supercapacitors technical and physical basics of edlc

26
APEC 2019 in Anaheim Capacitor Workshop PSMA Supercapacitors Technical and Physical Basics of EDLC RenΓ© Kalbitz Product Manager Supercapacitor

Upload: others

Post on 27-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supercapacitors Technical and Physical Basics of EDLC

APEC 2019 in AnaheimCapacitor Workshop PSMA

SupercapacitorsTechnical and Physical Basics of EDLC

RenΓ© KalbitzProduct Manager Supercapacitor

Page 2: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

RenΓ© KalbitzProduct Manager, SupercapacitorseiCap / eiRis Capacitors and Resistors Division

β€’ Experience inβ€’ application-oriented researchβ€’ development of organic electronics, β€’ polymer analysis

β€’ Responsible for Supercapacitors

Background:

+49 7942945 3501

[email protected]

www.we-online.com

Short Introduction of Todayβ€˜s Presenter

Page 3: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Classification of Capacitors

Physical Processes

Model Parameters and Performance

Charge, Discharge and frequency behavior

Physical limitations of capacitance

Agenda

Page 4: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Tradename / Synonyms:

4

Classification of Capacitors

APowerCap, BestCap, BoostCap, CAP-XX, EVerCAP, DynaCap, Goldcap, HY-CAP,

SuperCap, PAS Capacitor, PowerStor, PseudoCap, Ultracapacitor, Ultracap, ENYCAP, …

Page 5: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Types of Supercapacitors, based on design of electrodes:

Double-layer capacitorsβˆ’ Electrodes: carbon or carbon derivatives

Pseudocapacitorsβˆ’ Electrodes: oxides or conducting polymers (high

faradaic pseudocapacitance) Hybrid capacitors

βˆ’ Electrodes: special electrodes with significant double-layer capacitance and pseudocapacitance

5

Classification of Capacitors

Page 6: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Batteries

β€’ High energy capacityβ€’ Constant voltage dependence

β€’ low power outputβ€’ low life expectancy (β‰ˆ 1000 cycles)β€’ long charging time (hours)

Supercaps

β€’ fast charging and discharging (min – sec)β€’ high life cycle (β‰ˆ 500,000 cycles)β€’ high power output

β€’ β‰ˆ 𝟏𝟏𝟏𝟏 times higher than Li-ion battery

β€’ low energy capacity β€’ β‰ˆ 30 times lower than Li-ion battery

β€’ linear voltage dependence

Supercaps vs. Batteries and Caps

Capacitors

β€’ fast charging and discharging (β‰ͺ sec)

β€’ high life timeβ€’ high operating voltagesβ€’ high power output

β€’ low energy capacity

Page 7: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Discharged State:1) no voltage is applied to electrodes2) anions and cations are in close

vicinity to each other3) Movement of anions and cations

governed by electrostatic interaction and diffusion processes

Amp-Meter

Neg Pos0

A-+

electrolyte

Energy Storage - Charge Separation

Page 8: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Charging:1) voltage between plates (i.e.

electric field) is applied2) electric field β€œtears” charges

apart3) movement of the charges

causes a current, provided by the voltage source

Amp-Meter

Neg Pos0

A-+

Energy Storage - Charge Separation

Page 9: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

A

-+ +-

Amp-Meter

Neg Pos0

Fully charged:1) anions and cations reach

interface/electrode2) Reorientation of charges comes

to hold3) Each anion/cation is mirrored

by a opposing positive/negative charge at the electrode

mirror-chargeEnergy Storage - Charge Separation

Page 10: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

A

-+ +-

Amp-Meter

Neg Pos0

Open circuit:1) Each anion/cation is balanced by an

equal amount of mirror charge at the interface

2) Anions and cations reside a the interface

3) Charges can be stored at interface for a long time

Energy Storage - Charge Separation

Page 11: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

A

-+ +-

Amp-Meter

Neg Pos0

Discharge process:1) circuit is closed 2) potential difference between the plates,

causes electrical current at a certain voltage

3) Anion/cations β€œloose” their mirror charge, leading to charge movement

4) The quicker the anions/cations can be released, the larger the current

Energy Storage - Charge Separation

Page 12: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

AAmp-Meter

Neg Pos0

-+

Discharged State:1) no voltage is applied to electrodes2) anions and cations are again in

close vicinity to each other3) movement of anions and cations

governed by electrostatic interaction and diffusion processes

Energy Storage - Charge Separation

Page 13: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Structure of EDLCH

elmholtz (double) layer:

