supplementary information - christoph scherber files... · supplementary figures and legends y...

111
Supplementary Figures and Legends Herbivory Parasitism Flower visitation Decomposition Microbial respiration Pathogen damage Invasion Bioturbation Ant activity Hyperparasitism Plant species richness Standardized organism interactions (per unit of space) 0 10 20 30 40 50 60 0.0 0.2 0.4 0.6 0.8 1.0 Supplementary Figure 1 | Biodiversity effects on organism interactions. Sample size: N=82 except for hyperparasitism (extrapolated from smaller plots). SUPPLEMENTARY INFORMATION doi:10.1038/nature09492 WWW NATURE.COM/NATURE |1

Upload: others

Post on 28-Jun-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Figures and Legends

Herbivory

Parasitism

Flower visitation

Decomposition

Microbial respiration

Pathogen damage

Invasion

Bioturbation

Ant activity

Hyperparasitism

Plant species richness

Stan

dard

ized

org

anis

m in

tera

ctio

ns (p

er u

nit o

f spa

ce)

0 10 20 30 40 50 600.0

0.2

0.4

0.6

0.8

1.0

Supplementary Figure 1 | Biodiversity effects on organism interactions. Sample size: N=82 except for hyperparasitism (extrapolated from smaller plots).

SUPPLEMENTARY INFORMATIONdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 1

Page 2: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

2.56, 1.70Plant Diversity

0.32Herb. Macrofauna

0.88Pred. Macrofauna

0.45Sap. Macrofauna

0.29Dead Biomass

0.22Amoebae

0.72Flagellates

0.83Pred. Nematodes

0.30Microbes

0.57Bacteriv. Nemat.

0.55Herbiv. Nemat.

0.45Root production

0.17Omniv. Nemat.

0.48

Collembola

0.65Mites

0.60Gamasida

0.06

0.05

0.02

0.15

0.040.02

0.02

0.14

-0.14

0.04

0.19

1.55 1.27

-0.29

0.28

0.30

0.35

-2.89

0.18

0.49

-2.29

-0.29

0.28

0.05

Supplementary Figure 2 | Effects of plant species richness on organism abundances in the belowground food web. Sample size: N=82 (missing values replaced by the mean), Chi²= 108.424, df=91 (61 estimated parameters), P=0.103; RMSEA= 0.049, 90%CI=[0;0.08]. The model is the result of a specification search over 50 models that started off with a maximal model (containing all hypothesized relationships), with subsequent deletions of arrows not supported by the data. The model shows unstandardized parameter estimates. The Supplementary Figure shows the minimal adequate model (defined by lowest AIC, BIC and lowest difference between observed and implied covariance matrices). Arrows connecting boxes show structural relationships; parameters next to solid arrows are significant at P≤0.05. Parameter estimates next to dashed arrows are not significant but were retained in the minimal adequate model. Green arrows show significantly positive relationships, red arrows significantly negative ones. Grey arrows and text show error terms. Plant species richness (grey box) was experimentally manipulated. Light blue boxes indicate variables that are linked by at least one solid arrow.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 2

Page 3: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Figure 3 | Effects of plant species richness on all response variables on the original scale. Variables are sorted in alphabetic order. Fitted green and blue lines show 1st and 2nd order local polynomial regressions fit by weighted least squares; black lines show linear regression fits. Note that local polynomial regressions are for illustrative purposes only.

0 10 20 30 40 50 60

500

1000

1500

Plant species richness

Abo

vegr

ound

her

bivo

re a

bund

ance

Degree 1Degree 2Linear

0 10 20 30 40 50 60

10

20

30

40

50

60

70

80

Plant species richness

Abo

vegr

ound

dea

d pl

ant b

iom

ass

(g/m

²)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

45

50

55

60

65

70

75

Plant species richness

Abo

vegr

ound

car

nivo

re s

peci

es ri

chne

ss

Degree 1Degree 2Linear

0 10 20 30 40 50 60

250

300

350

400

450

500

Plant species richness

Abo

vegr

ound

car

nivo

re a

bund

ance

Degree 1Degree 2Linear

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 3

Page 4: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

10

15

20

Plant species richness

Abo

vegr

ound

om

nivo

re s

peci

es ri

chne

ss

Degree 1Degree 2Linear

0 10 20 30 40 50 60

20

40

60

80

100

120

Plant species richness

Abo

vegr

ound

om

nivo

re a

bund

ance

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

5

Plant species richness

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

ce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

40

60

80

100

Plant species richness

Abo

vegr

ound

her

bivo

re s

peci

es ri

chne

ss

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 4

Page 5: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

50000

100000

150000

Plant species richness

Am

obae

abu

ndan

ce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

100

200

300

400

500

600

Plant species richness

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

10

15

20

25

30

35

Plant species richness

Abo

vegr

ound

par

asito

id s

peci

es ri

chne

ss

Degree 1Degree 2Linear

0 10 20 30 40 50 60

100

200

300

400

Plant species richness

Abo

vegr

ound

par

asito

id a

bund

ance

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 5

Page 6: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

50

100

150

200

Plant species richness

Bio

turb

atio

n (b

urro

ws

per 4

00 m

²)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

5

6

Plant species richness

Bac

teriv

orou

s ne

mat

ode

spec

ies

richn

ess

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

20

40

60

80

Plant species richness

Bac

teriv

orou

s ne

mat

ode

abun

danc

e

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

2

4

6

8

Plant species richness

Ant

act

ivity

(col

onie

s pe

r 4 m

²)

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 6

Page 7: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

5000

10000

15000

20000

Plant species richness

Flag

ella

te a

bund

ance

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

2

4

6

8

Plant species richness

Com

mun

ity h

erbi

vory

(per

cent

)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

2

4

6

8

10

Plant species richness

Col

lem

bola

spe

cies

rich

ness

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

20

40

60

80

100

Plant species richness

Col

lem

bola

abu

ndan

ce

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 7

Page 8: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

Plant species richness

Her

bivo

rous

mac

rofa

una

spec

ies

richn

ess

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

5

10

15

Plant species richness

Her

bivo

rous

mac

rofa

una

abun

danc

e

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

10

20

30

Plant species richness

Gam

asid

a ab

unda

nce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

20

40

60

80

100

Plant species richness

Flow

er v

isito

r fre

quen

cy (v

isits

/6 M

in.)

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 8

Page 9: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

1

2

3

4

Plant species richness

Leaf

are

a in

dex

(m²/m

²)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

10

20

30

40

Plant species richness

Inva

sion

(ind

ivid

uals

/m²)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

4

6

8

10

12

14

16

Plant species richness

Inva

der s

peci

es ri

chne

ss

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

200

400

600

800

Plant species richness

Inva

der a

bund

ance

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 9

Page 10: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

20

40

60

80

100

Plant species richness

Mite

abu

ndan

ce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

2

3

4

5

6

7

Plant species richness

Mic

robi

al re

spira

tion

(µL

O2

per g

soi

l per

h)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

600

800

1000

1200

1400

1600

Plant species richness

Mic

robi

al b

iom

ass

(µg

C/g

soi

l)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

50

60

70

80

90

Plant species richness

Litte

r dec

ompo

sitio

n (p

erce

nt)

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 10

Page 11: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

10

20

30

40

50

Plant species richness

Para

sitis

m (p

erce

nt)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

5

Plant species richness

Om

nivo

rous

nem

atod

e sp

ecie

s ric

hnes

s

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

10

20

30

40

Plant species richness

Om

nivo

rous

nem

atod

e ab

unda

nce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

4

6

8

10

12

Plant species richness

Myc

orrh

izal

spe

cies

rich

ness

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 11

Page 12: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

2

4

6

8

10

Plant species richness

Pla

nt−f

eedi

ng n

emat

ode

spec

ies

richn

ess

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

50

100

150

200

Plant species richness

Pla

nt−f

eedi

ng n

emat

ode

abun

danc

e

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

5

Plant species richness

Path

ogen

spe

cies

rich

ness

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

Plant species richness

Path

ogen

sev

erity

(per

cent

)

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 12

Page 13: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

2

4

6

8

10

Plant species richness

Pre

dato

ry m

acro

faun

a sp

ecie

s ric

hnes

s

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

20

40

60

80

100

Plant species richness

Pre

dato

ry m

acro

faun

a ab

unda

nce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

5

10

15

Plant species richness

Polli

nato

r spe

cies

rich

ness

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

50

100

150

Plant species richness

Polli

nato

r abu

ndan

ce

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 13

Page 14: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

10

20

30

40

50

Plant species richness

Sap

roph

agou

s m

acro

faun

a ab

unda

nce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

10

20

30

40

50

Plant species richness

Roo

t len

gth

grow

th (c

m/c

m³ s

oil)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Plant species richness

Pre

dato

ry n

emat

ode

spec

ies

richn

ess

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

5

10

15

20

25

Plant species richness

Pre

dato

ry n

emat

ode

abun

danc

e

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 14

Page 15: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Plant species richness

Vole

abu

ndan

ce

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

Plant species richness

See

d pr

edat

ion

(pro

porti

on re

mov

ed)

Degree 1Degree 2Linear

0 10 20 30 40 50 60

0

1

2

3

4

Plant species richness

Sap

roph

agou

s m

acro

faun

a sp

ecie

s ric

hnes

s

Degree 1Degree 2Linear

Supplementary Figure 3 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 15

Page 16: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Methods

Sampling of aboveground organisms

The population density of small rodents was estimated by placing two Ugglan multiple capture live-traps in each plot, with trapping between June and October 2005 (11 trap-ping sessions). Each trapping session lasted for two trap nights with traps activated in the morning of day 1, and three trap checks in the morning and evening of day 2 and the morning of day 3. Traps were baited with standard rodent feeding pellets and weather-protected by a metal cover. Every individual captured for the first time in a trapping session was etherized and marked individually using transponders (Trovan®). Individuals weighing less than 20 g did not receive a transponder, but were marked using fur-clipping. For every individual capture, we recorded species, body weight, sex, and breeding condition.

The population density and species richness of aboveground invertebrates (including herbivores, carnivores, parasitoids, omnivores and pollinators) were measured in N=50 plots (1, 4, 16, 60 plant species) using an electric suction sampler combined with a bioce-nometer that covered a base area of 0.75 x 0.75 m. In contrast to other approaches (e.g. sweepnetting), the biocenometer method allows volume-specific sampling (i.e. exactly the same biovolume is sampled on every plot, similar to taking a soil core). Thus, our data on aboveground and belowground organism abundances/species richness are highly com-parable. Every plot received six suction samplings that were randomly placed without re-placement. Samples were taken five times per year from May to October (2003 and 2005).

Pollination was estimated as the number of flower visits in subplots per main plot. Flower visits were quantified by counting flower-visiting insects in randomly placed quadrats of 80 x 80 cm per 20x20 m plot. Only N=73 plots containing forbs were observed (i.e. exclud-ing plots containing only wind-pollinated grasses). Flower visitors were counted during six observation periods: 24-25 May 2005, 15-16 June 2005, 18-19 August 2005, 6-9 June 2006, 17-18 June 2006 and 1-5 August 2006. Observations were restricted to sunny days characterized by at least 18°C air temperature, with no or little wind (<2 m s-1), between 09:00 and 17:00 h. Observations within a block were carried out within two days, assuring constant weather conductions within blocks. The sequence of plot observations was inde-pendent of plant richness. We observed pollinating insects for 6 minutes per quadrat, plot and observation period, resulting in a total of 36 minutes per plot. Pollinators were identi-fied directly in the field to genus or morphospecies and species level in the field. After each observation period we collected all unknown species for further identification in the labora-tory.

In addition, we exposed N=164 standardized trap nests made from reed internodes in the exact centre of every plot (N=82). This allowed us to calculate parasitism rate of trap-nesting bees and wasps.

To measure the activity density and species richness of epigeic invertebrates (mainly Carabids, Staphylinids and spiders), two pitfall traps were placed near the centre of each plot (N=50) and replaced six times per year from May to October (2003 and 2005). All spe-cies were identified and their relative population densities (per unit of space) estimated.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 16

Page 17: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Sampling of belowground organisms

Belowground meso- and macrofauna were sampled twice a year in 2004, 2006 and 2008 from N=82 plots. The subplot positions (2 x 4 m) for sampling were drawn at random. Samples were taken using soil cores of a diameter of 5 and 21 cm for extraction of meso- and macrofauna, respectively. Because most soil animals populate the upper soil layers, the upper 10 cm of the soil cores were used for extraction. Soil animals were extracted over a period of 10 days by heat30.

Earthworm sampling was performed each year in April and October between 2003-2006 on N=46 plots (1, 4 and 16 plant species mixtures) using an electroshocking method31, employing a combination of four octet devices (DEKA 4000, Deka Gerätebau, Marsberg, Germany). Positions for earthworm sampling were randomized once at the beginning of the experiment (2003). Earthworms were extracted from an area of 1 x 1 m.

Nematodes were sampled in autumn 2005 from 5 soil cores (2 cm in diameter, 5 cm deep) taken at a randomized subplot position (2 x 4 m) per plot (N=82). Samples were ho-mogenized, nematodes extracted by a modified wet extraction technique32, counted and determined to species level.

For the quantification of Protozoa (Amoebae and Flagellates), five soil samples were taken on a randomized position on N=12 plots using a metal corer (diameter 5 cm, soil depth ~10 cm) in October 2009. The soil was homogenized and stored at 5 °C until usage. Amoebae and Flagellates were counted using a modified most probable number method33. Briefly, 5 g fresh weight of soil was suspended in 20 mL sterile Neff’s modified amoebae saline (NMAS; see ref.34) and gently shaken for 20 min on a vertical shaker. Threefold di-lution series with nutrient broth (Merck, Darmstadt, Germany) and NMAS at 1:9 v/v were prepared in 96-well microtiter plates (VWR, Darmstadt, Germany) with four replicates, each. The microtiter plates were incubated at 15 °C in darkness and the wells were in-spected for presence of protozoa using an inverted microscope at x 100 and x 200 magni-fication (Nikon, Eclipse TE 2000-E, Tokyo, Japan) after 3, 6 ,11, 19 and 26 days. Densities of protozoa were calculated according to ref.35.

Microbial biomass and respiration were measured from five cores (diameter 5 cm, depth 5 cm) taken on randomized subplot positions (2 x 4 m) per plot in May 2002, 2003, 2004, 2006, 2007 and 2008. Soil samples were homogenized from each plot and microbial respiration and microbial biomass were measured using an O2 microcompensation ap-paratus36. Microbial biomass was determined by the substrate-induced respiration method (SIR; see Ref. 37).

Diversity of arbuscular mycorrhizal fungi was determined by amplification of DNA de-rived directly from soil on a subset of 23 plots. Plots were selected at random, constrained of equal representation of levels of plant species richness. DNA was extracted under utili-zation of FastDNA Spin Kit for Soil (MP Biomedicals, Illkirch, France) according to manu-facturers’ protocol. The internal transcribed spacer (ITS) within the rDNA was amplified by nested PCR (see Ref. 38) using the primer pair LSU-Glom1/ SSU-Glom1 for the first PCR reaction and ITS4/ ITS5 for the second PCR step, Between the PCR steps, an interme-diate AluI digestion was performed to exclude non-mycorrhizal DNA after the first PCR. Cloning, clone fingerprinting by RFLP and sequencing were performed as in Ref. 39. Se-quences were pre-sorted into syngeneic clusters using the contig-tool as implemented in

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 17

Page 18: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Sequencher 4.8 (Gene Codes Corp., Ann Arbor, USA).Closest matches to each sequence cluster were determined using the BLASTN sequence similarity search tool in GenBank40 and used as references. Sequences were pre-aligned in MultAlin41, alignments were cor-rected by hand. The phylogenetic relations were inferred based on the Kimura 2-parameter method42 with the neighbour-joining analysis43 as implemented in PAUP 4.0b8 (see Ref. 44). The confidence of branching was assessed using 1000 bootstrap resamplings. Sequences falling into one clade, and showing sequence identities of at least 92% were regarded as distinct taxa. The cutoff value of 92% was chosen according to Ref. 45 in order to reflect the natural sequence diversity found within and between the spores of the same AMF spe-cies46.

Spatial soil exploitation by roots was assessed with the ingrowth-core technique47. In June 2003, five soil cores (4.8 cm diameter, 30 cm deep) were removed per plot and re-placed by root-free soil from the field site. In September 2003, the initially root-freein-growth cores were removed and the holes were re-filled with root-free soil until the fol-lowing withdrawal in July 2004. To extract the newly formed roots, each in-growth core was first weighed and carefully homogenized. A subsample of 50 g of soil was suspended in water and rinsed over a 0.5-mm screen. Roots collected in the screen were transferred into a water-filled clear acrylic tray and scanned. Total root length was determined from im-ages using WinRhizo (Regent Instruments, Quebec, Canada). Afterwards, root length den-sity (cm root length per cm3 soil volume) was calculated.

Classification of organisms into groups

All organisms collected were classified into functional groups (guilds) based on extensive literature and database searches. Functional groups were defined based on trophic posi-tion (feeding guild) and interaction type (consumers, mutualists, pathogens, decomposers).

Aboveground herbivores: Phytophagous beetles (mainly Chrysomelidae and Curculioni-dae), Leafhoppers (Cicadina), gall-forming and other phytophagous Hymenoptera, phy-tophagous Heteroptera, Grasshoppers (Saltatoria: Acrididae), phytophagous Diptera.

Aboveground carnivores: Zoophagous Hymenoptera (excl. Parasitica), zoophagous beetles (mainly Carabidae and Staphylinidae), Zoophagous Heteroptera, Zoophagous Dip-tera, Spiders (Arachnidae).

Aboveground omnivores: Omnivorous beetles (mainly Staphylinid beetles) and Diptera

Parasitoids: Parasitoid Hymenoptera and Diptera. No parasitoid Coleoptera were found.

Hyperparasitoids: Hyperparasitoid Hymenoptera (mainly Alloxysta sp., Hymenoptera: Cynipidae) and mummy parasitoids (Dendrocerus sp., Hymenoptera: Megaspilidae)

Pollinators: Hymenoptera (mainly Apidae), Diptera (mainly Syrphidae).

Pathogens: Plant-pathogenic fungi of the groups Peronosporaceae (Downy Mildews), Erysiphales (Powdery Mildews), Ustilaginales (Smut diseases) and Uredinales (Rust fun-gi). Further, we included Bacteria and Fungi causing Leafspot diseases.

Invaders: Abundance (dry weight/m²) and species richness of (weedy) plant species not

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 18

Page 19: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

present in the pool of 60 plant species present in the Jena Experiment (so-called external invaders).

Belowground microfauna: Amoebae and Flagellates.

Belowground mesofauna: Collembola, Herbivorous Nematodes, Bacterivorous Nema-todes, Fungivorous Nematodes, Omnivorous Nematodes, Oribatid mites, pro- meso- and astigmatic mites.

Saprophagous Macrofauna: Earthworms (Lumbricidae), Isopoda, Diplopoda, Enchytraei-dae

Predatory Macrofauna: Araneida, Geophilidae, Lithobiidae, Carabidae, Staphylinidae, Elateridae, zoophagous insect larvae, Hymenoptera

Herbivorous Macrofauna: Gastropoda, Curculionidae, herbivorous larvae iof Diptera, Symphyla, herbivorous Hemiptera groups.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 19

Page 20: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Definition and quantification of organism interactions

We included only those interactions between organisms that were directly and quantitative-ly observed in the field (as opposed to correlative approaches where interaction partners are generally unknown). Hence, every interaction considered here contains information about the exact process rates. For example, “decomposition” is the amount of material of known quantity decomposed over a given period of time per unit area.

The specific definitions for each interaction are:

Herbivory: The percentage of intact leaf area of an average sample of each plant com-munity consumed by invertebrate herbivores over a given period of time on subplots of 2 x 4 m, averaged across time. Plant community herbivory was visually estimated in May and August 2003, 2004 and 2005 by sampling a given number of plant individuals along transects through each of the 82 experimental plots and noting the percentage of leaf area eaten by invertebrate herbivores (insects and molluscs).

Parasitism: The percentage of wildbee (Hymenoptera: Apidae) cells parasitized in ar-tificially exposed trap nests (measured in 2005 and 2006). Trap nests consisted of reed internodes cut to a standardized length and enclosed in plastic tubes of c. 14 cm diameter. There were 4 trap nests installed on a wooden post in the middle of each plot; trap nests were installed in early spring each year and removed in autumn, and all reed internodes were checked for colonization by trap-nesting bees, wasps and their natural enemies. We used parasitized wildbee cells because these measurements were performed in all N=82 large plots. Qualitatively similar results were obtained using parasitism rates estimated from aphid mummies.

Hyperparasitism: The percentage of aphid mummies that were parasitized by Hy-menopteran hyperparasitoids. All stationary aphids (including alates within colonies) were counted 4 times (twice before the first mowing, twice after) in c. 3 m x 20 cm transects in 47 small extra plots on all sown plant species (plant species richness here ranged from 1 to 9 plant species). All mummies (parasitized aphids) were collected in the same transect at the same 4 dates and checked for parasitoids and hyperparasitoids. Analyses were per-formed separately from all other data, and lines in Fig. 1 show predicted values extrapolat-ed to more species-rich mixtures. Hyperparasitism was additionally measured in 23 large plots (20 x 20 m) and a binary regression analysis showed qualitatively the same result.

Pollination: The number of flower visits by Dipteran and Hymenopteran pollinators per time interval (6 minutes) visually counted on 0.64 m² subplots in each plot (excluding those plots containing only grasses) in May, June and August 2005 and 2006, averaged over time.

Pathogen severity: The mean percentage of leaf area damaged by plant pathogenic fungi across the whole plant community of every plot. Pathogen infection was visually assessed in 2006 for all species in all 82 large plots. Screening focussed on the pathogen groups downy mildew, powdery mildew, rusts and smuts. In addition, infection of fungal-caused leaf spots was assessed. Fungal pathogen infection was registered for each species per plot as the mean percentage infected individuals per species.

Bioturbation: The number of burrowing holes of the Common Vole (Microtus arvalis)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 20

Page 21: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

found in June and September 2005 in an area of 20 x 20 m on every plot, averaged across time. Activity of other bioturbators (e.g. earthworms) was not assessed, but data on earth-worm densities are available upon request.

Decomposition: The percentage of litter remaining in standardized exposed litter bags per plot after four months of time. Litter of three plant functional groups (grasses, herbs and legumes) was used to establish four litter treatments [grasses (G), herbs (H), legumes (L) and mixed (M)]. Each litterbag contained 3 g dry weight of plant material. Litter of each functional group was obtained by mixing 1 g of senesced litter of three plant species: grasses (Festuca rubra, Lolium perenne, Poa pratensis) (N 2.0%, C:N 22.6), herbs (Cir-sium oleraceum, Daucus carota, Plantago lanceolata) (N 2.3%, C:N 19.6), legumes (Lath-yrus pratensis, Lotus corniculatus, Trifolium repens) (3.0%, C:N 15.5). For the mixed litter treatment we used 3 g dry weight litter (N 2.4%, C:N 19.3) from a homogenous mixture created by mixing all 9 plant species. The litter material was collected from the Jena Ex-periment field site in the previous season (2003), sorted, dried for 3 days at 60 °C and cut into pieces ~ 3 cm in length. Litterbags were built using 4 mm mesh to allow access of soil animals including large earthworms such as Lumbricus terrestris. Litterbags of each of the four litter treatments were placed on the soil surface of four decomposer treatments (re-duced and increased earthworm density, ambient and reduced springtail density) of the 1, 4, 16 plant species diversity plots in February 2004. The litterbags were collected in June 2004, after 4 months of exposure, dried three days at 60 °C and weighed. The percentage of litter remaining in the mixed litter treatment after these four months was used as a mea-sure of decomposition rate. Measurements were performed on plots containing 1, 4 and 16 plant species.

Biological invasion: The population density (individuals per 4 m²) of an invading weedy plant species (Cirsium arvense), measured in 2004 on randomly placed positions in the core area of every plot.

Microbial respiration: Microbial respiration was measured from five cores (diameter 5 cm, depth 5 cm) taken on randomized subplot positions (2 x 4 m) per plot in May 2002, 2003, 2004, 2006, 2007 and 2008. Soil samples were homogenized from each plot and microbial respiration was measured using an O2 microcompensation apparatus36.

Ant activity: Between 4th July 2006 and 16th August 2006, ant colonies were counted in each plot in an area of 4m2. The surface of the plots was searched visually. Every entrance was counted as a measure of colony number. An entrance was defined by the observation of ants passing in and out and by recruiting behaviour occurring when the entrance was disturbed using tweezers.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 21

Page 22: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Statistical Methods

We used R 2.11.0 (see Ref. 48) for data analyses. In addition, we calculated structural equation models using AMOS 16.0 (SPSS, Inc.). Code printed below refers to R 2.11.0.

General approach

For most of our analyses, we present results on a unified scale [0;1]. This allows direct comparisons of slopes, intercepts and other model parameters across all taxonomic groups.

A small example dataset shall serve to introduce the methodology used; let y1and y2 be carnivore and herbivore abundance, respectively; let x1 be the explanatory variable (plant

species richness). y1´and y2´ are the transformed versions of the response variables y1 and y2. A possible dataset may then look like this:

The slopes of corresponding regression lines are then 10.2 for carnivores or 102 for herbi-vores. On the transformed scale, however, both slopes are exactly 0.34. Thus, standard-izing the response variables to [0;1] reveals that both groups actually respond in exactly the same way to plant species richness. Such a conclusion would, however, not have been possible on the original scale.

Our approach to data analysis consists of four steps:

(1) Standardization of response variables to a unified scale [0...1](2) Separate analysis of every response variable using a common set of 572 linear and nonlinear models per response variable(3) Combined analysis of all response variables using a common power law function(4) Combined multivariate analyses of groups of response variables using (i) multivariate linear models and (ii) structural equation models.

We chose a transformation to range [0,1] rather than a z transformation because (i) the resulting values are easier to compare and to interpret, (ii) because this transformation is more robust than the z transformation 49, and (iii) because information about the variation of variables is lost with the z transformation (all variables having a standard deviation of 1 after transformation).

Note that scaling variables to [0;1] may introduce a bias when dividing by the maximum observed value for each variable, especially if the underlying distributions are skewed. In particular, a large maximum:median ratio could lead to lower values of the exponent z re-ported in power functions. However, the z values calculated by us were based on highly aggregated data, for which the arithmetic mean is likely to be an unbiased estimater of the

x1 y1 y2 y1´ y2´1 10 100 0 02 22 220 0.4 0.43 34 340 0.8 0.84 40 400 1 1

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 22

Page 23: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

true population mean.

We additionally ran our analyses using a z transformation and found no principal differ-ences.

Univariate linear and nonlinear models

The set of linear and nonlinear models was carefully chosen from biologically meaningful models:

(1) Linear models containing block, plant species richness, number of plant functional groups, grass and legume presence(2) Saturating non-linear models (Michaelis-Menten, asymptotic regression models, logis-tic regression models)(3) Exponential non-linear models (including biexponential models)(4) Power law models covering a wide range of possible shapes of responses

To make linear and non-linear models comparable, legume presence, grass presence and number of functional groups were included as covariates into the nonlinear models.

If model diagnostic plots showed variance heterogeneity or non-normality of variance, we updated our models using variance functions. In two cases (vertebrate herbivore abun-dance and hyperparasitism rates) we additionally used generalized linear models for anal-ysis50.

Blocks were treated as fixed rather than random effects because there were only four lev-els of blocks, and because treatments were unequally represented within blocks (see Ref. 51 for a similar approach).

We used AICc (Akaike´s Information Criterion, corrected for small sample sizes; see Ref. 52) for model simplification and model selection. Manual deletions of terms from models (comparing models using conditional F-tests) lead to qualitatively very similar results.

Abundances and numbers of distinct species per sample were summed during data aggre-gation. For non-count data (organism interactions), we calculated mean values for every plot. The total sample size was at least 50 for abundance and species richness data, and 82 for organism interactions. For practical reasons, hyperparasitism and belowground pro-For practical reasons, hyperparasitism and belowground pro-tozoa had a smaller sample size. These variables were therefore not included into the mul-tivariate linear models. Every response variable was transformed using a transformation to [0;1] prior to analyses to allow comparisons of model parameters. Vertebrate herbivore abundance was log-transformed before transformation to [o;1] to reduce non-constancy of variance. For every response variable, we set up a set of linear and nonlinear candidate models. In generalized non-linear least squares models, we used variance functions to ac-count for heteroscedasticity. For every response variable, the set of candidate models con-sidered was created using linear and nonlinear models.

To give every model the same chance of being selected, the same principal set of initial models was considered for every response variable in turn.

This makes the overall model selection process entirely reproducible.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 23

Page 24: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

The R code for the general model selection function was:

evaluate.all=function(response=quote(response),DF=quote(DF),i){require(MASS)require(pgirmess)require(nlme)options(width=500,show.error.messages=T)

DF <- cbind(response = DF[[response]], DF)options(show.error.messages=F)L=list( modelname1=try(model.formula1,DF)), modelname2=try(model.formula2,DF)), modelname3=try(model.formula3,DF))

#the full list of model formulae is available upon request #[...] ) L2=Filter(function(x) !inherits(x, "try-error"), L) #to select only those models that converged without errornn=names(L2)

# actual model selection based on AICc: df=data.frame(selMod(L2)) nn=nn[as.numeric(row.names(df))] df=cbind(nn,df)

# return the i´th selected modelselected=which(seq(1:length(nn))==as.numeric(rownames(selMod(L2)))[i])

# return the model formula (this has the structure response~...,data=DF)called=lapply(L2[selected],function(x)x$call)

# Some text replacement to have the correct response variables and dataframes in there:

called=sub("response",response,called)replacevec<-c("newsynthesis.ranged")

called=sub("DF",replacevec,called)

# Finally, return the selected models

returnlist=list(response=response,models=df,selected.model=called,all.models=L2)

return(returnlist)}

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 24

Page 25: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

The full list of model formulae used inside the function is available on request.

The gnls() function from the MASS library in R53 was used to fit generalized nonlinear least-squares models that allow for covariates in nonlinear models, and variance heteroscedasticity can be modelled using variance functions.

The try()command prevents the function to exit with an error if initial parameter values do not lead to model convergence. Initial parameter values for nonlinear models were based on previous manual model fitting approaches.The index i allows the i´th model to be extracted from the resulting list of models (ordered by AICc) for manual inspection and modification.

For all models we calculated the number of parameters, log-Likelihood, Akaike´s An Information Criterion, corrected for small sample size (AICc), delta-AICc values and Akaike weights. The five models with lowest AICc values were inspected in detail by plotting model predictions and model diagnostic plots to inspect the variance structure. The model with lowest AICc and highest Akaike weight was taken to be the best model of the subset, with some exceptions where biological knowledge made competing models more likely (for example if theory predicted saturating rather than exponential kinetics).

To allow the reader a full assessment of all competing models, we supply two Excel tables containing all models considered. Model convergence was different for every response variable, and we provide these outputs to allow a precise judgement of which patterns are strongly supported by the data, and which not.

Fitting a more parsimonious unified power law model

Using the evaluate.all() function defined above revealed that 25 out of 54 response variables (i.e. 46%) showed clearly nonlinear relationships with plant species richness (8 exponential, 7 Michaelis-Menten, 10 power law relationships).

For parsimony, we decided to fit a common power law function to all response variables (Adler 1998), covering a broad range of possible non-linear and linear biodiversity effects.

The common power law function used was

y = a + b × sowndiv c

Where y is the response variable, sowdiv is sown plant species richness, and a, b and c are parameters to be estimated from the data.

Note that this model also allows linear models (for c=1) and null models (for c=0).

Because many response variables can be assumed to be zero for zero plant species richness, we excluded the intercept from the model in cases where the c parameter was compared across different response variables (model named Pa4 below).

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 25

Page 26: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

The power law models were fitted using the following R code:

evaluate.small=function(response=quote(response),DF=quote(DF)){require(MASS)require(pgirmess)require(nlme)options(width=500,show.error.messages=T)

DF <- cbind(response = DF[[response]], DF)

L=list(Pa1=try(nls(response~a+b*sowndiv^c,start=list(a=1,b=1,c=1),DF)),

Pa2=try(nls(response~a+b*sowndiv,start=list(a=1,b=1),DF)), Pa3=try(nls(response~a+sowndiv^c,start=list(a=1,c=1),DF)), Pa4=try(nls(response~b*sowndiv^c,start=list(b=1,c=1),DF)), Pa5=try(nls(response~sowndiv^c,start=list(c=1),DF)))

L2=Filter(function(x) !inherits(x, "try-error"), L) #to select only those models that converged without errornn=names(L2)

called=lapply(L2[1],function(x)x$call)

params=lapply(L2[1],function(x)summary(x)[10])

summary=lapply(L2[1],function(x)summary(x))

called=sub("response",response,called)replacevec<-c("newsynthesis.ranged")

called=sub("DF",replacevec,called)

returnlist=list(response=response,selected.model=called,all.models=L2,params=params,summary=summary)return(returnlist)}

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 26

Page 27: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Multivariate linear models

Measurements collected on the same 82 plots cannot be considered statistically independent; for example, herbivory and decomposition can be indirectly correlated via faeces of herbivorous insects or induced leaf abscission. Hence, we used multivariate linear models54 to compare the responses of different variables to biodiversity. For parsimony, multivariate linear models consisted of a matrix of response variables, and log (plant species richness) as the only explanatory variable.

We used the log of plant species richness to linearize individual relationships between each response and explanatory variable, and to reduce leverage. The model was fitted like this:

model1<-lm(cbind(response.variable1,response.variable2...)~logdiv)

We constructed three multivariate models, one for organism abundances, one for organism species richness, and one for biotic interactions. The overall output from these models yielded Pillai´s trace and approximate F values cited in the manuscript text.

For every model, we further constructed a matrix of contrast coefficients for the response variables that was used to compare the slopes of the response variables with one another. In all cases, we used so-called successive difference contrasts53.

For example, the successive difference contrasts for a set of 8 response variables was specified using

require(MASS)contr.sdif(8)

In this case, the first comparison is between herbivores and carnivores, the second comparison is between parasitoids and carnivores, and so on.

F- and P-values for each comparison were calculated from the diagonal elements of the resulting hypothesis and error sum of squares-and products matrices (here termed SSPH and SSPE; see also Ref. 54) using the following formulae:

f.value=diag(linhyp$SSPH)/(diag(linhyp1$SSPE)/res.df) p.value=1-pf(f.value,1,res.df)

where linhyp is the linear hypothesis constructed using the matrix of contrast coefficients, and res.df are the residual degrees of freedom of the multivariate linear model under consideration.

Structural equation models

As effects of plant species richness on organism abundances or diversity may also be mediated indirectly, we decided to employ structural equation models (SEMs; see Refs. 55,56) to allow multiple pathways for the effects of plant species richness.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 27

Page 28: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

SEMs are particularly well suited also in an experimental context, i.e. where some variables are deliberately manipulated experimentally (Grace 2006, pp. 233 ff). Further, SEMs "can be used to develop accurate and meaningful final multiple regression models when collinearities among explanatory variables are thought to be present" (see Ref. 57).

We use the following terminology for graphical representations of structural equation models:

y1

x1

y2

ß1;3

ß1;1

ß1;2

ß0;2

ß0;1

ß0;3

Φ12

ε1 ε2

x1, y1 and y2 are observed variables; ß0;1, ß0;2 and ß0;3 are intercepts, ß1;1, ß1;2 and ß1;3 are path coefficients representing directed effects of x1 on y1, y1 on x1, and x1 on y2. ε1 and ε2 are residual errors, and φ12 represents the residual co-variance between ε1 and ε2. The corresponding structural equations are:

ε1~N(0, σ1)ε2~N(0, σ2)

y1=ß0;1+ ß1;1 x1 + ε1x1=ß0;2+ ß1;2 y1 y2=ß0;1+ ß1;3 x1 + ε2,

where x1 is treated as an "explanatory" variable measured without error, and ε1 and ε2 fol-low standard normal distributions N with mean 0 and standard deviations σ1...2.

Because plant species richness was our main experimentally manipulated variable, all SEMs started off with plant species richness and further trophic groups were added both above- and below ground. All "response" variables were log-transformed and scaled to [0;1] before analysis to avoid non-positive definite residual covariance matrices. Plant species richness was log-transformed before analysis to reduce leverage. In essence, we therefore fitted log-log models that were essentially linearized versions of the individual non-linear regression models. Missing values were replaced by the mean. The total sample size was N=50 data points.

This allowed us to use up k<49 degrees of freedom for all SEMs. Hence, with a total of about 50 variables for all above- and belowground organism groups, it was not possible to fit a "complete" above-/belowground food web model.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 28

Page 29: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

We therefore present two types of SEMs:

(1) An above-/belowground SEM incorporating only organism groups with a size of >2mm (macrofauna).

(2) A belowground SEM incorporating only belowground organism groups.

For both types of SEMs, we decided on the initial model by considering published food webs (e.g. Coleman et al. 2003) and collecting expert opinions before the actual model-fitting process. The resulting initial models were then simplified using the "Specification search" command in AMOS 16.0 for Windows XP (SPSS, Inc). The minimal adequate model was considered to be the one that minimized Akaike´s An Information Criterion 58. For the minimal adequate model, the 95% confidence interval of the root mean square error of approximation (RMSEA) was further required to include 0 (see Ref. 59).

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 29

Page 30: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Minimum Median Mean Maximum NDesign variablesGrass presence (1=absent, 2=present) 1 1 1.46 2 82Legume presence (1=absent, 2=present) 1 1 1.48 2 82Small herb presence (1=absent, 2=present) 1 2 1.52 2 82Tall herb presence (1=absent, 2=present) 1 2 1.54 2 82Plant functional group richness (1-4) 1 2 2.12 4 82Sown plant species richness (1-60) 1 4 8.59 60 82

Organism abundancesMicrobial biomass (µg C/g soil) 5.40×102 9.41×102 9.43×102 1.62×103 82Amobae abundance 1.95×103 1.42×104 3.60×104 1.78×105 12Flagellate abundance 2.09×103 9.58×103 1.23×104 1.98×104 12Saprophagous macrofauna abundance 0 7 8.94 51 80Saprophagous mesofauna abundance 0 4 7.51 64 80Herbivorous macrofauna abundance 0 4 4.76 19 80Predatory macrofauna abundance 0 11.5 15.49 101 80Bacterivorous nematode abundance 0 16 18.22 86 73Fungivorous nematode abundance 0 13 17.17 78 73Plant-feeding nematode abundance 2.07 47 60.47 201 73Predatory nematode abundance 0 1 1.84 24.47 73Omnivorous nematode abundance 0 8 10.19 46 73Collembola abundance 0 23 28.1 104 80Mite abundance 0 16.5 21.9 102 80Gamasida abundance 0 3 5.49 38 80Aboveground herbivore abundance 181 609 665.16 1691 50Aboveground carnivore abundance 221.5 343.62 338.33 533.5 50Aboveground omnivore abundance 18.75 49.25 51.17 119.5 50Aboveground parasitoid abundance 48 140 177.6 468 50Aboveground hyperparasitoid abundance 0 1 1.46 5 28Pollinator abundance 6 49 54.98 187 50Invader abundance 11.14 133.14 179.78 815.67 82Vole abundance 0 0.5 6.1 67 82

Supplementary Tables

Supplementary Table 1 | Summaries of response variables on original scale. Statistical summaries and units of measurement for the response variables used in this study on their original scale. The values of each observation yi on the transformed scale can easily be computed using this table and the formula: y´=(yi-ymin)/(ymax-ymin). For example, a herbivory value of 3% corresponds to (3-0.02)/(9.48-0.02) = 2.98/9.46=0.32 on the transformed scale. N is the number of plots with non-missing values (sample size).

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 30

Page 31: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Minimum Median Mean Maximum NOrganism species richnessMycorrhizal species richness 3 8 7.4 12 77Saprophagous macrofauna species rich-ness

0 2 1.94 4 80

Saprophagous mesofauna species richness 0 1 1.39 3 80Herbivorous macrofauna species richness 0 2 2.58 7 80Predatory macrofauna species richness 0 4.5 4.59 11 80Bacterivorous nematode species richness 0 3 2.9 6 72Fungivorous nematode species richness 0 3 2.42 4 72Plant-feeding nematode species richness 1 6 5.81 11 72Predatory nematode species richness 0 0 0.53 3 72Omnivorous nematode species richness 0 2 1.89 5 72Collembola species richness 0 6 5.67 11 80Aboveground herbivore species richness 35 58 62.71 111.5 50Aboveground carnivore species richness 44 61.5 61.67 75 50Aboveground omnivore species richness 7 15.25 14.92 24 50Aboveground parasitoid species richness 9 21.5 22.48 36 50Pollinator species richness 2 8 8.6 17 50Invader species richness 2.75 6.62 7.45 16.44 82Pathogen species richness 0 3 2.65 5 82

Organism interactionsCommunity herbivory (percent) 0.02 2.01 2.2 9.48 82Parasitism (percent) 0 14.43 16.95 57.14 78Flower visitor frequency (visits/6 Min.) 0 6.83 13.24 108 73Litter decomposition (percent) 42.33 69.67 69.24 89 44Seed predation (proportion removed) 0.22 0.78 0.75 1 46Pathogen severity (percent) 0 1.05 1.35 4.08 82Invasion (individuals/m²) 0 1.5 4.19 39 80Bioturbation (burrows per 400 m²) 0 14.75 31.45 209 82Ant activity (colonies per 4 m²) 0 3 2.98 9 81Microbial respiration (µL O2 g soil-1 x h-1) 1.8 3.05 3.11 7.67 82

Other covariatesAboveground plant biomass (g/m²) 6.71 240.68 277 614.21 82Aboveground dead plant biomass (g/m²) 8.84 24.59 26.89 79.34 82Leaf area index (m²/m²) 0.76 2.13 2.42 4.36 82Root length growth (cm/cm³ soil) 4.2 20.26 21.37 49.85 81

Supplementary Table 1 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 31

Page 32: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Table 2 | Model selection tables for all response variables and all models considered (see following pages) Column names: model name, an internal name used to uniquely label all models fitted per response variable; model formula, the model formula used (in R notation); variance functions and covariate formulae for gnls models not shown here (see Supplementary Table 3 for the full specification of all mod-els); LL maximized log-likelihood of the model, given the data; K, number of estimated pa-rameters in the model; N2K, the number of observations, divided by K; AICc, Akaike´s An Information Criterion, corrected for small sample sizes; deltAICc, the difference between AICc and the lowest AICc value in the set of models considered for a given response vari-able; w_ic, the AICc weights.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 32

Page 33: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

L02

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

61.9

3516

5.12

5-8

3.50

00.

000

0.52

Mic

robi

al b

iom

ass

L01

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

61.2

6016

5.12

5-8

2.15

21.

348

0.26

Mic

robi

al b

iom

ass

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^257

.717

155.

467

-78.

161

5.33

90.

04

Mic

robi

al b

iom

ass

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.1

503

27.3

33-7

5.99

37.

507

0.01

Mic

robi

al b

iom

ass

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)41

.150

327

.333

-75.

993

7.50

70.

01

Mic

robi

al b

iom

ass

Pa3

a +

sow

ndiv

^c41

.021

327

.333

-75.

734

7.76

60.

01

Mic

robi

al b

iom

ass

Pb31

a +

sow

ndiv

^c41

.021

327

.333

-75.

734

7.76

60.

01

Mic

robi

al b

iom

ass

L011

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

57.8

4716

5.12

5-7

5.32

48.

176

0.01

Mic

robi

al b

iom

ass

L021

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

57.7

6916

5.12

5-7

5.16

98.

331

0.01

Mic

robi

al b

iom

ass

Pa4

b *

sow

ndiv

^c40

.738

327

.333

-75.

168

8.33

20.

01

Mic

robi

al b

iom

ass

Pb41

b *

sow

ndiv

^c40

.738

327

.333

-75.

168

8.33

20.

01

Mic

robi

al b

iom

ass

M3

a *

sow

ndiv

/(b

+ so

wnd

iv)

42.8

795

16.4

00-7

4.96

98.

531

0.01

Mic

robi

al b

iom

ass

Pc33

1a

+ so

wnd

iv^c

41.4

054

20.5

00-7

4.29

09.

210

0.01

Mic

robi

al b

iom

ass

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.2

524

20.5

00-7

3.98

49.

515

0.00

Mic

robi

al b

iom

ass

Pc32

1a

+ so

wnd

iv^c

41.2

104

20.5

00-7

3.90

19.

599

0.00

Mic

robi

al b

iom

ass

Pc43

1b

* so

wnd

iv^c

41.1

114

20.5

00-7

3.70

39.

797

0.00

Mic

robi

al b

iom

ass

M32

1a

* so

wnd

iv/(

b +

sow

ndiv

)43

.375

613

.667

-73.

630

9.87

00.

00

Mic

robi

al b

iom

ass

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)39

.966

327

.333

-73.

624

9.87

60.

00

Mic

robi

al b

iom

ass

Pg18

1a

+ so

wnd

iv^c

42.1

225

16.4

00-7

3.45

510

.045

0.00

Mic

robi

al b

iom

ass

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)40

.914

420

.500

-73.

309

10.1

910.

00

Mic

robi

al b

iom

ass

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

40.9

144

20.5

00-7

3.30

910

.191

0.00

Mic

robi

al b

iom

ass

Pc42

1b

* so

wnd

iv^c

40.9

144

20.5

00-7

3.30

810

.192

0.00

Mic

robi

al b

iom

ass

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)40

.793

420

.500

-73.

067

10.4

330.

00

Mic

robi

al b

iom

ass

M14

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)48

.042

108.

200

-72.

985

10.5

150.

00

Mic

robi

al b

iom

ass

Pg19

1b

* so

wnd

iv^c

41.8

605

16.4

00-7

2.93

010

.570

0.00

Mic

robi

al b

iom

ass

M31

1a

* so

wnd

iv/(

b +

sow

ndiv

)42

.938

613

.667

-72.

756

10.7

440.

00

Mic

robi

al b

iom

ass

Pf13

1a

+ so

wnd

iv^c

41.7

215

16.4

00-7

2.65

310

.846

0.00

Mic

robi

al b

iom

ass

M22

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)41

.564

516

.400

-72.

338

11.1

620.

00

Mic

robi

al b

iom

ass

M5

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.5

135

16.4

00-7

2.23

711

.263

0.00

Mic

robi

al b

iom

ass

M21

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)41

.488

516

.400

-72.

188

11.3

120.

