  and  the  potential  risk  of  immunogenicity  due  to  presence  of  protein  aggregates  and  subvisible  protein  particles  in  therapeutic  protein  products  (6-­‐9).  Concurrently,  the  FDA  has  become  increasingly  concerned  with  the  safety  and  efficacy  of  

Page 3: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

therapeutic  protein  products  for  the  reason  that  subvisible  particles  between  0.1-­‐10  µm  were  not  being  actively  monitored  in  therapeutic  protein  products  (10,11).    As  a  result,  a  new  USP  monograph,  Chapter    <787>  “Subvisible  Particulate  Matter  in  Therapeutic  Protein  Injections,”  was  drafted  and  became  effective  in  2014.    In  the  new  USP  <787>  monograph,  in  addition  to  allowing  smaller  particle  size  detection  reporting,  several  improvements  such  as  reduction  of  volume  required  for  testing  were  implemented.    While  Chapter    <788>  required  a  minimum  volume  of  25  mL  to  complete  a  test,  the  new  Chapter    <787>  allows  for  a  volume  as  low  as  1  mL  to  complete  the  test.    The  small  volume  method  not  only  saves  costs  by  requiring  less  product  to  perform  the  method,  but  also  allows  for  the  determination  of  vial-­‐to-­‐vial  or  syringe-­‐to-­‐syringe  variability  of  particle  counts.    USP  <787>  still  only  requires  the  reporting  of  ≥  10  µm  and  ≥  25  µm  size  ranges  but  does  allow  for  the  establishment  of  product  specific  limits.      

In  addition  to  USP  Chapter    <787>  a  general  information  Chapter  <1787>  “Measurement  of  Subvisible  Particulate  Matter  in  Therapeutic  Protein  Injections”  was  drafted.    This  chapter  recommends  the  collection  of  2-­‐10  µm  (≥  2  µm  and  ≥  5  µm)  subvisible  particle  concentrations  and  gives  guidance  on  orthogonal  methods  to  characterize  subvisible  particles  as  inherent  intrinsic  or  extrinsic;  it  specifically  calls  out  the  need  to  distinguish  silicone  oil  from  other  proteinaceous,  inherent  or  intrinsic  particles.  In  addition  to  the  new  USP  monograph  and  informational  chapters,  The  FDA  has  approved  a  Guidance  for  Industry  on  the  Immunogenicity  Assessment  for  Therpeutic  Protein  Products  that  states  “[assessment]  should  be  made  of  the  range  and  levels  of  subvisible  particles  (2-­‐10  microns)  present  in  therapeutic  protein  products  initially  and  over  the  course  of  shelf-­‐life…..As  more  methods  become  available,  sponsors  should  strive  to  characterize  particles  in  smaller  (0.1  –  2  microns)  size  ranges.”      Furthermore,  the  EMEA  published  in  their  Guideline  on  Development,  Production,  Characterisation  and  Specifications  for  Monoclonal  Antibodies  and  Related  products  that  “[the]  formation  of  aggregates,  sub-­‐visible  and  visible  particulates  in  the  drug  product  is  important  and  should  be  investigated  and  closely  monitored  on  batch  release  and  during  stability  studies.    In  addition  to  the  pharmacopoeial  test  for  particulate  matter,  other  orthogonal  analytical  methods  may  be  necessary  to  determine  levels  and  nature  of  particles.”          

As  more  regulatory  agencies  start  to  request  additional  particle  detection,  specifically  below  10  micron,  it  becomes  imperative  for  companies  to  fully  understand  the  orthogonal  methods  available  and  their  limitations.    As  discussed  in  the  general  information  Chapter    <1787>,  particles  in  the  ≤  10  µm  size  range  can  be  highly  variable  due  to  other  inherent  or  intrinsic  components,  such  as  silicone  oil.    Therefore,  combining  orthogonal  techniques  to  help  identify  and  characterize  these  particles  becomes  essential  for  data  analysis  and  interpretation.    Some  examples  of  commonly  used  orthogonal  analytical  methods  to  light  obscuration  for  characterization  of  subvisible  and  submicron  particles  are  listed  below  in  Table  I  along  with  some  of  their  advantages  and  disadvantages.    

