sulfite metallic gold project

of 67 /67
รายงานวิชาการ การทําทองใหบริสุทธิ์ดวยกรดกัดทอง และสารประกอบซัลไฟต ปราโมทย ภูพานทอง สํานักอุตสาหกรรมพื้นฐาน กรมอุตสาหกรรมพื้นฐานและการเหมืองแร

Author: nanne-cherdchom

Post on 02-Dec-2015

269 views

Category:

Documents


0 download

Embed Size (px)

DESCRIPTION

Sulfite Metallic Gold Project

TRANSCRIPT

  • 6 10400 0 202 3897 0 202 3897

    2 2554

    / . - - : , 2554. 57 : : . 2

  • i iii iv viiABSTARCT vii viii1. 12. 3

    2.1 32.2 32.3 4

    3. 53.1 ()

    53.1.1 53.1.2 53.1.3 53.1.4 53.1.5 () 63.1.6 () 63.1.7

    Simplex Evolutionary Operation 63.2

    73.2.1

    73.2.2

    73.2.3 73.2.4 8

    4. 9

  • II

    4.1 () 94.1.1 94.1.2 114.1.3 134.1.4 194.1.5 () 214.1.6 () 274.1.7

    Simplex Evolutionary Operation 294.2

    304.2.1

    304.2.2

    324.2.3 344.2.4 35

    5. 375.1 1 1 385.2 2 2 435.3 3 Steel Wool Electrowinning 485.4 4 52

    6. 557. 57

  • III

    1. 102. 123. 30-120 144. 1 - XA Slop (log K) 175. log K Activation Energy (E) 186. 30-120 207. () 228. () 289.

    Simplex Evolutionary Operation 2910. SIMPLEX 1 (Au-LEACHING) 2911. SIMPLEX 2 (Au-LEACHING) 3012. SIMPLEX 3 (Au-LEACHING) 3013. 3214. 3315. 3416. 3517. 1 4218. 1 4219. 2 4620. 2 4621. 3 5122. 3 5123. 4 5424. 4 54

  • IV

    1. 32. 103. 124. 25-70 155. 166. Rate Constant (K) (1 - XA)

    18 .7. Activation Energy (E)

    log k 1 / T 198. 219. () 2310. () 2411. X-RAY DIFFRACTION PEAK () 2512. X-RAY DIFFRACTION PEAK ()

    2613. () 2814. 3315. 3516. 3617. 3718. 3719. 1 3920. 1 4021. 4022. 4123. 4124. 2 4425. 2 45

  • V26. 2 4727. Steel Wool Electrowinning 4928. Steel Wool 3 5029. 5230. 4 53

  • VI

    3

    Simplex Evolutionary operation 1). 5:1 6.67:1 2). 80-86o 3). 90-120 99.94-100% 60o 3 8

    Simplex Evolutionary operation 99.99% 1%

  • VII

    ABSTRACT

    The extraction of Gold form impure Gold withAquar regia and the sulfite compound has been investigated , composing of Aquar regia leaching, sulfite precipitation and Case Study of factory scraps.

    The optimum condition conducted by Simplex Evolutionary operation as the following: 1. ratio between Aquar regia concentration and metallic gold ,5:1to6.67:12. temperature , 80-86 oC 3. duration , 90-120 mins yielded 99.94-100 % of Gold dissolution. Gold precipitation with the sulfite compound at temperature above 60oC Comsumed greater than 3 times at room temperature and took less than 8 times of duration.

    In case study of factory scraps , with optimum comdition , the purity of Gold 99.99% was obtained and less than 1% loss in the process.

  • VIII

    1). 2). Gold Plating 3). N & P Refining 4).

  • 1.

    (1) 100

    2 Primary Sources .. 2429 30% Secondary Sources 1 (Recycle) Secondary Sources

  • 2 3 Shot Shot 99%

    99.99% Electro Refining

    3 1). 2). 3). 2

  • 32.

    2.1

    1 4 0.1 (Shot)

    1

    2.2

    65 % 1 37 % 3 150 Water Bath

  • 4 Atomic absorption spectrophotometer ( )

    Commercial Grade1. 65 %2. 37 %3. 98 %4. 5.

    2.3

    Atomic absorption spectrophotometer (AA)

  • 53.