00

Mic

robi

al b

iom

ass

Pf14

1b

* so

wnd

iv^c

41.4

875

16.4

00-7

2.18

511

.315

0.00

Mic

robi

al b

iom

ass

M4

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.4

835

16.4

00-7

2.17

611

.324

0.00

Mic

robi

al b

iom

ass

Pn18

31a

+ so

wnd

iv^c

42.5

296

13.6

67-7

1.93

911

.561

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 33

Page 34: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

Pd81

a +

sow

ndiv

^c41

.282

516

.400

-71.

775

11.7

250.

00

Mic

robi

al b

iom

ass

Pd91

b *

sow

ndiv

^c41

.275

516

.400

-71.

761

11.7

390.

00

Mic

robi

al b

iom

ass

Pn19

31b

* so

wnd

iv^c

42.2

776

13.6

67-7

1.43

412

.066

0.00

Mic

robi

al b

iom

ass

Pn18

21a

+ so

wnd

iv^c

42.2

086

13.6

67-7

1.29

612

.204

0.00

Mic

robi

al b

iom

ass

Pm13

31a

+ so

wnd

iv^c

42.0

696

13.6

67-7

1.01

712

.483

0.00

Mic

robi

al b

iom

ass

M81

a *

sow

ndiv

/(b

+ so

wnd

iv)

43.1

957

11.7

14-7

0.87

712

.623

0.00

Mic

robi

al b

iom

ass

M6

a *

sow

ndiv

/(b

+ so

wnd

iv)

43.1

727

11.7

14-7

0.83

112

.669

0.00

Mic

robi

al b

iom

ass

Pn19

21b

* so

wnd

iv^c

41.9

376

13.6

67-7

0.75

512

.745

0.00

Mic

robi

al b

iom

ass

M52

2a

* so

wnd

iv/(

b +

sow

ndiv

)41

.927

613

.667

-70.

734

12.7

660.

00

Mic

robi

al b

iom

ass

Ph24

1b

* so

wnd

iv^c

43.1

177

11.7

14-7

0.72

012

.780

0.00

Mic

robi

al b

iom

ass

Pm13

21a

+ so

wnd

iv^c

41.9

166

13.6

67-7

0.71

312

.787

0.00

Mic

robi

al b

iom

ass

Pd61

a +

b *

sow

ndiv

^c43

.040

711

.714

-70.

567

12.9

330.

00

Mic

robi

al b

iom

ass

Pm14

31b

* so

wnd

iv^c

41.8

366

13.6

67-7

0.55

312

.947

0.00

Mic

robi

al b

iom

ass

Ph23

1a

+ so

wnd

iv^c

43.0

047

11.7

14-7

0.49

413

.006

0.00

Mic

robi

al b

iom

ass

M41

1a

* so

wnd

iv/(

b +

sow

ndiv

)41

.768

613

.667

-70.

417

13.0

830.

00

Mic

robi

al b

iom

ass

Pj33

1a

+ so

wnd

iv^c

42.9

347

11.7

14-7

0.35

413

.146

0.00

Mic

robi

al b

iom

ass

Pe83

1a

+ so

wnd

iv^c

41.6

996

13.6

67-7

0.27

813

.222

0.00

Mic

robi

al b

iom

ass

Pe93

1b

* so

wnd

iv^c

41.6

956

13.6

67-7

0.26

913

.231

0.00

Mic

robi

al b

iom

ass

M51

1a

* so

wnd

iv/(

b +

sow

ndiv

)41

.694

613

.667

-70.

268

13.2

320.

00

Mic

robi

al b

iom

ass

Pm14

21b

* so

wnd

iv^c

41.6

786

13.6

67-7

0.23

613

.264

0.00

Mic

robi

al b

iom

ass

M42

2a

* so

wnd

iv/(

b +

sow

ndiv

)41

.613

613

.667

-70.

107

13.3

930.

00

Mic

robi

al b

iom

ass

Pj34

1b

* so

wnd

iv^c

42.7

497

11.7

14-6

9.98

413

.516

0.00

Mic

robi

al b

iom

ass

Pe82

1a

+ so

wnd

iv^c

41.4

766

13.6

67-6

9.83

313

.667

0.00

Mic

robi

al b

iom

ass

Pe92

1b

* so

wnd

iv^c

41.4

666

13.6

67-6

9.81

213

.688

0.00

Mic

robi

al b

iom

ass

M7

a *

sow

ndiv

/(b

+ so

wnd

iv)

42.4

977

11.7

14-6

9.48

114

.019

0.00

Mic

robi

al b

iom

ass

M62

2a

* so

wnd

iv/(

b +

sow

ndiv

)43

.634

810

.250

-69.

296

14.2

040.

00

Mic

robi

al b

iom

ass

Pd71

a +

b *

sow

ndiv

40.0

335

16.4

00-6

9.27

614

.224

0.00

Mic

robi

al b

iom

ass

M83

2a

* so

wnd

iv/(

b +

sow

ndiv

)43

.624

810

.250

-69.

275

14.2

250.

00

Mic

robi

al b

iom

ass

Pi29

1b

* so

wnd

iv^c

42.3

577

11.7

14-6

9.20

114

.299

0.00

Mic

robi

al b

iom

ass

Pi28

1a

+ so

wnd

iv^c

42.3

557

11.7

14-6

9.19

714

.303

0.00

Mic

robi

al b

iom

ass

Pp24

31b

* so

wnd

iv^c

43.5

848

10.2

50-6

9.19

514

.305

0.00

Mic

robi

al b

iom

ass

Pp23

31a

+ so

wnd

iv^c

43.4

878

10.2

50-6

9.00

214

.498

0.00

Mic

robi

al b

iom

ass

Pr33

31a

+ so

wnd

iv^c

43.3

408

10.2

50-6

8.70

714

.792

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 34

Page 35: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

M11

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)42

.028

711

.714

-68.

542

14.9

580.

00

Mic

robi

al b

iom

ass

M82

1a

* so

wnd

iv/(

b +

sow

ndiv

)43

.254

810

.250

-68.

535

14.9

650.

00

Mic

robi

al b

iom

ass

M61

1a

* so

wnd

iv/(

b +

sow

ndiv

)43

.222

810

.250

-68.

470

15.0

290.

00

Mic

robi

al b

iom

ass

Pp24

21b

* so

wnd

iv^c

43.1

818

10.2

50-6

8.38

915

.111

0.00

Mic

robi

al b

iom

ass

Pr34

31b

* so

wnd

iv^c

43.1

548

10.2

50-6

8.33

615

.164

0.00

Mic

robi

al b

iom

ass

Pp23

21a

+ so

wnd

iv^c

43.0

638

10.2

50-6

8.15

415

.346

0.00

Mic

robi

al b

iom

ass

Pr33

21a

+ so

wnd

iv^c

43.0

198

10.2

50-6

8.06

615

.434

0.00

Mic

robi

al b

iom

ass

Ph22

1a

+ b

* so

wnd

iv41

.695

711

.714

-67.

877

15.6

230.

00

Mic

robi

al b

iom

ass

Pe73

1a

+ b

* so

wnd

iv40

.482

613

.667

-67.

843

15.6

570.

00

Mic

robi

al b

iom

ass

M72

2a

* so

wnd

iv/(

b +

sow

ndiv

)42

.872

810

.250

-67.

771

15.7

290.

00

Mic

robi

al b

iom

ass

Pr34

21b

* so

wnd

iv^c

42.8

398

10.2

50-6

7.70

515

.795

0.00

Mic

robi

al b

iom

ass

Ec21

21a

+ ex

p(c

* so

wnd

iv)

40.3

736

13.6

67-6

7.62

715

.873

0.00

Mic

robi

al b

iom

ass

Pb21

a +

b *

sow

ndiv

36.9

613

27.3

33-6

7.61

415

.886

0.00

Mic

robi

al b

iom

ass

Pa2

a +

b *

sow

ndiv

36.9

613

27.3

33-6

7.61

415

.886

0.00

Mic

robi

al b

iom

ass

Pq28

31a

+ so

wnd

iv^c

42.7

178

10.2

50-6

7.46

116

.039

0.00

Mic

robi

al b

iom

ass

Pq29

31b

* so

wnd

iv^c

42.7

128

10.2

50-6

7.45

116

.049

0.00

Mic

robi

al b

iom

ass

L2so

wnd

iv +

func

gr +

leg

39.1

075

16.4

00-6

7.42

416

.076

0.00

Mic

robi

al b

iom

ass

Pe72

1a

+ b

* so

wnd

iv40

.207

613

.667

-67.

295

16.2

050.

00

Mic

robi

al b

iom

ass

Pg17

1a

+ b

* so

wnd

iv39

.038

516

.400

-67.

287

16.2

130.

00

Mic

robi

al b

iom

ass

M71

1a

* so

wnd

iv/(

b +

sow

ndiv

)42

.621

810

.250

-67.

268

16.2

320.

00

Mic

robi

al b

iom

ass

Pq29

21b

* so

wnd

iv^c

42.5

148

10.2

50-6

7.05

616

.444

0.00

Mic

robi

al b

iom

ass

Pq28

21a

+ so

wnd

iv^c

42.5

058

10.2

50-6

7.03

816

.462

0.00

Mic

robi

al b

iom

ass

Pf12

1a

+ b

* so

wnd

iv38

.854

516

.400

-66.

919

16.5

810.

00

Mic

robi

al b

iom

ass

M11

32d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)42

.436

810

.250

-66.

899

16.6

010.

00

Mic

robi

al b

iom

ass

Pp22

31a

+ b

* so

wnd

iv42

.176

810

.250

-66.

380

17.1

200.

00

Mic

robi

al b

iom

ass

Pc23

1a

+ b

* so

wnd

iv37

.344

420

.500

-66.

168

17.3

320.

00

Mic

robi

al b

iom

ass

Pn17

31a

+ b

* so

wnd

iv39

.613

613

.667

-66.

107

17.3

930.

00

Mic

robi

al b

iom

ass

Pi27

1a

+ b

* so

wnd

iv40

.783

711

.714

-66.

052

17.4

480.

00

Mic

robi

al b

iom

ass

L222

sow

ndiv

+ fu

ncgr

+ le

g39

.577

613

.667

-66.

034

17.4

650.

00

Mic

robi

al b

iom

ass

M91

a *

sow

ndiv

/(b

+ so

wnd

iv)

43.2

409

9.11

1-6

5.98

017

.520

0.00

Mic

robi

al b

iom

ass

Ea92

1a

+ ex

p(c

* so

wnd

iv)

39.5

366

13.6

67-6

5.95

217

.548

0.00

Mic

robi

al b

iom

ass

Pk39

1b

* so

wnd

iv^c

43.1

639

9.11

1-6

5.82

517

.675

0.00

Mic

robi

al b

iom

ass

E32

a +

exp(

c *

sow

ndiv

)37

.167

420

.500

-65.

814

17.6

860.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 35

Page 36: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

Pk38

1a

+ so

wnd

iv^c

43.0

839

9.11

1-6

5.66

617

.834

0.00

Mic

robi

al b

iom

ass

Pj32

1a

+ b

* so

wnd

iv40

.566

711

.714

-65.

618

17.8

820.

00

Mic

robi

al b

iom

ass

Pp22

21a

+ b

* so

wnd

iv41

.779

810

.250

-65.

585

17.9

150.

00

Mic

robi

al b

iom

ass

M13

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)44

.339

108.

200

-65.

579

17.9

210.

00

Mic

robi

al b

iom

ass

Pc22

1a

+ b

* so

wnd

iv37

.024

420

.500

-65.

529

17.9

710.

00

Mic

robi

al b

iom

ass

L21

sow

ndiv

+ fu

ncgr

+ le

g39

.316

613

.667

-65.

511

17.9

890.

00

Mic

robi

al b

iom

ass

L22

sow

ndiv

+ fu

ncgr

+ le

g39

.212

613

.667

-65.

305

18.1

950.

00

Mic

robi

al b

iom

ass

Pm12

31a

+ b

* so

wnd

iv39

.193

613

.667

-65.

266

18.2

340.

00

Mic

robi

al b

iom

ass

L211

sow

ndiv

+ fu

ncgr

+ le

g39

.163

613

.667

-65.

206

18.2

940.

00

Mic

robi

al b

iom

ass

E31

a +

exp(

c *

sow

ndiv

)36

.782

420

.500

-65.

044

18.4

560.

00

Mic

robi

al b

iom

ass

Pq26

31a

+ b

* so

wnd

iv^c

45.3

8711

7.45

5-6

5.00

218

.498

0.00

Mic

robi

al b

iom

ass

Pn17

21a

+ b

* so

wnd

iv39

.049

613

.667

-64.

978

18.5

220.

00

Mic

robi

al b

iom

ass

Pm12

21a

+ b

* so

wnd

iv39

.013

613

.667

-64.

906

18.5

940.

00

Mic

robi

al b

iom

ass

Eb15

21a

+ ex

p(c

* so

wnd

iv)

38.9

636

13.6

67-6

4.80

618

.694

0.00

Mic

robi

al b

iom

ass

Ea91

1a

+ ex

p(c

* so

wnd

iv)

38.9

436

13.6

67-6

4.76

718

.733

0.00

Mic

robi

al b

iom

ass

Pq27

31a

+ b

* so

wnd

iv41

.190

810

.250

-64.

407

19.0

930.

00

Mic

robi

al b

iom

ass

Eb15

11a

+ ex

p(c

* so

wnd

iv)

38.7

416

13.6

67-6

4.36

219

.138

0.00

Mic

robi

al b

iom

ass

M93

2a

* so

wnd

iv/(

b +

sow

ndiv

)43

.680

108.

200

-64.

262

19.2

380.

00

Mic

robi

al b

iom

ass

Ps39

31b

* so

wnd

iv^c

43.6

1010

8.20

0-6

4.12

119

.379

0.00

Mic

robi

al b

iom

ass

Pr32

31a

+ b

* so

wnd

iv41

.003

810

.250

-64.

033

19.4

660.

00

Mic

robi

al b

iom

ass

Ps38

31a

+ so

wnd

iv^c

43.5

3310

8.20

0-6

3.96

719

.533

0.00

Mic

robi

al b

iom

ass

Pq27

21a

+ b

* so

wnd

iv40

.935

810

.250

-63.

897

19.6

030.

00

Mic

robi

al b

iom

ass

Ef39

21a

+ ex

p(c

* so

wnd

iv)

40.8

528

10.2

50-6

3.73

119

.769

0.00

Mic

robi

al b

iom

ass

M92

1a

* so

wnd

iv/(

b +

sow

ndiv

)43

.294

108.

200

-63.

490

20.0

100.

00

Mic

robi

al b

iom

ass

Ps39

21b

* so

wnd

iv^c

43.2

3410

8.20

0-6

3.37

020

.130

0.00

Mic

robi

al b

iom

ass

Pr32

21a

+ b

* so

wnd

iv40

.651

810

.250

-63.

330

20.1

700.

00

Mic

robi

al b

iom

ass

Ps38

21a

+ so

wnd

iv^c

43.1

5510

8.20

0-6

3.21

220

.288

0.00

Mic

robi

al b

iom

ass

Pk37

1a

+ b

* so

wnd

iv41

.722

99.

111

-62.

945

20.5

550.

00

Mic

robi

al b

iom

ass

E2a

+ b

* ex

p(so

wnd

iv)

34.2

223

27.3

33-6

2.13

721

.363

0.00

Mic

robi

al b

iom

ass

Ps37

31a

+ b

* so

wnd

iv42

.217

108.

200

-61.

336

22.1

640.

00

Mic

robi

al b

iom

ass

E22

a +

b *

exp(

sow

ndiv

)34

.840

420

.500

-61.

161

22.3

390.

00

Mic

robi

al b

iom

ass

M13

32d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)43

.226

117.

455

-60.

680

22.8

200.

00

Mic

robi

al b

iom

ass

Ps37

21a

+ b

* so

wnd

iv41

.798

108.

200

-60.

497

23.0

030.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 36

Page 37: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

E21

a +

b *

exp(

sow

ndiv

)34

.224

420

.500

-59.

929

23.5

710.

00

Mic

robi

al b

iom

ass

M16

21d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)43

.829

145.

857

-53.

389

30.1

110.

00

Mic

robi

al b

iom

ass

Ec24

11ex

p(c

* so

wnd

iv)

-16.

779

420

.500

42.0

7712

5.57

70.

00

Mic

robi

al b

iom

ass

Ef42

11ex

p(c

* so

wnd

iv)

-18.

452

516

.400

47.6

9313

1.19

30.

00

Mic

robi

al b

iom

ass

Ec24

21ex

p(c

* so

wnd

iv)

-22.

010

420

.500

52.5

3913

6.03

90.

00

Mic

robi

al b

iom

ass

Pe10

21so

wnd

iv^c

-23.

004

420

.500

54.5

2813

8.02

80.

00

Mic

robi

al b

iom

ass

Ed30

21ex

p(c

* so

wnd

iv)

-21.

873

516

.400

54.5

3513

8.03

50.

00

Mic

robi

al b

iom

ass

Ef42

21ex

p(c

* so

wnd

iv)

-22.

298

516

.400

55.3

8513

8.88

50.

00

Mic

robi

al b

iom

ass

Pp25

21so

wnd

iv^c

-22.

318

516

.400

55.4

2613

8.92

60.

00

Mic

robi

al b

iom

ass

Pq30

21so

wnd

iv^c

-22.

751

516

.400

56.2

9113

9.79

10.

00

Mic

robi

al b

iom

ass

Pr35

21so

wnd

iv^c

-23.

330

516

.400

57.4

4914

0.94

90.

00

Mic

robi

al b

iom

ass

Ps40

21so

wnd

iv^c

-22.

318

613

.667

57.7

5714

1.25

70.

00

Mic

robi

al b

iom

ass

Ec24

exp(

c *

sow

ndiv

)-2

5.82

23

27.3

3357

.952

141.

452

0.00

Mic

robi

al b

iom

ass

E61

exp(

c *

sow

ndiv

)-2

5.83

73

27.3

3357

.982

141.

482

0.00

Mic

robi

al b

iom

ass

Ea12

1ex

p(c

* so

wnd

iv)

-24.

809

420

.500

58.1

3814

1.63

80.

00

Mic

robi

al b

iom

ass

Eb18

11ex

p(c

* so

wnd

iv)

-24.

874

420

.500

58.2

6814

1.76

80.

00

Mic

robi

al b

iom

ass

Pn20

21so

wnd

iv^c

-25.

447

420

.500

59.4

1414

2.91

40.

00

Mic

robi

al b

iom

ass

Ea12

21ex

p(c

* so

wnd

iv)

-27.

410

420

.500

63.3

3814

6.83

80.

00

Mic

robi

al b

iom

ass

Eb18

21ex

p(c

* so

wnd

iv)

-28.

062

420

.500

64.6

4414

8.14

40.

00

Mic

robi

al b

iom

ass

Ea12

exp(

c *

sow

ndiv

)-2

9.32

33

27.3

3364

.953

148.

453

0.00

Mic

robi

al b

iom

ass

Pm15

21so

wnd

iv^c

-29.

450

420

.500

67.4

1915

0.91

90.

00

Mic

robi

al b

iom

ass

Eb18

exp(

c *

sow

ndiv

)-3

0.73

33

27.3

3367

.775

151.

275

0.00

Mic

robi

al b

iom

ass

E62

exp(

c *

sow

ndiv

)-3

1.04

33

27.3

3368

.394

151.

894

0.00

Mic

robi

al b

iom

ass

Pc52

1so

wnd

iv^c

-31.

052

327

.333

68.4

1115

1.91

10.

00

Mic

robi

al b

iom

ass

Pe10

31so

wnd

iv^c

-33.

608

420

.500

75.7

3615

9.23

60.

00

Mic

robi

al b

iom

ass

Pp25

31so

wnd

iv^c

-33.

351

516

.400

77.4

9116

0.99

10.

00

Mic

robi

al b

iom

ass

Pq30

31so

wnd

iv^c

-33.

507

516

.400

77.8

0316

1.30

30.

00

Mic

robi

al b

iom

ass

Ps40

31so

wnd

iv^c

-33.

349

613

.667

79.8

1816

3.31

80.

00

Mic

robi

al b

iom

ass

Pr35

31so

wnd

iv^c

-34.

584

516

.400

79.9

5716

3.45

60.

00

Mic

robi

al b

iom

ass

E5b

* ex

p(so

wnd

iv)

-39.

024

241

.000

82.2

0016

5.70

00.

00

Mic

robi

al b

iom

ass

E52

b *

exp(

sow

ndiv

)-3

8.41

33

27.3

3383

.133

166.

633

0.00

Mic

robi

al b

iom

ass

Pn20

31so

wnd

iv^c

-37.

755

420

.500

84.0

2916

7.52

90.

00

Mic

robi

al b

iom

ass

Pm15

31so

wnd

iv^c

-40.

766

420

.500

90.0

5117

3.55

10.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 37

Page 38: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

Pd10

1so

wnd

iv^c

-42.

131

327

.333

90.5

7017

4.07

00.

00

Mic

robi

al b

iom

ass

Pg20

1so

wnd

iv^c

-43.

048

327

.333

92.4

0317

5.90

30.

00

Mic

robi

al b

iom

ass

Ph25

1so

wnd

iv^c

-41.

970

420

.500

92.4

5917

5.95

80.

00

Mic

robi

al b

iom

ass

Pi30

1so

wnd

iv^c

-42.

003

420

.500

92.5

2617

6.02

60.

00

Mic

robi

al b

iom

ass

Pc53

1so

wnd

iv^c

-43.

207

327

.333

92.7

2117

6.22

10.

00

Mic

robi

al b

iom

ass

Pb51

sow

ndiv

^c-4

4.52

02

41.0

0093

.193

176.

693

0.00

Mic

robi

al b

iom

ass

Pa5

sow

ndiv

^c-4

4.52

02

41.0

0093

.193

176.

693

0.00

Mic

robi

al b

iom

ass

Pj35

1so

wnd

iv^c

-42.

416

420

.500

93.3

5117

6.85

10.

00

Mic

robi

al b

iom

ass

Pf15

1so

wnd

iv^c

-44.

034

327

.333

94.3

7717

7.87

70.

00

Mic

robi

al b

iom

ass

Pk40

1so

wnd

iv^c

-41.

948

516

.400

94.6

8617

8.18

60.

00

Mic

robi

al b

iom

ass

Ec22

21a

+ ex

p(so

wnd

iv)

-794

.328

420

.500

1597

.176

1680

.676

0.00

Mic

robi

al b

iom

ass

Ed28

21a

+ ex

p(so

wnd

iv)

-794

.328

516

.400

1599

.445

1682

.945

0.00

Mic

robi

al b

iom

ass

Ee34

2a

+ ex

p(so

wnd

iv)

-794

.328

516

.400

1599

.446

1682

.946

0.00

Mic

robi

al b

iom

ass

Eg46

21a

+ ex

p(so

wnd

iv)

-794

.328

613

.667

1601

.775

1685

.275

0.00

Mic

robi

al b

iom

ass

E42

a +

exp(

sow

ndiv

)-8

00.9

883

27.3

3316

08.2

8516

91.7

850.

00

Mic

robi

al b

iom

ass

Eb16

21a

+ ex

p(so

wnd

iv)

-800

.869

420

.500

1610

.258

1693

.758

0.00

Mic

robi

al b

iom

ass

Ea10

21a

+ ex

p(so

wnd

iv)

-800

.886

420

.500

1610

.291

1693

.791

0.00

Mic

robi

al b

iom

ass

Ef40

21a

+ ex

p(so

wnd

iv)

-800

.642

516

.400

1612

.074

1695

.574

0.00

Mic

robi

al b

iom

ass

E51

b *

exp(

sow

ndiv

)-1

656.

492

327

.333

3319

.291

3402

.791

0.00

Mic

robi

al b

iom

ass

E41

a +

exp(

sow

ndiv

)-1

729.

079

327

.333

3464

.466

3547

.966

0.00

Mic

robi

al b

iom

ass

Ea10

11a

+ ex

p(so

wnd

iv)

-172

8.39

04

20.5

0034

65.3

0035

48.8

000.

00

Mic

robi

al b

iom

ass

Eb16

11a

+ ex

p(so

wnd

iv)

-172

9.03

84

20.5

0034

66.5

9635

50.0

960.

00

Mic

robi

al b

iom

ass

Ec22

11a

+ ex

p(so

wnd

iv)

-172

9.07

94

20.5

0034

66.6

7835

50.1

780.

00

Mic

robi

al b

iom

ass

Ef40

11a

+ ex

p(so

wnd

iv)

-172

8.38

45

16.4

0034

67.5

5835

51.0

580.

00

Mic

robi

al b

iom

ass

Ed28

11a

+ ex

p(so

wnd

iv)

-172

8.39

05

16.4

0034

67.5

7035

51.0

700.

00

Mic

robi

al b

iom

ass

Ee34

1a

+ ex

p(so

wnd

iv)

-172

9.03

85

16.4

0034

68.8

6635

52.3

660.

00

Mic

robi

al b

iom

ass

Eg46

11a

+ ex

p(so

wnd

iv)

-172

8.38

46

13.6

6734

69.8

8835

53.3

880.

00

Mic

robi

al b

iom

ass

Ef37

21a

+ b

* ex

p(c

* so

wnd

iv)

-271

9.87

311

7.45

554

65.5

1855

49.0

170.

00

Mic

robi

al b

iom

ass

Ec19

21a

+ b

* ex

p(c

* so

wnd

iv)

-287

7.53

48

10.2

5057

73.0

4058

56.5

400.

00

Mic

robi

al b

iom

ass

E4a

+ ex

p(so

wnd

iv)

-491

2.51

62

41.0

0098

29.1

8399

12.6

830.

00

Mic

robi

al b

iom

ass

Ea10

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9914

.839

0.00

Mic

robi

al b

iom

ass

Eb16

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9914

.839

0.00

Mic

robi

al b

iom

ass

Ec22

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9914

.839

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 38

Page 39: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al b

iom

ass

Ed28

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9917

.051

0.00

Mic

robi

al b

iom

ass

Ee40

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9917

.051

0.00

Mic

robi

al b

iom

ass

Ef40

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9917

.051

0.00

Mic

robi

al b

iom

ass

Eg46

a +

exp(

sow

ndiv

)-4

912.

516

516

.400

9835

.821

9919

.321

0.00

Mic

robi

al re

spir

atio

nM

211

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

62.4

095

16.4

00-1

14.0

290.

000

0.14

Mic

robi

al re

spir

atio

nA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

60.0

093

27.3

33-1

13.7

110.

318

0.12

Mic

robi

al re

spir

atio

nM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

59.7

303

27.3

33-1

13.1

520.

878

0.09

Mic

robi

al re

spir

atio

nM

1a

* so

wnd

iv/(

b +

sow

ndiv

)59

.730

327

.333

-113

.152

0.87

80.

09

Mic

robi

al re

spir

atio

nM

411

a *

sow

ndiv

/(b

+ so

wnd

iv)

62.7

836

13.6

67-1

12.4

461.

583

0.06

Mic

robi

al re

spir

atio

nPc

321

a +

sow

ndiv

^c60

.190

420

.500

-111

.861

2.16

80.

05

Mic

robi

al re

spir

atio

nM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)60

.138

420

.500

-111

.756

2.27

30.

05

Mic

robi

al re

spir

atio

nAS

2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)60

.010

420

.500

-111

.501

2.52

80.

04

Mic

robi

al re

spir

atio

nA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

60.0

104

20.5

00-1

11.5

012.

528

0.04

Mic

robi

al re

spir

atio

nLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

59.6

774

20.5

00-1

10.8

353.

194

0.03

Mic

robi

al re

spir

atio

nM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

61.9

006

13.6

67-1

10.6

803.

349

0.03

Mic

robi

al re

spir

atio

nM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

61.8

846

13.6

67-1

10.6

473.

382

0.03

Mic

robi

al re

spir

atio

nPm

1321

a +

sow

ndiv

^c61

.709

613

.667

-110

.298

3.73

10.

02

Mic

robi

al re

spir

atio

nM

4a

* so

wnd

iv/(

b +

sow

ndiv

)60

.326

516

.400

-109

.862

4.16

70.

02

Mic

robi

al re

spir

atio

nM

222

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

60.2

245

16.4

00-1

09.6

594.

371

0.02

Mic

robi

al re

spir

atio

nPe

821

a +

sow

ndiv

^c61

.067

613

.667

-109

.014

5.01

50.

01

Mic

robi

al re

spir

atio

nPa

3a

+ so

wnd

iv^c

57.5

783

27.3

33-1

08.8

485.

181

0.01

Mic

robi

al re

spir

atio

nPb

31a

+ so

wnd

iv^c

57.5

783

27.3

33-1

08.8

485.

181

0.01

Mic

robi

al re

spir

atio

nM

5a

* so

wnd

iv/(

b +

sow

ndiv

)59

.764

516

.400

-108

.738

5.29

20.

01

Mic

robi

al re

spir

atio

nM

3a

* so

wnd

iv/(

b +

sow

ndiv

)59

.731

516

.400

-108

.672

5.35

70.

01

Mic

robi

al re

spir

atio

nPc

421

b *

sow

ndiv

^c58

.486

420

.500

-108

.452

5.57

70.

01

Mic

robi

al re

spir

atio

nPe

921

b *

sow

ndiv

^c60

.555

613

.667

-107

.990

6.04

00.

01

Mic

robi

al re

spir

atio

nPm

1421

b *

sow

ndiv

^c60

.552

613

.667

-107

.983

6.04

60.

01

Mic

robi

al re

spir

atio

nM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

62.9

608

10.2

50-1

07.9

476.

082

0.01

Mic

robi

al re

spir

atio

nM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

62.8

218

10.2

50-1

07.6

706.

359

0.01

Mic

robi

al re

spir

atio

nM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

60.3

876

13.6

67-1

07.6

546.

376

0.01

Mic

robi

al re

spir

atio

nPn

1821

a +

sow

ndiv

^c60

.321

613

.667

-107

.521

6.50

80.

01

Mic

robi

al re

spir

atio

nPf

131

a +

sow

ndiv

^c58

.961

516

.400

-107

.133

6.89

70.

00

Mic

robi

al re

spir

atio

nPd

81a

+ so

wnd

iv^c

58.8

415

16.4

00-1

06.8

927.

137

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 39

Page 40: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nPc

331

a +

sow

ndiv

^c57

.625

420

.500

-106

.731

7.29

80.

00

Mic

robi

al re

spir

atio

nPd

91b

* so

wnd

iv^c

58.7

125

16.4

00-1

06.6

357.

394

0.00

Mic

robi

al re

spir

atio

nM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.8

466

13.6

67-1

06.5

727.

458

0.00

Mic

robi

al re

spir

atio

nM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.8

006

13.6

67-1

06.4

807.

550

0.00

Mic

robi

al re

spir

atio

nPa

4b

* so

wnd

iv^c

56.3

483

27.3

33-1

06.3

897.

640

0.00

Mic

robi

al re

spir

atio

nPb

41b

* so

wnd

iv^c

56.3

483

27.3

33-1

06.3

897.

640

0.00

Mic

robi

al re

spir

atio

nPq

2821

a +

sow

ndiv

^c62

.032

810

.250

-106

.092

7.93

70.

00

Mic

robi

al re

spir

atio

nPr

3321

a +

sow

ndiv

^c61

.957

810

.250

-105

.942

8.08

70.

00

Mic

robi

al re

spir

atio

nM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

61.9

408

10.2

50-1

05.9

088.

121

0.00

Mic

robi

al re

spir

atio

nPf

141

b *

sow

ndiv

^c58

.114

516

.400

-105

.439

8.59

10.

00

Mic

robi

al re

spir

atio

nPr

3421

b *

sow

ndiv

^c61

.701

810

.250

-105

.429

8.60

00.

00

Mic

robi

al re

spir

atio

nM

7a

* so

wnd

iv/(

b +

sow

ndiv

)60

.422

711

.714

-105

.331

8.69

80.

00

Mic

robi

al re

spir

atio

nPq

2921

b *

sow

ndiv

^c61

.647

810

.250

-105

.321

8.70

80.

00

Mic

robi

al re

spir

atio

nM

1221

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

61.6

318

10.2

50-1

05.2

898.

740

0.00

Mic

robi

al re

spir

atio

nPg

181

a +

sow

ndiv

^c58

.011

516

.400

-105

.233

8.79

60.

00

Mic

robi

al re

spir

atio

nM

81a

* so

wnd

iv/(

b +

sow

ndiv

)60

.369

711

.714

-105

.224

8.80

50.

00

Mic

robi

al re

spir

atio

nPn

1921

b *

sow

ndiv

^c58

.998

613

.667

-104

.877

9.15

20.

00

Mic

robi

al re

spir

atio

nPm

1331

a +

sow

ndiv

^c58

.961

613

.667

-104

.802

9.22

70.

00

Mic

robi

al re

spir

atio

nPe

831

a +

sow

ndiv

^c58

.904

613

.667

-104

.688

9.34

20.

00

Mic

robi

al re

spir

atio

nPe

931

b *

sow

ndiv

^c58

.832

613

.667

-104

.544

9.48

60.

00

Mic

robi

al re

spir

atio

nPp

2321

a +

sow

ndiv

^c61

.104

810

.250

-104

.235

9.79

40.

00

Mic

robi

al re

spir

atio

nPc

431

b *

sow

ndiv

^c56

.374

420

.500

-104

.228

9.80

10.

00

Mic

robi

al re

spir

atio

nM

6a

* so

wnd

iv/(

b +

sow

ndiv

)59

.767

711

.714

-104

.021

10.0

080.

00

Mic

robi

al re

spir

atio

nPj

341

b *

sow

ndiv

^c59

.744

711

.714

-103

.974

10.0

550.

00

Mic

robi

al re

spir

atio

nPg

191

b *

sow

ndiv

^c57

.215

516

.400

-103

.641

10.3

880.

00

Mic

robi

al re

spir

atio

nM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

63.3

2310

8.20

0-1

03.5

4810

.481

0.00

Mic

robi

al re

spir

atio

nPi

291

b *

sow

ndiv

^c59

.440

711

.714

-103

.366

10.6

640.

00

Mic

robi

al re

spir

atio

nPi

281

a +

sow

ndiv

^c59

.425

711

.714

-103

.336

10.6

940.

00

Mic

robi

al re

spir

atio

nPj

331

a +

sow

ndiv

^c59

.394

711

.714

-103

.274

10.7

550.

00

Mic

robi

al re

spir

atio

nPp

2421

b *

sow

ndiv

^c60

.588

810

.250

-103

.203

10.8

260.

00

Mic

robi

al re

spir

atio

nPm

1431

b *

sow

ndiv

^c58

.119

613

.667

-103

.118

10.9

110.

00

Mic

robi

al re

spir

atio

nM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

60.4

758

10.2

50-1

02.9

7711

.052

0.00

Mic

robi

al re

spir

atio

nPe

721

a +

b *

sow

ndiv

58.0

326

13.6

67-1

02.9

4311

.086

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 40

Page 41: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nPn

1831

a +

sow

ndiv

^c58

.016

613

.667

-102

.913

11.1

160.

00

Mic

robi

al re

spir

atio

nM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

60.4

398

10.2

50-1

02.9

0611

.123

0.00

Mic

robi

al re

spir

atio

nPh

231

a +

sow

ndiv

^c58

.844

711

.714

-102

.175

11.8

550.

00

Mic

robi

al re

spir

atio

nPh

241

b *

sow

ndiv

^c58

.713

711

.714

-101

.912

12.1

180.

00

Mic

robi

al re

spir

atio

nPd

71a

+ b

* so

wnd

iv56

.350

516

.400

-101

.910

12.1

190.

00

Mic

robi

al re

spir

atio

nM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.8

478

10.2

50-1

01.7

2112

.308

0.00

Mic

robi

al re

spir

atio

nPr

3431

b *

sow

ndiv

^c59

.846

810

.250

-101

.720

12.3

090.

00

Mic

robi

al re

spir

atio

nPs

3821

a +

sow

ndiv

^c62

.343

108.

200

-101

.587

12.4

420.

00

Mic

robi

al re

spir

atio

nPn

1931

b *

sow

ndiv

^c57

.254

613

.667

-101

.388

12.6

410.

00

Mic

robi

al re

spir

atio

nPq

2931

b *

sow

ndiv

^c59

.530

810

.250

-101

.086

12.9

430.

00

Mic

robi

al re

spir

atio

nPq

2831

a +

sow

ndiv

^c59

.468

810

.250

-100

.964

13.0

660.

00

Mic

robi

al re

spir

atio

nM

91a

* so

wnd

iv/(

b +

sow

ndiv

)60

.720

99.

111

-100

.939

13.0

900.

00

Mic

robi

al re

spir

atio

nPs

3921

b *

sow

ndiv

^c62

.017

108.

200

-100

.936

13.0

940.

00

Mic

robi

al re

spir

atio

nPr

3331

a +

sow

ndiv

^c59

.423

810

.250

-100

.873

13.1

560.

00

Mic

robi

al re

spir

atio

nM

1521

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

63.3

1911

7.45

5-1

00.8

6713

.162

0.00

Mic

robi

al re

spir

atio

nM

1421

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

63.1

1011

7.45

5-1

00.4

4913

.580

0.00

Mic

robi

al re

spir

atio

nPe

731

a +

b *

sow

ndiv

56.5

066

13.6

67-9

9.89

114

.138

0.00

Mic

robi

al re

spir

atio

nPp

2331

a +

sow

ndiv

^c58

.905

810

.250

-99.

837

14.1

920.

00

Mic

robi

al re

spir

atio

nPm

1221

a +

b *

sow

ndiv

56.4

156

13.6

67-9

9.71

114

.318

0.00

Mic

robi

al re

spir

atio

nPp

2431

b *

sow

ndiv

^c58

.836

810

.250

-99.

699

14.3

300.

00

Mic

robi

al re

spir

atio

nPq

2721

a +

b *

sow

ndiv

58.8

288

10.2

50-9

9.68

414

.345

0.00

Mic

robi

al re

spir

atio

nEc

2121

a +

exp(

c *

sow

ndiv

)56

.300

613

.667

-99.

480

14.5

490.

00

Mic

robi

al re

spir

atio

nPk

391

b *

sow

ndiv

^c59

.873

99.

111

-99.

245

14.7

840.

00

Mic

robi

al re

spir

atio

nEb

1511

a +

exp(

c *

sow

ndiv

)56

.116

613

.667

-99.

112

14.9

170.

00

Mic

robi

al re

spir

atio

nPr

3221

a +

b *

sow

ndiv

58.5

078

10.2

50-9

9.04

114

.988

0.00

Mic

robi

al re

spir

atio

nPk

381

a +

sow

ndiv

^c59

.658

99.

111

-98.

816

15.2

130.

00

Mic

robi

al re

spir

atio

nPf

121

a +

b *

sow

ndiv

54.6

745

16.4

00-9

8.55

815

.471

0.00

Mic

robi

al re

spir

atio

nM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

60.7

6610

8.20

0-9

8.43

315

.597

0.00

Mic

robi

al re

spir

atio

nEf

3911

a +

exp(

c *

sow

ndiv

)58

.200

810

.250

-98.

428

15.6

010.

00

Mic

robi

al re

spir

atio

nPj

321

a +

b *

sow

ndiv

56.8

397

11.7

14-9

8.16

415

.865

0.00

Mic

robi

al re

spir

atio

nPi

271

a +

b *

sow

ndiv

56.8

347

11.7

14-9

8.15

415

.876

0.00

Mic

robi

al re

spir

atio

nPp

2221

a +

b *

sow

ndiv

58.0

338

10.2

50-9

8.09

315

.936

0.00

Mic

robi

al re

spir

atio

nPh

221

a +

b *

sow

ndiv

56.3

877

11.7

14-9

7.26

016

.769

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 41

Page 42: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nPg

171

a +

b *

sow

ndiv

53.9

045

16.4

00-9

7.01

917

.010

0.00

Mic

robi

al re

spir

atio

nPs

3931

b *

sow

ndiv

^c59

.968

108.

200

-96.

836

17.1

930.

00

Mic

robi

al re

spir

atio

nPm

1231

a +

b *

sow

ndiv

54.7

566

13.6

67-9

6.39

217

.637

0.00

Mic

robi

al re

spir

atio

nPs

3831

a +

sow

ndiv

^c59

.692

108.

200

-96.

285

17.7

450.

00

Mic

robi

al re

spir

atio

nPn

1721

a +

b *

sow

ndiv

54.6

366

13.6

67-9

6.15

317

.876

0.00

Mic

robi

al re

spir

atio

nEb

1521

a +

exp(

c *

sow

ndiv

)54

.591

613

.667

-96.

063

17.9

670.

00

Mic

robi

al re

spir

atio

nPr

3231

a +

b *

sow

ndiv

56.9

988

10.2

50-9

6.02

318

.007

0.00

Mic

robi

al re

spir

atio

nPq

2731

a +

b *

sow

ndiv

56.9

708

10.2

50-9

5.96

818

.061

0.00

Mic

robi

al re

spir

atio

nEa

911

a +

exp(

c *

sow

ndiv

)54

.458

613

.667

-95.

795

18.2

340.

00

Mic

robi

al re

spir

atio

nEf

3921

a +

exp(

c *

sow

ndiv

)56

.781

810

.250

-95.

589

18.4

400.

00

Mic

robi

al re

spir

atio

nPn

1731

a +

b *

sow

ndiv

54.1

926

13.6

67-9

5.26

318

.766

0.00

Mic

robi

al re

spir

atio

nL2

11so

wnd

iv +

func

gr +

leg

54.1

556

13.6

67-9

5.19

118

.838

0.00

Mic

robi

al re

spir

atio

nPa

2a

+ b

* so

wnd

iv50

.749

327

.333

-95.

190

18.8

390.

00

Mic

robi

al re

spir

atio

nPb

21a

+ b

* so

wnd

iv50

.749

327

.333

-95.

190

18.8

390.

00

Mic

robi

al re

spir

atio

nPp

2231

a +

b *

sow

ndiv

56.5

698

10.2

50-9

5.16

418

.865

0.00

Mic

robi

al re

spir

atio

nPs

3721

a +

b *

sow

ndiv

59.0

9710

8.20

0-9

5.09

518

.934

0.00

Mic

robi

al re

spir

atio

nEa

921

a +

exp(

c *

sow

ndiv

)54

.095

613

.667

-95.

070

18.9

590.

00

Mic

robi

al re

spir

atio

nPc

221

a +

b *

sow

ndiv

51.7

694

20.5

00-9

5.01

919

.010

0.00

Mic

robi

al re

spir

atio

nL2

sow

ndiv

+ fu

ncgr

+ le

g52

.741

516

.400

-94.

693

19.3

360.

00

Mic

robi

al re

spir

atio

nE3

1a

+ ex

p(c

* so

wnd

iv)

51.4

054

20.5

00-9

4.29

119

.738

0.00

Mic

robi

al re

spir

atio

nL0

2bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^267

.299

165.

125

-94.

229

19.8

010.

00

Mic

robi

al re

spir

atio

nPk

371

a +

b *

sow

ndiv

57.1

229

9.11

1-9

3.74

420

.285

0.00

Mic

robi

al re

spir

atio

nPc

231

a +

b *

sow

ndiv

50.8

024

20.5

00-9

3.08

420

.945

0.00

Mic

robi

al re

spir

atio

nE3

2a

+ ex

p(c

* so

wnd

iv)

50.6

684

20.5

00-9

2.81

621

.213

0.00

Mic

robi

al re

spir

atio

nL2

2so

wnd

iv +

func

gr +

leg

52.9

376

13.6

67-9

2.75

321

.276

0.00

Mic

robi

al re

spir

atio

nL2

22so

wnd

iv +

func

gr +

leg

52.8

396

13.6

67-9

2.55

821

.471

0.00

Mic

robi

al re

spir

atio

nL2

1so

wnd

iv +

func

gr +

leg

52.7

996

13.6

67-9

2.47

721

.552

0.00

Mic

robi

al re

spir

atio

nM

1432

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.1

1211

7.45

5-9

2.45

221

.578

0.00

Mic

robi

al re

spir

atio

nL0

1bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^266

.292

165.

125

-92.

215

21.8

150.

00

Mic

robi

al re

spir

atio

nPs

3731

a +

b *

sow

ndiv

57.2

6110

8.20

0-9

1.42

322

.606

0.00

Mic

robi

al re

spir

atio

nE2

a +

b *

exp(

sow

ndiv

)48

.244

327

.333

-90.

180

23.8

500.

00

Mic

robi

al re

spir

atio

nE2

2a

+ b

* ex

p(so

wnd

iv)

48.7

084

20.5

00-8

8.89

625

.133

0.00

Mic

robi

al re

spir

atio

nM

161

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.8

8313

6.30

8-8

8.41

325

.616

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 42

Page 43: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nM

1621

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

61.2

2514

5.85

7-8

8.18

225

.847

0.00

Mic

robi

al re

spir

atio

nL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

61.9

1915

5.46

7-8

6.56

527

.465

0.00

Mic

robi

al re

spir

atio

nL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^263

.317

165.

125

-86.

265

27.7

640.

00

Mic

robi

al re

spir

atio

nL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^262

.589

165.

125

-84.

809

29.2

200.

00

Mic

robi

al re

spir

atio

nM

1632

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

59.4

8214

5.85

7-8

4.69

529

.334

0.00

Mic

robi

al re

spir

atio

nEc

2411

exp(

c *

sow

ndiv

)10

.156

420

.500

-11.

793

102.

236

0.00

Mic

robi

al re

spir

atio

nEf

4211

exp(

c *

sow

ndiv

)10

.038

516

.400

-9.2

8610

4.74

30.

00

Mic

robi

al re

spir

atio

nE6

1ex

p(c

* so

wnd

iv)

4.33

43

27.3

33-2

.360

111.

670

0.00

Mic

robi

al re

spir

atio

nEb

1811

exp(

c *

sow

ndiv

)4.

924

420

.500

-1.3

2811

2.70

10.

00

Mic

robi

al re

spir

atio

nEa

121

exp(

c *

sow

ndiv

)4.

341

420

.500

-0.1

6311

3.86

60.

00

Mic

robi

al re

spir

atio

nEc

2421

exp(

c *

sow

ndiv

)2.

870

420

.500

2.78

011

6.80

90.

00

Mic

robi

al re

spir

atio

nEf

4221

exp(

c *

sow

ndiv

)3.

632

516

.400

3.52

611

7.55

50.

00

Mic

robi

al re

spir

atio

nEd

3021

exp(

c *

sow

ndiv

)2.

873

516

.400

5.04

411

9.07

30.

00

Mic

robi

al re

spir

atio

nEc

24ex

p(c

* so

wnd

iv)

0.61

53

27.3

335.

078

119.

107

0.00

Mic

robi

al re

spir

atio

nE5

1b

* ex

p(so

wnd

iv)

-0.1

833

27.3

336.