Page 4: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

 Table  I.    Summary  of  Commonly  Used  Orthogonal  Techniques  to  Light  Obscuration  Method   Principle  of  

Operation  Advantages   Disadvantages   Sample  Size  

Range  Dynamic  Light  Scattering  (DLS)/Static  Light  Scattering  (SLS)  

Based  on  the  Brownian  motion  of  particles  in  solution  and  the  Rayleigh  light  scattering  relationship  of  scattering  intensity  being  proportional  to  hydrodynamic  radius  to  the  sixth  power  

Nondestructive,  can  provide  size  distribution  in  submicron  range  

Qualitative  information,  not  quantitative  (no  particle  counts).    Number  intensity  can  be  sensitive  to  heterogeneous  populations.    Not  optimal  for  high  concentrations.  

1  nm  –  1  µm  

Nanoparticle  Tracking  Analysis  (NTA)  

Light  scattering  coupled  with  CCD  camera  

Quantifies  particles  (particle  size  and  concentration  )  in  the  submicron  range  

Not  optimal  for  high  concentration  solutions,  Less  reproducible  with  heterogeneous  populations  

1  nm  –  2  µm  

Light  Microscopy   Visible  light  and  optical  lenses  are  used  to  produce  images  which  particles  can  be  manually  sized  and  counted  from  

Provides  images  through  which  additional  shape  information  can  be  determined  by  analyst    

Low  throughput,  low  reproducibility  and  labor  intensive.    Typically  requires  filtering  of  sample  

0.5  µm  -­‐  mm    

Electrical  Sensing  Zone  (ESZ)  

Voltage  pulse  in  sensing  zone  in  which  current  constantly  flows  

Simple,  robust  and  reproducible.    Volume  based  detection,  independent  of  shape,  refractive  index,  etc.  

Often  requires  dilution  of  sample  into  buffer  of  appropriate  conductivity.    Provides  no  additional  information  regarding  the  shape,  transparency,  etc.  of  particles  

0.5  µm  –  mm  (20-­‐80%  of  aperture  size)  

Flow-­‐Imaging  Technology  

Detects  particles  using  Bright-­‐field  images  captured  as  a  solution  is  passed  through  a  flow  cell.    

High  throughput,  reasonable  sample  volume  (~1  mL/analysis),  higher  sensitivity  for  transparent  particles,  classification  of  particles  based  on  morphological  parameters  calculated  from  images  

Can  undercount  and  undersize  particles  with  RI  close  to  that  of  solution  matrix  (≤  0.5).    Difficulty  distinguishing  particles  based  on  morphological  parameters  below  5  µm    -­‐10  µm  

1  µm  –  100  µm  

Page 5: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Resonant  Mass  Measurement  

Measures  frequency  changes  of  a  suspended  microchannel  as  particles  pass  through  

Provides  particle  size  concentration  and  density  of  particles  detected  based  on  buoyancy  mass.      

Limited  range  of  detection,  typically  good  for  syringe  samples  but  not  vials.    No  shape  or  morphology  information.  

30  nm  –  5  µm  

Electron  Microscopy  (EM,  SEM,  STEM)  

Electron  imaging  of  particles  

Can  provide  3-­‐D  information  on  particle  shape  and  morphology,  STEM  can  provide  atomic  resolution  

Costly  equipment,  low  throughput,  sample  preparation  can  be  complex,  not  quantitative  (no  particle  size  distributions)  

0.1  nm  -­‐  cm  

Fourier  Transform  Infrared  (FTIR)  Microscopy  

Visible  light  microscope  coupled  with  IR  laser  identification  

Can  provide  chemical  identity,  secondary  structure  of  proteins  in  particles  

Costly  equipment,  low  throughput,  not  quantitative  (particle  counts),  water  can  interfere  with  signal  

10  µm  -­‐  cm  

Raman  Microscopy  

Visible  light  microscope  coupled  with  Raman  laser  

Can  provide  chemical  identity  of  particles  and  complex  particles,  can  be  automated  to  provide  particle  distributions,  images  and  morphology,  no  interference  with  water  can  perform  in  solution  phase  

Fluorescence  can  interfere  with  signals.    Small  volume  for  analysis  (~70  µL)  

2  µm  -­‐  mm  

 

Subvisible  Particle  Testing,  Classification  and  Identification  

KBI’s  Particle  Characterization  Core  provides  novel  orthogonal  methods  for  the  quantification  of  subvisible  particles,  and  also  specializes  in  the  classification  and  identification  of  particles  with  image  analysis  and  Raman  spectroscopy.      At  KBI  we  have  a  wealth  of  experience  with  all  the  current  methods  and  can  help  clients  determine  what  combination  of  techniques  best  characterize  individual  products  and  provide  comprehensive  data  compilations  to  span  the  0.1  -­‐  100  µm  size  range,  as  needed.    We  also  have  extensive  experience  compiling  and  interpreting  subvisible  and  submicron  particle  data  to  support  IND  filings  and  BLA  licensures.      