    3.1 ()

    3.1.1

    2:1 10:1 65% 1 36.5% 3

    HNO3 + 3HCl NOCI + 2H2O + CI2Au + 3NOCI AuCI3 + 3NO

    3.1.2

    6:1

    3.1.3 40 70

    30 120 Water Bath 6:1

    3.1.4

    70 86 (2)

    6:1

  • 63.1.5 ()

    24 22 18 9 6:1 1:0.5 70

    3.1.6 () 24 22 18

    14 9 6:1 1:0.5 70

    3.1.7 SimplexEvolutionary Operation

    C.W.Lowe (3) Simplex Evolutionary Operation (SIMPLEX EVOP) BOX EVOP BOX EVOP SIMPLEX EVOP 3 1). () 2). 3). 3.1.1 3.1.2 3.1.3 SIMPLEX-1 SIMPLEX-3

  • 73.2

    3.2.1

    1:5 1:0.5 4 20 10 30 4 13.3% 133

    3.2.2

    5:1 1:0.5 2.6% 5 40 50 60 80 Water Bath 4

    3.2.3 4 150

    60-70 30

  • 83.2.4

    3(COOH)2 + 2AuCI3 2Au + 6CO2 + 6HCI 4 150

    60-70 1

  • 94.

    4.1 ()

    4.1.1 2 5

    2:1 80.7% 2 16.2% 96.9% 3 17 (Hot Plate) 24 6:1 10:1 Rate Expression (5)

    A + B CdNA/dt = dNB/dt = dNC/dt = k CACB = k A/VC (1) Rate of Reaction = km (2)

    km = k / V A = CB =

  • 10

    1

    (%)2:1 80.74:1 96.96:1 1008:1 10010:1 100

    2 (.. 4 , 28 , 17 ..)

  • 11

    4.1.2

    6:1 3 6 2 17.7% 39.5% 2 3 21.8% 1 2.23 2 (Exothermic Reaction) 5 69.2% 3 5 14.8% 8.5% 6 1.0-1.5% 7 Rate of Reaction 2 7 8 77.7 83.9% 7 8 CB (Continuous Process)

  • 12

    2

    () (%)2 17.73 39.55 69.26 77.77 83.99 89.714 92.815 97.017 100

    3 (.. 4 , .. 6:1, 28)

  • 13

    4.1.3 28 40 50 60 70

    5% 17.4 28.8 44.8 57.7% 4 3 30 10 40 50 70 12% 10 60 21-26% 10 5 70 100% 4 30 99 60 87 90 83 78 120 ( : ) 86

    1 2 (1-XA) t -dNA/dt = km A CBNA = NoA (1-XA)XA = (NOA NA) / NOA

    NA = d(1-XA) = -km A CB / NOA dt1 - XA = - k dt

    1-XA (t) 3 slope Rate Constant (K) 30-120 1-XA K 40-70 6 4 Arrhenius Equation

    K = KOe E/RT

    log K = log K E / 2.303 RT E = Activation Energy

    K = Rate Constant at Desired TemperatureK = ConstantR = Gas Constant (1.987)

  • 14

    log K 1/T 7 Slope E/2.303R Activation Energy (E) Slope 5.49 Kcal/mole 5 Shrinking Core Models E film Diffusion Product Layer Diffusion 2-4 Kcal/mole E Chemical Reaction E Chemical Reaction Film Diffusion

    3 30 120

    () / (%) (o)30 60 90 120

    28 5.0 8.7 15.0 17.740 17.4 38.6 53.2 62.050 28.8 54.9 67.3 74.660 44.8 66.8 77.4 84.570 57.7 79.4 87.7 92.1

    6 : 1

  • 15

    4 28 70 O (.. 4 , .. 6:1)

  • 16

    5 (.. 4 , .. 6:1)

  • 17

    4 1 XA Slope [log K]

    Time (Min) 1 - XA [K](Min -1)

    [K](sec -1)

    Ave [K](sec -1)

    log K(sec -1)

    0 1.0 - -30 0.8258 5.8067 x 10-3 9.6778 x 10-5

    60 0.6139 6.435 x 10-3 1.0725 x 10-4

    90 0.4680 5.911 x 10-3 8.6667x 10-5

    120 0.3798 5.168 x 10-3 5.275 x 10-5 9.717 x 10-5 -4.012************ Temperature 40oC

    *****0 1.0 - -30 0.7122 9.593 x 10-3 3.9567 x 10-4

    60 0.4506 9.1567 x 10-3 1.2516 x 10-4

    90 0.3269 7.479 x 10-3 6.0537 x 10-5

    120 0.2543 6.2141 x 10-3 3.5319 x 10-5 1.3518 x 10-4 -3.869************ Temperature 50oC