673

120.

702

0.00

Mic

robi

al re

spir

atio

nE5

b *

exp(

sow

ndiv

)-3

.785

241

.000

11.7

2112

5.75

10.

00

Mic

robi

al re

spir

atio

nE6

2ex

p(c

* so

wnd

iv)

-2.7

293

27.3

3311

.765

125.

794

0.00

Mic

robi

al re

spir

atio

nEb

1821

exp(

c *

sow

ndiv

)-2

.195

420

.500

12.9

1012

6.94

00.

00

Mic

robi

al re

spir

atio

nE5

2b

* ex

p(so

wnd

iv)

-3.7

323

27.3

3313

.772

127.

801

0.00

Mic

robi

al re

spir

atio

nEa

1221

exp(

c *

sow

ndiv

)-2

.700

420

.500

13.9

1912

7.94

80.

00

Mic

robi

al re

spir

atio

nEb

18ex

p(c

* so

wnd

iv)

-3.8

303

27.3

3313

.968

127.

998

0.00

Mic

robi

al re

spir

atio

nEa

12ex

p(c

* so

wnd

iv)

-4.2

693

27.3

3314

.845

128.

874

0.00

Mic

robi

al re

spir

atio

nPe

1021

sow

ndiv

^c-2

0.44

14

20.5

0049

.401

163.

430

0.00

Mic

robi

al re

spir

atio

nPq

3021

sow

ndiv

^c-2

0.25

25

16.4

0051

.294

165.

324

0.00

Mic

robi

al re

spir

atio

nPp

2521

sow

ndiv

^c-2

0.31

05

16.4

0051

.409

165.

438

0.00

Mic

robi

al re

spir

atio

nPs

4021

sow

ndiv

^c-2

0.22

46

13.6

6753

.569

167.

598

0.00

Mic

robi

al re

spir

atio

nPr

3521

sow

ndiv

^c-2

1.78

85

16.4

0054

.366

168.

396

0.00

Mic

robi

al re

spir

atio

nPm

1521

sow

ndiv

^c-2

4.07

94

20.5

0056

.678

170.

708

0.00

Mic

robi

al re

spir

atio

nPn

2021

sow

ndiv

^c-2

5.63

44

20.5

0059

.788

173.

817

0.00

Mic

robi

al re

spir

atio

nPc

521

sow

ndiv

^c-2

8.00

23

27.3

3362

.312

176.

342

0.00

Mic

robi

al re

spir

atio

nPe

1031

sow

ndiv

^c-3

7.73

04

20.5

0083

.979

198.

008

0.00

Mic

robi

al re

spir

atio

nPq

3031

sow

ndiv

^c-3

7.69

35

16.4

0086

.175

200.

204

0.00

Mic

robi

al re

spir

atio

nPp

2531

sow

ndiv

^c-3

7.71

75

16.4

0086

.223

200.

252

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 43

Page 44: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nPs

4031

sow

ndiv

^c-3

7.69

16

13.6

6788

.503

202.

532

0.00

Mic

robi

al re

spir

atio

nPr

3531

sow

ndiv

^c-3

8.99

95

16.4

0088

.788

202.

817

0.00

Mic

robi

al re

spir

atio

nPm

1531

sow

ndiv

^c-4

2.13

84

20.5

0092

.795

206.

825

0.00

Mic

robi

al re

spir

atio

nPn

2031

sow

ndiv

^c-4

3.37

64

20.5

0095

.271

209.

301

0.00

Mic

robi

al re

spir

atio

nPc

531

sow

ndiv

^c-4

7.57

13

27.3

3310

1.44

921

5.47

80.

00

Mic

robi

al re

spir

atio

nPd

101

sow

ndiv

^c-4

9.73

33

27.3

3310

5.77

421

9.80

30.

00

Mic

robi

al re

spir

atio

nPb

51so

wnd

iv^c

-51.

460

241

.000

107.

072

221.

101

0.00

Mic

robi

al re

spir

atio

nPa

5so

wnd

iv^c

-51.

460

241

.000

107.

072

221.

101

0.00

Mic

robi

al re

spir

atio

nPf

151

sow

ndiv

^c-5

0.45

33

27.3

3310

7.21

322

1.24

30.

00

Mic

robi

al re

spir

atio

nPi

301

sow

ndiv

^c-4

9.71

04

20.5

0010

7.94

022

1.96

90.

00

Mic

robi

al re

spir

atio

nPh

251

sow

ndiv

^c-4

9.73

34

20.5

0010

7.98

522

2.01

40.

00

Mic

robi

al re

spir

atio

nPj

351

sow

ndiv

^c-4

9.75

84

20.5

0010

8.03

522

2.06

40.

00

Mic

robi

al re

spir

atio

nPg

201

sow

ndiv

^c-5

0.89

93

27.3

3310

8.10

622

2.13

50.

00

Mic

robi

al re

spir

atio

nPk

401

sow

ndiv

^c-4

9.68

05

16.4

0011

0.14

922

4.17

80.

00

Mic

robi

al re

spir

atio

nEc

2221

a +

exp(

sow

ndiv

)-7

94.1

544

20.5

0015

96.8

2717

10.8

560.

00

Mic

robi

al re

spir

atio

nEe

342

a +

exp(

sow

ndiv

)-7

94.1

525

16.4

0015

99.0

9417

13.1

240.

00

Mic

robi

al re

spir

atio

nEd

2821

a +

exp(

sow

ndiv

)-7

94.1

545

16.4

0015

99.0

9717

13.1

260.

00

Mic

robi

al re

spir

atio

nEg

4621

a +

exp(

sow

ndiv

)-7

94.1

526

13.6

6716

01.4

2517

15.4

540.

00

Mic

robi

al re

spir

atio

nE4

2a

+ ex

p(so

wnd

iv)

-800

.938

327

.333

1608

.183

1722

.212

0.00

Mic

robi

al re

spir

atio

nEa

1021

a +

exp(

sow

ndiv

)-8

00.8

164

20.5

0016

10.1

5117

24.1

810.

00

Mic

robi

al re

spir

atio

nEb

1621

a +

exp(

sow

ndiv

)-8

00.8

394

20.5

0016

10.1

9817

24.2

270.

00

Mic

robi

al re

spir

atio

nEf

4021

a +

exp(

sow

ndiv

)-8

00.5

955

16.4

0016

11.9

7917

26.0

080.

00

Mic

robi

al re

spir

atio

nEb

1611

a +

exp(

sow

ndiv

)-1

703.

664

420

.500

3415

.847

3529

.876

0.00

Mic

robi

al re

spir

atio

nE4

1a

+ ex

p(so

wnd

iv)

-170

5.46

93

27.3

3334

17.2

4635

31.2

750.

00

Mic

robi

al re

spir

atio

nEf

4011

a +

exp(

sow

ndiv

)-1

703.

572

516

.400

3417

.933

3531

.962

0.00

Mic

robi

al re

spir

atio

nEe

341

a +

exp(

sow

ndiv

)-1

703.

664

516

.400

3418

.117

3532

.146

0.00

Mic

robi

al re

spir

atio

nEa

1011

a +

exp(

sow

ndiv

)-1

705.

442

420

.500

3419

.403

3533

.433

0.00

Mic

robi

al re

spir

atio

nEc

2211

a +

exp(

sow

ndiv

)-1

705.

469

420

.500

3419

.457

3533

.487

0.00

Mic

robi

al re

spir

atio

nEg

4611

a +

exp(

sow

ndiv

)-1

703.

572

613

.667

3420

.263

3534

.293

0.00

Mic

robi

al re

spir

atio

nEd

2811

a +

exp(

sow

ndiv

)-1

705.

442

516

.400

3421

.673

3535

.703

0.00

Mic

robi

al re

spir

atio

nEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

708.

060

117.

455

5441

.891

5555

.921

0.00

Mic

robi

al re

spir

atio

nEc

1921

a +

b *

exp(

c *

sow

ndiv

)-2

845.

250

810

.250

5708

.472

5822

.502

0.00

Mic

robi

al re

spir

atio

nE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9943

.212

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 44

Page 45: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Mic

robi

al re

spir

atio

nEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

45.3

680.

00

Mic

robi

al re

spir

atio

nEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

45.3

680.

00

Mic

robi

al re

spir

atio

nEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

45.3

680.

00

Mic

robi

al re

spir

atio

nEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

47.5

800.

00

Mic

robi

al re

spir

atio

nEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

47.5

800.

00

Mic

robi

al re

spir

atio

nEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

47.5

800.

00

Mic

robi

al re

spir

atio

nEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2199

49.8

500.

00

Sapr

opha

gous

mac

rofa

una

abun

danc

eM

1a

* so

wnd

iv/(

b +

sow

ndiv

)42

.594

326

.667

-78.

872

0.00

00.

20

Sapr

opha

gous

mac

rofa

una

abun

danc

eM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

42.5

943

26.6

67-7

8.87

20.

000

0.20

Sapr

opha

gous

mac

rofa

una

abun

danc

ePa

3a

+ so

wnd

iv^c

42.4

933

26.6

67-7

8.67

00.

202

0.18

Sapr

opha

gous

mac

rofa

una

abun

danc

ePa

4b

* so

wnd

iv^c

42.2

803

26.6

67-7

8.24

40.

628

0.15

Sapr

opha

gous

mac

rofa

una

abun

danc

eLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

43.2

534

20.0

00-7

7.97

20.

899

0.13

Sapr

opha

gous

mac

rofa

una

abun

danc

eM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)42

.838

420

.000

-77.

142

1.73

00.

09

Sapr

opha

gous

mac

rofa

una

abun

danc

ePa

2a

+ b

* so

wnd

iv40

.425

326

.667

-74.

535

4.33

70.

02

Sapr

opha

gous

mac

rofa

una

abun

danc

eL2

sow

ndiv

+ fu

ncgr

+ le

g42

.370

516

.000

-73.

929

4.94

30.

02

Sapr

opha

gous

mac

rofa

una

abun

danc

eE2

a +

b *

exp(

sow

ndiv

)39

.508

326

.667

-72.

700

6.17

10.

01

Sapr

opha

gous

mac

rofa

una

abun

danc

eL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

52.7

3015

5.33

3-6

7.96

010

.911

0.00

Sapr

opha

gous

mac

rofa

una

abun

danc

eE5

b *

exp(

sow

ndiv

)5.

689

240

.000

-7.2

2171

.650

0.00

Sapr

opha

gous

mac

rofa

una

abun

danc

ePa

5so

wnd

iv^c

-46.

774

240

.000

97.7

0417

6.57

60.

00

Sapr

opha

gous

mac

rofa

una

abun

danc

eE4

a +

exp(

sow

ndiv

)-4

793.

686

240

.000

9591

.527

9670

.399

0.00

Sapr

opha

gous

mac

rofa

una

dive

rsity

Pa2

a +

b *

sow

ndiv

2.96

23

26.6

670.

393

0.00

00.

23

Sapr

opha

gous

mac

rofa

una

dive

rsity

L2so

wnd

iv +

func

gr +

leg

4.62

15

16.0

001.

569

1.17

60.

13

Sapr

opha

gous

mac

rofa

una

dive

rsity

Pa4

b *

sow

ndiv

^c1.

968

326

.667

2.38

01.

988

0.08

Sapr

opha

gous

mac

rofa

una

dive

rsity

E2a

+ b

* ex

p(so

wnd

iv)

1.91

83

26.6

672.

479

2.08

60.

08

Sapr

opha

gous

mac

rofa

una

dive

rsity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)2.

976

420

.000

2.58

12.

188

0.08

Sapr

opha

gous

mac

rofa

una

dive

rsity

Pa1

a +

b *

sow

ndiv

^c2.

975

420

.000

2.58

32.

190

0.08

Sapr

opha

gous

mac

rofa

una

dive

rsity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

2.97

24

20.0

002.

589

2.19

60.

08

Sapr

opha

gous

mac

rofa

una

dive

rsity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)2.

972

420

.000

2.58

92.

196

0.08

Sapr

opha

gous

mac

rofa

una

dive

rsity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

2.97

24

20.0

002.

589

2.19

60.

08

Sapr

opha

gous

mac

rofa

una

dive

rsity

Pa3

a +

sow

ndiv

^c1.

784

326

.667

2.74

82.

355

0.07

Sapr

opha

gous

mac

rofa

una

dive

rsity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)0.

283

326

.667

5.75

05.

357

0.02

Sapr

opha

gous

mac

rofa

una

dive

rsity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

0.28

33

26.6

675.

750

5.35

70.

02

Sapr

opha

gous

mac

rofa

una

dive

rsity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)-0

.271

326

.667

6.85

86.

466

0.01

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 45

Page 46: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Sapr

opha

gous

mac

rofa

una

dive

rsity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^211

.769

155.

333

13.9

6313

.570

0.00

Sapr

opha

gous

mac

rofa

una

dive

rsity

Pa5

sow

ndiv

^c-4

2.09

42

40.0

0088

.344

87.9

520.

00

Sapr

opha

gous

mac

rofa

una

dive

rsity

E5b

* ex

p(so

wnd

iv)

-60.

104

240

.000

124.

364

123.

971

0.00

Sapr

opha

gous

mac

rofa

una

dive

rsity

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2795

91.1

350.

00

Her

bivo

rous

mac

rofa

una

abun

danc

ePa

2a

+ b

* so

wnd

iv13

.870

326

.667

-21.

424

0.00

00.

18

Her

bivo

rous

mac

rofa

una

abun

danc

ePa

4b

* so

wnd

iv^c

13.4

873

26.6

67-2

0.65

90.

766

0.12

Her

bivo

rous

mac

rofa

una

abun

danc

ePa

3a

+ so

wnd

iv^c

13.3

583

26.6

67-2

0.39

91.

025

0.10

Her

bivo

rous

mac

rofa

una

abun

danc

eE2

a +

b *

exp(

sow

ndiv

)13

.291

326

.667

-20.

266

1.15

80.

10

Her

bivo

rous

mac

rofa

una

abun

danc

eAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

12.8

453

26.6

67-1

9.37

42.

050

0.06

Her

bivo

rous

mac

rofa

una

abun

danc

eM

1a

* so

wnd

iv/(

b +

sow

ndiv

)12

.817

326

.667

-19.

318

2.10

60.

06

Her

bivo

rous

mac

rofa

una

abun

danc

eM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

12.8

173

26.6

67-1

9.31

82.

106

0.06

Her

bivo

rous

mac

rofa

una

abun

danc

ePa

1a

+ b

* so

wnd

iv^c

13.8

764

20.0

00-1

9.21

92.

205

0.06

Her

bivo

rous

mac

rofa

una

abun

danc

eLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

13.8

764

20.0

00-1

9.21

82.

206

0.06

Her

bivo

rous

mac

rofa

una

abun

danc

eA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)13

.871

420

.000

-19.

209

2.21

50.

06

Her

bivo

rous

mac

rofa

una

abun

danc

eAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

13.8

714

20.0

00-1

9.20

92.

215

0.06

Her

bivo

rous

mac

rofa

una

abun

danc

eM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)13

.871

420

.000

-19.

209

2.21

50.

06

Her

bivo

rous

mac

rofa

una

abun

danc

eL2

sow

ndiv

+ fu

ncgr

+ le

g14

.184

516

.000

-17.

557

3.86

70.

03

Her

bivo

rous

mac

rofa

una

abun

danc

eL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

24.6

9715

5.33

3-1

1.89

49.

530

0.00

Her

bivo

rous

mac

rofa

una

abun

danc

eE5

b *

exp(

sow

ndiv

)-1

9.87

32

40.0

0043

.901

65.3

260.

00

Her

bivo

rous

mac

rofa

una

abun

danc

ePa

5so

wnd

iv^c

-50.

540

240

.000

105.

237

126.

661

0.00

Her

bivo

rous

mac

rofa

una

abun

danc

eE4

a +

exp(

sow

ndiv

)-4

793.

686

240

.000

9591

.527

9612

.952

0.00

Her

bivo

rous

mac

rofa

una

dive

rsity

Pa3

a +

sow

ndiv

^c10

.690

326

.667

-15.

064

0.00

00.

19

Her

bivo

rous

mac

rofa

una

dive

rsity

Pa4

b *

sow

ndiv

^c10

.557

326

.667

-14.

798

0.26

60.

17

Her

bivo

rous

mac

rofa

una

dive

rsity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)10

.553

326

.667

-14.

790

0.27

40.

17

Her

bivo

rous

mac

rofa

una

dive

rsity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

10.5

533

26.6

67-1

4.79

00.

274

0.17

Her

bivo

rous

mac

rofa

una

dive

rsity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)10

.081

326

.667

-13.

846

1.21

80.

11

Her

bivo

rous

mac

rofa

una

dive

rsity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

10.5

544

20.0

00-1

2.57

52.

489

0.06

Her

bivo

rous

mac

rofa

una

dive

rsity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)10

.059

420

.000

-11.

584

3.48

00.

03

Her

bivo

rous

mac

rofa

una

dive

rsity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

10.0

594

20.0

00-1

1.58

43.

480

0.03

Her

bivo

rous

mac

rofa

una

dive

rsity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)9.

860

420

.000

-11.

187

3.87

70.

03

Her

bivo

rous

mac

rofa

una

dive

rsity

Pa2

a +

b *

sow

ndiv

8.72

23

26.6

67-1

1.12

93.

935

0.03

Her

bivo

rous

mac

rofa

una

dive

rsity

L2so

wnd

iv +

func

gr +

leg

9.90

65

16.0

00-9

.002

6.06

20.

01

Her

bivo

rous

mac

rofa

una

dive

rsity

E2a

+ b

* ex

p(so

wnd

iv)

6.93

13

26.6

67-7

.547

7.51

80.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 46

Page 47: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

rous

mac

rofa

una

dive

rsity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^221

.929

155.

333

-6.3

598.

705

0.00

Her

bivo

rous

mac

rofa

una

dive

rsity

E5b

* ex

p(so

wnd

iv)

-42.

733

240

.000

89.6

2110

4.68

50.

00

Her

bivo

rous

mac

rofa

una

dive

rsity

Pa5

sow

ndiv

^c-4

9.61

22

40.0

0010

3.38

011

8.44

40.

00

Her

bivo

rous

mac

rofa

una

dive

rsity

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2796

06.5

920.

00

Pred

ator

y m

acro

faun

a ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

35.9

383

26.6

67-6

5.56

00.

000

0.20

Pred

ator

y m

acro

faun

a ab

unda

nce

Pa2

a +

b *

sow

ndiv

35.8

653

26.6

67-6

5.41

40.

145

0.18

Pred

ator

y m

acro

faun

a ab

unda

nce

Pa4

b *

sow

ndiv

^c35

.471

326

.667

-64.

626

0.93

40.

12

Pred

ator

y m

acro

faun

a ab

unda

nce

Pa3

a +

sow

ndiv

^c35

.441

326

.667

-64.

567

0.99

30.

12

Pred

ator

y m

acro

faun

a ab

unda

nce

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)35

.269

326

.667

-64.

223

1.33

70.

10

Pred

ator

y m

acro

faun

a ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)35

.267

326

.667

-64.

218

1.34

20.

10

Pred

ator

y m

acro

faun

a ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

35.2

673

26.6

67-6

4.21

81.

342

0.10

Pred

ator

y m

acro

faun

a ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

36.5

355

16.0

00-6

2.26

03.

300

0.04

Pred

ator

y m

acro

faun

a ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^249

.549

155.

333

-61.

599

3.96

10.

03

Pred

ator

y m

acro

faun

a ab

unda

nce

E5b

* ex

p(so

wnd

iv)

10.7

762

40.0

00-1

7.39

748

.163

0.00

Pred

ator

y m

acro

faun

a ab

unda

nce

Pa5

sow

ndiv

^c-4

4.44

82

40.0

0093

.053

158.

612

0.00

Pred

ator

y m

acro

faun

a ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2796

57.0

870.

00

Pred

ator

y m

acro

faun

a di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

23.6

4915

5.33

3-9

.798

0.00

00.

18

Pred

ator

y m

acro

faun

a di

vers

ityA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

7.65

23

26.6

67-8

.988

0.81

10.

12

Pred

ator

y m

acro

faun

a di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)7.

521

326

.667

-8.7

261.

073

0.11

Pred

ator

y m

acro

faun

a di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

7.52

13

26.6

67-8

.726

1.07

30.

11

Pred

ator

y m

acro

faun

a di

vers

ityPa

2a

+ b

* so

wnd

iv7.

513

326

.667

-8.7

091.

089

0.11

Pred

ator

y m

acro

faun

a di

vers

ityE2

a +

b *

exp(

sow

ndiv

)7.

498

326

.667

-8.6

811.

118

0.11

Pred

ator

y m

acro

faun

a di

vers

ityPa

4b

* so

wnd

iv^c

7.46

73

26.6

67-8

.618

1.18

10.

10

Pred

ator

y m

acro

faun

a di

vers

ityPa

3a

+ so

wnd

iv^c

7.46

63

26.6

67-8

.617

1.18

10.

10

Pred

ator

y m

acro

faun

a di

vers

ityPa

1a

+ b

* so

wnd

iv^c

7.51

94

20.0

00-6

.506

3.29

30.

04

Pred

ator

y m

acro

faun

a di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g8.

364

516

.000

-5.9

183.

881

0.03

Pred

ator

y m

acro

faun

a di

vers

ityPa

5so

wnd

iv^c

-37.

843

240

.000

79.8

4189

.640

0.00

Pred

ator

y m

acro

faun

a di

vers

ityE5

b *

exp(

sow

ndiv

)-5

1.15

22

40.0

0010

6.46

011

6.25

90.

00

Pred

ator

y m

acro

faun

a di

vers

ityE4

a +

exp(

sow

ndiv

)-4

793.

686

240

.000

9591

.527

9601

.326

0.00

Amoe

bae

abun

danc

eL2

sow

ndiv

+ fu

ncgr

+ le

g4.

083

52.

400

11.8

34In

fN

A

Amoe

bae

abun

danc

eE1

a +

b *

exp(

c *

sow

ndiv

)2.

516

43.

000

8.68

2In

fN

A

Amoe

bae

abun

danc

eE2

a +

b *

exp(

sow

ndiv

)2.

514

34.

000

3.97

1In

fN

A

Amoe

bae

abun

danc

eE3

a +

exp(

c *

sow

ndiv

)2.

395

34.

000

4.21

1In

fN

A

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 47

Page 48: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Amoe

bae

abun

danc

eE4

a +

exp(

sow

ndiv

)-2

00.0

032

6.00

040

5.33

9In

fN

A

Amoe

bae

abun

danc

eE5

b *

exp(

sow

ndiv

)2.

201

26.

000

0.93

1In

fN

A

Amoe

bae

abun

danc

eE6

exp(

c *

sow

ndiv

)-3

.953

26.

000

13.2

39In

fN

A

Amoe

bae

abun

danc

ePa

2a

+ b

* so

wnd

iv2.

344

34.

000

4.31

3In

fN

A

Amoe

bae

abun

danc

ePa

3a

+ so

wnd

iv^c

1.47

03

4.00

06.

059

Inf

NA

Amoe

bae

abun

danc

ePa

4b

* so

wnd

iv^c

2.42

43

4.00

04.

151

Inf

NA

Amoe

bae

abun

danc

ePa

5so

wnd

iv^c

-11.

612

26.

000

28.5

57In

fN

A

Amoe

bae

abun

danc

eL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

Inf

130.

923

#NA

ME?

NA

NA

Flag

ella

te a

bund

ance

L2so

wnd

iv +

func

gr +

leg

-2.3

365

2.40

024

.672

Inf

NA

Flag

ella

te a

bund

ance

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

-3.2

373

4.00

015

.473

Inf

NA

Flag

ella

te a

bund

ance

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)-3

.237

34.

000

15.4

73In

fN

A

Flag

ella

te a

bund

ance

E2a

+ b

* ex

p(so

wnd

iv)

-3.2

543

4.00

015

.508

Inf

NA

Flag

ella

te a

bund

ance

E3a

+ ex

p(c

* so

wnd

iv)

-3.2

853

4.00

015

.570

Inf

NA

Flag

ella

te a

bund

ance

E4a

+ ex

p(so

wnd

iv)

-200

.003

26.

000

405.

339

Inf

NA

Flag

ella

te a

bund

ance

E5b

* ex

p(so

wnd

iv)

-10.

527

26.

000

26.3

87In

fN

A

Flag

ella

te a

bund

ance

E6ex

p(c

* so

wnd

iv)

-6.3

442

6.00

018

.021

Inf

NA

Flag

ella

te a

bund

ance

Pa2

a +

b *

sow

ndiv

-3.2

853

4.00

015

.570

Inf

NA

Flag

ella

te a

bund

ance

Pa3

a +

sow

ndiv

^c-3

.290

34.

000

15.5

79In

fN

A

Flag

ella

te a

bund

ance

Pa4

b *

sow

ndiv

^c-3

.290

34.

000

15.5

80In

fN

A

Flag

ella

te a

bund

ance

Pa5

sow

ndiv

^c-6

.575

26.

000

18.4

83In

fN

A

Flag

ella

te a

bund

ance

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^2In

f13

0.92

3#N

AM

E?N

AN

A

Bact

eria

-fee

ding

nem

atod

e di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g-0

.372

514

.400

11.6

530.

000

0.52

Bact

eria

-fee

ding

nem

atod

e di

vers

ityPa

2a

+ b

* so

wnd

iv-4

.300

324

.000

14.9

533.

301

0.10

Bact

eria

-fee

ding

nem

atod

e di

vers

ityPa

4b

* so

wnd

iv^c

-4.8

583

24.0

0016

.068

4.41

60.

06

Bact

eria

-fee

ding

nem

atod

e di

vers

ityPa

3a

+ so

wnd

iv^c

-4.9

613

24.0

0016

.275

4.62

30.

05

Bact

eria

-fee

ding

nem

atod

e di

vers

ityLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

-4.0

854

18.0

0016

.767

5.11

40.

04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)-4

.125

418

.000

16.8

485.

195

0.04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

-4.1

254

18.0

0016

.848

5.19

50.

04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)-4

.140

418

.000

16.8

775.

225

0.04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityE2

a +

b *

exp(

sow

ndiv

)-5

.317

324

.000

16.9

865.

333

0.04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityPa

1a

+ b

* so

wnd

iv^c

-4.2

274

18.0

0017

.050

5.39

70.

04

Bact

eria

-fee

ding

nem

atod

e di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

-6.1

023

24.0

0018

.557

6.90

40.

02

Bact

eria

-fee

ding

nem

atod

e di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)-6

.102

324

.000

18.5

576.

904

0.02

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 48

Page 49: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Bact

eria

-fee

ding

nem

atod

e di

vers

ityAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

-6.5

523

24.0

0019

.457

7.80

40.

01

Bact

eria

-fee

ding

nem

atod

e di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

5.61

915

4.80

027

.333

15.6

800.

00

Bact

eria

-fee

ding

nem

atod

e di

vers

ityPa

5so

wnd

iv^c

-38.

237

236

.000

80.6

4868

.996

0.00

Bact

eria

-fee

ding

nem

atod

e di

vers

ityE5

b *

exp(

sow

ndiv

)-5

6.67

82

36.0

0011

7.52

910

5.87

70.

00

Bact

eria

-fee

ding

nem

atod

e di

vers

ityE4

a +

exp(

sow

ndiv

)-4

307.

754

236

.000

8619

.681

8608

.029

0.00

Hyp

heno

phag

ous

nem

atod

e di

vers

ityE2

a +

b *

exp(

sow

ndiv

)-6

.338

324

.000

19.0

300.

000

0.18

Hyp

heno

phag

ous

nem

atod

e di

vers

ityPa

2a

+ b

* so

wnd

iv-6

.442

324

.000

19.2

370.

207

0.16

Hyp

heno

phag

ous

nem

atod

e di

vers

ityA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

-6.6

313

24.0

0019

.615

0.58

50.

13

Hyp

heno

phag

ous

nem

atod

e di

vers

ityPa

4b

* so

wnd

iv^c

-6.6

823

24.0

0019

.716

0.68

60.

13

Hyp

heno

phag

ous

nem

atod

e di

vers

ityPa

3a

+ so

wnd

iv^c

-6.6

833

24.0

0019

.719

0.68

90.

12

Hyp

heno

phag

ous

nem

atod

e di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

-6.7

143

24.0

0019

.781

0.75

10.

12

Hyp

heno

phag

ous

nem

atod

e di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)-6

.714

324

.000

19.7

810.

751

0.12

Hyp

heno

phag

ous

nem

atod

e di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g-5

.536

514

.400

21.9

822.

952

0.04

Hyp

heno

phag

ous

nem

atod

e di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

-2.4

4315

4.80

043

.457

24.4

270.

00

Hyp

heno

phag

ous

nem

atod

e di

vers

ityPa

5so

wnd

iv^c

-27.

188

236

.000

58.5

5139

.521

0.00

Hyp

heno

phag

ous

nem

atod

e di

vers

ityE5

b *

exp(

sow

ndiv

)-7

0.27

02

36.0

0014

4.71

312

5.68

30.

00

Hyp

heno

phag

ous

nem

atod

e di

vers

ityE4

a +

exp(

sow

ndiv

)-4

307.

754

236

.000

8619

.681

8600

.651

0.00

Om

nivo

rous

nem

atod

e di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

9.27

315

4.80

020

.025

0.00

00.

95

Om

nivo

rous

nem

atod

e di

vers

ityE2

a +

b *

exp(

sow

ndiv

)-1

1.04

83

24.0

0028

.450

8.42

50.

01

Om

nivo

rous

nem

atod

e di

vers

ityPa

2a

+ b

* so

wnd

iv-1

1.33

23

24.0

0029

.016

8.99

20.

01

Om

nivo

rous

nem

atod

e di

vers

ityPa

4b

* so

wnd

iv^c

-11.

932

324

.000

30.2

1710

.192

0.01

Om

nivo

rous

nem

atod

e di

vers

ityPa

3a

+ so

wnd

iv^c

-11.

939

324

.000

30.2

3110

.207

0.01

Om

nivo

rous

nem

atod

e di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)-1

1.96

73

24.0

0030

.286

10.2

610.

01

Om

nivo

rous

nem

atod

e di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

-11.

967

324

.000

30.2

8610

.261

0.01

Om

nivo

rous

nem

atod

e di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g-1

0.38

85

14.4

0031

.685

11.6

610.

00

Om

nivo

rous

nem

atod

e di

vers

ityPa

5so

wnd

iv^c

-41.

636

236

.000

87.4

4667

.421

0.00

Om

nivo

rous

nem

atod

e di

vers

ityE5

b *

exp(

sow

ndiv

)-4

5.88

52

36.0

0095

.944

75.9

190.

00

Om

nivo

rous

nem

atod

e di

vers

ityE4

a +

exp(

sow

ndiv

)-4

307.

754

236

.000

8619

.681

8599

.657

0.00

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

Pa4

b *

sow

ndiv

^c5.

971

324

.000

-5.5

890.

000

0.17

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

Pa3

a +

sow

ndiv

^c5.

918

324

.000

-5.4

830.

106

0.16

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

Pa2

a +

b *

sow

ndiv

5.55

13

24.0

00-4

.749

0.84

00.

11

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

L2so

wnd

iv +

func

gr +

leg

7.36

75

14.4

00-3

.826

1.76

30.

07

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

5.03

63

24.0

00-3

.718

1.87

10.

07

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 49

Page 50: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)5.

036

324

.000

-3.7

181.

871

0.07

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

Pa1

a +

b *

sow

ndiv

^c6.

060

418

.000

-3.5

232.

066

0.06

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

6.01

74

18.0

00-3

.437

2.15

20.

06

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)6.

000

418

.000

-3.4

042.

185

0.06

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

6.00

04

18.0

00-3

.404

2.18

50.

06

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)5.

979

418

.000

-3.3

602.

229

0.06

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

E2a

+ b

* ex

p(so

wnd

iv)

4.29

03

24.0

00-2

.227

3.36

20.

03

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)4.

224

324

.000

-2.0

963.

493

0.03

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^218

.509

154.

800

1.55

47.

143

0.00

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

Pa5

sow

ndiv

^c-3

6.71

82

36.0

0077

.610

83.1

990.

00

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

E5b

* ex

p(so

wnd

iv)

-54.

298

236

.000

112.

770

118.

359

0.00

Plan

t-fe

edin

g ne

mat

ode

dive

rsity

E4a

+ ex

p(so

wnd

iv)

-430

7.75

42

36.0

0086

19.6

8186

25.2

700.

00

Pred

ator

y ne

mat

ode

dive

rsity

E2a

+ b

* ex

p(so

wnd

iv)

0.05

33

24.0

006.

246

0.00

00.

70

Pred

ator

y ne

mat

ode

dive

rsity

Pa2

a +

b *

sow

ndiv

-1.4

253

24.0

009.

204

2.95

80.

16

Pred

ator

y ne

mat

ode

dive

rsity

L2so

wnd

iv +

func

gr +

leg

-0.2

505

14.4

0011

.409

5.16

30.

05

Pred

ator

y ne

mat

ode

dive

rsity

Pa4

b *

sow

ndiv

^c-3

.313

324

.000

12.9

796.

733

0.02

Pred

ator

y ne

mat

ode

dive

rsity

Pa3

a +

sow

ndiv

^c-3

.437

324

.000

13.2

266.

980

0.02

Pred

ator

y ne

mat

ode

dive

rsity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)-3

.596

324

.000

13.5

467.

299

0.02

Pred

ator

y ne

mat

ode

dive

rsity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

-3.5

963

24.0

0013

.546

7.29

90.

02

Pred

ator

y ne

mat

ode

dive

rsity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)-7

.114

324

.000

20.5

8214

.336

0.00

Pred

ator

y ne

mat

ode

dive

rsity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^25.

297

154.

800

27.9

7721

.731

0.00

Pred

ator

y ne

mat

ode

dive

rsity

E5b

* ex

p(so

wnd

iv)

-12.

484

236

.000

29.1

4222

.896

0.00

Pred

ator

y ne

mat

ode

dive

rsity

Pa5

sow

ndiv

^c-4

7.02

02

36.0

0098

.214

91.9

680.

00

Pred

ator

y ne

mat

ode

dive

rsity

E4a

+ ex

p(so

wnd

iv)

-430

7.75

42

36.0

0086

19.6

8186

13.4

350.

00

Plan

t-fe

edin

g ne

mat

ode

abun

danc

ePa

3a

+ so

wnd

iv^c

12.7

273

24.3

33-1

9.10

50.

000

0.13

Plan

t-fe

edin

g ne

mat

ode

abun

danc

ePa

4b

* so

wnd

iv^c

12.7

243

24.3

33-1

9.10

10.

004

0.13

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

12.6

963

24.3

33-1

9.04

40.

062

0.12

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eM

1a

* so

wnd

iv/(

b +

sow

ndiv

)12

.696

324

.333

-19.

044

0.06

20.

12

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

12.6

473

24.3

33-1

8.94

60.

160

0.12

Plan

t-fe

edin

g ne

mat

ode

abun

danc

ePa

2a

+ b

* so

wnd

iv12

.552

324

.333

-18.

756

0.34

90.

11

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eE2

a +

b *

exp(

sow

ndiv

)12

.404

324

.333

-18.

460

0.64

50.

09

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

12.7

444

18.2

50-1

6.90

02.

205

0.04

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)12

.742

418

.250

-16.

895

2.21

10.

04

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 50

Page 51: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

12.7

424

18.2

50-1

6.89

52.

211

0.04

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)12

.729

418

.250

-16.

869

2.23

60.

04

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eL2

sow

ndiv

+ fu

ncgr

+ le

g12

.645

514

.600

-14.

394

4.71

20.

01

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

19.4

6115

4.86

7-0

.501

18.6

040.

00

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eE5

b *

exp(

sow

ndiv

)-2

7.30

22

36.5

0058

.774

77.8

800.

00

Plan

t-fe

edin

g ne

mat

ode

abun

danc

ePa

5so

wnd

iv^c

-41.

221

236

.500

86.6

1310

5.71

90.

00

Plan

t-fe

edin

g ne

mat

ode

abun

danc

eE4

a +

exp(

sow

ndiv

)-4

367.

080

236

.500

8738

.332

8757

.437

0.00

Om

nivo

rous

nem

atod

e ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

16.8

943

24.3

33-2

7.44

00.

000

0.20

Om

nivo

rous

nem

atod

e ab

unda

nce

Pa2

a +

b *

sow

ndiv

16.8

733

24.3

33-2

7.39

70.

043

0.20

Om

nivo

rous

nem

atod

e ab

unda

nce

Pa4

b *

sow

ndiv

^c16

.848

324

.333

-27.

349

0.09

10.

19

Om

nivo

rous

nem

atod

e ab

unda

nce

Pa3

a +

sow

ndiv

^c16

.848

324

.333

-27.

348

0.09

20.

19

Om

nivo

rous

nem

atod

e ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)16

.831

324

.333

-27.

315

0.12

50.

19

Om

nivo

rous

nem

atod

e ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

17.0

795

14.6

00-2

3.26

34.

178

0.02

Om

nivo

rous

nem

atod

e ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^229

.080

154.

867

-19.

739

7.70

10.

00

Om

nivo

rous

nem

atod

e ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-12.

819

236

.500

29.8

0957

.249

0.00

Om

nivo

rous

nem

atod

e ab

unda

nce

Pa5

sow

ndiv

^c-4

1.11

22

36.5

0086

.396

113.

836

0.00

Om

nivo

rous

nem

atod

e ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-436

7.08

02

36.5

0087

38.3

3287

65.7

720.

00

Pred

ator

y ne

mat

ode

abun

danc

eE2

a +

b *

exp(

sow

ndiv

)45

.837

324

.333

-85.

326

0.00

00.

90

Pred

ator

y ne

mat

ode

abun

danc

ePa

2a

+ b

* so

wnd

iv43

.329

324

.333

-80.

310

5.01

60.

07

Pred

ator

y ne

mat

ode

abun

danc

ePa

4b

* so

wnd

iv^c

41.9

163

24.3

33-7

7.48

47.

842

0.02

Pred

ator

y ne

mat

ode

abun

danc

eL2

sow

ndiv

+ fu

ncgr

+ le

g43

.603

514

.600

-76.

311

9.01

50.

01

Pred

ator

y ne

mat

ode

abun

danc

eE5

b *

exp(

sow

ndiv

)38

.795

236

.500

-73.

419

11.9

070.

00

Pred

ator

y ne

mat

ode

abun

danc

ePa

3a

+ so

wnd

iv^c

38.3

423

24.3

33-7

0.33

614

.990

0.00

Pred

ator

y ne

mat

ode

abun

danc

eL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

51.1

6815

4.86

7-6

3.91

421

.412

0.00

Pred

ator

y ne

mat

ode

abun

danc

ePa

5so

wnd

iv^c

-46.

129

236

.500

96.4

3018

1.75

60.

00

Pred

ator

y ne

mat

ode

abun

danc

eE4

a +

exp(

sow

ndiv

)-4

367.

080

236

.500

8738

.332

8823

.658

0.00

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

23.3

675

14.6

00-3

5.83

80.

000

0.22

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

Pa2

a +

b *

sow

ndiv

20.9

183

24.3

33-3

5.48

90.

349

0.18

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

20.7

463

24.3

33-3

5.14

40.

694

0.15

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

Pa4

b *

sow

ndiv

^c20

.445

324

.333

-34.

543

1.29

50.

11

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

Pa3

a +

sow

ndiv

^c20

.406

324

.333

-34.

464

1.37

40.

11

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.1

233

24.3

33-3

3.89

81.

940

0.08

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)20

.123

324

.333

-33.

898

1.94

00.

08

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 51

Page 52: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)20

.921

418

.250

-33.

253

2.58

50.

06

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^233

.511

154.

867

-28.

601

7.23

70.

01

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-8.6

542

36.5

0021

.479

57.3

170.

00

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

Pa5

sow

ndiv

^c-4

1.09

12

36.5

0086

.354

122.

192

0.00

Bact

eria

-fee

ding

nem

atod

e ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-436

7.08

02

36.5

0087

38.3

3287

74.1

690.

00

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

Pa2

a +

b *

sow

ndiv

16.2

993

24.3

33-2

6.25

10.

000

0.17

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

16.2

713

24.3

33-2

6.19

30.

058

0.17

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

Pa3

a +

sow

ndiv

^c16

.075

324

.333

-25.

803

0.44

80.

14

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

Pa4

b *

sow

ndiv

^c16

.067

324

.333

-25.

785

0.46

60.

14

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)15

.952

324

.333

-25.

556

0.69

50.

12

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

15.9

523

24.3

33-2

5.55

60.

695

0.12

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)16

.308

418

.250

-24.

029

2.22

20.

06

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

16.1

974

18.2

50-2

3.80

72.

444

0.05

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

16.6

575

14.6

00-2

2.41

83.

833

0.03

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

BIEX

PSS

biex

p(so

wnd

iv, A

1, lr

c1, A

2, lr

c2)

16.3

455

14.6

00-2

1.79

54.

456

0.02

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^218

.821

154.

867

0.77

927

.030

0.00

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-13.

864

236

.500

31.9

0058

.151

0.00

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

Pa5

sow

ndiv

^c-4

0.83

72

36.5

0085

.845

112.

096

0.00

Hyp

heno

phag

ous

nem

atod

e ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-436

7.08

02

36.5

0087

38.3

3287

64.5

830.

00

Colle

mbo

la a

bund

ance

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.8

583

26.6

67-4

1.40

00.

000

0.15

Colle

mbo

la a

bund

ance

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)23

.858

326

.667

-41.

400

0.00

00.

15

Colle

mbo

la a

bund

ance

Pa3

a +

sow

ndiv

^c23

.795

326

.667

-41.

274

0.12

60.

14

Colle

mbo

la a

bund

ance

Pa4

b *

sow

ndiv

^c23

.747

326

.667

-41.

179

0.22

10.

13

Colle

mbo

la a

bund

ance

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)23

.630

326

.667

-40.

944

0.45

50.

12

Colle

mbo

la a

bund

ance

Pa2

a +

b *

sow

ndiv

22.9

523

26.6

67-3

9.58

81.

812

0.06

Colle

mbo

la a

bund

ance

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.8

704

20.0

00-3

9.20

62.

194

0.05

Colle

mbo

la a

bund

ance

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)23

.793

420

.000

-39.

052

2.34

80.

05

Colle

mbo

la a

bund

ance

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

23.7

934

20.0

00-3

9.05

22.

348

0.05

Colle

mbo

la a

bund

ance

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)23

.765

420

.000

-38.

997

2.40

30.

04

Colle

mbo

la a

bund

ance

E2a

+ b

* ex

p(so

wnd

iv)

22.4

273

26.6

67-3

8.53

92.

860

0.04

Colle

mbo

la a

bund

ance

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^237

.655

155.

333

-37.

810

3.59

00.

02

Colle

mbo

la a

bund

ance

L2so

wnd

iv +

func

gr +

leg

23.5

955

16.0

00-3

6.37

95.

021

0.01

Colle

mbo

la a

bund

ance

E5b

* ex

p(so

wnd

iv)

-21.

858

240

.000

47.8

7289

.272

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 52

Page 53: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Colle

mbo

la a

bund

ance

Pa5

sow

ndiv

^c-4

7.01

22

40.0

0098

.181

139.

580

0.00

Colle

mbo

la a

bund

ance

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2796

32.9

270.

00

Mite

abu

ndan

cePa

2a

+ b

* so

wnd

iv19

.716

326

.667

-33.

116

0.00

00.

16

Mite

abu

ndan

ceE2

a +

b *

exp(

sow

ndiv

)19

.712

326

.667

-33.

108

0.00

80.

16

Mite

abu

ndan

cePa

3a

+ so

wnd

iv^c

19.6

373

26.6

67-3

2.95

80.

157

0.15

Mite

abu

ndan

cePa

4b

* so

wnd

iv^c

19.6

373

26.6

67-3

2.95

70.

158

0.15

Mite

abu

ndan

ceM

1a

* so

wnd

iv/(

b +

sow

ndiv

)19

.631

326

.667

-32.

946

0.16

90.

15

Mite

abu

ndan

ceM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

19.6

313

26.6

67-3

2.94

60.

169

0.15

Mite

abu

ndan

ceLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

19.7

224

20.0

00-3

0.91

12.

205

0.05

Mite

abu

ndan

ceL2

sow

ndiv

+ fu

ncgr

+ le

g20

.009

516

.000

-29.

207

3.90

80.

02

Mite

abu

ndan

ceBI

EXP

SSbi

exp(

sow

ndiv

, A1,

lrc1

, A2,

lrc2

)19

.786

516

.000

-28.

761

4.35

50.

02

Mite

abu

ndan

ceL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

28.9

1715

5.33

3-2

0.33

312

.783

0.00

Mite

abu

ndan

ceE5

b *

exp(

sow

ndiv

)-1

2.67

92

40.0

0029

.514

62.6

300.

00

Mite

abu

ndan

cePa

5so

wnd

iv^c

-45.

163

240

.000

94.4

8312

7.59

80.

00

Mite

abu

ndan

ceE4

a +

exp(

sow

ndiv

)-4

793.

686

240

.000

9591

.527

9624

.643

0.00

Gam

asid

a ab

unda

nce

Pa2

a +

b *

sow

ndiv

22.8

323

26.6

67-3

9.34

90.

000

0.26

Gam

asid

a ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

22.6

063

26.6

67-3

8.89

50.

454

0.21

Gam

asid

a ab

unda

nce

Pa4

b *

sow

ndiv

^c22

.019

326

.667

-37.

723

1.62

60.

12

Gam

asid

a ab

unda

nce

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)22

.867

420

.000

-37.

201

2.14

90.

09

Gam

asid

a ab

unda

nce

Pa1

a +

b *

sow

ndiv

^c22

.864

420

.000

-37.

195

2.15

40.

09

Gam

asid

a ab

unda

nce

Pa3

a +

sow

ndiv

^c21

.600

326

.667

-36.

885

2.46

40.

08

Gam

asid

a ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

23.8

445

16.0

00-3

6.87

72.

472

0.08

Gam

asid

a ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.7

143

26.6

67-3

5.11

24.

237

0.03

Gam

asid

a ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)20

.714

326

.667

-35.

112

4.23

70.

03

Gam

asid

a ab

unda

nce

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)20

.240

326

.667

-34.

164

5.18

50.

02

Gam

asid

a ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^233

.400

155.

333

-29.

301

10.0

490.

00

Gam

asid

a ab

unda

nce

E5b

* ex

p(so

wnd

iv)

6.19

02

40.0

00-8

.224

31.1

250.

00

Gam

asid

a ab

unda

nce

Pa5

sow

ndiv

^c-5

0.30

22

40.0

0010

4.76

014

4.10

90.