   

Page 6: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Figure  2.    Zetasizer  Instrument  for  DLS  measurements  

KBI’s  state-­‐of–the-­‐art  equipment  with  detection  limits  spanning  nm  to  mm  size  ranges  include  

DLS  (Zetasizer)  

o SEC-­‐MALS  

o Resonant  Mass  Measurement  (Archimedes)  

o Light  Obscuration  (HIAC)  

o Micro-­‐Flow  Imaging  (MFI  5200)  

o Raman  Microscopy  (Morphologi  G3-­‐ID)  

 

 

Dynamic  Light  Scattering  (DLS)  

DLS  is  a  nondestructive  qualitative  method  to  determine  size  distribution  of  particles  in  the  submicron  range  of  0.001  –  1  µm.    The  method  is  based  off  Brownian  motion  of  particles  in  solution  and  the  Rayleigh  light  scattering  relationship  of  scattering  intensity  being  proportional  to  hydrodynamic  radius  to  the  sixth  power.    Due  to  the  Rayleigh  relationship,  DLS  can  be  very  sensitive  to  the  presence  of  larger  particles  such  as  dust  or  micron-­‐size  protein  aggregates/particulates.      For  this  reason,  the  sample  preparation  is  of  utmost  importance  when  performing  DLS  analysis.    In  addition,  the  diffusion  of  a  particle  is  a  function  of  the  viscosity  of  solution;  therefore,  knowing  the  exact  viscosity  of  samples  is  important  for  calculating  the  resulting  hydrodynamic  radii.      

 

   

Figure  1.    Analytical  methods  for  submicron,  subvisible  and  visible  particle  testing  at  KBI  

Page 7: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Figure  3.    SEC-­‐MALS  Instrument  

Figure  4.  Archimedes  Instrument  by  Malvern  for  Resonant  Mass  Measurement  

SEC-­‐MALS  

The  addition  of  Multiangle  Light-­‐scattering  (MALS)  detectors  to  SEC-­‐HPLC  assays  allows  for  the  measurement  of  molecular  weights  for  each  peak  eluted  from  the  assays.    The  LOD  and  accuracy  are  dependent  upon  the  validated  SEC  assay;  however,  the  benefits  of  having  MALS  on-­‐line  detection  substantial.    The  molar  masses  determined  for  oligomer  peaks  can  give  insight  into  association-­‐dissociation  behavior.    In  addition  to  characterizing  the  molar  mass  of  impurities  present  in  samples,  when  coupled  with  on-­‐line  RI  detection  significant  characterization  of  PEGylated  proteins  can  be  achieved.      

 

Resonant  Mass  Measurement  (RMM)  

The  Archimedes  RMM  system  detects  particle  buoyancy  mass  by  changes  in  frequency  of  a  resonator  as  individual  particles  pass  through.    This  technique  is  a  true  orthogonal  technique  to  MFI  and  LO  since  it  does  not  rely  on  refractive  index  changes  or  blockage  of  light,  but  instead  on  the  volume  of  solution  displaced  by  individual  particles.    Archimedes  is  recommended  for  detection  of  particles  in  the  0.5  –  5  µm  size  range  when  solutions  have  silicone  oil  droplets  present  (Pre-­‐filled  syringe,  device-­‐combinations,  etc.).    MFI  is  unable  to  distinguish  between  silicone  oil  and  other  inherent  particles  below  5  micron.    The  combination  of  RMM  and  MFI  allows  for  the  full  characterization  of  particles  in  the  1  –  10  µm  size  range,  which  has  been  of  interest  lately.      