    *****0 1.0 - -60 0.5517 0.01494 3.065 x 10-4

    60 0.3319 0.011135 9.2216 x 10-5

    90 0.2260 8.6 x 10-3 4.1852 x 10-5

    120 0.1550 7.042 x 10-3 2.1530 x 10-5 1.738 x 10-4 -3.760************ Temperature 60oC

    *****0 1.0 - -30 0.4230 0.0192 2.35 x 10-4

    60 0.2055 0.01324 5.708 x 10-5

    90 0.1228 9.747 x 10-3 2.274 x 10-5

    120 0.0787 7.677 x 10-3 1.094 x 10-5 2.079 x 10-4 -3.682************ Temperature 70oC

    *****

  • 18

    6 RATE CONSTANT K (1 XA)

    5 log K activation energy [E]

    Temp (oC) Temp (oK) 1/T(oK -1)

    log [K](sec -1)

    EKcal/mole

    Ave EKcal/mole

    40 313 3.19 x 10-3 -4.012 -50 323 3.10 x 10-3 -3.869 7.2760 333 3.00 x 10-3 -3.760 4.99 5.4970 343 2.915 x 10-3 -3.682 4.199

  • 19

    7 ACTIVATION ENERGY E log K 1/T

    4.1.4 8 6

    1:1 1:1.5 1:2 30 40.3 20.4 10.6% 2 1:0.5 30 60 120 3-6% Activity ()

  • 20

    6 30 120

    () / (%) (./.) 30 60 90 120

    1:0 57.7 79.4 87.7 92.11:0.5 57.2 82.0 93.7 98.21:1.0 40.3 62.6 74.1 82.01:1.5 20.4 40.1 51.5 59.71:1.2 10.6 22.2 30.5 37.0

    6:1 70O

  • 21

    8 (.. 4 , .. 6:1, 70O)

    4.1.5 ()

    9 7 24 30 24 57.2% 24 39.3 % 8 1.6% 14 9 10 () 3 9 14 18

  • 22

    X-ray Diffractrometer () 11 Peak X-ray Peak AgCI 12

    22

    7 ()

    (K) (% () / (%)30 60 90 120

    24 100 57.2 82.0 93.7 98.222 91.6 39.3 60.8 73.8 83.218 75.0 1.6 2.6 3.2 3.814 58.3 - 0.1 0.2 0.39 37.5 - 0.08 0.085 0.094

    6:1 1:0.5 70O

  • 23

    9 ( + )

  • 24

    10 ( + )

  • 25

    11 X RAY DIFFRACTION PEAK ()

  • 26

    12 X RAY DIFFRACTION PEAK ()

  • 27

    4.1.6 () (Au+Cu)

    (Au+Ag) ( )

    4Cu + 4HCI + O2 4CuCI + 2H2O4Cu + 4HCI + O2 2Cu2CI2 + 2H2OCu + 2HNO3 + 2HCI CuCI2 + 2NO2 + 2H2O

    13 8 30 24 57.2% 22 18 14 () 63.8 69.9 75.9% Electropotential (6)

    Au+ + e+ Au -1.50 VCu+ + e+ Cu -0.47 V

    14 42% 18 22 25 8% 14 18 22 9 37.5% 62.5% 14 60 % Cementation 9 14

  • 28

    8 ()

    (K) (%) () / (%)30 60 90 120

    24 100 57.2 82.0 93.7 98.222 91.6 63.8 84.7 93.3 97.818 75.0 69.9 99.914 58.3 75.9 100*9 37.5 65.0 100**

    * 45 ** 70 6:1

    1:0.5 70O

    13 ( + )

  • 29

    4.1.7 Simplex Evolutionary Operation

    SIMPLEX -1 SIMPLEX 3 9 12 5 6 100% 5 6 1.5 6.6 O 13

    9 SIMPLEX EVOP

    (A/W) 6:1 4:1 5:1 (O) 80 70 75 () 120 90 110

    10 SIMPLEX 1 [Au LEACHING]

    No. Parameter Au-RecoveryA/W-ratio Temp (oC) Time (Min) (%)

    1 4:1 70 90 77.03*2 6:1 70 90 97.353 5:1 80 90 99.944 5:1 75 120 99.46

    16.00 225 300 a Sum of retained co-ordinates10.67 150 200 b Twice average of a4.00 70 90 c Co-ordinates of discarded point

    5 6.67 80 110 d Co-ordinates of next point [b-c]