00

Gam

asid

a ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2796

30.8

770.

00

Colle

mbo

la d

iver

sity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^236

.161

155.

333

-34.

822

0.00

00.

38

Colle

mbo

la d

iver

sity

Pa4

b *

sow

ndiv

^c19

.349

326

.667

-32.

382

2.44

00.

11

Colle

mbo

la d

iver

sity

Pa3

a +

sow

ndiv

^c19

.305

326

.667

-32.

295

2.52

70.

11

Colle

mbo

la d

iver

sity

Pa2

a +

b *

sow

ndiv

18.8

473

26.6

67-3

1.37

93.

443

0.07

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 53

Page 54: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Colle

mbo

la d

iver

sity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)19

.475

420

.000

-30.

416

4.40

60.

04

Colle

mbo

la d

iver

sity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

19.4

754

20.0

00-3

0.41

64.

406

0.04

Colle

mbo

la d

iver

sity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)19

.473

420

.000

-30.

412

4.41

00.

04

Colle

mbo

la d

iver

sity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

19.4

724

20.0

00-3

0.41

14.

411

0.04

Colle

mbo

la d

iver

sity

Pa1

a +

b *

sow

ndiv

^c19

.453

420

.000

-30.

373

4.44

90.

04

Colle

mbo

la d

iver

sity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

18.2

073

26.6

67-3

0.09

94.

723

0.04

Colle

mbo

la d

iver

sity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)18

.207

326

.667

-30.

099

4.72

30.

04

Colle

mbo

la d

iver

sity

E2a

+ b

* ex

p(so

wnd

iv)

17.5

443

26.6

67-2

8.77

26.

050

0.02

Colle

mbo

la d

iver

sity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)17

.249

326

.667

-28.

183

6.63

90.

01

Colle

mbo

la d

iver

sity

L2so

wnd

iv +

func

gr +

leg

18.9

945

16.0

00-2

7.17

87.

644

0.01

Colle

mbo

la d

iver

sity

Pa5

sow

ndiv

^c-3

2.54

22

40.0

0069

.240

104.

063

0.00

Colle

mbo

la d

iver

sity

E5b

* ex

p(so

wnd

iv)

-62.

899

240

.000

129.

954

164.

777

0.00

Colle

mbo

la d

iver

sity

E4a

+ ex

p(so

wnd

iv)

-479

3.68

62

40.0

0095

91.5

2796

26.3

500.

00

Abov

egro

und

herb

ivor

e ab

unda

nce

Pa4

b *

sow

ndiv

^c21

.063

316

.667

-35.

603

0.00

00.

25

Abov

egro

und

herb

ivor

e ab

unda

nce

Pa2

a +

b *

sow

ndiv

20.6

003

16.6

67-3

4.67

80.

926

0.16

Abov

egro

und

herb

ivor

e ab

unda

nce

Pa1

a +

b *

sow

ndiv

^c21

.542

412

.500

-34.

196

1.40

80.

13

Abov

egro

und

herb

ivor

e ab

unda

nce

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.2

474

12.5

00-3

3.60

51.

999

0.09

Abov

egro

und

herb

ivor

e ab

unda

nce

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)21

.222

412

.500

-33.

555

2.04

90.

09

Abov

egro

und

herb

ivor

e ab

unda

nce

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

21.2

224

12.5

00-3

3.55

52.

049

0.09

Abov

egro

und

herb

ivor

e ab

unda

nce

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)20

.999

412

.500

-33.

109

2.49

40.

07

Abov

egro

und

herb

ivor

e ab

unda

nce

Pa3

a +

sow

ndiv

^c19

.713

316

.667

-32.

904

2.69

90.

07

Abov

egro

und

herb

ivor

e ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

21.6

875

10.0

00-3

2.01

13.

593

0.04

Abov

egro

und

herb

ivor

e ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

16.5

803

16.6

67-2

6.63

88.

965

0.00

Abov

egro

und

herb

ivor

e ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)16

.580

316

.667

-26.

638

8.96

50.

00

Abov

egro

und

herb

ivor

e ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

15.7

663

16.6

67-2

5.01

110

.593

0.00

Abov

egro

und

herb

ivor

e ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^234

.420

153.

333

-24.

722

10.8

810.

00

Abov

egro

und

herb

ivor

e ab

unda

nce

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)14

.098

316

.667

-21.

675

13.9

290.

00

Abov

egro

und

herb

ivor

e ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-14.

632

225

.000

33.5

1969

.122

0.00

Abo

vegr

ound

her

bivo

re a

bund

ance

Pa5

sow

ndiv

^c-3

9.99

12

25.0

0084

.238

119.

841

0.00

Abo

vegr

ound

her

bivo

re a

bund

ance

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

55.4

660.

00

Abov

egro

und

carn

ivor

e ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

12.0

693

16.6

67-1

7.61

70.

000

0.20

Abov

egro

und

carn

ivor

e ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)12

.069

316

.667

-17.

617

0.00

00.

20

Abov

egro

und

carn

ivor

e ab

unda

nce

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)11

.573

316

.667

-16.

624

0.99

30.

12

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 54

Page 55: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

carn

ivor

e ab

unda

nce

Pa3

a +

sow

ndiv

^c11

.353

316

.667

-16.

183

1.43

40.

10

Abov

egro

und

carn

ivor

e ab

unda

nce

Pa4

b *

sow

ndiv

^c10

.999

316

.667

-15.

477

2.14

00.

07

Abov

egro

und

carn

ivor

e ab

unda

nce

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)12

.078

412

.500

-15.

267

2.35

00.

06

Abov

egro

und

carn

ivor

e ab

unda

nce

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

12.0

784

12.5

00-1

5.26

72.

350

0.06

Abov

egro

und

carn

ivor

e ab

unda

nce

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

12.0

764

12.5

00-1

5.26

32.

354

0.06

Abov

egro

und

carn

ivor

e ab

unda

nce

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)12

.075

412

.500

-15.

262

2.35

50.

06

Abov

egro

und

carn

ivor

e ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

12.9

845

10.0

00-1

4.60

53.

012

0.05

Abov

egro

und

carn

ivor

e ab

unda

nce

Pa2

a +

b *

sow

ndiv

8.12

23

16.6

67-9

.721

7.89

50.

00

Abov

egro

und

carn

ivor

e ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

6.36

73

16.6

67-6

.213

11.4

040.

00

Abov

egro

und

carn

ivor

e ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^225

.106

153.

333

-6.0

9411

.522

0.00

Abov

egro

und

carn

ivor

e ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-26.

232

225

.000

56.7

1974

.336

0.00

Abov

egro

und

carn

ivor

e ab

unda

nce

Pa5

sow

ndiv

^c-3

6.01

22

25.0

0076

.280

93.8

970.

00

Abov

egro

und

carn

ivor

e ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

37.4

800.

00

Abo

vegr

ound

om

nivo

re a

bund

ance

L2so

wnd

iv +

func

gr +

leg

17.4

875

10.0

00-2

3.61

10.

000

1.00

Abov

egro

und

omni

vore

abu

ndan

ceL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

26.9

2215

3.33

3-9

.726

13.8

850.

00

Abov

egro

und

omni

vore

abu

ndan

cePa

4b

* so

wnd

iv^c

5.55

13

16.6

67-4

.580

19.0

310.

00

Abov

egro

und

omni

vore

abu

ndan

cePa

3a

+ so

wnd

iv^c

5.51

73

16.6

67-4

.513

19.0

980.

00

Abov

egro

und

omni

vore

abu

ndan

cePa

2a

+ b

* so

wnd

iv5.

313

316

.667

-4.1

0319

.507

0.00

Abov

egro

und

omni

vore

abu

ndan

ceM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

5.00

73

16.6

67-3

.492

20.1

190.

00

Abov

egro

und

omni

vore

abu

ndan

ceM

1a

* so

wnd

iv/(

b +

sow

ndiv

)5.

007

316

.667

-3.4

9220

.119

0.00

Abov

egro

und

omni

vore

abu

ndan

ceE2

a +

b *

exp(

sow

ndiv

)4.

721

316

.667

-2.9

2020

.691

0.00

Abov

egro

und

omni

vore

abu

ndan

ceA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

4.62

33

16.6

67-2

.723

20.8

870.

00

Abov

egro

und

omni

vore

abu

ndan

ceLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

5.72

84

12.5

00-2

.567

21.0

430.

00

Abov

egro

und

omni

vore

abu

ndan

ceA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)5.

706

412

.500

-2.5

2321

.087

0.00

Abov

egro

und

omni

vore

abu

ndan

ceAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

5.70

64

12.5

00-2

.523

21.0

870.

00

Abov

egro

und

omni

vore

abu

ndan

ceM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)5.

675

412

.500

-2.4

6221

.149

0.00

Abov

egro

und

omni

vore

abu

ndan

cePa

1a

+ b

* so

wnd

iv^c

5.58

94

12.5

00-2

.289

21.3

210.

00

Abov

egro

und

omni

vore

abu

ndan

ceE5

b *

exp(

sow

ndiv

)-2

1.51

42

25.0

0047

.283

70.8

930.

00

Abov

egro

und

omni

vore

abu

ndan

cePa

5so

wnd

iv^c

-35.

116

225

.000

74.4

8798

.097

0.00

Abov

egro

und

omni

vore

abu

ndan

ceE4

a +

exp(

sow

ndiv

)-3

007.

804

225

.000

6019

.863

6043

.473

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

L2so

wnd

iv +

func

gr +

leg

9.94

55

10.0

00-8

.527

0.00

00.

77

Abov

egro

und

para

sito

id a

bund

ance

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^225

.076

153.

333

-6.0

352.

492

0.22

Abov

egro

und

para

sito

id a

bund

ance

Pa2

a +

b *

sow

ndiv

1.34

53

16.6

673.

831

12.3

580.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 55

Page 56: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

para

sito

id a

bund

ance

Pa4

b *

sow

ndiv

^c0.

444

316

.667

5.63

414

.161

0.00

Abov

egro

und

para

sito

id a

bund

ance

Pa1

a +

b *

sow

ndiv

^c1.

373

412

.500

6.14

314

.670

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

1.36

64

12.5

006.

157

14.6

830.

00

Abov

egro

und

para

sito

id a

bund

ance

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)1.

366

412

.500

6.15

714

.684

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

1.36

64

12.5

006.

157

14.6

840.

00

Abov

egro

und

para

sito

id a

bund

ance

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)1.

353

412

.500

6.18

314

.709

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

E2a

+ b

* ex

p(so

wnd

iv)

-0.2

563

16.6

677.

033

15.5

590.

00

Abov

egro

und

para

sito

id a

bund

ance

Pa3

a +

sow

ndiv

^c-0

.521

316

.667

7.56

516

.091

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)-2

.370

316

.667

11.2

6219

.788

0.00

Abo

vegr

ound

par

asito

id a

bund

ance

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

-2.3

703

16.6

6711

.262

19.7

880.

00

Abov

egro

und

para

sito

id a

bund

ance

E5b

* ex

p(so

wnd

iv)

-19.

263

225

.000

42.7

8151

.307

0.00

Abov

egro

und

para

sito

id a

bund

ance

Pa5

sow

ndiv

^c-4

1.66

02

25.0

0087

.576

96.1

020.

00

Abov

egro

und

para

sito

id a

bund

ance

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

28.3

890.

00

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

cePa

3a

+ so

wnd

iv^c

-9.1

083

9.33

325

.216

0.00

00.

13

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

cePa

4b

* so

wnd

iv^c

-9.1

103

9.33

325

.221

0.00

50.

13

Abov

egro

und

hype

rpar

asito

id a

bund

ance

E2a

+ b

* ex

p(so

wnd

iv)

-9.1

573

9.33

325

.313

0.09

70.

12

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

cePa

2a

+ b

* so

wnd

iv-9

.166

39.

333

25.3

320.

116

0.12

Abov

egro

und

hype

rpar

asito

id a

bund

ance

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)-9

.170

39.

333

25.3

390.

123

0.12

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

ceM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

-9.1

773

9.33

325

.354

0.13

80.

12

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

ceM

1a

* so

wnd

iv/(

b +

sow

ndiv

)-9

.177

39.

333

25.3

540.

138

0.12

Abov

egro

und

hype

rpar

asito

id a

bund

ance

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

-8.0

444

7.00

025

.827

0.61

10.

09

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

cePa

1a

+ b

* so

wnd

iv^c

-9.1

034

7.00

027

.946

2.73

00.

03

Abo

vegr

ound

hyp

erpa

rasi

toid

abu

ndan

ceL2

sow

ndiv

+ fu

ncgr

+ le

g-8

.811

55.

600

30.3

495.

132

0.01

Abov

egro

und

hype

rpar

asito

id a

bund

ance

E5b

* ex

p(so

wnd

iv)

-16.

232

214

.000

36.9

4411

.728

0.00

Abov

egro

und

hype

rpar

asito

id a

bund

ance

Pa5

sow

ndiv

^c-2

2.60

32

14.0

0049

.686

24.4

690.

00

Abov

egro

und

hype

rpar

asito

id a

bund

ance

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^2-2

.232

142.

000

64.7

7239

.556

0.00

Abov

egro

und

hype

rpar

asito

id a

bund

ance

E4a

+ ex

p(so

wnd

iv)

-168

8.46

02

14.0

0033

81.4

0033

56.1

840.

00

Polli

nato

r ab

unda

nce

L2so

wnd

iv +

func

gr +

leg

14.8

005

10.0

00-1

8.23

60.

000

0.71

Polli

nato

r ab

unda

nce

E2a

+ b

* ex

p(so

wnd

iv)

9.72

33

16.6

67-1

2.92

45.

311

0.05

Polli

nato

r ab

unda

nce

Pa2

a +

b *

sow

ndiv

9.71

83

16.6

67-1

2.91

35.

322

0.05

Polli

nato

r ab

unda

nce

Pa4

b *

sow

ndiv

^c9.

554

316

.667

-12.

586

5.65

00.

04

Polli

nato

r ab

unda

nce

Pa3

a +

sow

ndiv

^c9.

544

316

.667

-12.

567

5.66

80.

04

Polli

nato

r ab

unda

nce

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

9.41

63

16.6

67-1

2.31

05.

925

0.04

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 56

Page 57: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Polli

nato

r ab

unda

nce

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)9.

416

316

.667

-12.

310

5.92

50.

04

Polli

nato

r ab

unda

nce

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)9.

377

316

.667

-12.

232

6.00

40.

04

Polli

nato

r ab

unda

nce

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^221

.013

153.

333

2.09

220

.327

0.00

Polli

nato

r ab

unda

nce

E5b

* ex

p(so

wnd

iv)

-14.

188

225

.000

32.6

3250

.868

0.00

Polli

nato

r ab

unda

nce

Pa5

sow

ndiv

^c-3

4.57

62

25.0

0073

.408

91.6

440.

00

Polli

nato

r ab

unda

nce

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

38.0

980.

00

Plan

t inv

ader

abu

ndan

cePn

1831

a +

sow

ndiv

^c48

.697

613

.667

-84.

274

0.00

00.

28

Plan

t inv

ader

abu

ndan

cePp

2231

a +

b *

sow

ndiv

50.8

098

10.2

50-8

3.64

50.

629

0.21

Plan

t inv

ader

abu

ndan

ceEf

3921

a +

exp(

c *

sow

ndiv

)49

.460

810

.250

-80.

947

3.32

70.

05

Plan

t inv

ader

abu

ndan

ceEb

1521

a +

exp(

c *

sow

ndiv

)47

.019

613

.667

-80.

918

3.35

70.

05

Plan

t inv

ader

abu

ndan

cePm

1231

a +

b *

sow

ndiv

46.9

626

13.6

67-8

0.80

33.

471

0.05

Plan

t inv

ader

abu

ndan

cePr

3231

a +

b *

sow

ndiv

49.3

018

10.2

50-8

0.62

93.

645

0.05

Plan

t inv

ader

abu

ndan

cePp

2331

a +

sow

ndiv

^c48

.984

810

.250

-79.

996

4.27

80.

03

Plan

t inv

ader

abu

ndan

cePr

3331

a +

sow

ndiv

^c48

.974

810

.250

-79.

976

4.29

80.

03

Plan

t inv

ader

abu

ndan

cePc

131

a +

b *

sow

ndiv

^c45

.114

516

.400

-79.

439

4.83

60.

03

Plan

t inv

ader

abu

ndan

ceL2

22so

wnd

iv +

func

gr +

leg

46.2

516

13.6

67-7

9.38

14.

893

0.02

Plan

t inv

ader

abu

ndan

cePc

331

a +

sow

ndiv

^c43

.827

420

.500

-79.

135

5.13

90.

02

Plan

t inv

ader

abu

ndan

ceM

222

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

44.8

885

16.4

00-7

8.98

75.

288

0.02

Plan

t inv

ader

abu

ndan

cePs

3731

a +

b *

sow

ndiv

50.9

4710

8.20

0-7

8.79

55.

480

0.02

Plan

t inv

ader

abu

ndan

cePe

731

a +

b *

sow

ndiv

45.8

576

13.6

67-7

8.59

55.

679

0.02

Plan

t inv

ader

abu

ndan

ceEc

2121

a +

exp(

c *

sow

ndiv

)45

.817

613

.667

-78.

513

5.76

10.

02

Plan

t inv

ader

abu

ndan

ceEa

921

a +

exp(

c *

sow

ndiv

)45

.525

613

.667

-77.

931

6.34

40.

01

Plan

t inv

ader

abu

ndan

ceE3

2a

+ ex

p(c

* so

wnd

iv)

43.2

084

20.5

00-7

7.89

76.

377

0.01

Plan

t inv

ader

abu

ndan

ceM

1332

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

51.8

0311

7.45

5-7

7.83

56.

439

0.01

Plan

t inv

ader

abu

ndan

cePc

231

a +

b *

sow

ndiv

42.9

754

20.5

00-7

7.43

06.

845

0.01

Plan

t inv

ader

abu

ndan

cePn

1731

a +

b *

sow

ndiv

45.2

326

13.6

67-7

7.34

46.

931

0.01

Plan

t inv

ader

abu

ndan

cePq

2731

a +

b *

sow

ndiv

47.4

618

10.2

50-7

6.94

97.

326

0.01

Plan

t inv

ader

abu

ndan

ceL2

1so

wnd

iv +

func

gr +

leg

44.7

896

13.6

67-7

6.45

97.

816

0.01

Plan

t inv

ader

abu

ndan

cePe

831

a +

sow

ndiv

^c44

.568

613

.667

-76.

016

8.25

80.

00

Plan

t inv

ader

abu

ndan

cePs

3831

a +

sow

ndiv

^c49

.274

108.

200

-75.

449

8.82

60.

00

Plan

t inv

ader

abu

ndan

cePm

1331

a +

sow

ndiv

^c44

.253

613

.667

-75.

386

8.88

90.

00

Plan

t inv

ader

abu

ndan

cePp

2221

a +

b *

sow

ndiv

46.6

418

10.2

50-7

5.31

08.

964

0.00

Plan

t inv

ader

abu

ndan

cePn

1821

a +

sow

ndiv

^c44

.155

613

.667

-75.

191

9.08

40.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 57

Page 58: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

cePq

2831

a +

sow

ndiv

^c45

.974

810

.250

-73.

975

10.3

000.

00

Plan

t inv

ader

abu

ndan

cePe

631

a +

b *

sow

ndiv

^c45

.966

810

.250

-73.

959

10.3

160.

00

Plan

t inv

ader

abu

ndan

cePp

2431

b *

sow

ndiv

^c45

.810

810

.250

-73.

647

10.6

270.

00

Plan

t inv

ader

abu

ndan

ceL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^256

.949

165.

125

-73.

529

10.7

450.

00

Plan

t inv

ader

abu

ndan

cePp

2321

a +

sow

ndiv

^c44

.915

810

.250

-71.

858

12.4

160.

00

Plan

t inv

ader

abu

ndan

ceE2

2a

+ b

* ex

p(so

wnd

iv)

40.1

184

20.5

00-7

1.71

612

.559

0.00

Plan

t inv

ader

abu

ndan

cePr

3221

a +

b *

sow

ndiv

44.7

828

10.2

50-7

1.59

112

.683

0.00

Plan

t inv

ader

abu

ndan

cePs

3931

b *

sow

ndiv

^c47

.285

108.

200

-71.

472

12.8

020.

00

Plan

t inv

ader

abu

ndan

cePn

1921

b *

sow

ndiv

^c42

.293

613

.667

-71.

465

12.8

090.

00

Plan

t inv

ader

abu

ndan

cePr

3321

a +

sow

ndiv

^c44

.683

810

.250

-71.

394

12.8

800.

00

Plan

t inv

ader

abu

ndan

ceEb

1511

a +

exp(

c *

sow

ndiv

)42

.254

613

.667

-71.

388

12.8

860.

00

Plan

t inv

ader

abu

ndan

cePm

1221

a +

b *

sow

ndiv

42.1

836

13.6

67-7

1.24

513

.029

0.00

Plan

t inv

ader

abu

ndan

ceL2

11so

wnd

iv +

func

gr +

leg

42.1

326

13.6

67-7

1.14

413

.131

0.00

Plan

t inv

ader

abu

ndan

cePc

321

a +

sow

ndiv

^c39

.601

420

.500

-70.

683

13.5

920.

00

Plan

t inv

ader

abu

ndan

cePs

3721

a +

b *

sow

ndiv

46.8

4910

8.20

0-7

0.59

913

.676

0.00

Plan

t inv

ader

abu

ndan

cePc

121

a +

b *

sow

ndiv

^c40

.352

516

.400

-69.

915

14.3

600.

00

Plan

t inv

ader

abu

ndan

cePp

2421

b *

sow

ndiv

^c43

.816

810

.250

-69.

658

14.6

160.

00

Plan

t inv

ader

abu

ndan

ceM

211

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

40.1

465

16.4

00-6

9.50

214

.772

0.00

Plan

t inv

ader

abu

ndan

ceEa

911

a +

exp(

c *

sow

ndiv

)41

.265

613

.667

-69.

410

14.8

650.

00

Plan

t inv

ader

abu

ndan

cePe

721

a +

b *

sow

ndiv

41.2

046

13.6

67-6

9.28

914

.986

0.00

Plan

t inv

ader

abu

ndan

cePn

1931

b *

sow

ndiv

^c41

.149

613

.667

-69.

178

15.0

960.

00

Plan

t inv

ader

abu

ndan

ceE3

1a

+ ex

p(c

* so

wnd

iv)

38.8

004

20.5

00-6

9.08

015

.194

0.00

Plan

t inv

ader

abu

ndan

cePn

1721

a +

b *

sow

ndiv

40.9

956

13.6

67-6

8.87

015

.405

0.00

Plan

t inv

ader

abu

ndan

cePc

221

a +

b *

sow

ndiv

38.5

884

20.5

00-6

8.65

615

.618

0.00

Plan

t inv

ader

abu

ndan

cePe

931

b *

sow

ndiv

^c40

.776

613

.667

-68.

432

15.8

430.

00

Plan

t inv

ader

abu

ndan

cePp

2121

a +

b *

sow

ndiv

^c47

.064

117.

455

-68.

357

15.9

170.

00

Plan

t inv

ader

abu

ndan

cePq

2931

b *

sow

ndiv

^c43

.015

810

.250

-68.

058

16.2

160.

00

Plan

t inv

ader

abu

ndan

cePs

3921

b *

sow

ndiv

^c45

.546

108.

200

-67.

994

16.2

810.

00

Plan

t inv

ader

abu

ndan

cePs

3821

a +

sow

ndiv

^c45

.287

108.

200

-67.

475

16.7

990.

00

Plan

t inv

ader

abu

ndan

cePq

2721

a +

b *

sow

ndiv

42.6

618

10.2

50-6

7.34

916

.925

0.00

Plan

t inv

ader

abu

ndan

cePm

1321

a +

sow

ndiv

^c40

.157

613

.667

-67.

194

17.0

800.

00

Plan

t inv

ader

abu

ndan

cePc

421

b *

sow

ndiv

^c37

.776

420

.500

-67.

033

17.2

420.

00

Plan

t inv

ader

abu

ndan

cePr

3431

b *

sow

ndiv

^c42

.487

810

.250

-67.

001

17.2

730.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 58

Page 59: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

cePr

3421

b *

sow

ndiv

^c42

.481

810

.250

-66.

990

17.2

850.

00

Plan

t inv

ader

abu

ndan

cePm

1121

a +

b *

sow

ndiv

^c42

.423

810

.250

-66.

874

17.4

000.

00

Plan

t inv

ader

abu

ndan

cePe

821

a +

sow

ndiv

^c39

.853

613

.667

-66.

586

17.6

880.

00

Plan

t inv

ader

abu

ndan

ceL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^253

.396

165.

125

-66.

423

17.8

520.

00

Plan

t inv

ader

abu

ndan

ceL2

2so

wnd

iv +

func

gr +

leg

39.7

216

13.6

67-6

6.32

117

.953

0.00

Plan

t inv

ader

abu

ndan

ceL0

2bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^253

.251

165.

125

-66.

132

18.1

420.

00

Plan

t inv

ader

abu

ndan

ceM

1521

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

45.9

3011

7.45

5-6

6.08

918

.185

0.00

Plan

t inv

ader

abu

ndan

cePe

621

a +

b *

sow

ndiv

^c41

.381

810

.250

-64.

790

19.4

850.

00

Plan

t inv

ader

abu

ndan

cePq

2821

a +

sow

ndiv

^c41

.280

810

.250

-64.

587

19.6

870.

00

Plan

t inv

ader

abu

ndan

cePq

2921

b *

sow

ndiv

^c41

.113

810

.250

-64.

254

20.0

210.

00

Plan

t inv

ader

abu

ndan

cePm

1421

b *

sow

ndiv

^c38

.553

613

.667

-63.

987

20.2

880.

00

Plan

t inv

ader

abu

ndan

cePe

921

b *

sow

ndiv

^c38

.531

613

.667

-63.

941

20.3

330.

00

Plan

t inv

ader

abu

ndan

cePc

431

b *

sow

ndiv

^c36

.144

420

.500

-63.

768

20.5

070.

00

Plan

t inv

ader

abu

ndan

cePm

1431

b *

sow

ndiv

^c38

.291

613

.667

-63.

462

20.8

120.

00

Plan

t inv

ader

abu

ndan

ceM

1421

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

43.5

4511

7.45

5-6

1.31

922

.955

0.00

Plan

t inv

ader

abu

ndan

ceM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

39.4

848

10.2

50-6

0.99

523

.279

0.00

Plan

t inv

ader

abu

ndan

cePg

181

a +

sow

ndiv

^c34

.980

516

.400

-59.

171

25.1

030.

00

Plan

t inv

ader

abu

ndan

cePg

191

b *

sow

ndiv

^c34

.617

516

.400

-58.

445

25.8

300.

00

Plan

t inv

ader

abu

ndan

ceM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

35.6

206

13.6

67-5

8.12

126

.154

0.00

Plan

t inv

ader

abu

ndan

cePh

221

a +

b *

sow

ndiv

36.4

867

11.7

14-5

7.45

826

.816

0.00

Plan

t inv

ader

abu

ndan

ceL2

sow

ndiv

+ fu

ncgr

+ le

g33

.960

516

.400

-57.

130

27.1

440.

00

Plan

t inv

ader

abu

ndan

ceM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.9

496

13.6

67-5

6.77

827

.497

0.00

Plan

t inv

ader

abu

ndan

cePh

241

b *

sow

ndiv

^c36

.033

711

.714

-56.

553

27.7

220.

00

Plan

t inv

ader

abu

ndan

cePh

231

a +

sow

ndiv

^c35

.822

711

.714

-56.

130

28.1

450.

00

Plan

t inv

ader

abu

ndan

ceM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.9

028

10.2

50-5

5.83

228

.443

0.00

Plan

t inv

ader

abu

ndan

cePj

331

a +

sow

ndiv

^c35

.634

711

.714

-55.

754

28.5

210.

00

Plan

t inv

ader

abu

ndan

ceM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.4

126

13.6

67-5

5.70

328

.571

0.00

Plan

t inv

ader

abu

ndan

ceM

411

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.3

826

13.6

67-5

5.64

428

.630

0.00

Plan

t inv

ader

abu

ndan

cePj

321

a +

b *

sow

ndiv

35.0

687

11.7

14-5

4.62

329

.652

0.00

Plan

t inv

ader

abu

ndan

cePj

341

b *

sow

ndiv

^c35

.063

711

.714

-54.

612

29.6

630.

00

Plan

t inv

ader

abu

ndan

cePf

121

a +

b *

sow

ndiv

32.5

635

16.4

00-5

4.33

729

.938

0.00

Plan

t inv

ader

abu

ndan

ceM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.1

218

10.2

50-5

4.27

030

.004

0.00

Plan

t inv

ader

abu

ndan

ceM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.0

948

10.2

50-5

4.21

630

.059

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 59

Page 60: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

cePa

3a

+ so

wnd

iv^c

30.1

343

27.3

33-5

3.96

030

.315

0.00

Plan

t inv

ader

abu

ndan

cePb

31a

+ so

wnd

iv^c

30.1

343

27.3

33-5

3.96

030

.315

0.00

Plan

t inv

ader

abu

ndan

cePk

391

b *

sow

ndiv

^c37

.000

99.

111

-53.

499

30.7

750.

00

Plan

t inv

ader

abu

ndan

ceM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

38.2

0710

8.20

0-5

3.31

530

.959

0.00

Plan

t inv

ader

abu

ndan

cePa

4b

* so

wnd

iv^c

29.7

883

27.3

33-5

3.26

931

.006

0.00

Plan

t inv

ader

abu

ndan

cePb

41b

* so

wnd

iv^c

29.7

883

27.3

33-5

3.26

931

.006

0.00

Plan

t inv

ader

abu

ndan

cePk

371

a +

b *

sow

ndiv

36.7

209

9.11

1-5

2.94

031

.334

0.00

Plan

t inv

ader

abu

ndan

cePf

131

a +

sow

ndiv

^c31

.751

516

.400

-52.

712

31.5

630.

00

Plan

t inv

ader

abu

ndan

cePa

1a

+ b

* so

wnd

iv^c

30.2

704

20.5

00-5

2.02

132

.254

0.00

Plan

t inv

ader

abu

ndan

cePb

11a

+ b

* so

wnd

iv^c

30.2

704

20.5

00-5

2.02

132

.254

0.00

Plan

t inv

ader

abu

ndan

cePf

141

b *

sow

ndiv

^c31

.388

516

.400

-51.

986

32.2

880.

00

Plan

t inv

ader

abu

ndan

cePk

381

a +

sow

ndiv

^c36

.239

99.

111

-51.

977

32.2

970.

00

Plan

t inv

ader

abu

ndan

cePg

171

a +

b *

sow

ndiv

31.2

465

16.4

00-5

1.70

232

.572

0.00

Plan

t inv

ader

abu

ndan

ceM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)30

.089

420

.500

-51.

658

32.6

160.

00

Plan

t inv

ader

abu

ndan

ceA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

29.9

654

20.5

00-5

1.41

032

.864

0.00

Plan

t inv

ader

abu

ndan

ceM

3a

* so

wnd

iv/(

b +

sow

ndiv

)30

.972

516

.400

-51.

155

33.1

190.

00

Plan

t inv

ader

abu

ndan

cePa

2a

+ b

* so

wnd

iv28

.556

327

.333

-50.

805

33.4

700.

00

Plan

t inv

ader

abu

ndan

cePb

21a

+ b

* so

wnd

iv28

.556

327

.333

-50.

805

33.4

700.

00

Plan

t inv

ader

abu

ndan

ceM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

31.7

176

13.6

67-5

0.31

533

.960

0.00

Plan

t inv

ader

abu

ndan

cePd

71a

+ b

* so

wnd

iv30

.410

516

.400

-50.

030

34.2

450.

00

Plan

t inv

ader

abu

ndan

cePi

271

a +

b *

sow

ndiv

32.7

267

11.7

14-4

9.93

934

.335

0.00

Plan

t inv

ader

abu

ndan

ceBI

EXP

SSbi

exp(

sow

ndiv

, A1,

lrc1

, A2,

lrc2

)30

.313

516

.400

-49.

837

34.4

370.

00

Plan

t inv

ader

abu

ndan

cePf

111

a +

b *

sow

ndiv

^c32

.652

711

.714

-49.

791

34.4

830.

00

Plan

t inv

ader

abu

ndan

ceM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

31.4

156

13.6

67-4

9.71

034

.565

0.00

Plan

t inv

ader

abu

ndan

cePd

81a

+ so

wnd

iv^c

30.1

615

16.4

00-4

9.53

234

.743

0.00

Plan

t inv

ader

abu

ndan

ceM

1a

* so

wnd

iv/(

b +

sow

ndiv

)27

.831

327

.333

-49.

354

34.9

200.

00

Plan

t inv

ader

abu

ndan

ceM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

27.8

313

27.3

33-4

9.35

434

.920

0.00

Plan

t inv

ader

abu

ndan

cePi

291

b *

sow

ndiv

^c32

.283

711

.714

-49.

052

35.2

220.

00

Plan

t inv

ader

abu

ndan

cePi

281

a +

sow

ndiv

^c32

.281

711

.714

-49.

048

35.2

260.

00

Plan

t inv

ader

abu

ndan

cePd

91b

* so

wnd

iv^c

29.9

145

16.4

00-4

9.03

835

.237

0.00

Plan

t inv

ader

abu

ndan

ceM

151

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.0

3910

8.20

0-4

8.98

035

.295

0.00

Plan

t inv

ader

abu

ndan

ceM

81a

* so

wnd

iv/(

b +

sow

ndiv

)32

.234

711

.714

-48.

954

35.3

200.

00

Plan

t inv

ader

abu

ndan

ceM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.4

198

10.2

50-4

8.86

635

.409

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 60

Page 61: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

cePj

311

a +

b *

sow

ndiv

^c35

.961

108.

200

-48.

824

35.4

510.

00

Plan

t inv

ader

abu

ndan

ceM

4a

* so

wnd

iv/(

b +

sow

ndiv

)29

.731

516

.400

-48.

672

35.6

020.

00

Plan

t inv

ader

abu

ndan

ceM

91a

* so

wnd

iv/(

b +

sow

ndiv

)34

.291

99.

111

-48.

082

36.1

920.

00

Plan

t inv

ader

abu

ndan

ceM

7a

* so

wnd

iv/(

b +

sow

ndiv

)30

.885

711

.714

-46.

256

38.0

190.

00

Plan

t inv

ader

abu

ndan

ceE2

a +

b *

exp(

sow

ndiv

)26

.173

327

.333

-46.

038

38.2

360.

00

Plan

t inv

ader

abu

ndan

cePd

61a

+ b

* so

wnd

iv^c

30.4

727

11.7

14-4

5.43

138

.844

0.00

Plan

t inv

ader

abu

ndan

ceL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

40.7

8215

5.46

7-4

4.29

139

.983

0.00

Plan

t inv

ader

abu

ndan

cePi

261

a +

b *

sow

ndiv

^c32

.917

108.

200

-42.

736

41.5

390.

00

Plan

t inv

ader

abu

ndan

ceEa

1221

exp(

c *

sow

ndiv

)24

.206

420

.500

-39.

892

44.3

820.

00

Plan

t inv

ader

abu

ndan

ceEf

4221

exp(

c *

sow

ndiv

)25

.198

516

.400

-39.

607

44.6

670.

00

Plan

t inv

ader

abu

ndan

ceEd

3021

exp(

c *

sow

ndiv

)25

.091

516

.400

-39.

392

44.8

820.

00

Plan

t inv

ader

abu

ndan

ceEc

2421

exp(

c *

sow

ndiv

)21

.536

420

.500

-34.

553

49.7

220.

00

Plan

t inv

ader

abu

ndan

ceEa

121

exp(

c *

sow

ndiv

)20

.206

420

.500

-31.

893

52.3

820.

00

Plan

t inv

ader

abu

ndan

ceM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.0

3210

8.20

0-3

0.96

653

.309

0.00

Plan

t inv

ader

abu

ndan

ceEf

4211

exp(

c *

sow

ndiv

)20

.862

516

.400

-30.

934

53.3

400.

00

Plan

t inv

ader

abu

ndan

ceM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.1

058

10.2

50-3

0.23

754

.037

0.00

Plan

t inv

ader

abu

ndan

ceEa

12ex

p(c

* so

wnd

iv)

16.6

953

27.3

33-2

7.08

257

.192

0.00

Plan

t inv

ader

abu

ndan

ceE6

2ex

p(c

* so

wnd

iv)

16.5

123

27.3

33-2

6.71

657

.558

0.00

Plan

t inv

ader

abu

ndan

ceEb

1821

exp(

c *

sow

ndiv

)16

.715

420

.500

-24.

910

59.3

640.

00

Plan

t inv

ader

abu

ndan

ceEc

2411

exp(

c *

sow

ndiv

)16

.339

420

.500

-24.

158

60.1

160.

00

Plan

t inv

ader

abu

ndan

ceEc

24ex

p(c

* so

wnd

iv)

13.6

673

27.3

33-2

1.02

663

.248

0.00

Plan

t inv

ader

abu

ndan

ceE6

1ex

p(c

* so

wnd

iv)

11.0

043

27.3

33-1

5.70

068

.574

0.00

Plan

t inv

ader

abu

ndan

ceEb

1811

exp(

c *

sow

ndiv

)11

.140

420

.500

-13.

760

70.5

150.

00

Plan

t inv

ader

abu

ndan

cePn

2021

sow

ndiv

^c10

.348

420

.500

-12.

176

72.0

990.

00

Plan

t inv

ader

abu

ndan

cePc

521

sow

ndiv

^c8.

497

327

.333

-10.

685

73.5

890.

00

Plan

t inv

ader

abu

ndan

ceEb

18ex

p(c

* so

wnd

iv)

8.49

23

27.3

33-1

0.67

673

.599

0.00

Plan

t inv

ader

abu

ndan

ceM

6a

* so

wnd

iv/(

b +

sow

ndiv

)13

.077

711

.714

-10.

640

73.6

340.

00

Plan

t inv

ader

abu

ndan

cePp

2521

sow

ndiv

^c10

.517

516

.400

-10.

244

74.0

300.

00

Plan

t inv

ader

abu

ndan

cePr

3521

sow

ndiv

^c10

.352

516

.400

-9.9

1474

.360

0.00

Plan

t inv

ader

abu

ndan

cePe

1021

sow

ndiv

^c8.

958

420

.500

-9.3

9774

.877

0.00

Plan

t inv

ader

abu

ndan

cePs

4021

sow

ndiv

^c10

.956

613

.667

-8.7

9275

.483

0.00

Plan

t inv

ader

abu

ndan

cePm

1521

sow

ndiv

^c8.

558

420

.500

-8.5

9675

.678

0.00

Plan

t inv

ader

abu

ndan

cePq

3021

sow

ndiv

^c8.

990

516

.400

-7.1

9177

.084

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 61

Page 62: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

ceE5

2b

* ex

p(so

wnd

iv)

4.86

63

27.3

33-3

.424

80.8

500.

00

Plan

t inv

ader

abu

ndan

ceE5

1b

* ex

p(so

wnd

iv)

-1.9

203

27.3

3310

.148

94.4

220.

00

Plan

t inv

ader

abu

ndan

cePn

2031

sow

ndiv

^c-2

.959

420

.500

14.4

3898

.712

0.00

Plan

t inv

ader

abu

ndan

cePc

531

sow

ndiv

^c-4

.439

327

.333

15.1

8699

.460

0.00

Plan

t inv

ader

abu

ndan

cePp

2531

sow

ndiv

^c-2

.463

516

.400

15.7

1599

.990

0.00

Plan

t inv

ader

abu

ndan

cePr

3531

sow

ndiv

^c-2

.779

516

.400

16.3

4710

0.62

10.

00

Plan

t inv

ader

abu

ndan

cePe

1031

sow

ndiv

^c-4

.182

420

.500

16.8

8410

1.15

80.

00

Plan

t inv

ader

abu

ndan

cePm

1531

sow

ndiv

^c-4

.434

420

.500

17.3

8710

1.66

10.

00

Plan

t inv

ader

abu

ndan

cePs

4031

sow

ndiv

^c-2

.209

613

.667

17.5

3910

1.81

30.

00

Plan

t inv

ader

abu

ndan

cePq

3031

sow

ndiv

^c-3

.964

516

.400

18.7

1810

2.99

20.

00

Plan

t inv

ader

abu

ndan

ceE5

b *

exp(

sow

ndiv

)-1

1.14

12

41.0

0026

.434

110.

708

0.00

Plan

t inv

ader

abu

ndan

cePg

201

sow

ndiv

^c-3

1.33

63

27.3

3368

.980

153.

255

0.00

Plan

t inv

ader

abu

ndan

cePj

351

sow

ndiv

^c-3

1.29

64

20.5

0071

.111

155.

385

0.00

Plan

t inv

ader

abu

ndan

cePb

51so

wnd

iv^c

-33.

511

241

.000

71.1

7315

5.44

80.

00

Plan

t inv

ader

abu

ndan

cePa

5so

wnd

iv^c

-33.

511

241

.000

71.1

7315

5.44

80.

00

Plan

t inv

ader

abu

ndan

cePh

251

sow

ndiv

^c-3

1.33

64

20.5

0071

.192

155.

466

0.00

Plan

t inv

ader

abu

ndan

cePd

101

sow

ndiv

^c-3

2.67

43

27.3

3371

.656

155.

930

0.00

Plan

t inv

ader

abu

ndan

cePk

401

sow

ndiv

^c-3

1.17

55

16.4

0073

.140

157.

414

0.00

Plan

t inv

ader

abu

ndan

cePf

151

sow

ndiv

^c-3

3.45

63

27.3

3373

.220

157.

494

0.00

Plan

t inv

ader

abu

ndan

cePi

301

sow

ndiv

^c-3

2.36

54

20.5

0073

.249

157.

523

0.00

Plan

t inv

ader

abu

ndan

ceEc

2221

a +

exp(

sow

ndiv

)-7

94.7

024

20.5

0015

97.9

2416

82.1

990.

00

Plan

t inv

ader

abu

ndan

ceEd

2821

a +

exp(

sow

ndiv

)-7

94.6

895

16.4

0016

00.1

6816

84.4

420.

00

Plan

t inv

ader

abu

ndan

ceEe

342

a +

exp(

sow

ndiv

)-7

94.6

975

16.4

0016

00.1

8316

84.4

580.

00

Plan

t inv

ader

abu

ndan

ceEg

4621

a +

exp(

sow

ndiv

)-7

94.6

886

13.6

6716

02.4

9616

86.7

710.

00

Plan

t inv

ader

abu

ndan

ceE4

2a

+ ex

p(so

wnd

iv)

-801

.511

327

.333

1609

.329

1693

.603

0.00

Plan

t inv

ader

abu

ndan

ceEb

1621

a +

exp(

sow

ndiv

)-8

01.3

424

20.5

0016

11.2

0416

95.4

790.

00

Plan

t inv

ader

abu

ndan

ceEa

1021

a +

exp(

sow

ndiv

)-8

01.4

504

20.5

0016

11.4

2016

95.6

940.

00

Plan

t inv

ader

abu

ndan

ceEf

4021

a +

exp(

sow

ndiv

)-8

01.1

655

16.4

0016

13.1

2016

97.3

940.

00

Plan

t inv

ader

abu

ndan

ceEa

1011

a +

exp(

sow

ndiv

)-1

766.

566

420

.500

3541

.651

3625

.925

0.00

Plan

t inv

ader

abu

ndan

ceE4

1a

+ ex

p(so

wnd

iv)

-176

8.03

63

27.3

3335

42.3

7936

26.6

540.

00

Plan

t inv

ader

abu

ndan

ceEb

1611

a +

exp(

sow

ndiv

)-1

767.

522

420

.500

3543

.564

3627

.838

0.00

Plan

t inv

ader

abu

ndan

ceEf

4011

a +

exp(

sow

ndiv

)-1

766.

448

516

.400

3543

.685

3627

.959

0.00

Plan

t inv

ader

abu

ndan

ceEd

2811

a +

exp(

sow

ndiv

)-1

766.

566

516

.400

3543

.921

3628

.195

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 62

Page 63: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

abu

ndan

ceEc

2211

a +

exp(

sow

ndiv

)-1

768.

036

420

.500

3544

.591

3628

.865

0.00

Plan

t inv

ader

abu

ndan

ceEe

341

a +

exp(

sow

ndiv

)-1

767.

522

516

.400

3545

.834

3630

.108

0.00

Plan

t inv

ader

abu

ndan

ceEg

4611

a +

exp(

sow

ndiv

)-1

766.

448

613

.667

3546

.015

3630

.290

0.00

Plan

t inv

ader

abu

ndan

ceEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

739.

352

117.

455

5504

.476

5588

.751

0.00

Plan

t inv

ader

abu

ndan

ceE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9913

.457

0.00

Plan

t inv

ader

abu

ndan

ceEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

15.6

130.

00

Plan

t inv

ader

abu

ndan

ceEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

15.6

130.

00

Plan

t inv

ader

abu

ndan

ceEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

15.6

130.

00

Plan

t inv

ader

abu

ndan

ceEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

17.8

250.

00

Plan

t inv

ader

abu

ndan

ceEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

17.8

250.

00

Plan

t inv

ader

abu

ndan

ceEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

17.8

250.

00

Plan

t inv

ader

abu

ndan

ceEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2199

20.0

950.

00

Myc

orrh

iza

dive

rsity

L2so

wnd

iv +

func

gr +

leg

22.3

805

15.4

00-3

3.91

50.

000

0.16

Myc

orrh

iza

dive

rsity

Pa2

a +

b *

sow

ndiv

20.0

383

25.6

67-3

3.74

70.

168

0.15

Myc

orrh

iza

dive

rsity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)20

.753

419

.250

-32.

951

0.96

50.

10

Myc

orrh

iza

dive

rsity

Pa4

b *

sow

ndiv

^c19

.561

325

.667

-32.

793

1.12

20.

09

Myc

orrh

iza

dive

rsity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

20.6

444

19.2

50-3

2.73

31.

182

0.09

Myc

orrh

iza

dive

rsity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)20

.644

419

.250

-32.

733

1.18

20.

09

Myc

orrh

iza

dive

rsity

Pa3

a +

sow

ndiv

^c19

.470

325

.667

-32.

611

1.30

50.

08

Myc

orrh

iza

dive

rsity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.5

554

19.2

50-3

2.55

41.

362

0.08

Myc

orrh

iza

dive

rsity

Pa1

a +

b *

sow

ndiv

^c20

.262

419

.250

-31.

968

1.94

70.