 

   

Page 8: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Figure  5.    HIAC  Instruments  for  Light  Obscuration  Measurements  

Figure  6.    MFI  5200  Instrument  for  Micro-­‐Flow  Imaging  

Light  Obscuration  (LO)  

Light  obscuration  (LO)  is  the  most  widely  used  subvisible  particle  assay  in  the  pharmaceutical  industry  and  is  the  preferred  compendial  method  (USP,  EP,  JP).    LO  detects  particles  based  on  blockage  of  light  by  individual  particles  passing  through  a  light  sensing  zone  and  provides  particle  size  and  counts,  assuming  spherical  shape  of  particles.    The  disadvantage  of  LO  is  that  it  provides  the  least  amount  of  information  compared  to  flow  imaging  and  RMM  methods.    If  an  increase  in  particle  counts  is  observed,  it  is  not  known  whether  that  increase  is  a  result  of  extraneous  matter,  protein  particulation,  microbubbles  or  silicone  oil  with  LO  results  alone.      Performing  orthogonal  methods  such  as  flow  imaging  alongside  LO  has  become  the  industry  standard  to  help  characterize  and  classify  the  subvisible  particles  present  in  parenteral  products.        

 

Micro-­‐Flow  Imaging  (MFI)  

MFI  is  a  more  sensitive  orthogonal  method  to  LO  that  detects  particles  using  Bright-­‐field  images  captured  as  a  solution  is  passed  through  a  flow  cell.    The  detection  method  relies  on  refractive  index  changes  rather  than  blockage  of  light,  which  makes  it  more  sensitive  to  translucent  particles  such  as  protein.    The  images  collected  are  used  by  the  software  to  create  an  extensive  database  of  information  (size,  shape,  transparency)  on  the  particles  detected  that  can  be  used  to  classify  and  differentiate  particles.    The  ability  of  MFI  to  distinguish  silicone  oil  from  proteinaceous  or  extrinsic  particles  is  a  significant  advantage  of  this  technique.    The  visual  inspection  of  images  can  also  provide  important  information  on  the  types  of  protein  particles  being  formed  (density,  fibrillar  vs  compact,  complexes  of  silicone  oil  and  protein,  etc.).      MFI  has  become  a  valuable  technique  routinely  used  to  complement  compendial  methods  for  subvisible  particle  detection.  

Page 9: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Figure  7.    Morphologi  G3-­‐ID  by  Malvern  for  Automated  Raman  Microscopy  

Raman  Microscopy  

Raman  Microscopy  is  a  powerful  tool  to  help  identify  subvisible  and  visible  particles.      Unlike  FTIR,  Raman  spectroscopy  is  not  sensitive  to  the  presence  of  water  in  samples  and  allows  for  aqueous  solutions  to  be  analyzed.    The  automated  Raman  microscopy  system  (Morphologi  G3-­‐ID)  used  at  KBI  allows  for  faster  characterization  and  identification  of  particles  in  solution.    Many  inherent  particles  within  a  parental  can  have  similar  morphologies  which  can  cause  issues  in  classification  with  methods  such  as  MFI.    For  example,  excipients  such  as  polysorbate  can  degrade  and  form  insoluble  particles  that  have  similar  shape  and  transparencies  to  proteinaceous  particles.    Using  the  Morphologi  G3-­‐ID  system,  it  is  possible  to  chemically  ID  subvisible  particles  down  to  3  to  5  µm  is  size,  allowing  for  differentiation  of  subvisible  particles  with  similar  morphologies.    In  addition,  the  ability  to  perform  spectral  mapping  across  an  individual  particle  allows  for  proper  identification  of  particles  that  are  complexes  of  material  such  as  silicone  oil  and  protein  or  silicone  oil  and  surfactant.    Automated  Raman  microscopy  is  not  as  high  throughput  as  flow  imaging  techniques,  but  has  proven  repeatedly  to  be  an  invaluable  method  to  answer  the  ‘what  is  it’  question  that  arises  continuously  in  development,  manufacturing  and  stability  programs.      

 

Classification  and  Identification  of  Particles  

Compared  to  other  particle  analysis  methods,  the  Light  Obscuration  method  does  not  generate  particle  images.    Micro-­‐Flow  Imaging  (MFI)  systems  collect  the  images  of  particles  with  which  multiple  morphological  parameters  can  be  determined.      Due  to  the  highly  spherical  nature  and  known  refractive  index  of  silicone  oil  droplets,  MFI  is  a  very  useful  tool  to  classify  silicone  oil  from  proteinaceous  or  other  inherent  particles  (12).    The  unique  classification  of  silicone  oil  can  help  determine  silicone  oil  content  introduced  to  products  by  various  sources  such  as  syringes,  devices  or  stoppers.    The  classification  of  silicone  oil  is  also  beneficial  to  help  eliminate  the  variability  of  silicone  oil  content  introduced  from  syringes  or  various  container/stopper  configurations  from  total  particle  counts,  which  allows  more  accurate  tracking  of  protein  particles  over  shelf-­‐life  or  during  forced  degradation.    Due  to  image  resolution,  the  classification  of  particles  on  morphological  parameters  determined  from  images  can  only  