β€’Ionic charge is balanced by m

irror-charge

𝑁𝑁+ 𝑅𝑅

𝑅𝑅

𝑅𝑅

𝑅𝑅

π‘‹π‘‹βˆ’

++

+ +

+

+

---

--

-- +

+ + + + + + + + +

+ + + + + + + + +

Electrolytic System:β€’ Ammonium salt with

counter ion

β€’ Acetonitrile Pore / Capillary

separator paper

Page 14: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Structure of EDLCs

+

+++

+

++

---

----

Page 15: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

++

+ +

+

+

---

--

-- +

Physical Processes and Parameters

𝐢𝐢+ πΆπΆβˆ’

π‘…π‘…π‘“π‘“βˆ’π‘…π‘…π‘“π‘“+

𝑅𝑅𝑠𝑠

1𝐢𝐢+

+1πΆπΆβˆ’

=1𝐂𝐂

𝑅𝑅𝑠𝑠 ~ 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹

𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑓𝑓+ + π‘…π‘…π‘“π‘“βˆ’ ~ 𝑹𝑹𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

𝐂𝐂 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹

𝑹𝑹𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

equivalent circuit equivalent circuit

Page 16: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Parameter and Performance

π‘ͺπ‘ͺ 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹

𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Basic Parameters:β€’ 𝑼𝑼𝒓𝒓, Rated Voltage:

βˆ’ is not determined by the equivalent circuit but by electrochemistry (Decomposition Voltage)βˆ’ Non-Aqueous Electrolyte (typ.):

β‰ˆ 2 𝑉𝑉 … 3π‘‰π‘‰βˆ’ Aqueous Electrolyte (typ.):

β‰ˆ 1.5 𝑉𝑉

β€’ π‘ͺπ‘ͺ, Capacitance: β€’ 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹, ESR:

β€’ 𝑹𝑹𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳, Leakage: βˆ’ Influence on charge storing

capabilities (𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 β‰ˆ 10 kΩ… 1 MΞ©)

Performance Parameters:β€’ Energy storage capacity:

𝐸𝐸 =12

Γ— π‘ͺπ‘ͺ Γ— π‘Όπ‘Όπ’“π’“πŸπŸ

β€’ Maximum Power output:

π‘ƒπ‘ƒπ‘šπ‘šπΏπΏπ‘šπ‘š =π‘Όπ‘Όπ’“π’“πŸπŸ

4 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹‒ Characteristic R-C Time:𝜏𝜏 = 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 Γ— π‘ͺπ‘ͺ

Page 17: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019 17

π‘ˆπ‘ˆπ‘…π‘…

Time (sec)

Volta

ge(V

)

Charge Rest/Self Discharge

~𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Discharge

CapacitorBattery

Charge and Discharge Behavior

Time (sec)

Cur

rent

(A)

π‘ˆπ‘ˆ =πΌπΌπ‘π‘β„Žπ‘ͺπ‘ͺ

Γ— 𝑑𝑑

πΌπΌπ‘‘π‘‘π‘‘π‘‘π‘ π‘ πΌπΌπ‘π‘β„Ž

πΌπΌπ‘π‘β„Ž,𝑑𝑑𝑑𝑑𝑠𝑠~1

𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅

Page 18: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Source: Wikipedia: β€œhttps://en.wikipedia.org/wiki/Dielectric_spectroscopy”

Dielectric (impedance) spectroscopy:β€’ β€œmeasures” polarizability of a medium as

a function of frequency

Impedance Spectra

Range of interest: 1 mHz … 1 MHz

Page 19: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Impedance Spectra

Fit results:𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 = 0.011 Ξ©,𝐂𝐂 = 50.3 F

π‘ͺπ‘ͺ β‰ˆ πŸ“πŸ“πŸπŸπŸ“πŸ“

12πœ‹πœ‹ 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹π‘ͺπ‘ͺ

β‰ˆ 0.29𝐻𝐻𝐻𝐻

𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 β‰ˆ 7 mΞ©

Page 20: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Physical Limitations of Capacitance

Source: Activated carbon based electrodes in commercial supercapacitors and their performance, V. Obreja et al., International Review of Electrical Engineering (2010)

πΆπΆπ‘šπ‘š

~π΄π΄π‘šπ‘š

𝐢𝐢: capacitanceπ‘šπ‘š: mass of a.c.𝐴𝐴: specific area of a.c.