06

Myc

orrh

iza

dive

rsity

E2a

+ b

* ex

p(so

wnd

iv)

18.5

543

25.6

67-3

0.77

93.

136

0.03

Myc

orrh

iza

dive

rsity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

18.0

303

25.6

67-2

9.73

14.

184

0.02

Myc

orrh

iza

dive

rsity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)18

.030

325

.667

-29.

731

4.18

40.

02

Myc

orrh

iza

dive

rsity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)17

.712

325

.667

-29.

095

4.82

10.

01

Myc

orrh

iza

dive

rsity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^231

.426

155.

133

-24.

983

8.93

20.

00

Myc

orrh

iza

dive

rsity

Pa5

sow

ndiv

^c-2

9.46

62

38.5

0063

.094

97.0

090.

00

Myc

orrh

iza

dive

rsity

E5b

* ex

p(so

wnd

iv)

-57.

516

238

.500

119.

193

153.

109

0.00

Myc

orrh

iza

dive

rsity

E4a

+ ex

p(so

wnd

iv)

-460

4.31

82

38.5

0092

12.7

9992

46.7

140.

00

Abo

vegr

ound

her

bivo

re d

iver

sity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^252

.874

153.

333

-61.

630

0.00

00.

73

Abov

egro

und

herb

ivor

e di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g35

.489

510

.000

-59.

614

2.01

60.

27

Abov

egro

und

herb

ivor

e di

vers

ityPa

4b

* so

wnd

iv^c

24.6

613

16.6

67-4

2.80

118

.829

0.00

Abov

egro

und

herb

ivor

e di

vers

ityPa

1a

+ b

* so

wnd

iv^c

24.8

164

12.5

00-4

0.74

320

.886

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 63

Page 64: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

herb

ivor

e di

vers

ityM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)24

.509

412

.500

-40.

129

21.5

000.

00

Abov

egro

und

herb

ivor

e di

vers

ityA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

24.4

374

12.5

00-3

9.98

521

.644

0.00

Abov

egro

und

herb

ivor

e di

vers

ityAS

2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)24

.437

412

.500

-39.

985

21.6

440.

00

Abov

egro

und

herb

ivor

e di

vers

ityLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

23.9

864

12.5

00-3

9.08

422

.546

0.00

Abov

egro

und

herb

ivor

e di

vers

ityPa

3a

+ so

wnd

iv^c

22.6

373

16.6

67-3

8.75

322

.877

0.00

Abov

egro

und

herb

ivor

e di

vers

ityPa

2a

+ b

* so

wnd

iv21

.592

316

.667

-36.

662

24.9

670.

00

Abov

egro

und

herb

ivor

e di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

19.2

843

16.6

67-3

2.04

729

.583

0.00

Abov

egro

und

herb

ivor

e di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)19

.284

316

.667

-32.

047

29.5

830.

00

Abov

egro

und

herb

ivor

e di

vers

ityAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

15.8

733

16.6

67-2

5.22

536

.405

0.00

Abov

egro

und

herb

ivor

e di

vers

ityE2

a +

b *

exp(

sow

ndiv

)12

.252

316

.667

-17.

982

43.6

470.

00

Abov

egro

und

herb

ivor

e di

vers

ityE5

b *

exp(

sow

ndiv

)-1

9.71

22

25.0

0043

.678

105.

308

0.00

Abo

vegr

ound

her

bivo

re d

iver

sity

Pa5

sow

ndiv

^c-4

1.02

92

25.0

0086

.313

147.

942

0.00

Abo

vegr

ound

her

bivo

re d

iver

sity

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

81.4

920.

00

Abov

egro

und

carn

ivor

e di

vers

ityPa

3a

+ so

wnd

iv^c

10.9

993

16.6

67-1

5.47

60.

000

0.30

Abov

egro

und

carn

ivor

e di

vers

ityPa

4b

* so

wnd

iv^c

10.9

263

16.6

67-1

5.33

00.

146

0.28

Abov

egro

und

carn

ivor

e di

vers

ityPa

1a

+ b

* so

wnd

iv^c

10.9

994

12.5

00-1

3.10

92.

367

0.09

Abov

egro

und

carn

ivor

e di

vers

ityM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)10

.665

412

.500

-12.

441

3.03

50.

07

Abov

egro

und

carn

ivor

e di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g11

.623

510

.000

-11.

883

3.59

30.

05

Abov

egro

und

carn

ivor

e di

vers

ityA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

10.3

284

12.5

00-1

1.76

83.

708

0.05

Abov

egro

und

carn

ivor

e di

vers

ityAS

2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)10

.328

412

.500

-11.

768

3.70

80.

05

Abov

egro

und

carn

ivor

e di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

9.01

03

16.6

67-1

1.49

83.

978

0.04

Abov

egro

und

carn

ivor

e di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)9.

010

316

.667

-11.

498

3.97

80.

04

Abov

egro

und

carn

ivor

e di

vers

ityLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

9.96

94

12.5

00-1

1.05

04.

426

0.03

Abov

egro

und

carn

ivor

e di

vers

ityPa

2a

+ b

* so

wnd

iv7.

027

316

.667

-7.5

337.

943

0.01

Abov

egro

und

carn

ivor

e di

vers

ityAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

6.27

43

16.6

67-6

.027

9.44

90.

00

Abov

egro

und

carn

ivor

e di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

23.5

2915

3.33

3-2

.941

12.5

350.

00

Abov

egro

und

carn

ivor

e di

vers

ityE2

a +

b *

exp(

sow

ndiv

)2.

305

316

.667

1.91

117

.387

0.00

Abov

egro

und

carn

ivor

e di

vers

ityPa

5so

wnd

iv^c

-29.

955

225

.000

64.1

6579

.641

0.00

Abov

egro

und

carn

ivor

e di

vers

ityE5

b *

exp(

sow

ndiv

)-4

2.53

42

25.0

0089

.324

104.

800

0.00

Abov

egro

und

carn

ivor

e di

vers

ityE4

a +

exp(

sow

ndiv

)-3

007.

804

225

.000

6019

.863

6035

.339

0.00

Abo

vegr

ound

om

nivo

re d

iver

sity

L2so

wnd

iv +

func

gr +

leg

13.1

325

10.0

00-1

4.90

10.

000

0.77

Abov

egro

und

omni

vore

div

ersi

tyL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

27.3

3615

3.33

3-1

0.55

54.

346

0.09

Abov

egro

und

omni

vore

div

ersi

tyPa

4b

* so

wnd

iv^c

7.05

23

16.6

67-7

.582

7.31

80.

02

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 64

Page 65: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

omni

vore

div

ersi

tyPa

3a

+ so

wnd

iv^c

7.03

13

16.6

67-7

.540

7.36

10.

02

Abov

egro

und

omni

vore

div

ersi

tyPa

2a

+ b

* so

wnd

iv6.

959

316

.667

-7.3

977.

504

0.02

Abov

egro

und

omni

vore

div

ersi

tyM

1a

* so

wnd

iv/(

b +

sow

ndiv

)6.

461

316

.667

-6.4

018.

500

0.01

Abov

egro

und

omni

vore

div

ersi

tyM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

6.46

13

16.6

67-6

.401

8.50

00.

01

Abov

egro

und

omni

vore

div

ersi

tyE2

a +

b *

exp(

sow

ndiv

)6.

437

316

.667

-6.3

528.

548

0.01

Abov

egro

und

omni

vore

div

ersi

tyAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

6.22

23

16.6

67-5

.923

8.97

80.

01

Abov

egro

und

omni

vore

div

ersi

tyLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

7.39

34

12.5

00-5

.897

9.00

40.

01

Abov

egro

und

omni

vore

div

ersi

tyA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)7.

361

412

.500

-5.8

339.

067

0.01

Abov

egro

und

omni

vore

div

ersi

tyAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

7.36

14

12.5

00-5

.833

9.06

70.

01

Abov

egro

und

omni

vore

div

ersi

tyM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)7.

300

412

.500

-5.7

119.

189

0.01

Abov

egro

und

omni

vore

div

ersi

tyPa

1a

+ b

* so

wnd

iv^c

7.15

84

12.5

00-5

.427

9.47

40.

01

Abov

egro

und

omni

vore

div

ersi

tyPa

5so

wnd

iv^c

-26.

421

225

.000

57.0

9871

.999

0.00

Abov

egro

und

omni

vore

div

ersi

tyE5

b *

exp(

sow

ndiv

)-3

5.18

12

25.0

0074

.616

89.5

170.

00

Abov

egro

und

omni

vore

div

ersi

tyE4

a +

exp(

sow

ndiv

)-3

007.

804

225

.000

6019

.863

6034

.763

0.00

Abo

vegr

ound

par

asito

id d

iver

sity

L2so

wnd

iv +

func

gr +

leg

23.3

145

10.0

00-3

5.26

30.

000

0.89

Abov

egro

und

para

sito

id d

iver

sity

Pa2

a +

b *

sow

ndiv

17.4

393

16.6

67-2

8.35

66.

907

0.03

Abov

egro

und

para

sito

id d

iver

sity

Pa1

a +

b *

sow

ndiv

^c17

.859

412

.500

-26.

829

8.43

50.

01

Abov

egro

und

para

sito

id d

iver

sity

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

17.7

394

12.5

00-2

6.59

08.

674

0.01

Abov

egro

und

para

sito

id d

iver

sity

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)17

.732

412

.500

-26.

574

8.68

90.

01

Abov

egro

und

para

sito

id d

iver

sity

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

17.7

324

12.5

00-2

6.57

48.

689

0.01

Abov

egro

und

para

sito

id d

iver

sity

Pa4

b *

sow

ndiv

^c16

.517

316

.667

-26.

512

8.75

10.

01

Abov

egro

und

para

sito

id d

iver

sity

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)17

.675

412

.500

-26.

461

8.80

20.

01

Abov

egro

und

para

sito

id d

iver

sity

Pa3

a +

sow

ndiv

^c15

.857

316

.667

-25.

192

10.0

710.

01

Abov

egro

und

para

sito

id d

iver

sity

E2a

+ b

* ex

p(so

wnd

iv)

13.8

893

16.6

67-2

1.25

614

.008

0.00

Abov

egro

und

para

sito

id d

iver

sity

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^231

.429

153.

333

-18.

740

16.5

230.

00

Abov

egro

und

para

sito

id d

iver

sity

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)11

.677

316

.667

-16.

832

18.4

310.

00

Abov

egro

und

para

sito

id d

iver

sity

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

11.6

773

16.6

67-1

6.83

218

.431

0.00

Abov

egro

und

para

sito

id d

iver

sity

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)9.

146

316

.667

-11.

770

23.4

930.

00

Abov

egro

und

para

sito

id d

iver

sity

Pa5

sow

ndiv

^c-3

0.27

42

25.0

0064

.804

100.

068

0.00

Abov

egro

und

para

sito

id d

iver

sity

E5b

* ex

p(so

wnd

iv)

-34.

364

225

.000

72.9

8310

8.24

70.

00

Abov

egro

und

para

sito

id d

iver

sity

E4a

+ ex

p(so

wnd

iv)

-300

7.80

42

25.0

0060

19.8

6360

55.1

260.

00

Polli

nato

r di

vers

ityL2

sow

ndiv

+ fu

ncgr

+ le

g11

.991

510

.000

-12.

617

0.00

00.

37

Polli

nato

r di

vers

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

27.7

8815

3.33

3-1

1.45

81.

159

0.20

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 65

Page 66: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Polli

nato

r di

vers

ityPa

3a

+ so

wnd

iv^c

8.07

33

16.6

67-9

.625

2.99

20.

08

Polli

nato

r di

vers

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

7.85

93

16.6

67-9

.197

3.42

10.

07

Polli

nato

r di

vers

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)7.

859

316

.667

-9.1

973.

421

0.07

Polli

nato

r di

vers

ityPa

4b

* so

wnd

iv^c

7.69

03

16.6

67-8

.859

3.75

80.

06

Polli

nato

r di

vers

ityM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)8.

443

412

.500

-7.9

974.

621

0.04

Polli

nato

r di

vers

ityAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

8.44

04

12.5

00-7

.992

4.62

60.

04

Polli

nato

r di

vers

ityA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)8.

440

412

.500

-7.9

924.

626

0.04

Polli

nato

r di

vers

ityLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

8.34

44

12.5

00-7

.798

4.81

90.

03

Polli

nato

r di

vers

ityA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

6.48

53

16.6

67-6

.449

6.16

80.

02

Polli

nato

r di

vers

ityPa

2a

+ b

* so

wnd

iv3.

711

316

.667

-0.9

0011

.718

0.00

Polli

nato

r di

vers

ityE2

a +

b *

exp(

sow

ndiv

)0.

265

316

.667

5.99

218

.609

0.00

Polli

nato

r di

vers

ityE5

b *

exp(

sow

ndiv

)-3

3.14

42

25.0

0070

.544

83.1

610.

00

Polli

nato

r di

vers

ityPa

5so

wnd

iv^c

-36.

253

225

.000

76.7

6189

.378

0.00

Polli

nato

r di

vers

ityE4

a +

exp(

sow

ndiv

)-3

007.

804

225

.000

6019

.863

6032

.480

0.00

Plan

t inv

ader

div

ersi

tyEb

1511

a +

exp(

c *

sow

ndiv

)42

.190

613

.667

-71.

260

0.00

00.

19

Plan

t inv

ader

div

ersi

tyPm

1321

a +

sow

ndiv

^c42

.108

613

.667

-71.

096

0.16

40.

18

Plan

t inv

ader

div

ersi

tyPm

1221

a +

b *

sow

ndiv

41.7

976

13.6

67-7

0.47

50.

785

0.13

Plan

t inv

ader

div

ersi

tyPr

3321

a +

sow

ndiv

^c44

.003

810

.250

-70.

033

1.22

60.

11

Plan

t inv

ader

div

ersi

tyEf

3911

a +

exp(

c *

sow

ndiv

)43

.404

810

.250

-68.

836

2.42

40.

06

Plan

t inv

ader

div

ersi

tyPr

3221

a +

b *

sow

ndiv

43.1

728

10.2

50-6

8.37

12.

888

0.05

Plan

t inv

ader

div

ersi

tyPq

2821

a +

sow

ndiv

^c42

.912

810

.250

-67.

852

3.40

70.

04

Plan

t inv

ader

div

ersi

tyPq

2721

a +

b *

sow

ndiv

42.8

628

10.2

50-6

7.75

23.

508

0.03

Plan

t inv

ader

div

ersi

tyPq

2921

b *

sow

ndiv

^c42

.607

810

.250

-67.

241

4.01

90.

03

Plan

t inv

ader

div

ersi

tyPm

1421

b *

sow

ndiv

^c40

.154

613

.667

-67.

188

4.07

20.

03

Plan

t inv

ader

div

ersi

tyPs

3921

b *

sow

ndiv

^c44

.981

108.

200

-66.

864

4.39

60.

02

Plan

t inv

ader

div

ersi

tyPs

3621

a +

b *

sow

ndiv

^c50

.295

145.

857

-66.

322

4.93

80.

02

Plan

t inv

ader

div

ersi

tyEb

1521

a +

exp(

c *

sow

ndiv

)39

.694

613

.667

-66.

268

4.99

20.

02

Plan

t inv

ader

div

ersi

tyPr

3421

b *

sow

ndiv

^c42

.008

810

.250

-66.

043

5.21

60.

01

Plan

t inv

ader

div

ersi

tyM

1521

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

45.8

4811

7.45

5-6

5.92

55.

335

0.01

Plan

t inv

ader

div

ersi

tyPm

1331

a +

sow

ndiv

^c39

.374

613

.667

-65.

628

5.63

20.

01

Plan

t inv

ader

div

ersi

tyPm

1231

a +

b *

sow

ndiv

39.3

566

13.6

67-6

5.59

25.

668

0.01

Plan

t inv

ader

div

ersi

tyPs

3721

a +

b *

sow

ndiv

43.7

2710

8.20

0-6

4.35

56.

905

0.01

Plan

t inv

ader

div

ersi

tyL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^252

.320

165.

125

-64.

270

6.98

90.

01

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 66

Page 67: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyPp

2121

a +

b *

sow

ndiv

^c45

.014

117.

455

-64.

257

7.00

20.

01

Plan

t inv

ader

div

ersi

tyPm

1131

a +

b *

sow

ndiv

^c41

.113

810

.250

-64.

254

7.00

50.

01

Plan

t inv

ader

div

ersi

tyM

1132

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.0

258

10.2

50-6

4.07

77.

182

0.01

Plan

t inv

ader

div

ersi

tyPr

3331

a +

sow

ndiv

^c40

.833

810

.250

-63.

693

7.56

70.

00

Plan

t inv

ader

div

ersi

tyPp

2421

b *

sow

ndiv

^c40

.805

810

.250

-63.

638

7.62

20.

00

Plan

t inv

ader

div

ersi

tyEf

3921

a +

exp(

c *

sow

ndiv

)40

.653

810

.250

-63.

334

7.92

60.

00

Plan

t inv

ader

div

ersi

tyPr

3231

a +

b *

sow

ndiv

40.4

368

10.2

50-6

2.90

08.

360

0.00

Plan

t inv

ader

div

ersi

tyPq

2731

a +

b *

sow

ndiv

40.4

108

10.2

50-6

2.84

88.

412

0.00

Plan

t inv

ader

div

ersi

tyPq

2831

a +

sow

ndiv

^c40

.274

810

.250

-62.

576

8.68

30.

00

Plan

t inv

ader

div

ersi

tyPq

2931

b *

sow

ndiv

^c40

.026

810

.250

-62.

080

9.18

00.

00

Plan

t inv

ader

div

ersi

tyPs

3821

a +

sow

ndiv

^c42

.527

108.

200

-61.

955

9.30

40.

00

Plan

t inv

ader

div

ersi

tyPs

3931

b *

sow

ndiv

^c41

.813

108.

200

-60.

528

10.7

320.

00

Plan

t inv

ader

div

ersi

tyPp

2321

a +

sow

ndiv

^c39

.062

810

.250

-60.

152

11.1

070.

00

Plan

t inv

ader

div

ersi

tyPm

1431

b *

sow

ndiv

^c36

.628

613

.667

-60.

137

11.1

230.

00

Plan

t inv

ader

div

ersi

tyPp

2221

a +

b *

sow

ndiv

38.7

948

10.2

50-5

9.61

511

.645

0.00

Plan

t inv

ader

div

ersi

tyM

1532

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

42.5

1211

7.45

5-5

9.25

212

.007

0.00

Plan

t inv

ader

div

ersi

tyPs

3731

a +

b *

sow

ndiv

41.0

4710

8.20

0-5

8.99

512

.265

0.00

Plan

t inv

ader

div

ersi

tyPs

3831

a +

sow

ndiv

^c41

.027

108.

200

-58.

955

12.3

040.

00

Plan

t inv

ader

div

ersi

tyPr

3431

b *

sow

ndiv

^c38

.217

810

.250

-58.

461

12.7

990.

00

Plan

t inv

ader

div

ersi

tyL0

2bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^249

.350

165.

125

-58.

330

12.9

300.

00

Plan

t inv

ader

div

ersi

tyPn

1821

a +

sow

ndiv

^c35

.507

613

.667

-57.

893

13.3

660.

00

Plan

t inv

ader

div

ersi

tyM

1432

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

41.5

8411

7.45

5-5

7.39

713

.863

0.00

Plan

t inv

ader

div

ersi

tyPp

2431

b *

sow

ndiv

^c37

.352

810

.250

-56.

731

14.5

280.

00

Plan

t inv

ader

div

ersi

tyPc

321

a +

sow

ndiv

^c32

.510

420

.500

-56.

500

14.7

590.

00

Plan

t inv

ader

div

ersi

tyM

1321

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

39.9

9711

7.45

5-5

4.22

217

.037

0.00

Plan

t inv

ader

div

ersi

tyM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.0

738

10.2

50-5

4.17

417

.086

0.00

Plan

t inv

ader

div

ersi

tyL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^247

.231

165.

125

-54.

092

17.1

680.

00

Plan

t inv

ader

div

ersi

tyM

211

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

32.3

945

16.4

00-5

3.99

817

.261

0.00

Plan

t inv

ader

div

ersi

tyPn

1831

a +

sow

ndiv

^c33

.497

613

.667

-53.

875

17.3

850.

00

Plan

t inv

ader

div

ersi

tyPn

1921

b *

sow

ndiv

^c33

.483

613

.667

-53.

845

17.4

140.

00

Plan

t inv

ader

div

ersi

tyPp

2231

a +

b *

sow

ndiv

35.8

958

10.2

50-5

3.81

717

.443

0.00

Plan

t inv

ader

div

ersi

tyPp

2331

a +

sow

ndiv

^c35

.757

810

.250

-53.

541

17.7

190.

00

Plan

t inv

ader

div

ersi

tyPe

821

a +

sow

ndiv

^c33

.070

613

.667

-53.

020

18.2

400.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 67

Page 68: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyPc

331

a +

sow

ndiv

^c30

.552

420

.500

-52.

585

18.6

750.

00

Plan

t inv

ader

div

ersi

tyPf

131

a +

sow

ndiv

^c31

.353

516

.400

-51.

916

19.3

440.

00

Plan

t inv

ader

div

ersi

tyPe

721

a +

b *

sow

ndiv

32.4

416

13.6

67-5

1.76

219

.498

0.00

Plan

t inv

ader

div

ersi

tyPc

421

b *

sow

ndiv

^c30

.120

420

.500

-51.

720

19.5

400.

00

Plan

t inv

ader

div

ersi

tyPf

121

a +

b *

sow

ndiv

31.1

675

16.4

00-5

1.54

419

.716

0.00

Plan

t inv

ader

div

ersi

tyPe

921

b *

sow

ndiv

^c32

.278

613

.667

-51.

435

19.8

250.

00

Plan

t inv

ader

div

ersi

tyM

222

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

30.8

415

16.4

00-5

0.89

320

.367

0.00

Plan

t inv

ader

div

ersi

tyM

1332

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

38.2

5411

7.45

5-5

0.73

720

.523

0.00

Plan

t inv

ader

div

ersi

tyPf

141

b *

sow

ndiv

^c30

.666

516

.400

-50.

543

20.7

160.

00

Plan

t inv

ader

div

ersi

tyL2

2so

wnd

iv +

func

gr +

leg

31.6

226

13.6

67-5

0.12

421

.136

0.00

Plan

t inv

ader

div

ersi

tyM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.5

5610

8.20

0-5

0.01

321

.246

0.00

Plan

t inv

ader

div

ersi

tyM

111

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

32.7

587

11.7

14-5

0.00

221

.257

0.00

Plan

t inv

ader

div

ersi

tyPf

111

a +

b *

sow

ndiv

^c32

.754

711

.714

-49.

994

21.2

660.

00

Plan

t inv

ader

div

ersi

tyPj

331

a +

sow

ndiv

^c32

.596

711

.714

-49.

677

21.5

820.

00

Plan

t inv

ader

div

ersi

tyPi

291

b *

sow

ndiv

^c32

.433

711

.714

-49.

352

21.9

070.

00

Plan

t inv

ader

div

ersi

tyPe

621

a +

b *

sow

ndiv

^c33

.502

810

.250

-49.

031

22.2

280.

00

Plan

t inv

ader

div

ersi

tyM

1221

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.3

868

10.2

50-4

8.80

022

.460

0.00

Plan

t inv

ader

div

ersi

tyPj

321

a +

b *

sow

ndiv

32.1

357

11.7

14-4

8.75

722

.503

0.00

Plan

t inv

ader

div

ersi

tyPi

281

a +

sow

ndiv

^c32

.133

711

.714

-48.

753

22.5

070.

00

Plan

t inv

ader

div

ersi

tyEc

2121

a +

exp(

c *

sow

ndiv

)30

.935

613

.667

-48.

750

22.5

100.

00

Plan

t inv

ader

div

ersi

tyPi

271

a +

b *

sow

ndiv

32.0

857

11.7

14-4

8.65

622

.604

0.00

Plan

t inv

ader

div

ersi

tyPj

341

b *

sow

ndiv

^c31

.937

711

.714

-48.

361

22.8

990.

00

Plan

t inv

ader

div

ersi

tyPe

731

a +

b *

sow

ndiv

30.7

246

13.6

67-4

8.32

822

.932

0.00

Plan

t inv

ader

div

ersi

tyM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.1

088

10.2

50-4

8.24

423

.015

0.00

Plan

t inv

ader

div

ersi

tyL2

1so

wnd

iv +

func

gr +

leg

30.4

456

13.6

67-4

7.77

023

.490

0.00

Plan

t inv

ader

div

ersi

tyPe

931

b *

sow

ndiv

^c30

.401

613

.667

-47.

683

23.5

770.

00

Plan

t inv

ader

div

ersi

tyM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

32.7

738

10.2

50-4

7.57

423

.686

0.00

Plan

t inv

ader

div

ersi

tyPk

391

b *

sow

ndiv

^c33

.934

99.

111

-47.

369

23.8

910.

00

Plan

t inv

ader

div

ersi

tyPe

831

a +

sow

ndiv

^c30

.055

613

.667

-46.

990

24.2

700.

00

Plan

t inv

ader

div

ersi

tyL2

11so

wnd

iv +

func

gr +

leg

29.7

536

13.6

67-4

6.38

724

.873

0.00

Plan

t inv

ader

div

ersi

tyPn

1931

b *

sow

ndiv

^c29

.519

613

.667

-45.

918

25.3

420.

00

Plan

t inv

ader

div

ersi

tyPk

381

a +

sow

ndiv

^c32

.851

99.

111

-45.

201

26.0

580.

00

Plan

t inv

ader

div

ersi

tyPe

631

a +

b *

sow

ndiv

^c31

.490

810

.250

-45.

008

26.2

520.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 68

Page 69: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyM

1232

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

31.4

878

10.2

50-4

5.00

126

.258

0.00

Plan

t inv

ader

div

ersi

tyPk

371

a +

b *

sow

ndiv

32.6

969

9.11

1-4

4.89

126

.368

0.00

Plan

t inv

ader

div

ersi

tyM

151

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.9

7910

8.20

0-4

4.86

026

.400

0.00

Plan

t inv

ader

div

ersi

tyPc

431

b *

sow

ndiv

^c26

.004

420

.500

-43.

489

27.7

700.

00

Plan

t inv

ader

div

ersi

tyM

141

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.0

8710

8.20

0-4

3.07

628

.184

0.00

Plan

t inv

ader

div

ersi

tyM

7a

* so

wnd

iv/(

b +

sow

ndiv

)29

.219

711

.714

-42.

925

28.3

340.

00

Plan

t inv

ader

div

ersi

tyL2

22so

wnd

iv +

func

gr +

leg

27.8

566

13.6

67-4

2.59

228

.668

0.00

Plan

t inv

ader

div

ersi

tyM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

30.0

588

10.2

50-4

2.14

329

.117

0.00

Plan

t inv

ader

div

ersi

tyPh

241

b *

sow

ndiv

^c28

.541

711

.714

-41.

569

29.6

910.

00

Plan

t inv

ader

div

ersi

tyM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.2

496

13.6

67-4

1.37

929

.881

0.00

Plan

t inv

ader

div

ersi

tyM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

29.6

258

10.2

50-4

1.27

729

.983

0.00

Plan

t inv

ader

div

ersi

tyM

4a

* so

wnd

iv/(

b +

sow

ndiv

)25

.145

516

.400

-39.

500

31.7

600.

00

Plan

t inv

ader

div

ersi

tyM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

26.2

546

13.6

67-3

9.38

831

.872

0.00

Plan

t inv

ader

div

ersi

tyPn

1721

a +

b *

sow

ndiv

26.0

456

13.6

67-3

8.97

132

.289

0.00

Plan

t inv

ader

div

ersi

tyPh

231

a +

sow

ndiv

^c27

.199

711

.714

-38.

884

32.3

760.

00

Plan

t inv

ader

div

ersi

tyM

91a

* so

wnd

iv/(

b +

sow

ndiv

)29

.600

99.

111

-38.

701

32.5

590.

00

Plan

t inv

ader

div

ersi

tyPh

221

a +

b *

sow

ndiv

26.7

557

11.7

14-3

7.99

633

.264

0.00

Plan

t inv

ader

div

ersi

tyPg

181

a +

sow

ndiv

^c24

.388

516

.400

-37.

987

33.2

730.

00

Plan

t inv

ader

div

ersi

tyE3

1a

+ ex

p(c

* so

wnd

iv)

23.2

174

20.5

00-3

7.91

533

.345

0.00

Plan

t inv

ader

div

ersi

tyM

161

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.5

0513

6.30

8-3

7.65

833

.602

0.00

Plan

t inv

ader

div

ersi

tyEa

921

a +

exp(

c *

sow

ndiv

)25

.080

613

.667

-37.

041

34.2

190.

00

Plan

t inv

ader

div

ersi

tyM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.7

956

13.6

67-3

6.47

034

.789

0.00

Plan

t inv

ader

div

ersi

tyPg

191

b *

sow

ndiv

^c23

.547

516

.400

-36.

304

34.9

550.

00

Plan

t inv

ader

div

ersi

tyPa

3a

+ so

wnd

iv^c

21.1

563

27.3

33-3

6.00

435

.255

0.00

Plan

t inv

ader

div

ersi

tyPb

31a

+ so

wnd

iv^c

21.1

563

27.3

33-3

6.00

435

.255

0.00

Plan

t inv

ader

div

ersi

tyPc

221

a +

b *

sow

ndiv

22.2

164

20.5

00-3

5.91

335

.347

0.00

Plan

t inv

ader

div

ersi

tyM

81a

* so

wnd

iv/(

b +

sow

ndiv

)25

.500

711

.714

-35.

487

35.7

720.

00

Plan

t inv

ader

div

ersi

tyM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

26.6

518

10.2

50-3

5.32

935

.931

0.00

Plan

t inv

ader

div

ersi

tyPn

1731

a +

b *

sow

ndiv

24.0

206

13.6

67-3

4.92

036

.340

0.00

Plan

t inv

ader

div

ersi

tyM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)21

.557

420

.500

-34.

594

36.6

660.

00

Plan

t inv

ader

div

ersi

tyL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

35.9

3115

5.46

7-3

4.58

936

.671

0.00

Plan

t inv

ader

div

ersi

tyPa

4b

* so

wnd

iv^c

20.3

043

27.3

33-3

4.30

036

.960

0.00

Plan

t inv

ader

div

ersi

tyPb

41b

* so

wnd

iv^c

20.3

043

27.3

33-3

4.30

036

.960

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 69

Page 70: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyM

131

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

28.6

7910

8.20

0-3

4.26

036

.999

0.00

Plan

t inv

ader

div

ersi

tyM

6a

* so

wnd

iv/(

b +

sow

ndiv

)24

.859

711

.714

-34.

205

37.0

540.

00

Plan

t inv

ader

div

ersi

tyE3

2a

+ ex

p(c

* so

wnd

iv)

21.2

014

20.5

00-3

3.88

237

.378

0.00

Plan

t inv

ader

div

ersi

tyA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

21.1

714

20.5

00-3

3.82

337

.437

0.00

Plan

t inv

ader

div

ersi

tyPr

3521

sow

ndiv

^c22

.137

516

.400

-33.

484

37.7

760.

00

Plan

t inv

ader

div

ersi

tyPd

81a

+ so

wnd

iv^c

21.6

845

16.4

00-3

2.57

938

.681

0.00

Plan

t inv

ader

div

ersi

tyBI

EXP

SSbi

exp(

sow

ndiv

, A1,

lrc1

, A2,

lrc2

)21

.683

516

.400

-32.

577

38.6

820.

00

Plan

t inv

ader

div

ersi

tyPp

2521

sow

ndiv

^c21

.663

516

.400

-32.

536

38.7

240.

00

Plan

t inv

ader

div

ersi

tyPd

91b

* so

wnd

iv^c

21.6

305

16.4

00-3

2.47

138

.788

0.00

Plan

t inv

ader

div

ersi

tyPm

1521

sow

ndiv

^c20

.270

420

.500

-32.

020

39.2

390.

00

Plan

t inv

ader

div

ersi

tyPs

4021

sow

ndiv

^c22

.558

613

.667

-31.

995

39.2

640.

00

Plan

t inv

ader

div

ersi

tyPd

71a

+ b

* so

wnd

iv21

.336

516

.400

-31.

883

39.3

770.

00

Plan

t inv

ader

div

ersi

tyL2

sow

ndiv

+ fu

ncgr

+ le

g21

.275

516

.400

-31.

760

39.4

990.

00

Plan

t inv

ader

div

ersi

tyPc

231

a +

b *

sow

ndiv

20.1

074

20.5

00-3

1.69

439

.565

0.00

Plan

t inv

ader

div

ersi

tyPq

3021

sow

ndiv

^c20

.801

516

.400

-30.

813

40.4

470.

00

Plan

t inv

ader

div

ersi

tyM

121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.1

437

11.7

14-2

8.77

242

.487

0.00

Plan

t inv

ader

div

ersi

tyPd

61a

+ b

* so

wnd

iv^c

22.0

407

11.7

14-2

8.56

742

.692

0.00

Plan

t inv

ader

div

ersi

tyPn

2021

sow

ndiv

^c17

.174

420

.500

-25.

829

45.4

310.

00

Plan

t inv

ader

div

ersi

tyPc

521

sow

ndiv

^c15

.825

327

.333

-25.

342

45.9

180.

00

Plan

t inv

ader

div

ersi

tyEf

4211

exp(

c *

sow

ndiv

)17

.786

516

.400

-24.

783

46.4

770.

00

Plan

t inv

ader

div

ersi

tyE2

1a

+ b

* ex

p(so

wnd

iv)

16.3

534

20.5

00-2

4.18

747

.073

0.00

Plan

t inv

ader

div

ersi

tyPe

1021

sow

ndiv

^c16

.103

420

.500

-23.

687

47.5

720.

00

Plan

t inv

ader

div

ersi

tyEf

4221

exp(

c *

sow

ndiv

)16

.998

516

.400

-23.

207

48.0

530.

00

Plan

t inv

ader

div

ersi

tyM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

17.3

256

13.6

67-2

1.53

149

.729

0.00

Plan

t inv

ader

div

ersi

tyEa

1221

exp(

c *

sow

ndiv

)15

.011

420

.500

-21.

502

49.7

580.

00

Plan

t inv

ader

div

ersi

tyPg

171

a +

b *

sow

ndiv

15.8

655

16.4

00-2

0.94

150

.318

0.00

Plan

t inv

ader

div

ersi

tyEa

121

exp(

c *

sow

ndiv

)14

.628

420

.500

-20.

736

50.5

230.

00

Plan

t inv

ader

div

ersi

tyM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

13.1

223

27.3

33-1

9.93

651

.324

0.00

Plan

t inv

ader

div

ersi

tyM

1a

* so

wnd

iv/(

b +

sow

ndiv

)13

.122

327

.333

-19.

936

51.3

240.

00

Plan

t inv

ader

div

ersi

tyEd

3021

exp(

c *

sow

ndiv

)15

.314

516

.400

-19.

839

51.4

210.

00

Plan

t inv

ader

div

ersi

tyE2

2a

+ b

* ex

p(so

wnd

iv)

13.9

864

20.5

00-1

9.45

351

.806

0.00

Plan

t inv

ader

div

ersi

tyPa

2a

+ b

* so

wnd

iv12

.881

327

.333

-19.

453

51.8

060.

00

Plan

t inv

ader

div

ersi

tyPb

21a

+ b

* so

wnd

iv12

.881

327

.333

-19.

453

51.8

060.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 70

Page 71: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyM

3a

* so

wnd

iv/(

b +

sow

ndiv

)14

.237

516

.400

-17.

685

53.5

750.

00

Plan

t inv

ader

div

ersi

tyEb

1811

exp(

c *

sow

ndiv

)12

.401

420

.500

-16.

283

54.9

760.

00

Plan

t inv

ader

div

ersi

tyM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

14.3

356

13.6

67-1

5.54

955

.711

0.00

Plan

t inv

ader

div

ersi

tyEa

12ex

p(c

* so

wnd

iv)

9.94

13

27.3

33-1

3.57

357

.686

0.00

Plan

t inv

ader

div

ersi

tyEb

1821

exp(

c *

sow

ndiv

)10

.935

420

.500

-13.

351

57.9

090.

00

Plan

t inv

ader

div

ersi

tyEc

2421

exp(

c *

sow

ndiv

)9.

886

420

.500

-11.

252

60.0

080.

00

Plan

t inv

ader

div

ersi

tyE6

1ex

p(c

* so

wnd

iv)

8.67

53

27.3

33-1

1.04

260

.218

0.00

Plan

t inv

ader

div

ersi

tyEc

2411

exp(

c *

sow

ndiv

)9.

415

420

.500

-10.

311

60.9

490.

00

Plan

t inv

ader

div

ersi

tyE6

2ex

p(c

* so

wnd

iv)

7.98

43

27.3

33-9

.661

61.5

980.

00

Plan

t inv

ader

div

ersi

tyE2

a +

b *

exp(

sow

ndiv

)6.

446

327

.333

-6.5

8464

.676

0.00

Plan

t inv

ader

div

ersi

tyEb

18ex

p(c

* so

wnd

iv)

5.87

33

27.3

33-5

.439

65.8

200.

00

Plan

t inv

ader

div

ersi

tyEc

24ex

p(c

* so

wnd

iv)

4.71

93

27.3

33-3

.131

68.1

290.

00

Plan

t inv

ader

div

ersi

tyPr

3531

sow

ndiv

^c5.

287

516

.400

0.21

571

.474

0.00

Plan

t inv

ader

div

ersi

tyPm

1531

sow

ndiv

^c3.

927

420

.500

0.66

671

.926

0.00

Plan

t inv

ader

div

ersi

tyPp

2531

sow

ndiv

^c4.

725

516

.400

1.34

072

.599

0.00

Plan

t inv

ader

div

ersi

tyPq

3031

sow

ndiv

^c4.

610

516

.400

1.56

972

.829

0.00

Plan

t inv

ader

div

ersi

tyPs

4031

sow

ndiv

^c5.

329

613

.667

2.46

273

.722

0.00

Plan

t inv

ader

div

ersi

tyPc

531

sow

ndiv

^c1.

714

327

.333

2.88

074

.139

0.00

Plan

t inv

ader

div

ersi

tyPn

2031

sow

ndiv

^c2.

426

420

.500

3.66

774

.927

0.00

Plan

t inv

ader

div

ersi

tyPe

1031

sow

ndiv

^c1.

832

420

.500

4.85

576

.115

0.00

Plan

t inv

ader

div

ersi

tyPj

351

sow

ndiv

^c-1

1.07

94

20.5

0030

.677

101.

937

0.00

Plan

t inv

ader

div

ersi

tyPf

151

sow

ndiv

^c-1

2.32

93

27.3

3330

.967

102.

226

0.00

Plan

t inv

ader

div

ersi

tyPi

301

sow

ndiv

^c-1

1.61

24

20.5

0031

.743

103.

003

0.00

Plan

t inv

ader

div

ersi

tyPg

201

sow

ndiv

^c-1

2.82

13

27.3

3331

.949

103.

209

0.00

Plan

t inv

ader

div

ersi

tyPh

251

sow

ndiv

^c-1

1.81

74

20.5

0032

.153

103.

412

0.00

Plan

t inv

ader

div

ersi

tyPk

401

sow

ndiv

^c-1

1.07

95

16.4

0032

.947

104.

207

0.00

Plan

t inv

ader

div

ersi

tyPa

5so

wnd

iv^c

-14.

534

241

.000

33.2

1910

4.47

90.

00

Plan

t inv

ader

div

ersi

tyPb

51so

wnd

iv^c

-14.

534

241

.000

33.2

1910

4.47

90.

00

Plan

t inv

ader

div

ersi

tyPd

101

sow

ndiv

^c-1

4.53

03

27.3

3335

.367

106.

626

0.00

Plan

t inv

ader

div

ersi

tyM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

-20.

171

108.

200

63.4

4013

4.70

00.

00

Plan

t inv

ader

div

ersi

tyE5

2b

* ex

p(so

wnd

iv)

-29.

160

327

.333

64.6

2813

5.88

80.

00

Plan

t inv

ader

div

ersi

tyM

5a

* so

wnd

iv/(

b +

sow

ndiv

)-3

8.46

45

16.4

0087

.718

158.

978

0.00

Plan

t inv

ader

div

ersi

tyE5

b *

exp(

sow

ndiv

)-4

4.28

92

41.0

0092

.730

163.

990

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 71

Page 72: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

ader

div

ersi

tyEc

2221

a +

exp(

sow

ndiv

)-7

94.6

694

20.5

0015

97.8

5816

69.1

180.

00

Plan

t inv

ader

div

ersi

tyEe

342

a +

exp(

sow

ndiv

)-7

94.6

395

16.4

0016

00.0

6816

71.3

280.

00

Plan

t inv

ader

div

ersi

tyEd

2821

a +

exp(

sow

ndiv

)-7

94.6

635

16.4

0016

00.1

1616

71.3

750.

00

Plan

t inv

ader

div

ersi

tyEg

4621

a +

exp(

sow

ndiv

)-7

94.6

396

13.6

6716

02.3

9816

73.6

580.

00

Plan

t inv

ader

div

ersi

tyE4

2a

+ ex

p(so

wnd

iv)

-801

.469

327

.333

1609

.245

1680

.505

0.00

Plan

t inv

ader

div

ersi

tyEb

1621

a +

exp(

sow

ndiv

)-8

01.2

234

20.5

0016

10.9

6616

82.2

260.

00

Plan

t inv

ader

div

ersi

tyEa

1021

a +

exp(

sow

ndiv

)-8

01.3

924

20.5

0016

11.3

0316

82.5

630.

00

Plan

t inv

ader

div

ersi

tyEf

4021

a +

exp(

sow

ndiv

)-8

00.9

855

16.4

0016

12.7

6016

84.0

190.

00

Plan

t inv

ader

div

ersi

tyE5

1b

* ex

p(so

wnd

iv)

-171

5.80

33

27.3

3334

37.9

1435

09.1

740.

00

Plan

t inv

ader

div

ersi

tyEb

1611

a +

exp(

sow

ndiv

)-1

765.

168

420

.500

3538

.856

3610

.115

0.00

Plan

t inv

ader

div

ersi

tyEf

4011

a +

exp(

sow

ndiv

)-1

765.

167

516

.400

3541

.123

3612

.383

0.00

Plan

t inv

ader

div

ersi

tyEe

341

a +

exp(

sow

ndiv

)-1

765.

168

516

.400

3541

.126

3612

.385

0.00

Plan

t inv

ader

div

ersi

tyE4

1a

+ ex

p(so

wnd

iv)

-176

8.39

03

27.3

3335

43.0

8736

14.3

470.

00

Plan

t inv

ader

div

ersi

tyEg

4611

a +

exp(

sow

ndiv

)-1

765.

167

613

.667

3543

.453

3614

.713

0.00

Plan

t inv

ader

div

ersi

tyEa

1011

a +

exp(

sow

ndiv

)-1

768.

089

420

.500

3544

.698

3615

.958

0.00

Plan

t inv

ader

div

ersi

tyEc

2211

a +

exp(

sow

ndiv

)-1

768.

390

420

.500

3545

.299

3616

.559

0.00

Plan

t inv

ader

div

ersi

tyEd

2811

a +

exp(

sow

ndiv

)-1

768.

089

516

.400

3546

.968

3618

.227

0.00

Plan

t inv

ader

div

ersi

tyEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

712.

751

117.

455

5451

.272

5522

.532

0.00

Plan

t inv

ader

div

ersi

tyE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9900

.443

0.00

Plan

t inv

ader

div

ersi

tyEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

02.5

980.

00

Plan

t inv

ader

div

ersi

tyEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

02.5

980.

00

Plan

t inv

ader

div

ersi

tyEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

02.5

980.

00

Plan

t inv

ader

div

ersi

tyEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

04.8

100.

00

Plan

t inv

ader

div

ersi

tyEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

04.8

100.

00

Plan

t inv

ader

div

ersi

tyEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

04.8

100.

00

Plan

t inv

ader

div

ersi

tyEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2199

07.0

800.

00

Abov

egro

und

path

ogen

div

ersi

tyM

3a

* so

wnd

iv/(

b +

sow

ndiv

)23

.455

516

.400

-36.

120

0.00

00.

09

Abov

egro

und

path

ogen

div

ersi

tyM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.2

986

13.6

67-3

5.47

60.

644

0.07

Abov

egro

und

path

ogen

div

ersi

tyM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.0

406

13.6

67-3

4.96

01.

160

0.05

Abov

egro

und

path

ogen

div

ersi

tyPn

1821

a +

sow

ndiv

^c23

.840

613

.667

-34.

560

1.56

00.

04

Abov

egro

und

path

ogen

div

ersi

tyPg

181

a +

sow

ndiv

^c22

.670

516

.400

-34.

551

1.56

90.

04

Abov

egro

und

path

ogen

div

ersi

tyM

1a

* so

wnd

iv/(

b +

sow

ndiv

)20

.409

327

.333

-34.

509

1.61

10.

04

Abov

egro

und

path

ogen

div

ersi

tyM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

20.4

093

27.3

33-3

4.50

91.

611

0.04

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 72

Page 73: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyPn

1921

b *

sow

ndiv

^c23

.573

613

.667

-34.

026

2.09

40.

03

Abov

egro

und

path

ogen

div

ersi

tyPg

191

b *

sow

ndiv

^c22

.330

516

.400

-33.

871

2.24

90.

03

Abov

egro

und

path

ogen

div

ersi

tyPn

1831

a +

sow

ndiv

^c23

.494

613

.667

-33.

867

2.25

30.

03

Abov

egro

und

path

ogen

div

ersi

tyPn

1931

b *

sow

ndiv

^c23

.176

613

.667

-33.

231

2.88

90.

02

Abov

egro

und

path

ogen

div

ersi

tyPd

81a

+ so

wnd

iv^c

21.7

875

16.4

00-3

2.78

43.

336

0.02

Abov

egro

und

path

ogen

div

ersi

tyPd

91b

* so

wnd

iv^c

21.6

205

16.4

00-3

2.45

13.

669

0.02

Abov

egro

und

path

ogen

div

ersi

tyM

5a

* so

wnd

iv/(

b +

sow

ndiv

)21

.606

516

.400

-32.

423

3.69

70.

01

Abov

egro

und

path

ogen

div

ersi

tyA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

19.3

593

27.3

33-3

2.41

03.

710

0.01

Abov

egro

und

path

ogen

div

ersi

tyPa

3a

+ so

wnd

iv^c

19.3

363

27.3

33-3

2.36

53.