Page 10: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

Figure  8.    Image  of  complex  subvisible  particle  consisting  of  silicone  oil  and  protein  

be  performed  for  particles  ≥  5  µm.    Resonant  mass  measurement  (RMM)  is  capable  of  detecting  smaller  particles  ranging  from  300  nm  -­‐  5  µm,  can  classify  particles  based  on  their  density,  and  can  provide  a  true  orthogonal  analysis  to  MFI.    The  density  of  silicone  oil  is  less  than  water  and  protein  which  allows  it  to  be  distinguished  from  other  particles  by  resonant  mass  measurement.    Thus,  a  combination  of  RMM  and  MFI  allows  for  the  complete  classification  of  silicone  oil  vs.  protein  or  other  inherent  particles  in  the  1-­‐10  µm  range  where  the  highest  variability  of  silicone  oil  droplets  tends  to  occur.        

While  the  classification  of  silicone  oil  from  protein  is  fairly  straightforward  with  images  analysis  and  buoyancy  measurements,  the  classification  of  proteinaceous  particles  from  other  inherent  particles  is  more  difficult.    Many  excipients  such  as  polysorbate  can  form  particles  with  similar  image  properties  to  that  of  proteinaceous  particles.    Automated  Raman  microscopy  offered  at  KBI  can  provide  image  analysis  as  well  as  Raman  spectroscopy  of  particles  ≥  3-­‐5  µm  in  size.  Collecting  Raman  spectroscopy  of  subvisible  and  visible  particles  provides  a  

positive  chemical  identity  of  particles.    KBI  offers  the  unique  Raman  spectral  ID  of  subvisible  particles  in  solution  that  can  assist  with  formulation,  purification  and  process  development.    KBI’s  Particle  Characterization  Core  facility  is  also  well-­‐trained  in  the  identification  of  complex  subvisible  particles  consisting  of  multiple  identities,  investigating  interactions  of  different  components  within  products,  as  well  as  forensic  ID  of  visible  particles  identified  in  fill  finish  and  inspection  operations.        

KBI  Biopharma,  Inc.  

KBI  Biopharma  is  a  Contract  Development  and  Manufacturing  Organization  (CDMO)  with  state  of  the  art  facilities  in  North  Carolina  and  Colorado.    KBI  offers  its  clients  a  range  of  services  including  process  development  and  cGMP  manufacturing  of  microbial  and  mammalian  expressed  recombinant  proteins  and  antibodies,  analytical  formulation  and  stability,  and  analytical  development  and  testing.    Over  the  past  few  years  KBI  expanded  its  capabilities  to  include  mass  spec  services  through  its  Mass  Spec  Core  facility  and  now  KBI  has  established  a  Particle  Characterization  Core  facility  to  provided  analysis  and  characterization  for  subvisible  particles.    KBI’s    Particle  Characterization  Core  provides  specialized  analytical  testing  for  subvisible  particles  ranging  from  nanometer  to  micron  in  size.    We  employ  the  latest  technologies  to  bridge  the  submicron  (0.1  –  1  µm),  subvisible  (1-­‐100  µm)  and  visible  (≥  100  µm)  particle  size  ranges  offering  a  comprehensive  analysis  of  a  product’s  particle  profile.    KBI’s  Particle  Characterization  Core  team  has  extensive  experience  compiling  and  interpreting  subvisible  and  submicron  particle  data  to  support  IND  filings  and  BLA  licensures.      

Page 11: Subvisible Particle Characterization: Why Simply Counting Shadows Leaves You in the Dark

   

 

P.O.  Box  15579,    1101  Hamlin  Road,  Durham,  NC  27704      

 2500  Central  Avenue,  Boulder,  Colorado  80301    www.kbibiopharma.com    

References  

1.   Barnard,  J.  G.,  Babcock,  K.,  and  Carpenter,  J.  F.    Characterization  and  quantitation  of  aggregates  and  particles  in  interferon-­‐  products:  Potential  links  between  product  quality  attributes  and  immunogenicity.  J.  Pharm.  Sci.  102,  915-­‐928,  2013  