  • 30

    11 SIMPLEX 2 [Au LEACHING]

    No. Parameter Au-RecoveryA/W-ratio Temp (oC) Time (Min) (%)

    2 6:1 70 90 97.353 5:1 80 90 99.944 5:1 75 120 99.465 6.67:1 80 110 100.0

    16.67 235 320 a Sum of retained co-ordinates11.11 156.67 213.3 b Twice average of a6.00 70 90 c Co-ordinates of discarded point

    6 5.11 86.67 123.3 d Co-ordinates of next point [b-c]

    12 SIMPLEX 3 [Au LEACHING]

    No. Parameter Au-RecoveryA/W-ratio Temp (oC) Time (Min) (%)

    3 5:1 80 90 99.944 5:1 75 120 99.465 6.67:1 80 110 1006 5.11:1 86.67 123.3 100

    5 6

    4.2

    4.2.1

    13.3% Exothermic Reaction 11.5

  • 31

    56.6% 13.1 89.89% 25 60 O 10% 60-65 O 5 15 6.6% 42 O 4.4 2.6% 5 6.6% 3.8 25 42 O 13

    Roland Loewen(1)

    HNO2 + 2H2SO3 HON (HSO3)2 + H2OHON (HSO3)2 + HNO2 2H2SO4 + N2O2HNO2 + 2H2SO3 2H2SO4 + N2SO4 + N2O + H2O

    N2S2O5 + H2O 2NaHSO3

    2NOCI + 2H2O 2HNO2 + 2HCI2HNO2 + NaHSO3 2NO + NaHSO4 + H2O2NO + NaHSO3 NO2 + NaSHO4

    2NOCI + H2O + 2NaHSO3 N2O + 2NaHSO4 + 2HCI

    2AuCI3 + 3NaHSO3 + 3H2O 2Au + 3NaHSO4

  • 32

    13

    (%)

    (gm)

    (O)

    (%)

    13.3 11.5 60 56.613.1 60 99.8913.0 42 99.89

    10.0 11.8 60 95.7513.1 72 99.99

    6.65 11.6 65 99.2412.4 63 99.794.4 42 99.99

    5.0 10.6 52 95.1711.4 52 99.8512.3 80 99.992.0 36 51.263.9 42 99.70

    2.66 3.0 42 93.503.5 42 99.713.6 42 99.743.8 42 99.88

    4gm

    4.2.2

    14 14 40 50 O 25% 120 50 58% 60 80 O 30 15 75 87.5 % 40-50 O 80 O

  • 33

    14

    (%)

    (%)

    ()

    40 99.9 12050 99.9 5060 99.9 3080 99.9 15

    4 ./150 .

    14

  • 34

    4.2.3 4 1). 2).

    3). 4). 15 15 (3.1 ) < (3.6 ) < (5.4 ) < (10.9 )

    15

    (gm) 3.8 5.4

    10.9 3.1

  • 35

    15 ( 4 / 150 , 60-70 O, 30 )

    4.2.4 16 16

    20 99.5% 57 99.99%

    16

    (gm) (%)10 76.820 94.630 97.140 97.6

    56.5 99.5 4 ./150 .

  • 36

    16

    17 18 G.E.McClelland (8) Steel Wool cathode Zinc Precipitates G.E.McClelland 98.5 99.8% 99.8-99.9%

    6HNO3 + 5CO(NH2)2 8N2 + 5CO2 + 13H2O 98.5-99.8% 99.99%

    Fire Refining 1100 O 99.99%

  • 37

    17

    18

    5.

    Cementation 1:0.5

  • 38

    80 O 5.1 1 1

    (Leaching) Electrowinning (Steel Wool) 90%

    19 5 70O 2023

    17 18 90 % 99.94% 1% 2.7:1 1:1

  • 39

    19 1

    90%

    99.94%

    A-1

    F-1, F-2

    A-2

  • 40

    20 1

    21

  • 41

    22

    23

  • 42

    17 1

    () (.) Au Ag

    A-1 148.75 - 90.45% 8.48%F-1 - 4570 0.1 mg/l 2.86 mg/lF-2 - 1000 Trace 4.26 mg/lA-2 133.7 - 99.94% 0.048% Gold Recovery = 99.33%