755

0.01

Abov

egro

und

path

ogen

div

ersi

tyPb

31a

+ so

wnd

iv^c

19.3

363

27.3

33-3

2.36

53.

755

0.01

Abov

egro

und

path

ogen

div

ersi

tyM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)20

.411

420

.500

-32.

303

3.81

70.

01

Abov

egro

und

path

ogen

div

ersi

tyPe

821

a +

sow

ndiv

^c22

.687

613

.667

-32.

255

3.86

50.

01

Abov

egro

und

path

ogen

div

ersi

tyPc

321

a +

sow

ndiv

^c20

.372

420

.500

-32.

224

3.89

60.

01

Abov

egro

und

path

ogen

div

ersi

tyM

81a

* so

wnd

iv/(

b +

sow

ndiv

)23

.843

711

.714

-32.

172

3.94

80.

01

Abov

egro

und

path

ogen

div

ersi

tyPh

231

a +

sow

ndiv

^c23

.833

711

.714

-32.

153

3.96

70.

01

Abov

egro

und

path

ogen

div

ersi

tyPe

921

b *

sow

ndiv

^c22

.539

613

.667

-31.

959

4.16

10.

01

Abov

egro

und

path

ogen

div

ersi

tyPj

331

a +

sow

ndiv

^c23

.734

711

.714

-31.

955

4.16

50.

01

Abov

egro

und

path

ogen

div

ersi

tyPe

831

a +

sow

ndiv

^c22

.536

613

.667

-31.

952

4.16

80.

01

Abov

egro

und

path

ogen

div

ersi

tyPh

241

b *

sow

ndiv

^c23

.681

711

.714

-31.

848

4.27

20.

01

Abov

egro

und

path

ogen

div

ersi

tyPc

331

a +

sow

ndiv

^c20

.160

420

.500

-31.

800

4.32

00.

01

Abov

egro

und

path

ogen

div

ersi

tyPp

2321

a +

sow

ndiv

^c24

.864

810

.250

-31.

756

4.36

40.

01

Abov

egro

und

path

ogen

div

ersi

tyPj

341

b *

sow

ndiv

^c23

.606

711

.714

-31.

698

4.42

20.

01

Abov

egro

und

path

ogen

div

ersi

tyPe

931

b *

sow

ndiv

^c22

.380

613

.667

-31.

640

4.48

00.

01

Abov

egro

und

path

ogen

div

ersi

tyPr

3321

a +

sow

ndiv

^c24

.783

810

.250

-31.

594

4.52

60.

01

Abov

egro

und

path

ogen

div

ersi

tyM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.3

216

13.6

67-3

1.52

24.

598

0.01

Abov

egro

und

path

ogen

div

ersi

tyPp

2421

b *

sow

ndiv

^c24

.727

810

.250

-31.

481

4.63

90.

01

Abov

egro

und

path

ogen

div

ersi

tyM

6a

* so

wnd

iv/(

b +

sow

ndiv

)23

.490

711

.714

-31.

467

4.65

30.

01

Abov

egro

und

path

ogen

div

ersi

tyPr

3421

b *

sow

ndiv

^c24

.675

810

.250

-31.

377

4.74

30.

01

Abov

egro

und

path

ogen

div

ersi

tyM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.1

886

13.6

67-3

1.25

54.

865

0.01

Abov

egro

und

path

ogen

div

ersi

tyM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.6

138

10.2

50-3

1.25

44.

866

0.01

Abov

egro

und

path

ogen

div

ersi

tyM

211

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.0

155

16.4

00-3

1.24

14.

879

0.01

Abov

egro

und

path

ogen

div

ersi

tyPp

2331

a +

sow

ndiv

^c24

.574

810

.250

-31.

175

4.94

50.

01

Abov

egro

und

path

ogen

div

ersi

tyPc

421

b *

sow

ndiv

^c19

.801

420

.500

-31.

082

5.03

80.

01

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 73

Page 74: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyPr

3331

a +

sow

ndiv

^c24

.510

810

.250

-31.

047

5.07

30.

01

Abov

egro

und

path

ogen

div

ersi

tyPa

4b

* so

wnd

iv^c

18.6

543

27.3

33-3

1.00

05.

120

0.01

Abov

egro

und

path

ogen

div

ersi

tyPb

41b

* so

wnd

iv^c

18.6

543

27.3

33-3

1.00

05.

120

0.01

Abov

egro

und

path

ogen

div

ersi

tyM

222

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.8

735

16.4

00-3

0.95

75.

163

0.01

Abov

egro

und

path

ogen

div

ersi

tyPp

2431

b *

sow

ndiv

^c24

.429

810

.250

-30.

886

5.23

40.

01

Abov

egro

und

path

ogen

div

ersi

tyPr

3431

b *

sow

ndiv

^c24

.381

810

.250

-30.

789

5.33

10.

01

Abov

egro

und

path

ogen

div

ersi

tyM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.3

808

10.2

50-3

0.78

85.

332

0.01

Abov

egro

und

path

ogen

div

ersi

tyA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)19

.634

420

.500

-30.

749

5.37

10.

01

Abov

egro

und

path

ogen

div

ersi

tyAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

19.6

344

20.5

00-3

0.74

95.

371

0.01

Abov

egro

und

path

ogen

div

ersi

tyM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.3

178

10.2

50-3

0.66

25.

458

0.01

Abov

egro

und

path

ogen

div

ersi

tyPc

431

b *

sow

ndiv

^c19

.481

420

.500

-30.

443

5.67

70.

01

Abov

egro

und

path

ogen

div

ersi

tyPd

71a

+ b

* so

wnd

iv20

.601

516

.400

-30.

412

5.70

80.

01

Abov

egro

und

path

ogen

div

ersi

tyM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.0

798

10.2

50-3

0.18

55.

935

0.00

Abov

egro

und

path

ogen

div

ersi

tyPe

721

a +

b *

sow

ndiv

21.6

416

13.6

67-3

0.16

25.

958

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

4a

* so

wnd

iv/(

b +

sow

ndiv

)20

.462

516

.400

-30.

134

5.98

60.

00

Abov

egro

und

path

ogen

div

ersi

tyPh

221

a +

b *

sow

ndiv

22.6

657

11.7

14-2

9.81

66.

304

0.00

Abov

egro

und

path

ogen

div

ersi

tyPe

731

a +

b *

sow

ndiv

21.4

416

13.6

67-2

9.76

26.

359

0.00

Abov

egro

und

path

ogen

div

ersi

tyPp

2221

a +

b *

sow

ndiv

23.8

458

10.2

50-2

9.71

76.

403

0.00

Abov

egro

und

path

ogen

div

ersi

tyPp

2231

a +

b *

sow

ndiv

23.4

988

10.2

50-2

9.02

47.

096

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

411

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.0

716

13.6

67-2

9.02

37.

097

0.00

Abov

egro

und

path

ogen

div

ersi

tyPf

131

a +

sow

ndiv

^c19

.810

516

.400

-28.

831

7.28

90.

00

Abov

egro

und

path

ogen

div

ersi

tyM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.9

406

13.6

67-2

8.76

07.

360

0.00

Abov

egro

und

path

ogen

div

ersi

tyPm

1321

a +

sow

ndiv

^c20

.855

613

.667

-28.

589

7.53

10.

00

Abov

egro

und

path

ogen

div

ersi

tyPi

281

a +

sow

ndiv

^c21

.968

711

.714

-28.

423

7.69

70.

00

Abov

egro

und

path

ogen

div

ersi

tyPm

1331

a +

sow

ndiv

^c20

.693

613

.667

-28.

266

7.85

40.

00

Abov

egro

und

path

ogen

div

ersi

tyPr

3221

a +

b *

sow

ndiv

23.0

798

10.2

50-2

8.18

57.

935

0.00

Abov

egro

und

path

ogen

div

ersi

tyPj

321

a +

b *

sow

ndiv

21.8

017

11.7

14-2

8.08

88.

032

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

7a

* so

wnd

iv/(

b +

sow

ndiv

)21

.785

711

.714

-28.

056

8.06

40.

00

Abov

egro

und

path

ogen

div

ersi

tyPi

291

b *

sow

ndiv

^c21

.782

711

.714

-28.

050

8.07

00.

00

Abov

egro

und

path

ogen

div

ersi

tyPf

141

b *

sow

ndiv

^c19

.373

516

.400

-27.

957

8.16

30.

00

Abov

egro

und

path

ogen

div

ersi

tyPk

381

a +

sow

ndiv

^c24

.217

99.

111

-27.

934

8.18

60.

00

Abov

egro

und

path

ogen

div

ersi

tyPn

1721

a +

b *

sow

ndiv

20.5

186

13.6

67-2

7.91

68.

204

0.00

Abov

egro

und

path

ogen

div

ersi

tyPm

1421

b *

sow

ndiv

^c20

.495

613

.667

-27.

870

8.25

00.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 74

Page 75: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyPq

2821

a +

sow

ndiv

^c22

.887

810

.250

-27.

802

8.31

80.

00

Abov

egro

und

path

ogen

div

ersi

tyM

121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.6

397

11.7

14-2

7.76

48.

356

0.00

Abov

egro

und

path

ogen

div

ersi

tyPk

391

b *

sow

ndiv

^c24

.048

99.

111

-27.

596

8.52

40.

00

Abov

egro

und

path

ogen

div

ersi

tyEa

911

a +

exp(

c *

sow

ndiv

)20

.314

613

.667

-27.

508

8.61

30.

00

Abov

egro

und

path

ogen

div

ersi

tyPq

2921

b *

sow

ndiv

^c22

.722

810

.250

-27.

472

8.64

80.

00

Abov

egro

und

path

ogen

div

ersi

tyPq

2831

a +

sow

ndiv

^c22

.710

810

.250

-27.

447

8.67

30.

00

Abov

egro

und

path

ogen

div

ersi

tyPm

1431

b *

sow

ndiv

^c20

.280

613

.667

-27.

439

8.68

10.

00

Abov

egro

und

path

ogen

div

ersi

tyPs

3821

a +

sow

ndiv

^c25

.248

108.

200

-27.

398

8.72

20.

00

Abov

egro

und

path

ogen

div

ersi

tyPr

3231

a +

b *

sow

ndiv

22.6

628

10.2

50-2

7.35

18.

769

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

91a

* so

wnd

iv/(

b +

sow

ndiv

)23

.911

99.

111

-27.

321

8.79

90.

00

Abov

egro

und

path

ogen

div

ersi

tyPq

2931

b *

sow

ndiv

^c22

.537

810

.250

-27.

101

9.01

90.

00

Abov

egro

und

path

ogen

div

ersi

tyPs

3921

b *

sow

ndiv

^c25

.096

108.

200

-27.

093

9.02

70.

00

Abov

egro

und

path

ogen

div

ersi

tyM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.5

098

10.2

50-2

7.04

59.

075

0.00

Abov

egro

und

path

ogen

div

ersi

tyEf

3921

a +

exp(

c *

sow

ndiv

)22

.444

810

.250

-26.

915

9.20

50.

00

Abov

egro

und

path

ogen

div

ersi

tyPs

3831

a +

sow

ndiv

^c24

.955

108.

200

-26.

812

9.30

80.

00

Abov

egro

und

path

ogen

div

ersi

tyM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.3

538

10.2

50-2

6.73

39.

387

0.00

Abov

egro

und

path

ogen

div

ersi

tyPg

171

a +

b *

sow

ndiv

18.7

365

16.4

00-2

6.68

39.

438

0.00

Abov

egro

und

path

ogen

div

ersi

tyPs

3931

b *

sow

ndiv

^c24

.795

108.

200

-26.

491

9.62

90.

00

Abov

egro

und

path

ogen

div

ersi

tyPn

1731

a +

b *

sow

ndiv

19.7

456

13.6

67-2

6.37

09.

750

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.7

1610

8.20

0-2

6.33

39.

787

0.00

Abov

egro

und

path

ogen

div

ersi

tyPi

271

a +

b *

sow

ndiv

20.7

637

11.7

14-2

6.01

310

.107

0.00

Abov

egro

und

path

ogen

div

ersi

tyEa

921

a +

exp(

c *

sow

ndiv

)19

.511

613

.667

-25.

901

10.2

190.

00

Abov

egro

und

path

ogen

div

ersi

tyM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.4

7710

8.20

0-2

5.85

510

.265

0.00

Abov

egro

und

path

ogen

div

ersi

tyPq

2721

a +

b *

sow

ndiv

21.8

248

10.2

50-2

5.67

410

.446

0.00

Abov

egro

und

path

ogen

div

ersi

tyPk

371

a +

b *

sow

ndiv

23.0

229

9.11

1-2

5.54

310

.577

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

131

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.3

1210

8.20

0-2

5.52

510

.595

0.00

Abov

egro

und

path

ogen

div

ersi

tyL2

sow

ndiv

+ fu

ncgr

+ le

g18

.120

516

.400

-25.

451

10.6

690.

00

Abov

egro

und

path

ogen

div

ersi

tyM

111

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.4

747

11.7

14-2

5.43

510

.685

0.00

Abov

egro

und

path

ogen

div

ersi

tyPs

3721

a +

b *

sow

ndiv

24.2

0910

8.20

0-2

5.32

010

.800

0.00

Abov

egro

und

path

ogen

div

ersi

tyPq

2731

a +

b *

sow

ndiv

21.5

988

10.2

50-2

5.22

310

.897

0.00

Abov

egro

und

path

ogen

div

ersi

tyL2

11so

wnd

iv +

func

gr +

leg

19.1

406

13.6

67-2

5.15

910

.961

0.00

Abov

egro

und

path

ogen

div

ersi

tyPh

211

a +

b *

sow

ndiv

^c23

.941

108.

200

-24.

783

11.3

370.

00

Abov

egro

und

path

ogen

div

ersi

tyM

151

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.9

2810

8.20

0-2

4.75

711

.363

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 75

Page 76: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyPs

3731

a +

b *

sow

ndiv

23.8

5710

8.20

0-2

4.61

511

.505

0.00

Abov

egro

und

path

ogen

div

ersi

tyL2

22so

wnd

iv +

func

gr +

leg

18.7

286

13.6

67-2

4.33

711

.783

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

1521

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.7

4911

7.45

5-2

3.72

712

.393

0.00

Abov

egro

und

path

ogen

div

ersi

tyPp

2131

a +

b *

sow

ndiv

^c24

.694

117.

455

-23.

617

12.5

030.

00

Abov

egro

und

path

ogen

div

ersi

tyL2

1so

wnd

iv +

func

gr +

leg

18.3

466

13.6

67-2

3.57

212

.548

0.00

Abov

egro

und

path

ogen

div

ersi

tyL2

2so

wnd

iv +

func

gr +

leg

18.3

286

13.6

67-2

3.53

612

.584

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

1532

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.5

5411

7.45

5-2

3.33

612

.784

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

1021

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

19.8

798

10.2

50-2

1.78

614

.334

0.00

Abov

egro

und

path

ogen

div

ersi

tyPm

1221

a +

b *

sow

ndiv

16.9

196

13.6

67-2

0.71

815

.402

0.00

Abov

egro

und

path

ogen

div

ersi

tyEb

1511

a +

exp(

c *

sow

ndiv

)16

.569

613

.667

-20.

018

16.1

020.

00

Abov

egro

und

path

ogen

div

ersi

tyPf

121

a +

b *

sow

ndiv

15.3

055

16.4

00-1

9.82

016

.300

0.00

Abov

egro

und

path

ogen

div

ersi

tyPm

1231

a +

b *

sow

ndiv

16.3

426

13.6

67-1

9.56

416

.556

0.00

Abov

egro

und

path

ogen

div

ersi

tyEb

1521

a +

exp(

c *

sow

ndiv

)15

.956

613

.667

-18.

793

17.3

270.

00

Abov

egro

und

path

ogen

div

ersi

tyPc

221

a +

b *

sow

ndiv

13.6

334

20.5

00-1

8.74

717

.374

0.00

Abov

egro

und

path

ogen

div

ersi

tyE3

1a

+ ex

p(c

* so

wnd

iv)

13.1

894

20.5

00-1

7.85

918

.261

0.00

Abov

egro

und

path

ogen

div

ersi

tyPa

2a

+ b

* so

wnd

iv11

.759

327

.333

-17.

211

18.9

090.

00

Abov

egro

und

path

ogen

div

ersi

tyPb

21a

+ b

* so

wnd

iv11

.759

327

.333

-17.

211

18.9

090.

00

Abov

egro

und

path

ogen

div

ersi

tyPc

231

a +

b *

sow

ndiv

12.6

294

20.5

00-1

6.73

819

.382

0.00

Abov

egro

und

path

ogen

div

ersi

tyE3

2a

+ ex

p(c

* so

wnd

iv)

12.1

304

20.5

00-1

5.74

120

.379

0.00

Abov

egro

und

path

ogen

div

ersi

tyM

1421

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.4

8011

7.45

5-1

5.18

920

.931

0.00

Abov

egro

und

path

ogen

div

ersi

tyL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

25.5

0715

5.46

7-1

3.74

122

.379

0.00

Abov

egro

und

path

ogen

div

ersi

tyL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^226

.267

165.

125

-12.

165

23.9

550.

00

Abov

egro

und

path

ogen

div

ersi

tyL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^225

.967

165.

125

-11.

565

24.5

550.

00

Abov

egro

und

path

ogen

div

ersi

tyL0

1bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^225

.791

165.

125

-11.

212

24.9

080.

00

Abov

egro

und

path

ogen

div

ersi

tyL0

2bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^225

.782

165.

125

-11.

195

24.9

250.

00

Abov

egro

und

path

ogen

div

ersi

tyE2

1a

+ b

* ex

p(so

wnd

iv)

9.63

44

20.5

00-1

0.74

825

.372

0.00

Abov

egro

und

path

ogen

div

ersi

tyE2

2a

+ b

* ex

p(so

wnd

iv)

8.32

94

20.5

00-8

.138

27.9

820.

00

Abov

egro

und

path

ogen

div

ersi

tyE2

a +

b *

exp(

sow

ndiv

)7.

061

327

.333

-7.8

1428

.306

0.00

Abov

egro

und

path

ogen

div

ersi

tyPe

1021

sow

ndiv

^c-2

4.24

74

20.5

0057

.014

93.1

340.

00

Abov

egro

und

path

ogen

div

ersi

tyPp

2521

sow

ndiv

^c-2

3.67

15

16.4

0058

.131

94.2

510.

00

Abov

egro

und

path

ogen

div

ersi

tyPr

3521

sow

ndiv

^c-2

3.95

95

16.4

0058

.707

94.8

270.

00

Abov

egro

und

path

ogen

div

ersi

tyPq

3021

sow

ndiv

^c-2

4.23

75

16.4

0059

.264

95.3

840.

00

Abov

egro

und

path

ogen

div

ersi

tyPs

4021

sow

ndiv

^c-2

3.48

46

13.6

6760

.089

96.2

090.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 76

Page 77: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyPn

2021

sow

ndiv

^c-2

6.60

54

20.5

0061

.730

97.8

500.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityPm

1521

sow

ndiv

^c-3

0.15

64

20.5

0068

.831

104.

951

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPc

521

sow

ndiv

^c-3

2.73

83

27.3

3371

.783

107.

903

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEc

2411

exp(

c *

sow

ndiv

)-3

3.39

24

20.5

0075

.304

111.

424

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPe

1031

sow

ndiv

^c-3

5.01

74

20.5

0078

.554

114.

674

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPp

2531

sow

ndiv

^c-3

4.75

05

16.4

0080

.288

116.

409

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPq

3031

sow

ndiv

^c-3

5.01

45

16.4

0080

.818

116.

938

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPr

3531

sow

ndiv

^c-3

5.27

85

16.4

0081

.345

117.

465

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEd

3021

exp(

c *

sow

ndiv

)-3

5.57

05

16.4

0081

.930

118.

050

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPs

4031

sow

ndiv

^c-3

4.66

56

13.6

6782

.451

118.

571

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEc

2421

exp(

c *

sow

ndiv

)-3

6.98

54

20.5

0082

.489

118.

609

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEc

24ex

p(c

* so

wnd

iv)

-38.

386

327

.333

83.0

8011

9.20

00.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityPn

2031

sow

ndiv

^c-3

8.00

24

20.5

0084

.523

120.

643

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEf

4211

exp(

c *

sow

ndiv

)-3

7.20

35

16.4

0085

.195

121.

315

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEf

4221

exp(

c *

sow

ndiv

)-3

7.58

35

16.4

0085

.956

122.

076

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

121

exp(

c *

sow

ndiv

)-3

9.14

44

20.5

0086

.808

122.

928

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

1221

exp(

c *

sow

ndiv

)-3

9.15

44

20.5

0086

.828

122.

948

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

12ex

p(c

* so

wnd

iv)

-40.

980

327

.333

88.2

6712

4.38

70.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityPd

101

sow

ndiv

^c-4

1.20

33

27.3

3388

.713

124.

833

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPm

1531

sow

ndiv

^c-4

0.49

64

20.5

0089

.512

125.

632

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPh

251

sow

ndiv

^c-4

0.93

94

20.5

0090

.398

126.

518

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPj

351

sow

ndiv

^c-4

1.13

04

20.5

0090

.780

126.

900

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPg

201

sow

ndiv

^c-4

2.25

93

27.3

3390

.825

126.

945

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPi

301

sow

ndiv

^c-4

1.19

44

20.5

0090

.907

127.

027

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPk

401

sow

ndiv

^c-4

0.87

95

16.4

0092

.547

128.

667

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPc

531

sow

ndiv

^c-4

3.45

03

27.3

3393

.208

129.

328

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityPb

51so

wnd

iv^c

-44.

666

241

.000

93.4

8412

9.60

40.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityPa

5so

wnd

iv^c

-44.

666

241

.000

93.4

8412

9.60

40.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityPf

151

sow

ndiv

^c-4

3.66

33

27.3

3393

.635

129.

755

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEb

1811

exp(

c *

sow

ndiv

)-4

3.07

64

20.5

0094

.671

130.

791

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEb

18ex

p(c

* so

wnd

iv)

-46.

159

327

.333

98.6

2513

4.74

50.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEb

1821

exp(

c *

sow

ndiv

)-4

6.37

34

20.5

0010

1.26

513

7.38

50.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityE6

2ex

p(c

* so

wnd

iv)

-49.

204

327

.333

104.

716

140.

836

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 77

Page 78: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Abov

egro

und

path

ogen

div

ersi

tyE6

1ex

p(c

* so

wnd

iv)

-53.

489

327

.333

113.

286

149.

406

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityE5

1b

* ex

p(so

wnd

iv)

-66.

114

327

.333

138.

536

174.

656

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityE5

b *

exp(

sow

ndiv

)-6

7.25

62

41.0

0013

8.66

417

4.78

40.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityE5

2b

* ex

p(so

wnd

iv)

-66.

864

327

.333

140.

036

176.

156

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEc

2221

a +

exp(

sow

ndiv

)-7

94.2

424

20.5

0015

97.0

0416

33.1

240.

00

Abov

egro

und

path

ogen

div

ersi

tyEd

2821

a +

exp(

sow

ndiv

)-7

94.2

355

16.4

0015

99.2

6016

35.3

800.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEe

342

a +

exp(

sow

ndiv

)-7

94.2

425

16.4

0015

99.2

7416

35.3

940.

00

Abov

egro

und

path

ogen

div

ersi

tyEg

4621

a +

exp(

sow

ndiv

)-7

94.2

356

13.6

6716

01.5

8916

37.7

090.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityE4

2a

+ ex

p(so

wnd

iv)

-800

.847

327

.333

1608

.002

1644

.122

0.00

Abov

egro

und

path

ogen

div

ersi

tyEb

1621

a +

exp(

sow

ndiv

)-8

00.7

264

20.5

0016

09.9

7216

46.0

920.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

1021

a +

exp(

sow

ndiv

)-8

00.7

754

20.5

0016

10.0

6916

46.1

890.

00

Abov

egro

und

path

ogen

div

ersi

tyEf

4021

a +

exp(

sow

ndiv

)-8

00.5

485

16.4

0016

11.8

8616

48.0

060.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

1011

a +

exp(

sow

ndiv

)-1

753.

602

420

.500

3515

.722

3551

.843

0.00

Abov

egro

und

path

ogen

div

ersi

tyE4

1a

+ ex

p(so

wnd

iv)

-175

5.33

13

27.3

3335

16.9

7135

53.0

910.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEf

4011

a +

exp(

sow

ndiv

)-1

753.

528

516

.400

3517

.846

3553

.966

0.00

Abov

egro

und

path

ogen

div

ersi

tyEd

2811

a +

exp(

sow

ndiv

)-1

753.

601

516

.400

3517

.992

3554

.113

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEb

1611

a +

exp(

sow

ndiv

)-1

755.

297

420

.500

3519

.114

3555

.234

0.00

Abov

egro

und

path

ogen

div

ersi

tyEc

2211

a +

exp(

sow

ndiv

)-1

755.

331

420

.500

3519

.182

3555

.302

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEg

4611

a +

exp(

sow

ndiv

)-1

753.

528

613

.667

3520

.177

3556

.297

0.00

Abov

egro

und

path

ogen

div

ersi

tyEe

341

a +

exp(

sow

ndiv

)-1

755.

297

516

.400

3521

.384

3557

.504

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

748.

242

117.

455

5522

.255

5558

.375

0.00

Abov

egro

und

path

ogen

div

ersi

tyEc

1921

a +

b *

exp(

c *

sow

ndiv

)-2

913.

733

810

.250

5845

.439

5881

.559

0.00

Abov

egro

und

path

ogen

div

ersi

tyE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9865

.303

0.00

Abo

vegr

ound

pat

hoge

n di

vers

ityEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3998

67.4

590.

00

Abov

egro

und

path

ogen

div

ersi

tyEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3998

67.4

590.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3998

67.4

590.

00

Abov

egro

und

path

ogen

div

ersi

tyEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5198

69.6

710.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5198

69.6

710.

00

Abov

egro

und

path

ogen

div

ersi

tyEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5198

69.6

710.

00

Abo

vegr

ound

pat

hoge

n di

vers

ityEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2198

71.9

410.

00

Her

bivo

ryL2

2so

wnd

iv +

func

gr +

leg

41.1

966

13.6

67-6

9.27

20.

000

0.36

Her

bivo

ryL2

1so

wnd

iv +

func

gr +

leg

41.0

496

13.6

67-6

8.97

70.

295

0.31

Her

bivo

ryL2

11so

wnd

iv +

func

gr +

leg

39.5

266

13.6

67-6

5.93

13.

341

0.07

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 78

Page 79: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryL2

22so

wnd

iv +

func

gr +

leg

38.6

496

13.6

67-6

4.17

75.

095

0.03

Her

bivo

ryEa

911

a +

exp(

c *

sow

ndiv

)38

.151

613

.667

-63.

181

6.09

10.

02

Her

bivo

ryPn

1721

a +

b *

sow

ndiv

38.1

486

13.6

67-6

3.17

56.

097

0.02

Her

bivo

ryL2

sow

ndiv

+ fu

ncgr

+ le

g36

.909

516

.400

-63.

029

6.24

40.

02

Her

bivo

ryPn

1921

b *

sow

ndiv

^c37

.775

613

.667

-62.

430

6.84

20.

01

Her

bivo

ryPn

1821

a +

sow

ndiv

^c37

.751

613

.667

-62.

382

6.89

10.

01

Her

bivo

ryEa

921

a +

exp(

c *

sow

ndiv

)37

.555

613

.667

-61.

990

7.28

30.

01

Her

bivo

ryPn

1731

a +

b *

sow

ndiv

37.5

526

13.6

67-6

1.98

47.

288

0.01

Her

bivo

ryM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

37.4

836

13.6

67-6

1.84

67.

426

0.01

Her

bivo

ryPp

2421

b *

sow

ndiv

^c39

.799

810

.250

-61.

625

7.64

70.

01

Her

bivo

ryPn

1931

b *

sow

ndiv

^c37

.236

613

.667

-61.

353

7.91

90.

01

Her

bivo

ryPn

1831

a +

sow

ndiv

^c37

.214

613

.667

-61.

308

7.96

40.

01

Her

bivo

ryPp

2221

a +

b *

sow

ndiv

39.5

328

10.2

50-6

1.09

28.

181

0.01

Her

bivo

ryPp

2321

a +

sow

ndiv

^c39

.418

810

.250

-60.

863

8.40

90.

01

Her

bivo

ryPg

171

a +

b *

sow

ndiv

35.8

185

16.4

00-6

0.84

78.

425

0.01

Her

bivo

ryM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.9

666

13.6

67-6

0.81

38.

460

0.01

Her

bivo

ryM

3a

* so

wnd

iv/(

b +

sow

ndiv

)35

.678

516

.400

-60.

567

8.70

50.

00

Her

bivo

ryPg

191

b *

sow

ndiv

^c35

.636

516

.400

-60.

482

8.79

00.

00

Her

bivo

ryPg

181

a +

sow

ndiv

^c35

.633

516

.400

-60.

477

8.79

60.

00

Her

bivo

ryM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

38.9

028

10.2

50-5

9.83

19.

442

0.00

Her

bivo

ryPp

2431

b *

sow

ndiv

^c38

.837

810

.250

-59.

701

9.57

10.

00

Her

bivo

ryPr

3221

a +

b *

sow

ndiv

38.7

138

10.2

50-5

9.45

39.

819

0.00

Her

bivo

ryEf

3911

a +

exp(

c *

sow

ndiv

)38

.702

810

.250

-59.

431

9.84

10.

00

Her

bivo

ryPp

2231

a +

b *

sow

ndiv

38.6

688

10.2

50-5

9.36

39.

910

0.00

Her

bivo

ryPp

2331

a +

sow

ndiv

^c38

.636

810

.250

-59.

299

9.97

40.

00

Her

bivo

ryPr

3421

b *

sow

ndiv

^c38

.448

810

.250

-58.

924

10.3

490.

00

Her

bivo

ryPr

3321

a +

sow

ndiv

^c38

.379

810

.250

-58.

786

10.4

860.

00

Her

bivo

ryM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

38.3

208

10.2

50-5

8.66

710

.606

0.00

Her

bivo

ryPh

241

b *

sow

ndiv

^c37

.078

711

.714

-58.

642

10.6

300.

00

Her

bivo

ryPs

3921

b *

sow

ndiv

^c40

.762

108.

200

-58.

425

10.8

470.

00

Her

bivo

ryPh

231

a +

sow

ndiv

^c36

.963

711

.714

-58.

412

10.8

610.

00

Her

bivo

ryM

1321

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

42.0

8511

7.45

5-5

8.39

910

.873

0.00

Her

bivo

ryPh

221

a +

b *

sow

ndiv

36.9

227

11.7

14-5

8.33

110

.941

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 79

Page 80: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryPc

221

a +

b *

sow

ndiv

33.4

224

20.5

00-5

8.32

410

.949

0.00

Her

bivo

ryE3

1a

+ ex

p(c

* so

wnd

iv)

33.4

174

20.5

00-5

8.31

410

.959

0.00

Her

bivo

ryPr

3231

a +

b *

sow

ndiv

37.9

698

10.2

50-5

7.96

611

.306

0.00

Her

bivo

ryEf

3921

a +

exp(

c *

sow

ndiv

)37

.964

810

.250

-57.

956

11.3

170.

00

Her

bivo

ryPs

3721

a +

b *

sow

ndiv

40.3

5710

8.20

0-5

7.61

611

.656

0.00

Her

bivo

ryE2

1a

+ b

* ex

p(so

wnd

iv)

33.0

414

20.5

00-5

7.56

411

.709

0.00

Her

bivo

ryPc

231

a +

b *

sow

ndiv

33.0

234

20.5

00-5

7.52

611

.747

0.00

Her

bivo

ryE3

2a

+ ex

p(c

* so

wnd

iv)

33.0

154

20.5

00-5

7.51

011

.762

0.00

Her

bivo

ryPc

421

b *

sow

ndiv

^c32

.996

420

.500

-57.

472

11.8

010.

00

Her

bivo

ryPr

3431

b *

sow

ndiv

^c37

.714

810

.250

-57.

455

11.8

180.

00

Her

bivo

ryPr

3331

a +

sow

ndiv

^c37

.674

810

.250

-57.

376

11.8

960.

00

Her

bivo

ryM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

37.6

708

10.2

50-5

7.36

711

.906

0.00

Her

bivo

ryPc

321

a +

sow

ndiv

^c32

.888

420

.500

-57.

256

12.0

160.

00

Her

bivo

ryM

1232

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

37.5

888

10.2

50-5

7.20

312

.069

0.00

Her

bivo

ryPs

3821

a +

sow

ndiv

^c40

.103

108.

200

-57.

108

12.1

650.

00

Her

bivo

ryPc

431

b *

sow

ndiv

^c32

.780

420

.500

-57.

040

12.2

320.

00

Her

bivo

ryPj

321

a +

b *

sow

ndiv

36.2

427

11.7

14-5

6.97

012

.303

0.00

Her

bivo

ryM

121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.2

177

11.7

14-5

6.92

112

.351

0.00

Her

bivo

ryPc

331

a +

sow

ndiv

^c32

.672

420

.500

-56.

824

12.4

490.

00

Her

bivo

ryM

81a

* so

wnd

iv/(

b +

sow

ndiv

)36

.168

711

.714

-56.

822

12.4

510.

00

Her

bivo

ryE2

2a

+ b

* ex

p(so

wnd

iv)

32.6

294

20.5

00-5

6.73

912

.533

0.00

Her

bivo

ryPj

331

a +

sow

ndiv

^c36

.002

711

.714

-56.

490

12.7

830.

00

Her

bivo

ryPj

341

b *

sow

ndiv

^c35

.998

711

.714

-56.

482

12.7

900.

00

Her

bivo

ryAS

3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

31.3

893

27.3

33-5

6.46

912

.803

0.00

Her

bivo

ryPc

121

a +

b *

sow

ndiv

^c33

.425

516

.400

-56.

061

13.2

110.

00

Her

bivo

ryM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

39.5

5810

8.20

0-5

6.01

713

.256

0.00

Her

bivo

ryPb

21a

+ b

* so

wnd

iv31

.149

327

.333

-55.

990

13.2

820.

00

Her

bivo

ryPa

2a

+ b

* so

wnd

iv31

.149

327

.333

-55.

990

13.2

820.

00

Her

bivo

ryPa

4b

* so

wnd

iv^c

31.1

063

27.3

33-5

5.90

313

.369

0.00

Her

bivo

ryPb

41b

* so

wnd

iv^c

31.1

063

27.3

33-5

5.90

313

.369

0.00

Her

bivo

ryPa

3a

+ so

wnd

iv^c

31.0

903

27.3

33-5

5.87

213

.401

0.00

Her

bivo

ryPb

31a

+ so

wnd

iv^c

31.0

903

27.3

33-5

5.87

213

.401

0.00

Her

bivo

ryPs

3931

b *

sow

ndiv

^c39

.477

108.

200

-55.

854

13.4

180.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 80

Page 81: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

31.0

463

27.3

33-5

5.78

513

.487

0.00

Her

bivo

ryM

1a

* so

wnd

iv/(

b +

sow

ndiv

)31

.046

327

.333

-55.

785

13.4

870.

00

Her

bivo

ryPm

1421

b *

sow

ndiv

^c34

.360

613

.667

-55.

601

13.6

710.

00

Her

bivo

ryPs

3731

a +

b *

sow

ndiv

39.2

5110

8.20

0-5

5.40

313

.869

0.00

Her

bivo

ryPm

1321

a +

sow

ndiv

^c34

.213

613

.667

-55.

305

13.9

670.

00

Her

bivo

ryE2

a +

b *

exp(

sow

ndiv

)30

.806

327

.333

-55.

304

13.9

680.

00

Her

bivo

ryPs

3831

a +

sow

ndiv

^c39

.127

108.

200

-55.

155

14.1

170.

00

Her

bivo

ryPm

1221

a +

b *

sow

ndiv

34.1

346

13.6

67-5

5.14

714

.125

0.00

Her

bivo

ryEb

1511

a +

exp(

c *

sow

ndiv

)34

.102

613

.667

-55.

084

14.1

890.

00

Her

bivo

ryPm

1431

b *

sow

ndiv

^c34

.013

613

.667

-54.

907

14.3

660.

00

Her

bivo

ryM

1121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.3

788

10.2

50-5

4.78

414

.488

0.00

Her

bivo

ryPm

1331

a +

sow

ndiv

^c33

.898

613

.667

-54.

676

14.5

960.

00

Her

bivo

ryPk

391

b *

sow

ndiv

^c37

.538

99.

111

-54.

576

14.6

960.

00

Her

bivo

ryPk

371

a +

b *

sow

ndiv

37.3

709

9.11

1-5

4.23

915

.033

0.00

Her

bivo

ryPm

1231

a +

b *

sow

ndiv

33.6

506

13.6

67-5

4.18

015

.093

0.00

Her

bivo

ryPk

381

a +

sow

ndiv

^c37

.327

99.

111

-54.

155

15.1

180.

00

Her

bivo

ryEb

1521

a +

exp(

c *

sow

ndiv

)33

.621

613

.667

-54.

123

15.1

500.

00

Her

bivo

ryPe

921

b *

sow

ndiv

^c33

.542

613

.667

-53.

964

15.3

080.

00

Her

bivo

ryM

411

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.5

416

13.6

67-5

3.96

315

.310

0.00

Her

bivo

ryPe

721

a +

b *

sow

ndiv

33.5

166

13.6

67-5

3.91

215

.360

0.00

Her

bivo

ryPa

1a

+ b

* so

wnd

iv^c

31.1

814

20.5

00-5

3.84

215

.431

0.00

Her

bivo

ryPb

11a

+ b

* so

wnd

iv^c

31.1

814

20.5

00-5

3.84

215

.431

0.00

Her

bivo

ryLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

31.1

624

20.5

00-5

3.80

415

.469

0.00

Her

bivo

ryA

S2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)31

.161

420

.500

-53.

802

15.4

710.

00

Her

bivo

ryAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

31.1

614

20.5

00-5

3.80

215

.471

0.00

Her

bivo

ryPe

821

a +

sow

ndiv

^c33

.432

613

.667

-53.

745

15.5

280.

00

Her

bivo

ryPf

141

b *

sow

ndiv

^c32

.258

516

.400

-53.

726

15.5

460.

00

Her

bivo

ryPf

131

a +

sow

ndiv

^c32

.206

516

.400

-53.

622

15.6

510.

00

Her

bivo

ryM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.2

906

13.6

67-5

3.46

115

.812

0.00

Her

bivo

ryM

4a

* so

wnd

iv/(

b +

sow

ndiv

)32

.088

516

.400

-53.

386

15.8

870.

00

Her

bivo

ryPe

931

b *

sow

ndiv

^c33

.135

613

.667

-53.

151

16.1

220.

00

Her

bivo

ryPe

731

a +

b *

sow

ndiv

33.1

206

13.6

67-5

3.12

116

.152

0.00

Her

bivo

ryEc

2121

a +

exp(

c *

sow

ndiv

)33

.118

613

.667

-53.

117

16.1

560.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 81

Page 82: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryPe

831

a +

sow

ndiv

^c33

.061

613

.667

-53.

001

16.2

710.

00

Her

bivo

ryPf

121

a +

b *

sow

ndiv

31.8

795

16.4

00-5

2.96

916

.304

0.00

Her

bivo

ryM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.0

076

13.6

67-5

2.89

316

.379

0.00

Her

bivo

ryPh

211

a +

b *

sow

ndiv

^c37

.919

108.

200

-52.

740

16.5

320.

00

Her

bivo

ryM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

32.7

116

13.6

67-5

2.30

216

.971

0.00

Her

bivo

ryPq

2721

a +

b *

sow

ndiv

35.0

138

10.2

50-5

2.05

417

.219

0.00

Her

bivo

ryPd

91b

* so

wnd

iv^c

31.2

645

16.4

00-5

1.73

917

.533

0.00

Her

bivo

ryPd

71a

+ b

* so

wnd

iv31

.238

516

.400

-51.

687

17.5

860.

00

Her

bivo

ryM

1632

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

42.9

6214

5.85

7-5

1.65

517

.618

0.00

Her

bivo

ryPd

81a

+ so

wnd

iv^c

31.2

205

16.4

00-5

1.65

217

.621

0.00

Her

bivo

ryPq

2921

b *

sow

ndiv

^c34

.785

810

.250

-51.

598

17.6

750.

00

Her

bivo

ryM

5a

* so

wnd

iv/(

b +

sow

ndiv

)31

.179

516

.400

-51.

569

17.7

030.

00

Her

bivo

ryPq

2821

a +

sow

ndiv

^c34

.729

810

.250

-51.

485

17.7

870.

00

Her

bivo

ryL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^245

.900

165.

125

-51.

430

17.8

420.

00

Her

bivo

ryM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.5

278

10.2

50-5

1.08

218

.190

0.00

Her

bivo

ryPq

2731

a +

b *

sow

ndiv

34.5

018

10.2

50-5

1.02

918

.244

0.00

Her

bivo

ryPq

2931

b *

sow

ndiv

^c34

.354

810

.250

-50.

735

18.5

370.

00

Her

bivo

ryPq

2831

a +

sow

ndiv

^c34

.304

810

.250

-50.

635

18.6

370.

00

Her

bivo

ryM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

34.0

598

10.2

50-5

0.14

619

.126

0.00

Her

bivo

ryPi

271

a +

b *

sow

ndiv

32.7

017

11.7

14-4

9.88

819

.384

0.00

Her

bivo

ryPi

291

b *

sow

ndiv

^c32

.602

711

.714

-49.

690

19.5

830.

00

Her

bivo

ryPi

281

a +

sow

ndiv

^c32

.579

711

.714

-49.

644

19.6

290.

00

Her

bivo

ryM

7a

* so

wnd

iv/(

b +

sow

ndiv

)32

.574

711

.714

-49.

635

19.6

370.

00

Her

bivo

ryPd

61a

+ b

* so

wnd

iv^c

32.0

147

11.7

14-4

8.51

420

.759

0.00

Her

bivo

ryL0

2bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^244

.424

165.

125

-48.

479

20.7

930.

00

Her

bivo

ryPk

361

a +

b *

sow

ndiv

^c39

.593

136.

308

-47.

834

21.4

390.

00

Her

bivo

ryL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^243

.699

165.

125

-47.

030

22.2

430.

00

Her

bivo

ryPi

261

a +

b *

sow

ndiv

^c33

.730

108.

200

-44.

362

24.9

100.

00

Her

bivo

ryM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.0

9210

8.20

0-4

3.08

626

.186

0.00

Her

bivo

ryL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

39.5

9115

5.46

7-4

1.91

027

.362

0.00

Her

bivo

ryM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.2

988

10.2

50-2

8.62

340

.649

0.00

Her

bivo

ryM

6a

* so

wnd

iv/(

b +

sow

ndiv

)21

.048

711

.714

-26.

583

42.6

900.

00

Her

bivo

ryM

91a

* so

wnd

iv/(

b +

sow

ndiv

)18

.946

99.

111

-17.

392

51.8

810.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 82

Page 83: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryEd

3021

exp(

c *

sow

ndiv

)-1

.164

516

.400

13.1

1882

.391

0.00

Her

bivo

ryEa

12ex

p(c

* so

wnd

iv)

-3.9

393

27.3

3314

.186

83.4

580.

00

Her

bivo

ryEa

1221

exp(

c *

sow

ndiv

)-3

.010

420

.500

14.5

4083

.812

0.00

Her

bivo

ryEf

4221

exp(

c *

sow

ndiv

)-1

.909

516

.400

14.6

0783

.880

0.00

Her

bivo

ryEf

4211

exp(

c *

sow

ndiv

)-2

.225

516

.400

15.2

3984

.512

0.00

Her

bivo

ryEa

121

exp(

c *

sow

ndiv

)-3

.435

420

.500

15.3

9084

.662

0.00

Her

bivo

ryEc

24ex

p(c

* so

wnd

iv)

-5.0

923

27.3

3316

.492

85.7

650.

00

Her

bivo

ryEc

2411

exp(

c *

sow

ndiv

)-4

.149

420

.500

16.8

1786

.089

0.00

Her

bivo

ryEc

2421

exp(

c *

sow

ndiv

)-4

.203

420

.500

16.9

2586

.198

0.00

Her

bivo

ryE6

1ex

p(c

* so

wnd

iv)

-7.9

703

27.3

3322

.248

91.5

210.

00

Her

bivo

ryE6

2ex

p(c

* so

wnd

iv)

-8.1

253

27.3

3322

.558

91.8

300.

00

Her

bivo

ryE5

2b

* ex

p(so

wnd

iv)

-8.6

513

27.3

3323

.610

92.8

820.

00

Her

bivo

ryEb

18ex

p(c

* so

wnd

iv)

-8.7

373

27.3

3323

.782

93.0

540.

00

Her

bivo

ryEb

1811

exp(

c *

sow

ndiv

)-7

.964

420

.500

24.4

4793

.719

0.00

Her

bivo

ryEb

1821

exp(

c *

sow

ndiv

)-8

.125

420

.500

24.7

6994

.042

0.00

Her

bivo

ryE5

b *

exp(

sow

ndiv

)-1

0.33

62

41.0

0024

.824

94.0

970.

00

Her

bivo

ryE5

1b

* ex

p(so

wnd

iv)

-10.

130

327

.333

26.5

6895

.840

0.00

Her

bivo

ryPr

3521

sow

ndiv

^c-2

1.59

15

16.4

0053

.972

123.

244

0.00

Her

bivo

ryPp

2521

sow

ndiv

^c-2

1.66

35

16.4

0054

.115

123.

387

0.00

Her

bivo

ryPs

4021

sow

ndiv

^c-2

1.34

56

13.6

6755

.811

125.

083

0.00

Her

bivo

ryPe

1021

sow

ndiv

^c-2

3.80

44

20.5

0056

.128

125.

401

0.00

Her

bivo

ryPn

2021

sow

ndiv

^c-2

4.53

84

20.5

0057

.595

126.

867

0.00

Her

bivo

ryPq

3021

sow

ndiv

^c-2

3.67

25

16.4

0058

.134

127.

406

0.00

Her

bivo

ryPc

521

sow

ndiv

^c-3

1.12

33

27.3

3368

.553

137.

826

0.00

Her

bivo

ryPm

1521

sow

ndiv

^c-3

0.06

64

20.5

0068

.651

137.

923

0.00

Her

bivo

ryPp

2531

sow

ndiv

^c-3

7.88

85

16.4

0086

.565

155.

837

0.00

Her

bivo

ryPe

1031

sow

ndiv

^c-3

9.04

34

20.5

0086

.605

155.