2.   Barnard,  J.  G.,  Singh,  S.,  Randolph,  T.  W.,  and  Carpenter,  J.  F.    Subvisible  Particle  Counting  Provides  a  Sensitive  Method  of  Detecting  and  Quantifying  Aggregation  of  Monoclonal  Antibody  Caused  by  Freeze-­‐Thawing:  Insights  Into  the  Roles  of  Particles  in  the  Protein  Aggregation  Pathway.  J.  Pharm.  Sci.  100,  492-­‐503,  2011  

3.   Gerhardt,  A.,  McGraw,  N.  R.,  Schwartz,  D.  K.,  Bee,  J.  S.,  Carpenter,  J.  F.,  and  Randolph,  T.  W.    Protein  Aggregation  and  Particle  Formation  in  Prefilled  Glass  Syringes.  J.  Pharm.  Sci.  103,  1601-­‐1612,  2014  

4.   Simler,  B.  R.,  Hui,  G.  D.,  Dahl,  J.  E.,  and  Perez-­‐Ramirez,  B.    Mechanistic  complexity  of  subvisible  particle  formation:  Links  to  protein  aggregation  are  highly  specific.  J.  Pharm.  Sci.  101,  4140-­‐4154,  2012  

5.   Singh,  S.  K.,  Afonina,  N.,  Awwad,  M.,  Bechtold-­‐Peters,  K.,  Blue,  J.  T.,  Chou,  D.,  Cromwell,  M.,  Krause,  H.  J.,  Mahler,  H.  C.,  Meyer,  B.  K.,  Narhi,  L.,  Nesta,  D.  P.,  and  Spitznagel,  T.    An  Industry  Perspective  on  the  Monitoring  of  Subvisible  Particles  as  a  Quality  Attribute  for  Protein  Therapeutics.  J.  Pharm.  Sci.  99,  3302-­‐3321,  2010  

6.   Filipe,  V.,  Jiskoot,  W.,  Basmeleh,  A.  H.,  Halim,  A.,  Schellekens,  H.,  and  Brinks,  V.    Immunogenicity  of  different  stressed  IgG  monoclonal  antibody  formulations  in  immune  tolerant  transgenic  mice.  mAbs  4,  740-­‐752,  2012  

7.   Fradkin,  A.  H.,  Carpenter,  J.  F.,  and  Randolph,  T.  W.    Immunogenicity  of  Aggregates  of  Recombinant  Human  Growth  Hormone  in  Mouse  Models.  J.  Pharm.  Sci.  98,  3247-­‐3264,  2009  

8.   Fradkin,  A.  H.,  Carpenter,  J.  F.,  and  Randolph,  T.  W.    Glass  Particles  as  an  Adjuvant:  A  Model  for  Adverse  Immunogenicity  of  Therapeutic  Proteins.  J.  Pharm.  Sci.  100,  4953-­‐4964,  2011  

9.   Fradkin,  A.  H.,  Mozziconacci,  O.,  Schoneich,  C.,  Carpenter,  J.  F.,  and  Randolph,  T.  W.    UV  photodegradation  of  murine  growth  hormone:  Chemical  analysis  and  immunogenicity  consequences.  Eur.  J.  Pharm.  Biopharm.  87,  395-­‐402,  2014  

10.   Carpenter,  J.  F.,  Randolph,  T.  W.,  Jiskoot,  W.,  Crommelin,  D.  J.  A.,  Middaugh,  C.  R.,  Winter,  G.,  Fan,  Y.  X.,  Kirshner,  S.,  Verthelyi,  D.,  Kozlowski,  S.,  Clouse,  K.  A.,  Swann,  P.  G.,  Rosenberg,  A.,  and  Cherney,  B.    Overlooking  Subvisible  Particles  in  Therapeutic  Protein  Products:  Gaps  That  May  Compromise  Product  Quality.  J.  Pharm.  Sci.  98,  1201-­‐1205,  2009  

11.   Rosenberg,  A.  S.    Effects  of  protein  aggregates:  an  immunologic  perspective.  The  AAPS  journal  8,  E501-­‐507,  2006  

12.   Strehl,  R.,  Rombach-­‐Riegraf,  V.,  Diez,  M.,  Egodage,  K.,  Bluemel,  M.,  Jeschke,  M.,  and  Koulov,  A.  V.    Discrimination  Between  Silicone  Oil  Droplets  and  Protein  Aggregates  in  Biopharmaceuticals:  A  Novel  Multiparametric  Image  Filter  for  Sub-­‐visible  Particles  in  Microflow  Imaging  Analysis.  Pharm.  Res.  29,  594-­‐602,  2012