Specific surface area of a. c.:π΄π΄βˆ— = 𝐴𝐴

π‘šπ‘šm2

g

Specific capacitance of a. c.:πΆπΆβˆ— = 𝐢𝐢

π‘šπ‘šFg

m [g] π΄π΄βˆ— m2

g 𝐴𝐴 [m2] πΆπΆβˆ— Fg 𝐢𝐢 [F]

Comm.2.2

500 1120 24 54Micro. 935 2095 142 318Micro. 2312 5179 113 253

Example of calulation: 50F EDLC contains β‰ˆ 2.2 g a. c.

Page 21: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

Pore Accessibility:

Source: Supercapacitors Materials, Systems and Applications, ed. F. Beguin et al., WILEY-VCH (2013)

Physical Limitations of Capacitance

Page 22: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

β€’ fast charging and discharging (min – sec)β€’ high power output

β€’ β‰ˆ 10 times higher than Li-ion battery

β€’ low energy capacity β€’ β‰ˆ 30 times lower than Li-ion battery

β€’ linear voltage dependenceβ€’ low operating voltage

Parameters – Device Properties

𝜏𝜏 = 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 Γ— π‘ͺπ‘ͺ ↔low 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 ↔

charges are only stored at the interface ↔

ELDC are capacitors ↔𝐔𝐔𝐫𝐫 < Decomposition Voltage ↔

Page 23: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019 23

Thank you for your attention.

Page 24: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019 24

Additional Slides / Take Outs.

Page 25: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

𝐸𝐸 = 12

Γ— 𝐢𝐢 Γ— π‘ˆπ‘ˆπ‘Ÿπ‘Ÿ2 ,

Parameter and PerformanceSp

ecifi

c Po

wer

, 𝑃𝑃 π‘šπ‘š

π‘šπ‘šπ‘šπ‘š

π‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘šπ‘šπΏπΏ

[W/l]

Specific Energy, πΈπΈπ‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘šπ‘šπΏπΏ

[W/l]

Fuel cell

Batteries

Super-capacitors

Capacitors

𝑃𝑃(𝐸𝐸) =2

𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅 Γ— 𝐢𝐢𝐸𝐸𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 Γ— π‘ͺπ‘ͺ determines power

for a given energy capacity

π‘ͺπ‘ͺ and 𝑼𝑼𝒓𝒓 determine the energy capacity

Page 26: Supercapacitors Technical and Physical Basics of EDLC

28.03.2019

𝑿𝑿𝑳𝑳 = 𝝎𝝎 Γ— 𝑳𝑳𝑬𝑬𝑬𝑬𝑳𝑳

𝑿𝑿π‘ͺπ‘ͺ = βˆ’πŸπŸ

𝝎𝝎 Γ— π‘ͺπ‘ͺ

�𝒁𝒁 = 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 + 𝒋𝒋𝑿𝑿𝑳𝑳 + 𝒋𝒋𝑿𝑿π‘ͺπ‘ͺ

β€’ inductive reactance (neglectable)

β€’ impedance

β€’ electrical model is equal to that for MLCC, ELKOs, …

β€’ capacitive reactance

no influence on frequency dependence

Impedance Spectra

π‘ͺπ‘ͺ 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹

𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑳𝑳𝑬𝑬𝑬𝑬𝑳𝑳

𝐷𝐷𝐷𝐷 = tan(𝛿𝛿)

π’π’βˆ’πŸπŸ

𝝎𝝎 Γ— π‘ͺπ‘ͺ

𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹

𝛿𝛿

𝝎𝝎 Γ— 𝑳𝑳𝑬𝑬𝑬𝑬𝑳𝑳

πΌπΌπ‘šπ‘š

𝑅𝑅𝑅𝑅0

�𝒁𝒁 =1

jπœ”πœ”οΏ½π‘ͺπ‘ͺοΏ½π‘ͺπ‘ͺ =

π‘ͺπ‘ͺ1 + πœ”πœ” 𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹 π‘ͺπ‘ͺ 2 βˆ’ 𝑗𝑗

πœ”πœ”π‘ͺπ‘ͺ2𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹1 + πœ”πœ”π‘Ήπ‘Ήπ‘¬π‘¬π‘¬π‘¬π‘Ήπ‘Ή π‘ͺπ‘ͺ 2

πœ”πœ” = 2πœ‹πœ‹πœ‹πœ‹, βˆ’1 = 𝑗𝑗