877

0.00

Her

bivo

ryPr

3531

sow

ndiv

^c-3

8.35

65

16.4

0087

.501

156.

773

0.00

Her

bivo

ryPq

3031

sow

ndiv

^c-3

8.94

35

16.4

0088

.676

157.

948

0.00

Her

bivo

ryPs

4031

sow

ndiv

^c-3

7.79

66

13.6

6788

.712

157.

985

0.00

Her

bivo

ryPc

531

sow

ndiv

^c-4

5.62

03

27.3

3397

.547

166.

819

0.00

Her

bivo

ryPg

201

sow

ndiv

^c-4

6.20

53

27.3

3398

.718

167.

990

0.00

Her

bivo

ryPm

1531

sow

ndiv

^c-4

5.41

94

20.5

0099

.358

168.

630

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 83

Page 84: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryPb

51so

wnd

iv^c

-48.

045

241

.000

100.

241

169.

513

0.00

Her

bivo

ryPa

5so

wnd

iv^c

-48.

045

241

.000

100.

241

169.

513

0.00

Her

bivo

ryPj

351

sow

ndiv

^c-4

6.04

94

20.5

0010

0.61

816

9.89

00.

00

Her

bivo

ryPd

101

sow

ndiv

^c-4

7.18

03

27.3

3310

0.66

716

9.93

90.

00

Her

bivo

ryPh

251

sow

ndiv

^c-4

6.11

94

20.5

0010

0.75

817

0.03

10.

00

Her

bivo

ryPf

151

sow

ndiv

^c-4

8.03

53

27.3

3310

2.37

717

1.64

90.

00

Her

bivo

ryPi

301

sow

ndiv

^c-4

6.95

54

20.5

0010

2.43

017

1.70

20.

00

Her

bivo

ryPk

401

sow

ndiv

^c-4

6.03

75

16.4

0010

2.86

417

2.13

60.

00

Her

bivo

ryEc

2221

a +

exp(

sow

ndiv

)-7

94.2

274

20.5

0015

96.9

7416

66.2

470.

00

Her

bivo

ryEd

2821

a +

exp(

sow

ndiv

)-7

94.2

225

16.4

0015

99.2

3316

68.5

050.

00

Her

bivo

ryEe

342

a +

exp(

sow

ndiv

)-7

94.2

255

16.4

0015

99.2

3916

68.5

110.

00

Her

bivo

ryEg

4621

a +

exp(

sow

ndiv

)-7

94.2

216

13.6

6716

01.5

6216

70.8

340.

00

Her

bivo

ryE4

2a

+ ex

p(so

wnd

iv)

-800

.854

327

.333

1608

.017

1677

.289

0.00

Her

bivo

ryEb

1621

a +

exp(

sow

ndiv

)-8

00.7

054

20.5

0016

09.9

2916

79.2

010.

00

Her

bivo

ryEa

1021

a +

exp(

sow

ndiv

)-8

00.7

804

20.5

0016

10.0

7916

79.3

510.

00

Her

bivo

ryEf

4021

a +

exp(

sow

ndiv

)-8

00.5

095

16.4

0016

11.8

0816

81.0

800.

00

Her

bivo

ryEa

1011

a +

exp(

sow

ndiv

)-1

727.

462

420

.500

3463

.443

3532

.715

0.00

Her

bivo

ryEf

4011

a +

exp(

sow

ndiv

)-1

726.

707

516

.400

3464

.203

3533

.476

0.00

Her

bivo

ryEb

1611

a +

exp(

sow

ndiv

)-1

728.

199

420

.500

3464

.917

3534

.190

0.00

Her

bivo

ryEd

2811

a +

exp(

sow

ndiv

)-1

727.

462

516

.400

3465

.713

3534

.985

0.00

Her

bivo

ryE4

1a

+ ex

p(so

wnd

iv)

-172

9.90

53

27.3

3334

66.1

1735

35.3

900.

00

Her

bivo

ryEg

4611

a +

exp(

sow

ndiv

)-1

726.

707

613

.667

3466

.534

3535

.806

0.00

Her

bivo

ryEe

341

a +

exp(

sow

ndiv

)-1

728.

199

516

.400

3467

.187

3536

.460

0.00

Her

bivo

ryEc

2211

a +

exp(

sow

ndiv

)-1

729.

905

420

.500

3468

.329

3537

.601

0.00

Her

bivo

ryEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

688.

523

117.

455

5402

.817

5472

.089

0.00

Her

bivo

ryEc

1921

a +

b *

exp(

c *

sow

ndiv

)-2

878.

481

810

.250

5774

.934

5844

.207

0.00

Her

bivo

ryE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9898

.455

0.00

Her

bivo

ryEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

00.6

110.

00

Her

bivo

ryEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

00.6

110.

00

Her

bivo

ryEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

00.6

110.

00

Her

bivo

ryEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

02.8

230.

00

Her

bivo

ryEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

02.8

230.

00

Her

bivo

ryEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

02.8

230.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 84

Page 85: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Her

bivo

ryEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2199

05.0

930.

00

Para

sitis

mPa

2a

+ b

* so

wnd

iv5.

078

326

.000

-3.8

330.

000

0.15

Para

sitis

mPa

4b

* so

wnd

iv^c

4.93

53

26.0

00-3

.546

0.28

70.

13

Para

sitis

mPa

3a

+ so

wnd

iv^c

4.87

23

26.0

00-3

.419

0.41

30.

13

Para

sitis

mE2

a +

b *

exp(

sow

ndiv

)4.

726

326

.000

-3.1

280.

705

0.11

Para

sitis

mM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

4.28

93

26.0

00-2

.254

1.57

80.

07

Para

sitis

mM

1a

* so

wnd

iv/(

b +

sow

ndiv

)4.

289

326

.000

-2.2

541.

578

0.07

Para

sitis

mPa

1a

+ b

* so

wnd

iv^c

5.13

14

19.5

00-1

.714

2.11

90.

05

Para

sitis

mM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)5.

118

419

.500

-1.6

872.

145

0.05

Para

sitis

mAS

2SS

asym

pOff

(sow

ndiv

, Asy

m, l

rc, c

0)5.

115

419

.500

-1.6

812.

151

0.05

Para

sitis

mA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

5.11

54

19.5

00-1

.681

2.15

10.

05

Para

sitis

mLG

2SS

logi

s(so

wnd

iv, A

sym

, xm

id, s

cal)

5.10

54

19.5

00-1

.662

2.17

10.

05

Para

sitis

mA

S3SS

asym

pOrig

(sow

ndiv

, Asy

m, l

rc)

3.81

13

26.0

00-1

.297

2.53

60.

04

Para

sitis

mL2

sow

ndiv

+ fu

ncgr

+ le

g5.

805

515

.600

-0.7

763.

057

0.03

Para

sitis

mL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

14.3

9815

5.20

08.

945

12.7

780.

00

Para

sitis

mE5

b *

exp(

sow

ndiv

)-3

1.23

52

39.0

0066

.631

70.4

630.

00

Para

sitis

mPa

5so

wnd

iv^c

-46.

858

239

.000

97.8

7510

1.70

80.

00

Para

sitis

mE4

a +

exp(

sow

ndiv

)-4

674.

831

239

.000

9353

.822

9357

.655

0.00

Flow

er v

isita

tion

L2so

wnd

iv +

func

gr +

leg

41.2

495

14.6

00-7

1.60

20.

000

0.75

Flow

er v

isita

tion

Pa4

b *

sow

ndiv

^c36

.025

324

.333

-65.

703

5.90

00.

04

Flow

er v

isita

tion

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)36

.007

324

.333

-65.

666

5.93

60.

04

Flow

er v

isita

tion

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.0

073

24.3

33-6

5.66

65.

936

0.04

Flow

er v

isita

tion

Pa3

a +

sow

ndiv

^c36

.001

324

.333

-65.

654

5.94

80.

04

Flow

er v

isita

tion

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)35

.673

324

.333

-64.

998

6.60

50.

03

Flow

er v

isita

tion

Pa1

a +

b *

sow

ndiv

^c36

.189

418

.250

-63.

790

7.81

30.

02

Flow

er v

isita

tion

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.1

224

18.2

50-6

3.65

57.

947

0.01

Flow

er v

isita

tion

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)36

.040

418

.250

-63.

492

8.11

00.

01

Flow

er v

isita

tion

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

36.0

404

18.2

50-6

3.49

28.

110

0.01

Flow

er v

isita

tion

Pa2

a +

b *

sow

ndiv

34.5

263

24.3

33-6

2.70

38.

899

0.01

Flow

er v

isita

tion

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)35

.602

418

.250

-62.

615

8.98

70.

01

Flow

er v

isita

tion

E2a

+ b

* ex

p(so

wnd

iv)

31.6

863

24.3

33-5

7.02

314

.579

0.00

Flow

er v

isita

tion

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^246

.318

154.

867

-54.

214

17.3

880.

00

Flow

er v

isita

tion

E5b

* ex

p(so

wnd

iv)

17.6

322

36.5

00-3

1.09

240

.510

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 85

Page 86: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Flow

er v

isita

tion

Pa5

sow

ndiv

^c-4

3.53

02

36.5

0091

.232

162.

834

0.00

Flow

er v

isita

tion

E4a

+ ex

p(so

wnd

iv)

-437

7.58

02

36.5

0087

59.3

3288

30.9

350.

00

Litt

er d

ecom

posi

tion

Pa4

b *

sow

ndiv

^c10

.937

314

.667

-15.

275

0.00

00.

13

Litt

er d

ecom

posi

tion

Pa3

a +

sow

ndiv

^c10

.937

314

.667

-15.

275

0.00

00.

13

Litt

er d

ecom

posi

tion

Pa2

a +

b *

sow

ndiv

10.7

993

14.6

67-1

4.99

80.

277

0.12

Litt

er d

ecom

posi

tion

E3a

+ ex

p(c

* so

wnd

iv)

10.7

923

14.6

67-1

4.98

40.

291

0.11

Litt

er d

ecom

posi

tion

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

10.7

913

14.6

67-1

4.98

20.

292

0.11

Litt

er d

ecom

posi

tion

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)10

.791

314

.667

-14.

982

0.29

20.

11

Litt

er d

ecom

posi

tion

E2a

+ b

* ex

p(so

wnd

iv)

10.5

963

14.6

67-1

4.59

20.

682

0.09

Litt

er d

ecom

posi

tion

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)10

.565

314

.667

-14.

529

0.74

60.

09

Litt

er d

ecom

posi

tion

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

10.9

374

11.0

00-1

2.84

92.

426

0.04

Litt

er d

ecom

posi

tion

Pa1

a +

b *

sow

ndiv

^c10

.937

411

.000

-12.

849

2.42

60.

04

Litt

er d

ecom

posi

tion

L2so

wnd

iv +

func

gr +

leg

10.7

995

8.80

0-1

0.01

95.

256

0.01

Litt

er d

ecom

posi

tion

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^223

.167

152.

933

0.80

916

.084

0.00

Litt

er d

ecom

posi

tion

Pa5

sow

ndiv

^c-1

6.74

82

22.0

0037

.789

53.0

640.

00

Litt

er d

ecom

posi

tion

E6ex

p(c

* so

wnd

iv)

-17.

601

222

.000

39.4

9454

.769

0.00

Litt

er d

ecom

posi

tion

E5b

* ex

p(so

wnd

iv)

-31.

904

222

.000

68.1

0183

.376

0.00

Litt

er d

ecom

posi

tion

E4a

+ ex

p(so

wnd

iv)

-731

.905

222

.000

1468

.104

1483

.378

0.00

Seed

pre

datio

nPa

3a

+ so

wnd

iv^c

11.1

233

15.3

33-1

5.67

50.

000

0.13

Seed

pre

datio

nPa

4b

* so

wnd

iv^c

11.1

233

15.3

33-1

5.67

40.

000

0.13

Seed

pre

datio

nE3

a +

exp(

c *

sow

ndiv

)11

.035

315

.333

-15.

499

0.17

60.

12

Seed

pre

datio

nPa

2a

+ b

* so

wnd

iv11

.031

315

.333

-15.

491

0.18

40.

12

Seed

pre

datio

nM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

11.0

173

15.3

33-1

5.46

30.

212

0.12

Seed

pre

datio

nM

1a

* so

wnd

iv/(

b +

sow

ndiv

)11

.017

315

.333

-15.

463

0.21

20.

12

Seed

pre

datio

nE2

a +

b *

exp(

sow

ndiv

)10

.904

315

.333

-15.

236

0.43

90.

11

Seed

pre

datio

nL2

sow

ndiv

+ fu

ncgr

+ le

g12

.756

59.

200

-14.

013

1.66

20.

06

Seed

pre

datio

nPa

1a

+ b

* so

wnd

iv^c

11.1

234

11.5

00-1

3.27

12.

403

0.04

Seed

pre

datio

nM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)11

.123

411

.500

-13.

271

2.40

30.

04

Seed

pre

datio

nL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

18.2

7715

3.06

79.

446

25.1

210.

00

Seed

pre

datio

nPa

5so

wnd

iv^c

-2.7

432

23.0

009.

765

25.4

400.

00

Seed

pre

datio

nE6

exp(

c *

sow

ndiv

)-3

.969

223

.000

12.2

1827

.892

0.00

Seed

pre

datio

nE5

b *

exp(

sow

ndiv

)-4

2.90

62

23.0

0090

.092

105.

767

0.00

Seed

pre

datio

nE4

a +

exp(

sow

ndiv

)-7

65.5

642

23.0

0015

35.4

0715

51.0

810.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 86

Page 87: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nL0

21bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^275

.283

165.

125

-110

.197

0.00

01.

00

Path

ogen

infe

ctio

nPn

1821

a +

sow

ndiv

^c40

.701

613

.667

-68.

282

41.9

150.

00

Path

ogen

infe

ctio

nPn

1921

b *

sow

ndiv

^c40

.362

613

.667

-67.

604

42.5

940.

00

Path

ogen

infe

ctio

nPp

2421

b *

sow

ndiv

^c41

.321

810

.250

-64.

668

45.5

290.

00

Path

ogen

infe

ctio

nPr

3321

a +

sow

ndiv

^c40

.941

810

.250

-63.

910

46.2

870.

00

Path

ogen

infe

ctio

nPp

2321

a +

sow

ndiv

^c40

.747

810

.250

-63.

521

46.6

760.

00

Path

ogen

infe

ctio

nPr

3421

b *

sow

ndiv

^c40

.721

810

.250

-63.

470

46.7

270.

00

Path

ogen

infe

ctio

nPp

2221

a +

b *

sow

ndiv

40.5

618

10.2

50-6

3.14

947

.049

0.00

Path

ogen

infe

ctio

nEa

911

a +

exp(

c *

sow

ndiv

)37

.106

613

.667

-61.

092

49.1

060.

00

Path

ogen

infe

ctio

nPs

3921

b *

sow

ndiv

^c41

.769

108.

200

-60.

440

49.7

570.

00

Path

ogen

infe

ctio

nPs

3821

a +

sow

ndiv

^c41

.671

108.

200

-60.

244

49.9

530.

00

Path

ogen

infe

ctio

nM

1121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

38.5

548

10.2

50-5

9.13

551

.062

0.00

Path

ogen

infe

ctio

nPc

421

b *

sow

ndiv

^c33

.704

420

.500

-58.

889

51.3

080.

00

Path

ogen

infe

ctio

nPs

3721

a +

b *

sow

ndiv

40.9

4810

8.20

0-5

8.79

751

.400

0.00

Path

ogen

infe

ctio

nPe

821

a +

sow

ndiv

^c35

.419

613

.667

-57.

717

52.4

800.

00

Path

ogen

infe

ctio

nM

1221

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

37.7

498

10.2

50-5

7.52

652

.671

0.00

Path

ogen

infe

ctio

nPc

321

a +

sow

ndiv

^c32

.801

420

.500

-57.

083

53.1

140.

00

Path

ogen

infe

ctio

nPe

921

b *

sow

ndiv

^c34

.787

613

.667

-56.

454

53.7

430.

00

Path

ogen

infe

ctio

nPm

1321

a +

sow

ndiv

^c34

.370

613

.667

-55.

620

54.5

770.

00

Path

ogen

infe

ctio

nM

1421

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

40.3

9211

7.45

5-5

5.01

355

.184

0.00

Path

ogen

infe

ctio

nPm

1421

b *

sow

ndiv

^c33

.980

613

.667

-54.

839

55.3

580.

00

Path

ogen

infe

ctio

nPq

2821

a +

sow

ndiv

^c36

.326

810

.250

-54.

680

55.5

180.

00

Path

ogen

infe

ctio

nPe

721

a +

b *

sow

ndiv

33.7

826

13.6

67-5

4.44

555

.752

0.00

Path

ogen

infe

ctio

nPn

1931

b *

sow

ndiv

^c33

.547

613

.667

-53.

975

56.2

230.

00

Path

ogen

infe

ctio

nPq

2921

b *

sow

ndiv

^c35

.867

810

.250

-53.

762

56.4

350.

00

Path

ogen

infe

ctio

nPn

2021

sow

ndiv

^c30

.358

420

.500

-52.

197

58.0

000.

00

Path

ogen

infe

ctio

nPq

2721

a +

b *

sow

ndiv

35.0

438

10.2

50-5

2.11

258

.085

0.00

Path

ogen

infe

ctio

nPn

1831

a +

sow

ndiv

^c32

.524

613

.667

-51.

928

58.2

690.

00

Path

ogen

infe

ctio

nPp

2431

b *

sow

ndiv

^c34

.308

810

.250

-50.

643

59.5

550.

00

Path

ogen

infe

ctio

nPr

3431

b *

sow

ndiv

^c34

.290

810

.250

-50.

607

59.5

900.

00

Path

ogen

infe

ctio

nPr

3331

a +

sow

ndiv

^c34

.182

810

.250

-50.

392

59.8

050.

00

Path

ogen

infe

ctio

nPp

2521

sow

ndiv

^c30

.497

516

.400

-50.

205

59.9

920.

00

Path

ogen

infe

ctio

nEa

921

a +

exp(

c *

sow

ndiv

)31

.598

613

.667

-50.

077

60.1

200.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 87

Page 88: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nPr

3521

sow

ndiv

^c30

.370

516

.400

-49.

951

60.2

460.

00

Path

ogen

infe

ctio

nPr

3221

a +

b *

sow

ndiv

33.9

078

10.2

50-4

9.84

260

.355

0.00

Path

ogen

infe

ctio

nPp

2331

a +

sow

ndiv

^c33

.676

810

.250

-49.

380

60.8

170.

00

Path

ogen

infe

ctio

nPs

4021

sow

ndiv

^c30

.962

613

.667

-48.

805

61.3

920.

00

Path

ogen

infe

ctio

nL0

11bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^244

.572

165.

125

-48.

775

61.4

220.

00

Path

ogen

infe

ctio

nEb

1511

a +

exp(

c *

sow

ndiv

)30

.925

613

.667

-48.

731

61.4

670.

00

Path

ogen

infe

ctio

nPm

1221

a +

b *

sow

ndiv

30.7

296

13.6

67-4

8.33

861

.859

0.00

Path

ogen

infe

ctio

nPp

2231

a +

b *

sow

ndiv

32.3

038

10.2

50-4

6.63

463

.563

0.00

Path

ogen

infe

ctio

nPe

1021

sow

ndiv

^c27

.528

420

.500

-46.

536

63.6

610.

00

Path

ogen

infe

ctio

nPs

3931

b *

sow

ndiv

^c34

.761

108.

200

-46.

424

63.7

730.

00

Path

ogen

infe

ctio

nPc

521

sow

ndiv

^c26

.032

327

.333

-45.

757

64.4

400.

00

Path

ogen

infe

ctio

nPs

3831

a +

sow

ndiv

^c34

.280

108.

200

-45.

461

64.7

360.

00

Path

ogen

infe

ctio

nEf

3921

a +

exp(

c *

sow

ndiv

)31

.632

810

.250

-45.

292

64.9

050.

00

Path

ogen

infe

ctio

nPq

3021

sow

ndiv

^c27

.839

516

.400

-44.

888

65.3

090.

00

Path

ogen

infe

ctio

nPm

1521

sow

ndiv

^c26

.078

420

.500

-43.

637

66.5

600.

00

Path

ogen

infe

ctio

nPc

331

a +

sow

ndiv

^c25

.683

420

.500

-42.

847

67.3

500.

00

Path

ogen

infe

ctio

nPs

3731

a +

b *

sow

ndiv

32.9

3710

8.20

0-4

2.77

667

.421

0.00

Path

ogen

infe

ctio

nPc

431

b *

sow

ndiv

^c24

.561

420

.500

-40.

603

69.5

940.

00

Path

ogen

infe

ctio

nPe

831

a +

sow

ndiv

^c26

.793

613

.667

-40.

466

69.7

310.

00

Path

ogen

infe

ctio

nPe

931

b *

sow

ndiv

^c26

.500

613

.667

-39.

881

70.3

160.

00

Path

ogen

infe

ctio

nM

611

a *

sow

ndiv

/(b

+ so

wnd

iv)

28.7

568

10.2

50-3

9.54

070

.658

0.00

Path

ogen

infe

ctio

nPm

1331

a +

sow

ndiv

^c26

.197

613

.667

-39.

274

70.9

230.

00

Path

ogen

infe

ctio

nEc

2121

a +

exp(

c *

sow

ndiv

)25

.890

613

.667

-38.

659

71.5

380.

00

Path

ogen

infe

ctio

nPe

731

a +

b *

sow

ndiv

25.6

506

13.6

67-3

8.17

972

.018

0.00

Path

ogen

infe

ctio

nM

1132

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.9

888

10.2

50-3

8.00

472

.193

0.00

Path

ogen

infe

ctio

nM

1232

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.9

318

10.2

50-3

7.89

072

.307

0.00

Path

ogen

infe

ctio

nPm

1431

b *

sow

ndiv

^c25

.263

613

.667

-37.

406

72.7

910.

00

Path

ogen

infe

ctio

nM

511

a *

sow

ndiv

/(b

+ so

wnd

iv)

25.2

516

13.6

67-3

7.38

372

.815

0.00

Path

ogen

infe

ctio

nPn

1721

a +

b *

sow

ndiv

24.8

726

13.6

67-3

6.62

573

.573

0.00

Path

ogen

infe

ctio

nPq

2831

a +

sow

ndiv

^c27

.265

810

.250

-36.

558

73.6

390.

00

Path

ogen

infe

ctio

nPq

2931

b *

sow

ndiv

^c27

.138

810

.250

-36.

303

73.8

940.

00

Path

ogen

infe

ctio

nM

921

a *

sow

ndiv

/(b

+ so

wnd

iv)

29.6

5810

8.20

0-3

6.21

773

.980

0.00

Path

ogen

infe

ctio

nM

622

a *

sow

ndiv

/(b

+ so

wnd

iv)

26.4

728

10.2

50-3

4.97

175

.226

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 88

Page 89: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nPq

2731

a +

b *

sow

ndiv

26.2

718

10.2

50-3

4.56

975

.628

0.00

Path

ogen

infe

ctio

nEb

1521

a +

exp(

c *

sow

ndiv

)23

.337

613

.667

-33.

555

76.6

430.

00

Path

ogen

infe

ctio

nM

711

a *

sow

ndiv

/(b

+ so

wnd

iv)

25.7

068

10.2

50-3

3.43

976

.758

0.00

Path

ogen

infe

ctio

nPm

1231

a +

b *

sow

ndiv

23.1

046

13.6

67-3

3.08

777

.110

0.00

Path

ogen

infe

ctio

nL2

11so

wnd

iv +

func

gr +

leg

23.0

146

13.6

67-3

2.90

877

.289

0.00

Path

ogen

infe

ctio

nPr

3231

a +

b *

sow

ndiv

25.2

618

10.2

50-3

2.55

077

.647

0.00

Path

ogen

infe

ctio

nM

932

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.6

9810

8.20

0-3

2.29

777

.900

0.00

Path

ogen

infe

ctio

nM

1432

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

29.0

2411

7.45

5-3

2.27

777

.920

0.00

Path

ogen

infe

ctio

nE3

1a

+ ex

p(c

* so

wnd

iv)

20.3

384

20.5

00-3

2.15

778

.040

0.00

Path

ogen

infe

ctio

nPc

221

a +

b *

sow

ndiv

19.8

504

20.5

00-3

1.18

079

.017

0.00

Path

ogen

infe

ctio

nM

522

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.6

786

13.6

67-3

0.23

679

.962

0.00

Path

ogen

infe

ctio

nM

821

a *

sow

ndiv

/(b

+ so

wnd

iv)

22.5

388

10.2

50-2

7.10

483

.093

0.00

Path

ogen

infe

ctio

nL2

22so

wnd

iv +

func

gr +

leg

19.6

436

13.6

67-2

6.16

684

.031

0.00

Path

ogen

infe

ctio

nEa

121

exp(

c *

sow

ndiv

)17

.244

420

.500

-25.

969

84.2

280.

00

Path

ogen

infe

ctio

nM

722

a *

sow

ndiv

/(b

+ so

wnd

iv)

21.9

358

10.2

50-2

5.89

784

.300

0.00

Path

ogen

infe

ctio

nPn

1731

a +

b *

sow

ndiv

18.9

716

13.6

67-2

4.82

185

.376

0.00

Path

ogen

infe

ctio

nEf

4211

exp(

c *

sow

ndiv

)17

.249

516

.400

-23.

709

86.4

880.

00

Path

ogen

infe

ctio

nE3

2a

+ ex

p(c

* so

wnd

iv)

15.6

354

20.5

00-2

2.75

087

.447

0.00

Path

ogen

infe

ctio

nM

832

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.3

378

10.2

50-2

2.70

287

.495

0.00

Path

ogen

infe

ctio

nPc

231

a +

b *

sow

ndiv

15.0

274

20.5

00-2

1.53

488

.663

0.00

Path

ogen

infe

ctio

nL2

1so

wnd

iv +

func

gr +

leg

16.8

976

13.6

67-2

0.67

389

.524

0.00

Path

ogen

infe

ctio

nPg

181

a +

sow

ndiv

^c15

.187

516

.400

-19.

584

90.6

130.

00

Path

ogen

infe

ctio

nPg

191

b *

sow

ndiv

^c14

.896

516

.400

-19.

002

91.1

960.

00

Path

ogen

infe

ctio

nM

311

a *

sow

ndiv

/(b

+ so

wnd

iv)

16.0

506

13.6

67-1

8.98

191

.217

0.00

Path

ogen

infe

ctio

nL2

2so

wnd

iv +

func

gr +

leg

15.9

256

13.6

67-1

8.72

991

.468

0.00

Path

ogen

infe

ctio

nM

411

a *

sow

ndiv

/(b

+ so

wnd

iv)

15.8

326

13.6

67-1

8.54

591

.652

0.00

Path

ogen

infe

ctio

nPh

241

b *

sow

ndiv

^c16

.305

711

.714

-17.

096

93.1

010.

00

Path

ogen

infe

ctio

nPj

341

b *

sow

ndiv

^c15

.805

711

.714

-16.

097

94.1

000.

00

Path

ogen

infe

ctio

nM

101

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

15.6

317

11.7

14-1

5.74

894

.449

0.00

Path

ogen

infe

ctio

nPj

331

a +

sow

ndiv

^c15

.625

711

.714

-15.

736

94.4

610.

00

Path

ogen

infe

ctio

nEc

2411

exp(

c *

sow

ndiv

)12

.014

420

.500

-15.

509

94.6

880.

00

Path

ogen

infe

ctio

nPh

231

a +

sow

ndiv

^c15

.301

711

.714

-15.

088

95.1

090.

00

Path

ogen

infe

ctio

nE6

1ex

p(c

* so

wnd

iv)

10.4

653

27.3

33-1

4.62

395

.574

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 89

Page 90: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nPk

391

b *

sow

ndiv

^c16

.812

99.

111

-13.

124

97.0

730.

00

Path

ogen

infe

ctio

nEb

1811

exp(

c *

sow

ndiv

)10

.468

420

.500

-12.

416

97.7

810.

00

Path

ogen

infe

ctio

nE2

2a

+ b

* ex

p(so

wnd

iv)

10.2

744

20.5

00-1

2.02

898

.169

0.00

Path

ogen

infe

ctio

nPk

381

a +

sow

ndiv

^c16

.002

99.

111

-11.

504

98.6

930.

00

Path

ogen

infe

ctio

nEa

1221

exp(

c *

sow

ndiv

)9.

960

420

.500

-11.

401

98.7

960.

00

Path

ogen

infe

ctio

nPh

221

a +

b *

sow

ndiv

13.2

547

11.7

14-1

0.99

499

.203

0.00

Path

ogen

infe

ctio

nM

151

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

16.3

7610

8.20

0-9

.654

100.

543

0.00

Path

ogen

infe

ctio

nEf

4221

exp(

c *

sow

ndiv

)10

.073

516

.400

-9.3

5610

0.84

10.

00

Path

ogen

infe

ctio

nM

6a

* so

wnd

iv/(

b +

sow

ndiv

)12

.411

711

.714

-9.3

0910

0.88

80.

00

Path

ogen

infe

ctio

nEd

3021

exp(

c *

sow

ndiv

)10

.002

516

.400

-9.2

1510

0.98

20.

00

Path

ogen

infe

ctio

nM

161

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

20.1

5413

6.30

8-8

.955

101.

242

0.00

Path

ogen

infe

ctio

nM

422

a *

sow

ndiv

/(b

+ so

wnd

iv)

10.7

376

13.6

67-8

.353

101.

844

0.00

Path

ogen

infe

ctio

nPk

371

a +

b *

sow

ndiv

14.0

549

9.11

1-7

.608

102.

589

0.00

Path

ogen

infe

ctio

nM

321

a *

sow

ndiv

/(b

+ so

wnd

iv)

9.85

46

13.6

67-6

.587

103.

610

0.00

Path

ogen

infe

ctio

nPa

3a

+ so

wnd

iv^c

5.97

33

27.3

33-5

.639

104.

559

0.00

Path

ogen

infe

ctio

nPb

31a

+ so

wnd

iv^c

5.97

33

27.3

33-5

.639

104.

559

0.00

Path

ogen

infe

ctio

nM

3a

* so

wnd

iv/(

b +

sow

ndiv

)8.

073

516

.400

-5.3

5610

4.84

10.

00

Path

ogen

infe

ctio

nAS

1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

6.87

04

20.5

00-5

.221

104.

976

0.00

Path

ogen

infe

ctio

nM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)6.

683

420

.500

-4.8

4610

5.35

10.

00

Path

ogen

infe

ctio

nM

81a

* so

wnd

iv/(

b +

sow

ndiv

)10

.018

711

.714

-4.5

2210

5.67

50.

00

Path

ogen

infe

ctio

nPa

4b

* so

wnd

iv^c

5.27

83

27.3

33-4

.247

105.

950

0.00

Path

ogen

infe

ctio

nPb

41b

* so

wnd

iv^c

5.27

83

27.3

33-4

.247

105.

950

0.00

Path

ogen

infe

ctio

nPb

11a

+ b

* so

wnd

iv^c

6.15

54

20.5

00-3

.791

106.

406

0.00

Path

ogen

infe

ctio

nL2

sow

ndiv

+ fu

ncgr

+ le

g6.

919

516

.400

-3.0

4910

7.14

80.

00

Path

ogen

infe

ctio

nPd

91b

* so

wnd

iv^c

6.65

25

16.4

00-2

.515

107.

682

0.00

Path

ogen

infe

ctio

nPd

81a

+ so

wnd

iv^c

6.64

55

16.4

00-2

.501

107.

696

0.00

Path

ogen

infe

ctio

nPf

131

a +

sow

ndiv

^c6.

268

516

.400

-1.7

4610

8.45

10.

00

Path

ogen

infe

ctio

nPf

141

b *

sow

ndiv

^c5.

673

516

.400

-0.5

5710

9.64

00.

00

Path

ogen

infe

ctio

nPd

71a

+ b

* so

wnd

iv5.

597

516

.400

-0.4

0410

9.79

30.

00

Path

ogen

infe

ctio

nL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

18.5

2715

5.46

70.

219

110.

416

0.00

Path

ogen

infe

ctio

nPn

2031

sow

ndiv

^c3.

933

420

.500

0.65

411

0.85

10.

00

Path

ogen

infe

ctio

nPi

291

b *

sow

ndiv

^c7.

348

711

.714

0.81

711

1.01

40.

00

Path

ogen

infe

ctio

nM

111

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

7.24

27

11.7

141.

029

111.

226

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 90

Page 91: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nM

121

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

7.24

27

11.7

141.

030

111.

227

0.00

Path

ogen

infe

ctio

nPi

281

a +

sow

ndiv

^c7.

224

711

.714

1.06

511

1.26

20.

00

Path

ogen

infe

ctio

nPj

321

a +

b *

sow

ndiv

7.22

27

11.7

141.

069

111.

266

0.00

Path

ogen

infe

ctio

nM

5a

* so

wnd

iv/(

b +

sow

ndiv

)4.

745

516

.400

1.29

911

1.49

60.

00

Path

ogen

infe

ctio

nEc

2421

exp(

c *

sow

ndiv

)3.

570

420

.500

1.37

911

1.57

70.

00

Path

ogen

infe

ctio

nEa

12ex

p(c

* so

wnd

iv)

2.36

73

27.3

331.

574

111.

771

0.00

Path

ogen

infe

ctio

nPf

121

a +

b *

sow

ndiv

4.47

25

16.4

001.

845

112.

042

0.00

Path

ogen

infe

ctio

nPe

1031

sow

ndiv

^c2.

939

420

.500

2.64

111

2.83

80.

00

Path

ogen

infe

ctio

nPd

61a

+ b

* so

wnd

iv^c

6.36

27

11.7

142.

789

112.

986

0.00

Path

ogen

infe

ctio

nPr

3531

sow

ndiv

^c3.

963

516

.400

2.86

311

3.06

00.

00

Path

ogen

infe

ctio

nPp

2531

sow

ndiv

^c3.

934

516

.400

2.92

211

3.11

90.

00

Path

ogen

infe

ctio

nPi

271

a +

b *

sow

ndiv

6.17

97

11.7

143.

155

113.

352

0.00

Path

ogen

infe

ctio

nPg

171

a +

b *

sow

ndiv

3.78

15

16.4

003.

227

113.

425

0.00

Path

ogen

infe

ctio

nPc

531

sow

ndiv

^c1.

501

327

.333

3.30

711

3.50

40.

00

Path

ogen

infe

ctio

nPq

3031

sow

ndiv

^c3.

040

516

.400

4.71

011

4.90

70.

00

Path

ogen

infe

ctio

nPm

1531

sow

ndiv

^c1.

865

420

.500

4.79

011

4.98

70.

00

Path

ogen

infe

ctio

nPs

4031

sow

ndiv

^c4.

085

613

.667

4.95

111

5.14

80.

00

Path

ogen

infe

ctio

nM

7a

* so

wnd

iv/(

b +

sow

ndiv

)5.

081

711

.714

5.35

111

5.54

80.

00

Path

ogen

infe

ctio

nPb

21a

+ b

* so

wnd

iv0.

410

327

.333

5.48

711

5.68

40.

00

Path

ogen

infe

ctio

nPa

2a

+ b

* so

wnd

iv0.

410

327

.333

5.48

711

5.68

40.

00

Path

ogen

infe

ctio

nM

1a

* so

wnd

iv/(

b +

sow

ndiv

)0.

260

327

.333

5.78

811

5.98

50.

00

Path

ogen

infe

ctio

nM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

0.26

03

27.3

335.

788

115.

985

0.00

Path

ogen

infe

ctio

nE6

2ex

p(c

* so

wnd

iv)

-0.3

313

27.3

336.

970

117.

167

0.00

Path

ogen

infe

ctio

nM

4a

* so

wnd

iv/(

b +

sow

ndiv

)1.

345

516

.400

8.10

011

8.29

70.

00

Path

ogen

infe

ctio

nEb

1821

exp(

c *

sow

ndiv

)0.

004

420

.500

8.51

111

8.70

80.

00

Path

ogen

infe

ctio

nE2

a +

b *

exp(

sow

ndiv

)-4

.382

327

.333

15.0

7112

5.26

80.

00

Path

ogen

infe

ctio

nEc

24ex

p(c

* so

wnd

iv)

-4.5

153

27.3

3315

.338

125.

535

0.00

Path

ogen

infe

ctio

nEb

18ex

p(c

* so

wnd

iv)

-8.3

133

27.3

3322

.933

133.

130

0.00

Path

ogen

infe

ctio

nPg

201

sow

ndiv

^c-2

2.79

53

27.3

3351

.897

162.

094

0.00

Path

ogen

infe

ctio

nPb

51so

wnd

iv^c

-24.

119

241

.000

52.3

8916

2.58

60.

00

Path

ogen

infe

ctio

nPa

5so

wnd

iv^c

-24.

119

241

.000

52.3

8916

2.58

60.

00

Path

ogen

infe

ctio

nE5

2b

* ex

p(so

wnd

iv)

-23.

229

327

.333

52.7

6616

2.96

40.

00

Path

ogen

infe

ctio

nPd

101

sow

ndiv

^c-2

3.76

43

27.3

3353

.836

164.

033

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 91

Page 92: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Path

ogen

infe

ctio

nPh

251

sow

ndiv

^c-2

2.74

64

20.5

0054

.012

164.

209

0.00

Path

ogen

infe

ctio

nPj

351

sow

ndiv

^c-2

2.79

14

20.5

0054

.102

164.

299

0.00

Path

ogen

infe

ctio

nPf

151

sow

ndiv

^c-2

4.11

93

27.3

3354

.545

164.

742

0.00

Path

ogen

infe

ctio

nPi

301

sow

ndiv

^c-2

3.64

34

20.5

0055

.805

166.

002

0.00

Path

ogen

infe

ctio

nPk

401

sow

ndiv

^c-2

2.60

45

16.4

0055

.997

166.

194

0.00

Path

ogen

infe

ctio

nE5

1b

* ex

p(so

wnd

iv)

-26.

121

327

.333

58.5

5016

8.74

70.

00

Path

ogen

infe

ctio

nM

91a

* so

wnd

iv/(

b +

sow

ndiv

)-3

0.72

99

9.11

181

.958

192.

156

0.00

Path

ogen

infe

ctio

nE5

b *

exp(

sow

ndiv

)-4

5.55

52

41.0

0095

.262

205.

459

0.00

Path

ogen

infe

ctio

nEc

2221

a +

exp(

sow

ndiv

)-7

94.9

174

20.5

0015

98.3

5417

08.5

510.

00

Path

ogen

infe

ctio

nEd

2821

a +

exp(

sow

ndiv

)-7

94.8

015

16.4

0016

00.3

9117

10.5

880.

00

Path

ogen

infe

ctio

nEe

342

a +

exp(

sow

ndiv

)-7

94.9

135

16.4

0016

00.6

1517

10.8

120.

00

Path

ogen

infe

ctio

nEg

4621

a +

exp(

sow

ndiv

)-7

94.7

966

13.6

6716

02.7

1217

12.9

090.

00

Path

ogen

infe

ctio

nE4

2a

+ ex

p(so

wnd

iv)

-801

.579

327

.333

1609

.465

1719

.662

0.00

Path

ogen

infe

ctio

nEb

1621

a +

exp(

sow

ndiv

)-8

01.4

184

20.5

0016

11.3

5517

21.5

520.

00

Path

ogen

infe

ctio

nEa

1021

a +

exp(

sow

ndiv

)-8

01.5

774

20.5

0016

11.6

7317

21.8

700.

00

Path

ogen

infe

ctio

nEf

4021

a +

exp(

sow

ndiv

)-8

01.3

765

16.4

0016

13.5

4217

23.7

390.

00

Path

ogen

infe

ctio

nEa

1011

a +

exp(

sow

ndiv

)-1

772.

911

420

.500

3554

.342

3664

.539

0.00

Path

ogen

infe

ctio

nEf

4011

a +

exp(

sow

ndiv

)-1

772.

553

516

.400

3555

.894

3666

.092

0.00

Path

ogen

infe

ctio

nEd

2811

a +

exp(

sow

ndiv

)-1

772.

911

516

.400

3556

.612

3666

.809

0.00

Path

ogen

infe

ctio

nEg

4611

a +

exp(

sow

ndiv

)-1

772.

553

613

.667

3558

.225

3668

.422

0.00

Path

ogen

infe

ctio

nE4

1a

+ ex

p(so

wnd

iv)

-178

4.91

63

27.3

3335

76.1

4036

86.3

380.

00

Path

ogen

infe

ctio

nEb

1611

a +

exp(

sow

ndiv

)-1

784.

570

420

.500

3577

.659

3687

.856

0.00

Path

ogen

infe

ctio

nEc

2211

a +

exp(

sow

ndiv

)-1

784.

916

420

.500

3578

.352

3688

.549

0.00

Path

ogen

infe

ctio

nEe

341

a +

exp(

sow

ndiv

)-1

784.

570

516

.400

3579

.929

3690

.126

0.00

Path

ogen

infe

ctio

nEf

3721

a +

b *

exp(

c *

sow

ndiv

)-2

734.

132

117.

455

5494

.035

5604

.232

0.00

Path

ogen

infe

ctio

nE4

a +

exp(

sow

ndiv

)-4

912.

516

241

.000

9829

.183

9939

.380

0.00

Path

ogen

infe

ctio

nEa

10a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

41.5

360.

00

Path

ogen

infe

ctio

nEb

16a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

41.5

360.

00

Path

ogen

infe

ctio

nEc

22a

+ ex

p(so

wnd

iv)

-491

2.51

63

27.3

3398

31.3

3999

41.5

360.

00

Path

ogen

infe

ctio

nEd

28a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

43.7

480.

00

Path

ogen

infe

ctio

nEe

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

43.7

480.

00

Path

ogen

infe

ctio

nEf

40a

+ ex

p(so

wnd

iv)

-491

2.51

64

20.5

0098

33.5

5199

43.7

480.

00

Path

ogen

infe

ctio

nEg

46a

+ ex

p(so

wnd

iv)

-491

2.51

65

16.4

0098

35.8

2199

46.0

180.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 92

Page 93: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Plan

t inv

asio

nPa

4b

* so

wnd

iv^c

35.2

263

26.6

67-6

4.13

60.

000

0.29

Plan

t inv

asio

nPa

3a

+ so

wnd

iv^c

35.0

363

26.6

67-6

3.75

70.

380

0.24

Plan

t inv

asio

nA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

36.0

124

20.0

00-6

3.49

10.

645

0.21

Plan

t inv

asio

nM

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)35

.790

420

.000

-63.

047

1.08

90.

17

Plan

t inv

asio

nBI

EXP

SSbi

exp(

sow

ndiv

, A1,

lrc1

, A2,

lrc2

)36

.014

516

.000

-61.

218

2.91

80.

07

Plan

t inv

asio

nM

1a

* so

wnd

iv/(

b +

sow

ndiv

)32

.131

326

.667

-57.

946

6.19

00.

01

Plan

t inv

asio

nM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

32.1

313

26.6

67-5

7.94

66.

190

0.01

Plan

t inv

asio

nPa

2a

+ b

* so

wnd

iv29

.147

326

.667

-51.

978

12.1

590.

00

Plan

t inv

asio

nL2

sow

ndiv

+ fu

ncgr

+ le

g30

.911

516

.000

-51.

012

13.1

250.

00

Plan

t inv

asio

nE2

a +

b *

exp(

sow

ndiv

)26

.742

326

.667

-47.

168

16.9

690.

00

Plan

t inv

asio

nL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

37.8

3515

5.33

3-3

8.17

025

.967

0.00

Plan

t inv

asio

nE5

b *

exp(

sow

ndiv

)13

.224

240

.000

-22.

293

41.8

440.

00

Plan

t inv

asio

nPa

5so

wnd

iv^c

-34.

269

240

.000

72.6

9413

6.83

00.

00

Plan

t inv

asio

nE4

a +

exp(

sow

ndiv

)-4

793.

686

240

.000

9591

.527

9655

.664

0.00

Biot

urba

tion

L22

sow

ndiv

+ fu

ncgr

+ le

g51

.391

613

.667

-89.

662

0.00

00.

54

Biot

urba

tion

L21

sow

ndiv

+ fu

ncgr

+ le

g51

.249

613

.667

-89.

377

0.28

50.

46

Biot

urba

tion

Pg19

1b

* so

wnd

iv^c

33.7

465

16.4

00-5

6.70

332

.958

0.00

Biot

urba

tion

Pg18

1a

+ so

wnd

iv^c

33.6

895

16.4

00-5

6.58

933

.073

0.00

Biot

urba

tion

L2so

wnd

iv +

func

gr +

leg

33.1

805

16.4

00-5

5.57

034

.092

0.00

Biot

urba

tion

M6

a *

sow

ndiv

/(b

+ so

wnd

iv)

35.5

067

11.7

14-5

5.49

934

.162

0.00

Biot

urba

tion

Pg17

1a

+ b

* so

wnd

iv33

.072

516

.400

-55.

355

34.3

060.

00

Biot

urba

tion

Pn18

31a

+ so

wnd

iv^c

34.1

176

13.6

67-5

5.11

434

.547

0.00

Biot

urba

tion

Pn19

31b

* so

wnd

iv^c

34.1

036

13.6

67-5

5.08

734

.575

0.00

Biot

urba

tion

Pn19

21b

* so

wnd

iv^c

33.8

966

13.6

67-5

4.67

134

.990

0.00

Biot

urba

tion

Pn18

21a

+ so

wnd

iv^c

33.8

076

13.6

67-5

4.49

335

.168

0.00

Biot

urba

tion

M61

1a

* so

wnd

iv/(

b +

sow

ndiv

)36

.172

810

.250

-54.

372

35.2

890.

00

Biot

urba

tion

L222

sow

ndiv

+ fu

ncgr

+ le

g33

.556

613

.667

-53.

993

35.6

690.

00

Biot

urba

tion

L211

sow

ndiv

+ fu

ncgr

+ le

g33

.494

613

.667

-53.

868

35.7

930.

00

Biot

urba

tion

Pn17

21a

+ b

* so

wnd

iv33

.471

613

.667

-53.

822

35.8

390.

00

Biot

urba

tion

Ea91

1a

+ ex

p(c

* so

wnd

iv)

33.4

286

13.6

67-5

3.73

635

.925

0.00

Biot

urba

tion

Pn17

31a

+ b

* so

wnd

iv33

.328

613

.667

-53.

536

36.1

250.

00

Biot

urba

tion

M62

2a

* so

wnd

iv/(

b +

sow

ndiv

)35

.594

810

.250

-53.

216

36.4

460.

00

Biot

urba

tion

Pj32

1a

+ b

* so

wnd

iv34

.315

711

.714

-53.