    18 1

    100 . 450 . 140 gm

  • 43

    5.2 2 2 832.4 24

    70% 1 25 1200 O 25% 1 1

    19 20 99.99% 0.08 363.6

    3.6:1 ( 5:1) Shot 1:1

    2 3 26 55.42% 43.69%

  • 44

    24 2

  • 45

    25 2

    1200 o

    1

    2

    A-1

    -

    99.99%

    -

    L-3, L-4

    L-2

  • 46

    19 2

    (./.)(gm) (l) Au Ag Cu Ni Fe

    A-1 832.4 - 55.42%

    20.5%15.75% 0.15% 0.14%

    Cu 2514.9 - - - - - -

    L-1 - - 18.5 0.1

    3.11g/l3.46g/l 94.5g/l 50.3

    L-2 - 18.5 4.18

    3.11g/l0.79 89.0g/l 43.7

    L-3 1

    - 6.3 1.523.31g/l

    2.54 5.94g/l 4.89

    L-4 1 - 1.0 Trace 1.57 0.22g/l 0.28 88.2

    L-5 2

    - 3.75 0.25 5.29 2.37 1.25 4.16

    L-6 2 - 1.7 none 0.17 0.76 0.15 0.63

    A-2 363.6 - 99.99 0.008 none none none

    20 2

    5.2 L 2.5 L 1.0 L 2.0 Kg 0.8 Kg

  • 47

    26 2

  • 48

    5.3 3 Steel Wool Electrowinning 148

    1.48 Steel Wool Steel Wool 27 28 Steel Wool SIMPLEX No.6 6.7:1 ( 5:1)

    21 22 99.99% 2:1 2

  • 49

    27 Steel Wool Electrowinning

  • 50

    28 Steel Wool 3

    STEEL WOOL ()

    > 99.90%

  • 51

    21 3

    (mg/l)(gm) (l) Au Ag Cu Ni Fe

    Steelwool () 102.5 - * * * * *Steelwool 41.2 - 47.8%

    20%5.1% 10.2% 1.1%

    - 1.63 None

    0.87g/l1.05 0.96g/l 97.0

    - 0.224 0.1241.75

    0.23 59.25 4.24

    19.7 - 99.99%none

    0.007% none none

    *

    22 3

    33 ml 150 ml 50 ml 38 gm

  • 52

    5.4 4

    Less Noble Metal 29 30 ()

    99.95% 23 24 2.9:1 1.6:1

    29

  • 53

    30 4

    99.95%

  • 54

    23 4

    (mg/l)(gm) (l) Au Ag Cu Ni Fe

    217 - 79.9%

    2.30%- 2.60% 0.3%

    - 4.25 1.90

    0.12g/l0.49 0.15 0.98

    - 1.20 2.065.67

    0.47 67.0 45.20

    173.4 - 99.95%none

    0.05% none None

    24 4

    125 ml 475 ml 284 gm

  • 55

    1. 1).

    6:1 17

    2). 86O

    3). 1:0.5 3-6%

    4). Activation Energy (E) 5.49 Kcal/mole Chemical Reaction Film Diffusion

    2. () 18 18 75%

    3. ()

    9 18 22 24

    Simplex Evolutionary Operation 3 1). 2). 3). SIMPLEX No.3 No.5 No.6 99.94%-100%

  • 56

    1. 5%

    60O 3 42 O 2.66%

    2. 80 O 40 O 8

    3. < <

    1.

    2.7:1 3.6:1 5:1 3 6.7:1 SIMPLIEX No.6

    2.

    3 2

    Gold Scrap Steel Wool 99.99%

  • 57

    1. ... , , , 90.2. FT. Embleton, REFINING OF GOLD FROM JEWELRY SCRAPS, Precious metal, 1981, P.315.3. Gessner & Hawley, THE CONDENSED CHEMICAL DICTIONARY, ninth edition, published by van nostrand reinhold company, P.612.4. Cw. Lowe, SOME TECHNIQUES OF EVOLUTIONARY OPERATION, Trans instn chem. engrs, vol 42, 1964.5. David R. Gaskell, INTRODUCTION TO METALLURGICAL THERMODYNAMICS, McGrawhill book Company.6. Van Vlack, ELEMENTS OF MATERIALS SCIENCE, Addison-Wesley Publishing Company, P.338.7. Roland Loewen, SMALL SCALE GOLD REFINING, The Worshipful Company of Goldsmiths Project Report No. 44/1, ISSN: 01400541.8. G.E. Mc.Clelland, M.D. Wroblewski and J.A. Eisele, PRODUCTION OF HIGH-PURITY GOLD FROM ZINC PRECIPITATES AND STEEL WOOL CATHODES, Bureau of Mines information Circular/1985, I.C 9002.