117

36.5

450.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 93

Page 94: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

Pj34

1b

* so

wnd

iv^c

34.1

267

11.7

14-5

2.73

936

.923

0.00

Biot

urba

tion

M31

1a

* so

wnd

iv/(

b +

sow

ndiv

)32

.900

613

.667

-52.

680

36.9

810.

00

Biot

urba

tion

Pj33

1a

+ so

wnd

iv^c

34.0

787

11.7

14-5

2.64

237

.020

0.00

Biot

urba

tion

Ea92

1a

+ ex

p(c

* so

wnd

iv)

32.7

746

13.6

67-5

2.42

837

.234

0.00

Biot

urba

tion

Ph23

1a

+ so

wnd

iv^c

33.8

717

11.7

14-5

2.22

837

.433

0.00

Biot

urba

tion

M91

a *

sow

ndiv

/(b

+ so

wnd

iv)

36.3

539

9.11

1-5

2.20

537

.456

0.00

Biot

urba

tion

Ph22

1a

+ b

* so

wnd

iv33

.799

711

.714

-52.

084

37.5

780.

00

Biot

urba

tion

Ph24

1b

* so

wnd

iv^c

33.7

987

11.7

14-5

2.08

237

.580

0.00

Biot

urba

tion

Pr32

31a

+ b

* so

wnd

iv34

.861

810

.250

-51.

749

37.9

130.

00

Biot

urba

tion

Pr34

31b

* so

wnd

iv^c

34.5

998

10.2

50-5

1.22

538

.437

0.00

Biot

urba

tion

M81

a *

sow

ndiv

/(b

+ so

wnd

iv)

33.3

457

11.7

14-5

1.17

738

.484

0.00

Biot

urba

tion

Pr33

31a

+ so

wnd

iv^c

34.4

688

10.2

50-5

0.96

438

.697

0.00

Biot

urba

tion

Pr32

21a

+ b

* so

wnd

iv34

.446

810

.250

-50.

919

38.7

430.

00

Biot

urba

tion

Pp22

31a

+ b

* so

wnd

iv34

.374

810

.250

-50.

776

38.8

850.

00

Biot

urba

tion

Ef39

21a

+ ex

p(c

* so

wnd

iv)

34.2

868

10.2

50-5

0.60

039

.061

0.00

Biot

urba

tion

Pr33

21a

+ so

wnd

iv^c

34.2

608

10.2

50-5

0.54

739

.115

0.00

Biot

urba

tion

Pr34

21b

* so

wnd

iv^c

34.2

568

10.2

50-5

0.53

939

.122

0.00

Biot

urba

tion

Pp24

31b

* so

wnd

iv^c

34.1

708

10.2

50-5

0.36

839

.294

0.00

Biot

urba

tion

Pp23

31a

+ so

wnd

iv^c

34.1

688

10.2

50-5

0.36

339

.298

0.00

Biot

urba

tion

Pp23

21a

+ so

wnd

iv^c

34.1

288

10.2

50-5

0.28

339

.378

0.00

Biot

urba

tion

Pp22

21a

+ b

* so

wnd

iv33

.942

810

.250

-49.

912

39.7

490.

00

Biot

urba

tion

M83

2a

* so

wnd

iv/(

b +

sow

ndiv

)33

.928

810

.250

-49.

883

39.7

790.

00

Biot

urba

tion

M93

2a

* so

wnd

iv/(

b +

sow

ndiv

)36

.474

108.

200

-49.

849

39.8

130.

00

Biot

urba

tion

L0bl

ock

+ (s

ownd

iv +

func

gr +

gra

ss +

leg)

^242

.835

155.

467

-48.

397

41.2

640.

00

Biot

urba

tion

Pk37

1a

+ b

* so

wnd

iv34

.366

99.

111

-48.

233

41.4

290.

00

Biot

urba

tion

Pk38

1a

+ so

wnd

iv^c

34.3

219

9.11

1-4

8.14

141

.520

0.00

Biot

urba

tion

Pk39

1b

* so

wnd

iv^c

34.2

359

9.11

1-4

7.97

141

.691

0.00

Biot

urba

tion

L011

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

43.9

1716

5.12

5-4

7.46

542

.196

0.00

Biot

urba

tion

Ps37

31a

+ b

* so

wnd

iv34

.915

108.

200

-46.

732

42.9

290.

00

Biot

urba

tion

M13

21d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)36

.179

117.

455

-46.

586

43.0

760.

00

Biot

urba

tion

Ps39

31b

* so

wnd

iv^c

34.6

2810

8.20

0-4

6.15

843

.504

0.00

Biot

urba

tion

Ps38

31a

+ so

wnd

iv^c

34.5

9110

8.20

0-4

6.08

443

.577

0.00

Biot

urba

tion

Ps38

21a

+ so

wnd

iv^c

34.5

7010

8.20

0-4

6.04

143

.620

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 94

Page 95: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

Ps37

21a

+ b

* so

wnd

iv34

.499

108.

200

-45.

899

43.7

630.

00

Biot

urba

tion

Ps39

21b

* so

wnd

iv^c

34.4

2410

8.20

0-4

5.75

043

.912

0.00

Biot

urba

tion

L021

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

43.0

3116

5.12

5-4

5.69

443

.968

0.00

Biot

urba

tion

M5

a *

sow

ndiv

/(b

+ so

wnd

iv)

27.5

535

16.4

00-4

4.31

745

.344

0.00

Biot

urba

tion

Pd81

a +

sow

ndiv

^c27

.499

516

.400

-44.

209

45.4

520.

00

Biot

urba

tion

Pd91

b *

sow

ndiv

^c27

.287

516

.400

-43.

785

45.8

770.

00

Biot

urba

tion

Pi29

1b

* so

wnd

iv^c

29.3

527

11.7

14-4

3.19

046

.471

0.00

Biot

urba

tion

Pd71

a +

b *

sow

ndiv

26.9

385

16.4

00-4

3.08

646

.576

0.00

Biot

urba

tion

M52

2a

* so

wnd

iv/(

b +

sow

ndiv

)27

.886

613

.667

-42.

652

47.0

100.

00

Biot

urba

tion

Pq29

31b

* so

wnd

iv^c

30.2

238

10.2

50-4

2.47

347

.189

0.00

Biot

urba

tion

M7

a *

sow

ndiv

/(b

+ so

wnd

iv)

28.9

747

11.7

14-4

2.43

447

.227

0.00

Biot

urba

tion

Pe83

1a

+ so

wnd

iv^c

27.7

106

13.6

67-4

2.30

047

.361

0.00

Biot

urba

tion

Pe82

1a

+ so

wnd

iv^c

27.6

836

13.6

67-4

2.24

747

.415

0.00

Biot

urba

tion

M51

1a

* so

wnd

iv/(

b +

sow

ndiv

)27

.665

613

.667

-42.

211

47.4

510.

00

Biot

urba

tion

Pe93

1b

* so

wnd

iv^c

27.5

756

13.6

67-4

2.03

147

.631

0.00

Biot

urba

tion

Pe92

1b

* so

wnd

iv^c

27.4

616

13.6

67-4

1.80

347

.859

0.00

Biot

urba

tion

Pi28

1a

+ so

wnd

iv^c

28.6

057

11.7

14-4

1.69

647

.966

0.00

Biot

urba

tion

Pa4

b *

sow

ndiv

^c23

.999

327

.333

-41.

691

47.9

710.

00

Biot

urba

tion

Pb41

b *

sow

ndiv

^c23

.999

327

.333

-41.

691

47.9

710.

00

Biot

urba

tion

Pe73

1a

+ b

* so

wnd

iv27

.306

613

.667

-41.

493

48.1

690.

00

Biot

urba

tion

Ec21

21a

+ ex

p(c

* so

wnd

iv)

27.3

046

13.6

67-4

1.48

748

.174

0.00

Biot

urba

tion

Pa3

a +

sow

ndiv

^c23

.847

327

.333

-41.

386

48.2

760.

00

Biot

urba

tion

Pb31

a +

sow

ndiv

^c23

.847

327

.333

-41.

386

48.2

760.

00

Biot

urba

tion

Pi27

1a

+ b

* so

wnd

iv28

.428

711

.714

-41.

343

48.3

180.

00

Biot

urba

tion

M12

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)28

.340

711

.714

-41.

166

48.4

950.

00

Biot

urba

tion

Pe72

1a

+ b

* so

wnd

iv27

.103

613

.667

-41.

086

48.5

760.

00

Biot

urba

tion

LG2

SSlo

gis(

sow

ndiv

, Asy

m, x

mid

, sca

l)24

.773

420

.500

-41.

027

48.6

350.

00

Biot

urba

tion

Pq29

21b

* so

wnd

iv^c

29.3

568

10.2

50-4

0.73

948

.923

0.00

Biot

urba

tion

M72

2a

* so

wnd

iv/(

b +

sow

ndiv

)29

.351

810

.250

-40.

729

48.9

330.

00

Biot

urba

tion

M1a

SSm

icm

en(s

ownd

iv, V

m, k

)23

.445

327

.333

-40.

583

49.0

790.

00

Biot

urba

tion

M1

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.4

453

27.3

33-4

0.58

349

.079

0.00

Biot

urba

tion

AS2

SSas

ympO

ff(s

ownd

iv, A

sym

, lrc

, c0)

24.4

314

20.5

00-4

0.34

249

.319

0.00

Biot

urba

tion

AS1

SSas

ymp(

sow

ndiv

, Asy

m, R

0, lr

c)24

.431

420

.500

-40.

342

49.3

190.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 95

Page 96: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

LG1

SSfp

l(sow

ndiv

, A, B

, xm

id, s

cal)

25.5

605

16.4

00-4

0.33

049

.332

0.00

Biot

urba

tion

Pc42

1b

* so

wnd

iv^c

24.4

024

20.5

00-4

0.28

549

.376

0.00

Biot

urba

tion

M71

1a

* so

wnd

iv/(

b +

sow

ndiv

)29

.104

810

.250

-40.

235

49.4

270.

00

Biot

urba

tion

Pq27

31a

+ b

* so

wnd

iv29

.051

810

.250

-40.

128

49.5

330.

00

Biot

urba

tion

M2

d +

a *

sow

ndiv

/(b

+ so

wnd

iv)

24.2

774

20.5

00-4

0.03

549

.626

0.00

Biot

urba

tion

Pq28

31a

+ so

wnd

iv^c

28.9

948

10.2

50-4

0.01

649

.646

0.00

Biot

urba

tion

Pc32

1a

+ so

wnd

iv^c

24.2

054

20.5

00-3

9.89

049

.771

0.00

Biot

urba

tion

Pc43

1b

* so

wnd

iv^c

24.1

684

20.5

00-3

9.81

749

.844

0.00

Biot

urba

tion

Pd61

a +

b *

sow

ndiv

^c27

.661

711

.714

-39.

808

49.8

540.

00

Biot

urba

tion

Pc33

1a

+ so

wnd

iv^c

24.1

114

20.5

00-3

9.70

249

.960

0.00

Biot

urba

tion

Pb21

a +

b *

sow

ndiv

22.9

763

27.3

33-3

9.64

550

.017

0.00

Biot

urba

tion

Pa2

a +

b *

sow

ndiv

22.9

763

27.3

33-3

9.64

550

.017

0.00

Biot

urba

tion

AS3

SSas

ympO

rig(s

ownd

iv, A

sym

, lrc

)22

.956

327

.333

-39.

604

50.0

580.

00

Biot

urba

tion

Pa1

a +

b *

sow

ndiv

^c24

.000

420

.500

-39.

481

50.1

800.

00

Biot

urba

tion

Pb11

a +

b *

sow

ndiv

^c24

.000

420

.500

-39.

481

50.1

800.

00

Biot

urba

tion

Pq28

21a

+ so

wnd

iv^c

28.6

828

10.2

50-3

9.39

150

.271

0.00

Biot

urba

tion

M12

32d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)28

.620

810

.250

-39.

268

50.3

940.

00

Biot

urba

tion

M12

21d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)28

.493

810

.250

-39.

014

50.6

470.

00

Biot

urba

tion

Pq27

21a

+ b

* so

wnd

iv28

.478

810

.250

-38.

984

50.6

780.

00

Biot

urba

tion

Pc22

1a

+ b

* so

wnd

iv23

.599

420

.500

-38.

678

50.9

840.

00

Biot

urba

tion

M21

1d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)24

.642

516

.400

-38.

495

51.1

660.

00

Biot

urba

tion

E31

a +

exp(

c *

sow

ndiv

)23

.462

420

.500

-38.

404

51.2

570.

00

Biot

urba

tion

M22

2d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)24

.497

516

.400

-38.

205

51.4

560.

00

Biot

urba

tion

Pc12

1a

+ b

* so

wnd

iv^c

24.4

055

16.4

00-3

8.02

151

.640

0.00

Biot

urba

tion

Pc23

1a

+ b

* so

wnd

iv23

.004

420

.500

-37.

489

52.1

720.

00

Biot

urba

tion

Pf13

1a

+ so

wnd

iv^c

24.0

405

16.4

00-3

7.29

052

.372

0.00

Biot

urba

tion

E32

a +

exp(

c *

sow

ndiv

)22

.878

420

.500

-37.

236

52.4

260.

00

Biot

urba

tion

Pf14

1b

* so

wnd

iv^c

24.0

095

16.4

00-3

7.22

852

.434

0.00

Biot

urba

tion

M4

a *

sow

ndiv

/(b

+ so

wnd

iv)

23.6

485

16.4

00-3

6.50

653

.156

0.00

Biot

urba

tion

Pf12

1a

+ b

* so

wnd

iv23

.611

516

.400

-36.

433

53.2

280.

00

Biot

urba

tion

Pm13

21a

+ so

wnd

iv^c

24.5

526

13.6

67-3

5.98

353

.678

0.00

Biot

urba

tion

E2a

+ b

* ex

p(so

wnd

iv)

21.0

863

27.3

33-3

5.86

553

.797

0.00

Biot

urba

tion

Pm14

21b

* so

wnd

iv^c

24.4

116

13.6

67-3

5.70

253

.959

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 96

Page 97: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

Pm13

31a

+ so

wnd

iv^c

24.2

206

13.6

67-3

5.31

954

.343

0.00

Biot

urba

tion

Pm14

31b

* so

wnd

iv^c

24.2

186

13.6

67-3

5.31

654

.345

0.00

Biot

urba

tion

M14

32d

+ a

* so

wnd

iv/(

b +

sow

ndiv

)30

.418

117.

455

-35.

064

54.5

980.

00

Biot

urba

tion

Pm12

21a

+ b

* so

wnd

iv23

.977

613

.667

-34.

834

54.8

280.

00

Biot

urba

tion

Eb15

11a

+ ex

p(c

* so

wnd

iv)

23.9

416

13.6

67-3

4.76

254

.899

0.00

Biot

urba

tion

M42

2a

* so

wnd

iv/(

b +

sow

ndiv

)23

.871

613

.667

-34.

621

55.0

400.

00

Biot

urba

tion

Pm12

31a

+ b

* so

wnd

iv23

.791

613

.667

-34.

462

55.1

990.

00

Biot

urba

tion

Eb15

21a

+ ex

p(c

* so

wnd

iv)

23.7

826

13.6

67-3

4.44

455

.217

0.00

Biot

urba

tion

E22

a +

b *

exp(

sow

ndiv

)21

.156

420

.500

-33.

793

55.8

690.

00

Biot

urba

tion

Ef42

11ex

p(c

* so

wnd

iv)

21.1

575

16.4

00-3

1.52

458

.137

0.00

Biot

urba

tion

Ef42

21ex

p(c

* so

wnd

iv)

16.3

345

16.4

00-2

1.87

967

.782

0.00

Biot

urba

tion

Ea12

1ex

p(c

* so

wnd

iv)

13.9

144

20.5

00-1

9.30

870

.354

0.00

Biot

urba

tion

Ed30

21ex

p(c

* so

wnd

iv)

15.0

045

16.4

00-1

9.21

970

.443

0.00

Biot

urba

tion

Ec24

11ex

p(c

* so

wnd

iv)

13.1

394

20.5

00-1

7.75

971

.902

0.00

Biot

urba

tion

Ec24

21ex

p(c

* so

wnd

iv)

11.0

484

20.5

00-1

3.57

676

.085

0.00

Biot

urba

tion

Ec24

exp(

c *

sow

ndiv

)7.

669

327

.333

-9.0

3080

.632

0.00

Biot

urba

tion

Ea12

21ex

p(c

* so

wnd

iv)

8.35

54

20.5

00-8

.190

81.4

720.

00

Biot

urba

tion

E61

exp(

c *

sow

ndiv

)6.

736

327

.333

-7.1

6582

.497

0.00

Biot

urba

tion

Eb18

11ex

p(c

* so

wnd

iv)

7.51

34

20.5

00-6

.507

83.1

550.

00

Biot

urba

tion

Ea12

exp(

c *

sow

ndiv

)4.

914

327

.333

-3.5

2186

.141

0.00

Biot

urba

tion

E51

b *

exp(

sow

ndiv

)4.

582

327

.333

-2.8

5786

.805

0.00

Biot

urba

tion

E62

exp(

c *

sow

ndiv

)4.

096

327

.333

-1.8

8587

.777

0.00

Biot

urba

tion

E5b

* ex

p(so

wnd

iv)

2.77

72

41.0

00-1

.401

88.2

600.

00

Biot

urba

tion

Eb18

21ex

p(c

* so

wnd

iv)

4.54

54

20.5

00-0

.571

89.0

910.

00

Biot

urba

tion

E52

b *

exp(

sow

ndiv

)2.

818

327

.333

0.67

190

.332

0.00

Biot

urba

tion

Eb18

exp(

c *

sow

ndiv

)2.

171

327

.333

1.96

591

.627

0.00

Biot

urba

tion

Pp25

21so

wnd

iv^c

-24.

896

516

.400

60.5

8115

0.24

30.

00

Biot

urba

tion

Ps40

21so

wnd

iv^c

-24.

707

613

.667

62.5

3415

2.19

60.

00

Biot

urba

tion

Pr35

21so

wnd

iv^c

-26.

207

516

.400

63.2

0415

2.86

60.

00

Biot

urba

tion

Pq30

21so

wnd

iv^c

-26.

584

516

.400

63.9

5715

3.61

90.

00

Biot

urba

tion

Pe10

21so

wnd

iv^c

-28.

744

420

.500

66.0

0715

5.66

90.

00

Biot

urba

tion

Pn20

21so

wnd

iv^c

-29.

447

420

.500

67.4

1415

7.07

50.

00

Biot

urba

tion

Pm15

21so

wnd

iv^c

-37.

625

420

.500

83.7

7017

3.43

10.

00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 97

Page 98: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

Pe10

31so

wnd

iv^c

-38.

048

420

.500

84.6

1617

4.27

70.

00

Biot

urba

tion

Pp25

31so

wnd

iv^c

-37.

204

516

.400

85.1

9817

4.86

00.

00

Biot

urba

tion

Pq30

31so

wnd

iv^c

-37.

236

516

.400

85.2

6117

4.92

20.

00

Biot

urba

tion

Pr35

31so

wnd

iv^c

-37.

381

516

.400

85.5

5117

5.21

20.

00

Biot

urba

tion

Pc52

1so

wnd

iv^c

-40.

052

327

.333

86.4

1217

6.07

40.

00

Biot

urba

tion

Ps40

31so

wnd

iv^c

-37.

205

613

.667

87.5

2917

7.19

10.

00

Biot

urba

tion

Pn20

31so

wnd

iv^c

-43.

222

420

.500

94.9

6318

4.62

50.

00

Biot

urba

tion

Pc53

1so

wnd

iv^c

-49.

415

327

.333

105.

137

194.

798

0.00

Biot

urba

tion

Pd10

1so

wnd

iv^c

-50.

173

327

.333

106.

654

196.

315

0.00

Biot

urba

tion

Pm15

31so

wnd

iv^c

-49.

112

420

.500

106.

743

196.

405

0.00

Biot

urba

tion

Pj35

1so

wnd

iv^c

-49.

668

420

.500

107.

855

197.

516

0.00

Biot

urba

tion

Ph25

1so

wnd

iv^c

-50.

103

420

.500

108.

726

198.

388

0.00

Biot

urba

tion

Pi30

1so

wnd

iv^c

-50.

165

420

.500

108.

850

198.

512

0.00

Biot

urba

tion

Pb51

sow

ndiv

^c-5

2.56

32

41.0

0010

9.27

819

8.93

90.

00

Biot

urba

tion

Pa5

sow

ndiv

^c-5

2.56

32

41.0

0010

9.27

819

8.93

90.

00

Biot

urba

tion

Pk40

1so

wnd

iv^c

-49.

652

516

.400

110.

093

199.

755

0.00

Biot

urba

tion

Pg20

1so

wnd

iv^c

-52.

124

327

.333

110.

555

200.

217

0.00

Biot

urba

tion

Pf15

1so

wnd

iv^c

-52.

405

327

.333

111.

117

200.

778

0.00

Biot

urba

tion

Ec22

21a

+ ex

p(so

wnd

iv)

-794

.448

420

.500

1597

.415

1687

.077

0.00

Biot

urba

tion

Ed28

21a

+ ex

p(so

wnd

iv)

-794

.410

516

.400

1599

.609

1689

.271

0.00

Biot

urba

tion

Ee34

2a

+ ex

p(so

wnd

iv)

-794

.442

516

.400

1599

.673

1689

.335

0.00

Biot

urba

tion

Eg46

21a

+ ex

p(so

wnd

iv)

-794

.410

613

.667

1601

.939

1691

.601

0.00

Biot

urba

tion

E42

a +

exp(

sow

ndiv

)-8

01.2

423

27.3

3316

08.7

9116

98.4

530.

00

Biot

urba

tion

Eb16

21a

+ ex

p(so

wnd

iv)

-801

.072

420

.500

1610

.663

1700

.325

0.00

Biot

urba

tion

Ea10

21a

+ ex

p(so

wnd

iv)

-801

.210

420

.500

1610

.940

1700

.602

0.00

Biot

urba

tion

Ef40

21a

+ ex

p(so

wnd

iv)

-800

.951

516

.400

1612

.692

1702

.353

0.00

Biot

urba

tion

Ea10

11a

+ ex

p(so

wnd

iv)

-172

6.31

34

20.5

0034

61.1

4535

50.8

060.

00

Biot

urba

tion

Ef40

11a

+ ex

p(so

wnd

iv)

-172

6.12

75

16.4

0034

63.0

4335

52.7

040.

00

Biot

urba

tion

Ed28

11a

+ ex

p(so

wnd

iv)

-172

6.31

35

16.4

0034

63.4

1535

53.0

760.

00

Biot

urba

tion

Eg46

11a

+ ex

p(so

wnd

iv)

-172

6.12

76

13.6

6734

65.3

7335

55.0

350.

00

Biot

urba

tion

Eb16

11a

+ ex

p(so

wnd

iv)

-174

4.12

74

20.5

0034

96.7

7335

86.4

340.

00

Biot

urba

tion

Ee34

1a

+ ex

p(so

wnd

iv)

-174

4.12

75

16.4

0034

99.0

4335

88.7

040.

00

Biot

urba

tion

E41

a +

exp(

sow

ndiv

)-1

746.

568

327

.333

3499

.445

3589

.106

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 98

Page 99: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Long

var

iabl

e na

me

mod

el n

ame

mod

el fo

rmul

aLL

KN

2KA

ICc

delt

AIC

cw

_ic

Biot

urba

tion

Ec22

11a

+ ex

p(so

wnd

iv)

-174

6.56

84

20.5

0035

01.6

5635

91.3

180.

00

Biot

urba

tion

Ef37

21a

+ b

* ex

p(c

* so

wnd

iv)

-269

0.07

811

7.45

554

05.9

2754

95.5

880.

00

Biot

urba

tion

E4a

+ ex

p(so

wnd

iv)

-491

2.51

62

41.0

0098

29.1

8399

18.8

450.

00

Biot

urba

tion

Ea10

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9921

.000

0.00

Biot

urba

tion

Eb16

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9921

.000

0.00

Biot

urba

tion

Ec22

a +

exp(

sow

ndiv

)-4

912.

516

327

.333

9831

.339

9921

.000

0.00

Biot

urba

tion

Ed28

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9923

.212

0.00

Biot

urba

tion

Ee40

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9923

.212

0.00

Biot

urba

tion

Ef40

a +

exp(

sow

ndiv

)-4

912.

516

420

.500

9833

.551

9923

.212

0.00

Biot

urba

tion

Eg46

a +

exp(

sow

ndiv

)-4

912.

516

516

.400

9835

.821

9925

.482

0.00

Ant a

ctiv

ityL2

sow

ndiv

+ fu

ncgr

+ le

g13

.401

516

.200

-16.

001

0.00

00.

96

Ant a

ctiv

ityPa

2a

+ b

* so

wnd

iv6.

621

327

.000

-6.9

299.

072

0.01

Ant a

ctiv

ityPa

3a

+ so

wnd

iv^c

6.04

73

27.0

00-5

.783

10.2

180.

01

Ant a

ctiv

ityE2

a +

b *

exp(

sow

ndiv

)5.

979

327

.000

-5.6

4510

.356

0.01

Ant a

ctiv

ityPa

4b

* so

wnd

iv^c

5.93

93

27.0

00-5

.567

10.4

340.

01

Ant a

ctiv

ityA

S1SS

asym

p(so

wnd

iv, A

sym

, R0,

lrc)

6.70

14

20.2

50-4

.876

11.1

250.

00

Ant a

ctiv

ityPa

1a

+ b

* so

wnd

iv^c

6.68

94

20.2

50-4

.852

11.1

490.

00

Ant a

ctiv

ityL0

bloc

k +

(sow

ndiv

+ fu

ncgr

+ g

rass

+ le

g)^2

20.4

4315

5.40

0-3

.502

12.4

990.

00

Ant a

ctiv

ityM

1aSS

mic

men

(sow

ndiv

, Vm

, k)

4.84

23

27.0

00-3

.371

12.6

300.

00

Ant a

ctiv

ityM

1a

* so

wnd

iv/(

b +

sow

ndiv

)4.

842

327

.000

-3.3

7112

.630

0.00

Ant a

ctiv

ityBI

EXP

SSbi

exp(

sow

ndiv

, A1,

lrc1

, A2,

lrc2

)6.

702

516

.200

-2.6

0513

.396

0.00

Ant a

ctiv

ityPa

5so

wnd

iv^c

-36.

660

240

.500

77.4

7393

.474

0.00

Ant a

ctiv

ityE5

b *

exp(

sow

ndiv

)-4

0.90

72

40.5

0085

.967

101.

968

0.00

Ant a

ctiv

ityE4

a +

exp(

sow

ndiv

)-4

853.

104

240

.500

9710

.361

9726

.362

0.00

Supplementary Table 2 (continued)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 99

Page 100: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Table 3 | Parameter estimates of minimal adequate 1-, 2- and 3-parameter power models (in a separate file)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 100

Page 101: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Response Compartment Measure Estimate SE

Herbivorous invertebrates aboveground abundance 0.35 0.05

Carnivorous invertebrates aboveground abundance 0.18 0.06

Omnivorous invertebrates aboveground abundance 0.12 0.07

Hyperparasitoids aboveground abundance -0.06 0.17

Parasitoids aboveground abundance 0.34 0.09

Plant invaders aboveground abundance -0.29 0.09

Pollinators aboveground abundance 0.06 0.08

Voles aboveground abundance 0.18 0.17

Herbivorous invertebrates aboveground diversity 0.39 0.04

Carnivorous invertebrates aboveground diversity 0.21 0.04

Omnivorous invertebrates aboveground diversity 0.07 0.05

Parasitoids aboveground diversity 0.21 0.04

Plant invaders aboveground diversity -0.37 0.07

Pollinators aboveground diversity 0.22 0.05

Plant-pathogenic fungi aboveground diversity 0.20 0.03

Bacterivorous Nematodes belowground abundance 0.08 0.09

Fungivorous Nematodes belowground abundance -0.05 0.10

Omnivorous Nematodes belowground abundance 0.02 0.09

Plant-feeding Nematodes belowground abundance 0.06 0.07

Predatory Nematodes belowground abundance 0.92 0.21

Collembolans belowground abundance 0.11 0.06

Earthworms belowground abundance 0.07 0.08

Gamasida belowground abundance 0.28 0.12

Herbivorous macrofauna belowground abundance 0.19 0.08

Predatory macrofauna belowground abundance 0.09 0.10

Saprophagous macrofauna belowground abundance 0.18 0.08

Mites belowground abundance -0.01 0.09

Bacterivorous Nematodes belowground diversity 0.11 0.06

Fungivorous Nematodes belowground diversity 0.02 0.05

Omnivorous Nematodes belowground diversity 0.03 0.08

Plant-feeding Nematodes belowground diversity 0.12 0.05

Predatory Nematodes belowground diversity 0.16 0.15

Collembolans belowground diversity 0.10 0.04

Earthworms belowground diversity 0.01 0.04

Herbivorous macrofauna belowground diversity 0.18 0.05

Predatory macrofauna belowground diversity 0.04 0.05

Saprophagous macrofauna belowground diversity 0.14 0.05

Mycorrhiza belowground diversity 0.08 0.04

Supplementary Table 4 | Parameter estimates of common two-parameter power models. Shown are the estimates of the exponent, z, in models of the form y=b×Sz, where b is an estimated constant and S is the plant species richness of the community. Response, response variable; Compartment, above- or belowground. Measure, abundance or species richness ("diversity"). SE, the standard error of each estimate. Response variables are scaled to [0;1], plant species richness ranges from 1-60 plant species. For example, collembolan abundance

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 101

Page 102: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

IDRe

spon

se v

aria

ble

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

1H

erbi

vore

s-0

.90

-0.8

0-0

.70

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

2Ca

rniv

ores

0.10

-0.8

0-0

.70

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

3O

mni

vore

s0.

100.

20-0

.70

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

4Pa

rasi

toid

s0.

100.

200.

30-0

.60

-0.5

0-0

.40

-0.3

0-0

.20

-0.1

0

5Po

llina

tors

0.10

0.20

0.30

0.40

-0.5

0-0

.40

-0.3

0-0

.20

-0.1

0

6Vo

les

0.10

0.20

0.30

0.40

0.50

-0.4

0-0

.30

-0.2

0-0

.10

7Pl

ant i

nvad

ers

0.10

0.20

0.30

0.40

0.50

0.60

-0.3

0-0

.20

-0.1

0

8H

erbi

voro

us m

acro

faun

a0.

100.

200.

300.

400.

500.

600.

70-0

.20

-0.1

0

9Pr

edat

ory

mac

rofa

una

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

-0.1

0

10Sa

prop

hago

us m

acro

faun

a0.

100.

200.

300.

400.

500.

600.

700.

800.

90

F-Va

lue

23.7

419

.61

16.2

224

.45

15.0

99.

980.

031.

520.

13

P-Va

lue

<0.0

1<0

.01

<0.0

1<0

.01

<0.0

1<0

.01

0.85

0.22

0.73

Supplementary Table 5a | Multivariate comparisons of organism abundances. Columns are (from left to right): ID, variable number; Response variables (herbivore abundance etc.); "1-2" the successive difference contrast between variables 1 and 2 (her-bivores vs. carnivores); "2-3" etc. accordingly. Table entries in rows 1-10 are contrast coef-ficients for successive difference contrasts. The two bottom rows contain the relevant infor-mation, namely the F and P values for the hypotheses tested. For example, herbivores and carnivore abundance (1 vs. 2) differ significantly at P<0.01.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 102

Page 103: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

IDRe

spon

se v

aria

ble

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

1H

erbi

vore

s-0

.89

-0.7

8-0

.67

-0.5

6-0

.44

-0.3

3-0

.22

-0.1

1

2Ca

rniv

ores

0.11

-0.7

8-0

.67

-0.5

6-0

.44

-0.3

3-0

.22

-0.1

1

3O

mni

vore

s0.

110.

22-0

.67

-0.5

6-0

.44

-0.3

3-0

.22

-0.1

1

4Pa

rasi

toid

s0.

110.

220.

33-0

.56

-0.4

4-0

.33

-0.2

2-0

.11

5Po

llina

tors

0.11

0.22

0.33

0.44

-0.4

4-0

.33

-0.2

2-0

.11

6In

vade

rs0.

110.

220.

330.

440.

56-0

.33

-0.2

2-0

.11

7H

erbi

voro

us m

acro

faun

a0.

110.

220.

330.

440.

560.

67-0

.22

-0.1

1

8Pr

edat

ory

mac

rofa

una

0.11

0.22

0.33

0.44

0.56

0.67

0.78

-0.1

1

9Sa

prop

hago

us m

acro

faun

a0.

110.

220.

330.

440.

560.

670.

780.

89

F-Va

lue

44.8

933

.69

14.1

518

.17

18.0

90.

050.

430.

64

P-Va

lue

<0.0

1<0

.01

<0.0

1<0

.01

<0.0

10.

830.

520.

43

Supplementary Table 5b | Multivariate comparisons of organism species richness. Columns are (from left to right): ID, variable number; Response variables (herbivore spe-cies richness etc.); "1-2" the successive difference contrast between variables 1 and 2 (herbivores vs. carnivores); "2-3" etc. accordingly. Table entries in rows 1-9 are contrast coefficients for successive difference contrasts. The two bottom rows contain the relevant information, namely the F and P values for the hypotheses tested. For example, herbivores and carnivore diversity (1 vs. 2) differ significantly at P<0.01.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 103

Page 104: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

IDRe

spon

se v

aria

ble

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

1H

erbi

vory

-0.9

0-0

.80

-0.7

0-0

.60

-0.5

0-0

.40

-0.3

0-0

.20

-0.1

0

2Pa

rasi

tism

0.10

-0.8

0-0

.70

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

3Fl

ower

vis

itatio

n0.

100.

20-0

.70

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

4D

ecom

posi

tion

0.10

0.20

0.30

-0.6

0-0

.50

-0.4

0-0

.30

-0.2

0-0

.10

5Se

ed p

reda

tion

0.10

0.20

0.30

0.40

-0.5

0-0

.40

-0.3

0-0

.20

-0.1

0

6M

icro

bial

resp

iratio

n0.

100.

200.

300.

400.

50-0

.40

-0.3

0-0

.20

-0.1

0

7Pa

thog

en d

amag

e0.

100.

200.

300.

400.

500.

60-0

.30

-0.2

0-0

.10

8In

vasi

on0.

100.

200.

300.

400.

500.

600.

70-0

.20

-0.1

0

9Bi

otur

batio

n0.

100.

200.

300.

400.

500.

600.

700.

80-0

.10

10A

nt a

ctivi

ty0.

100.

200.

300.

400.

500.

600.

700.

800.

90

F-Va

lue

3.69

1.27

9.13

6.22

10.4

87.

5713

.94

4.73

0.39

P-Va

lue

0.06

0.27

<0.0

10.

02<0

.01

0.01

<0.0

10.

040.

54

Supplementary Table 5c | Multivariate comparisons of organism interactions. Col-umns are (from left to right): ID, variable number; Response variables (herbivory, parasit-ism, etc.); "1-2" the successive difference contrast between variables 1 and 2 (herbivory vs. parasitism); "2-3" etc. accordingly. Table entries in rows 1-10 are contrast coefficients for successive difference contrasts. The two bottom rows contain the relevant information, namely the F and P values for the hypotheses tested. For example, herbivory and parasit-ism (1 vs. 2) are not significantly different from one another.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 104

Page 105: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

IDLa

bel

12

34

56

78

910

1lo

g (P

lant

spe

cies

ric

hnes

s)2.

34

2A

bove

grou

nd p

lant

bio

mas

s (g

/m²)

0.15

0.03

3A

bove

grou

nd d

ead

plan

t bio

mas

s (g

/m²)

0.18

0.02

0.05

4A

bove

grou

nd h

erbi

vore

abu

ndan

ce0.

210.

020.

030.

05

5Sa

prop

hago

us m

acro

faun

a ab

unda

nce

0.06

0.01

0.01

0.01

0.04

6H

erbi

voro

us m

acro

faun

a ab

unda

nce

0.15

0.02

0.02

0.02

0.02

0.05

7A

bove

grou

nd c

arni

vore

abu

ndan

ce0.

160.

020.

020.

030.

010.

020.

05

8Pr

edat

ory

mac

rofa

una

abun

danc

e0.

050.

010.

010.

020.

020.

020.

010.

04

9A

bove

grou

nd o

mni

vore

abu

ndan

ce0.

080.

010.

020.

010.

010.

010.

020.

000.

06

10A

bove

grou

nd p

aras

itoid

abu

ndan

ce0.

200.

020.

020.

040.

010.

020.

040.

010.

030.

08

Supplementary Table 6 | Sample covariance matrix used for the structural equation model presented in Fig. 3.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 105

Page 106: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

IDLa

bel

12

34

56

78

910

1lo

g (P

lant

spe

cies

ric

hnes

s)1.

00

2A

bove

grou

nd p

lant

bio

mas

s (g

/m²)

0.57

1.00

3A

bove

grou

nd d

ead

plan

t bio

mas

s (g

/m²)

0.56

0.48

1.00

4A

bove

grou

nd h

erbi

vore

abu

ndan

ce0.

650.

540.

601.

00

5Sa

prop

hago

us m

acro

faun

a ab

unda

nce

0.20

0.26

0.21

0.36

1.00

6H

erbi

voro

us m

acro

faun

a ab

unda

nce

0.42

0.40

0.37

0.50

0.43

1.00

7A

bove

grou

nd c

arni

vore

abu

ndan

ce0.

470.

390.

340.

610.

300.

351.

00

8Pr

edat

ory

mac

rofa

una

abun

danc

e0.

180.

300.

130.

410.

510.

530.

321.

00

9A

bove

grou

nd o

mni

vore

abu

ndan

ce0.

230.

330.

290.

180.

200.

130.

400.

071.

00

10A

bove

grou

nd p

aras

itoid

abu

ndan

ce0.

460.

500.

310.

590.

260.

320.

590.

150.

481.

00

Supplementary Table 7 | Sample correlation matrix used for the structural equation model presented in Fig. 3.

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 106

Page 107: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Estimate

S.E.

C.R.

P

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

060.

014.

817

<0.0

01

Abo

vegr

ound

her

bivo

re a

bund

ance

<---

log

(Pla

nt s

peci

es r

ichn

ess)

0.07

0.02

4.17

8<0

.001

Abo

vegr

ound

her

bivo

re a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

270.

161.

749

0.08

Abo

vegr

ound

dea

d pl

ant b

iom

ass

(g/m

²)<-

--A

bove

grou

nd p

lant

bio

mas

s (g

/m²)

0.30

0.18

1.69

60.

09

Abo

vegr

ound

dea

d pl

ant b

iom

ass

(g/m

²)<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

060.

023.

055

0.00

2

Abo

vegr

ound

car

nivo

re a

bund

ance

<---

Abo

vegr

ound

her

bivo

re a

bund

ance

0.61

0.14

4.25

7<0

.001

Her

bivo

rous

mac

rofa

una

abun

danc

e<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

060.

023.

172

0.00

2

Sapr

opha

gous

mac

rofa

una

abun

danc

e<-

--A

bove

grou

nd d

ead

plan

t bio

mas

s (g

/m²)

0.15

0.12

1.25

40.

21

Abo

vegr

ound

car

nivo

re a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

110.

180.

640.

522

Abo

vegr

ound

par

asito

id a

bund

ance

<---

Abo

vegr

ound

her

bivo

re a

bund

ance

0.70

0.17

4.18

5<0

.001

Abo

vegr

ound

om

nivo

re a

bund

ance

<---

Abo

vegr

ound

car

nivo

re a

bund

ance

0.42

0.14

3.01

70.

003

Pred

ator

y m

acro

faun

a ab

unda

nce

<---

Her

bivo

rous

mac

rofa

una

abun

danc

e0.

310.

103.

051

0.00

2

Pred

ator

y m

acro

faun

a ab

unda

nce

<---

Sapr

opha

gous

mac

rofa

una

abun

danc

e0.

350.

122.

920.

003

Abo

vegr

ound

par

asito

id a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

270.

211.

336

0.18

2

Supplementary Table 8 | Unstandardized parameter estimates of the structural equation model presented in Fig. 3. S.E., standard error; C.R. critical ratio (estimate di-vided by S.E.)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 107

Page 108: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Estimate

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

567

Abo

vegr

ound

her

bivo

re a

bund

ance

<---

log

(Pla

nt s

peci

es r

ichn

ess)

0.52

9

Abo

vegr

ound

her

bivo

re a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

218

Abo

vegr

ound

dea

d pl

ant b

iom

ass

(g/m

²)<-

--A

bove

grou

nd p

lant

bio

mas

s (g

/m²)

0.23

7

Abo

vegr

ound

dea

d pl

ant b

iom

ass

(g/m

²)<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

426

Abo

vegr

ound

car

nivo

re a

bund

ance

<---

Abo

vegr

ound

her

bivo

re a

bund

ance

0.56

3

Her

bivo

rous

mac

rofa

una

abun

danc

e<-

--lo

g (P

lant

spe

cies

ric

hnes

s)0.

4

Sapr

opha

gous

mac

rofa

una

abun

danc

e<-

--A

bove

grou

nd d

ead

plan

t bio

mas

s (g

/m²)

0.17

Abo

vegr

ound

car

nivo

re a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

085

Abo

vegr

ound

par

asito

id a

bund

ance

<---

Abo

vegr

ound

her

bivo

re a

bund

ance

0.52

1

Abo

vegr

ound

om

nivo

re a

bund

ance

<---

Abo

vegr

ound

car

nivo

re a

bund

ance

0.39

6

Pred

ator

y m

acro

faun

a ab

unda

nce

<---

Her

bivo

rous

mac

rofa

una

abun

danc

e0.

372

Pred

ator

y m

acro

faun

a ab

unda

nce

<---

Sapr

opha

gous

mac

rofa

una

abun

danc

e0.

356

Abo

vegr

ound

par

asito

id a

bund

ance

<---

Abo

vegr

ound

pla

nt b

iom

ass

(g/m

²)0.

164

Supplementary Table 9 | Standardized parameter estimates of the structural equa-tion model presented in Fig. 3

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 108

Page 109: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Estimate S.E. C.R. P

Aboveground plant biomass (g/m²) 0.62 0.04 15.38 <0.001

Aboveground herbivore abundance 0.13 0.11 1.19 0.233

Aboveground dead plant biomass (g/m²) 0.05 0.12 0.38 0.707

Aboveground carnivore abundance 0.05 0.12 0.38 0.705

Herbivorous macrofauna abundance 0.37 0.06 6.55 <0.001

Saprophagous macrofauna abundance 0.46 0.06 7.95 <0.001

Aboveground omnivore abundance 0.29 0.07 4.08 <0.001

Aboveground parasitoid abundance -0.11 0.14 -0.74 0.457

Predatory macrofauna abundance 0.20 0.07 2.78 0.005

Supplementary Table 10 | Intercepts for variables in the structural equation model presented in Fig. 3. S.E., standard error; C.R. critical ratio (estimate divided by S.E.)

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 109

Page 110: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Supplementary Notes

30 Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1-21 (1963).

31 Thielemann, U. The Octet-method for sampling earthworm populations. Pedobiologia 29, 296-302 (1986).

32 O'Connor, F. B. in Progress in Soil Biology (ed P. W. Murphy) 286-293 (Butterworths, 1962).

33 Darbyshire, J. F., Wheatley, R., Greaves, M. & Inkson, R. A rapid micromethod for estimat-ing bacterial and Protozoan populations in soil. Revue d'Ecologie et Biologie du Sol 11, 465-475. (1974).

34 Page, F. An Illustrated Key to Freshwater and Soil Amoebae. (Freshwater Biological Asso-ciation, 1976).

35 Hurley, M. & Roscoe, M. Automated statistical analysis of microbial enumeration by dilu-tion series. Journal of Applied Bacteriology 55, 159-164 (1983).

36 Scheu, S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biology and Biochemistry 24, 1113-1118 (1992).

37 Anderson, J. P. E. & Domsch, K. H. Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biology and Biochemistry 10, 207-213 (1978).

38 Renker, C., Heinrichs, J., Kaldorf, M. & Buscot, F. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13, 191-198 (2003).

39 Zarei, M. et al. Community structure of arbuscular mycorrhizal fungi associated to Veronica echingeri at the Anguran zinc and lead mining region. Environ. Pollut. 156, 1277-1283 (2008).

40 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389-3402. (1997).

41 Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16, 10881-10890 (1988).

42 Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120 (1980).

43 Saitou, N., Nei, M. The neighbor-joining method: A new method for reconstructing phyloge-netic trees. Molecular Biology and Evolution 4, 406-425 (1987).

44 Swofford, D. L. Paup*. Phylogenetic analysis using Parsimony (* and other methods). ver 4.0b8. (Sinauer Associates, 2000).

45 Börstler, B., Renker, C., Kahmen, A. & Buscot, F. Species composition of arbuscular mycor-rhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fert Soils 42, 286-298. (2006).

46 Wubet, T., Weiß, M., Kottke, I., Teketay, D. & Oberwinkler, F. Molecular diversity of ar-buscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytologist 161, 517-528 (2003).

47 Oliveira, M. R. G. et al. in Root Methods – A Handbook (ed A. L. Smit) 175–210 (Spring-er, 2000).

48 R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org.49 Legendre, P. & Legendre, L. Numerical ecology. (Elsevier Science BV, 1998).50 McCullagh, P. & Nelder, J. A. Generalized linear models. 2 edn, (Chapman and Hall, 1989).51 Scherber, C., Milcu, A., Partsch, S., Scheu, S. & Weisser, W. W. The Effects of Plant Di-

versity and Insect Herbivory on Performance of Individual Plant Species in Experimental

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 110

Page 111: SUPPLEMENTARY INFORMATION - Christoph Scherber Files... · Supplementary Figures and Legends y Parasitism er visitation Decomposition Microbial respiration athogen damage ... Pred

Grassland. Journal of Ecology 94, 922-931 (2006).52 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Interference. A Practi-

cal Information-Theoretic Approach. (Springer Science & Business Media, 2002).53 Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).54 Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists.

(Cambridge University Press, 2002).55 Bollen, K. A. Structural Equations with Latent Variables. (John Wiley and Sons, 1989).56 Shipley, B. Cause and Correlation in Biology. (Cambridge University Press, 2000).57 Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84,

2809-2815 (2003).58 Arbuckle, J. L. AMOS 16.0 User´s Guide. (Amos Development Corporation, 2007).59 Hayashi, K., Bentler, P. M. & Yuan, K.-h. Structural Equation Modeling. Structural Equa-

tion Modeling 27, 395-428 (2008).

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09492

WWW NATURE.COM/NATURE | 111