supplementary materials for -...

101
www.sciencemag.org/content/341/6149/1230444/suppl/DC1 Supplementary Materials for The Chemistry and Applications of Metal-Organic Frameworks Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi* *Corresponding author. E-mail: [email protected] Published 30 August 2013, Science 341, 1230444 (2013) DOI: 10.1126/science.1230444 This PDF file includes: Materials and Methods Figs. S1 to S8 Tables S1 to S5 References (135363) Related web sites Other supplementary material for this manuscript includes the following: CSD reference codes for MOFs

Upload: vantram

Post on 18-Mar-2018

251 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

www.sciencemag.org/content/341/6149/1230444/suppl/DC1

Supplementary Materials for

The Chemistry and Applications of Metal-Organic Frameworks

Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi*

*Corresponding author. E-mail: [email protected]

Published 30 August 2013, Science 341, 1230444 (2013)

DOI: 10.1126/science.1230444

This PDF file includes:

Materials and Methods

Figs. S1 to S8

Tables S1 to S5

References (135–363)

Related web sites

Other supplementary material for this manuscript includes the following:

CSD reference codes for MOFs

Page 2: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 3: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 4: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 5: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 6: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S1. The great number and diversity of inorganic SBUs (A) and organic linkers (B) used to

create metal-organic frameworks referred to in the text by abbreviations. C, black; O, red; N,

green; S, yellow; P, purple, Cl, light green; metal ions, blue polyhedra. Hydrogen atoms are

omitted for clarity.

Page 7: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Table S1: Structure of inorganic and organic SBUs used to form MOFs.

Zn4O(BDC)3

MOF-5, IRMOF-1

Zn4O(BDC-NH2)3

IRMOF-3

Zn4O(fumarate)3

Zn4O(TPDC)3

IRMOF-16

Zn4O(BTB)2

MOF-177

Zn4O(BTE)2

MOF-180

Zn4O(BBC)2

MOF-200

(Zn4O)3(BTE)4(BPDC)3

MOF-210

Page 8: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

(Zn4O)3(BTB)4(BDC-NH2)3

UMCM-1-NH2

Zn4O(BPP34C10DA)3

MOF-1001

Zn4O[(BDC)0.72(BDC-NH2)0.10(BDC-Br)0.39(BDC-NO2)0.20(BDC-(Me)2)0.47-

(NDC)0.39(BATA)0.34(BPEBDC)0.39]

MTV-MOF-5

Cu3(BTC)2

HKUST-1, MOF-199

Cu3(TATB)2

PCN-6′

Page 9: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Cu3(TATAB)2

Meso-MOF-1

Cu3(TTCA)2

PCN-20

Cu3(HTB)2

PCN-HTB′

Cu3(BBC)2

MOF-399

Zn3(TPBTM)

Cu3(BTPI)

NOTT-112

Page 10: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Cu3(PTEI)

NOTT-116, PCN-68

Cu3(BTEI)

PCN-61

Cu3(NTEI)

PCN-66

Cu3(BTTI)

PCN-69, NOTT-119

Cu3(TTEI)

PCN-610, NU-100

Cu3(TPBTM)

Page 11: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Cu3(TDPAT)

Cu3(BTETCA)

NU-108

Cu3(BNETPI)

NU-109

Cu3(BHEHPI)

NU-110

Cu3(BHEI)

NU-111

M3(BTC)2

M = Zn, Fe, Mo, Cr, and Ru

Page 12: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Cu2(ATC)

MOF-11

Cu2(ADIP)

PCN-14

Zn2(DOT)

MOF-74

M2(DOT)

M = Co, Ni, Mn,

Fe, and Cu

Mg2(DOT)

IRMOF-74-I

Mg2(DH2PhDC)

IRMOF-74-II

Mg2(DH3PhDC)

IRMOF-74-III

Mg2(DH4PhDC)

IRMOF-74-IV

Page 13: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Mg2(DH5PhDC)

IRMOF-74-V

Zn2(DH6PhDC)

IRMOF-74-VI

Mg2(DH7PhDC)

IRMOF-74-VII

Mg2(DH7PhDC-oeg)

IRMOF-74-VII-oeg

Page 14: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Mg2(DH9PhDC)

IRMOF-74-IX

Mg2(DH11PhDC)

IRMOF-74-XI

Zn(MIm)2

ZIF-8

Zr6O4(OH)4(BDC)6

UiO-66

Zr6O4(OH)4(BDC-NO2)6

UiO-66-NO2

Zr6O4(OH)4(BDC-Br)6

UiO-66-Br

Page 15: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Zr6O4(OH)4(BDC-NH2)6

UiO-66-NH2

Zr6O4(OH)4(TpCPP-H2)3

MOF-525

Zr6O8(TpCPP-H2)3

MOF-545

Ni3(BTP)2

Zn3(μ3-O)(D-PTT)6

POST-1

CdCl2(DCDPBN)

Cd(BPy)2(NO3)2

Cr3X(H2O)2O(BDC)3; X = F, OH

MIL-101

Page 16: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Mn3[(Mn4Cl)3(BTT)8]2

Mn-BTT

VO[BDC-(Me)2]

MOF-48

Mn2(TpCPP)2Mn3

PIZA-3

In(ImDC)2

rho-ZMOF

Zr6O4(OH)4[Ir(DPBPyDC)(PPy)2·X]6

Zn3(BDC)3[Cu(Pyen)]

CuSiF6(BPy)2

Zn(BDC)

MOF-2

Page 17: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

H3[(Cu4Cl)3(BTTri)8(mmen)12]

CuBTTri

Cu2(PZDC)2(Pyz)

Zn2(BDC)2(BPy)

MOF-508

Cu(DTOA)

Fe(OH)(BDC)

MIL-53

Fe(OH)[BDC-(COOH)2]

MIL-53-(COOH)2

La(H5DTP)(H2O)3

PCMOF-5

Na3(THBTS)

PCMOF-2

Fe(oxalate)(H2O)2

Al(OH)(NDC)

Page 18: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

[M6O2(ADB)3(H2O)6](H2O)6(NO3)2, M (III) =

In and Ga, soc-MOF-1

Zn2(NDC)2(DABCO)/Cu2(NDC)2(DABCO)

Zn(Gly-Ala)2

Zn26O3(OH)4(FDA)30·(H2O)12(Et2NH2)6

CPM-7

Co9(OH)2(acetate)(BTC)4(IN)8·(H2O)4(Me2NH2)5]

CPM-24

Ag6(OH)2(H2O)4(TIPA)5

Zn2(TTFTB)

Page 19: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Zn2(oxalate)3

Zn3(HCOO)6

Mn(BDC)

MOF-73

Page 20: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Table S2. CSD refcodes for MOFs referred to in this review (n.a. – not available). CCDC CIF depository request form is available

free of charge via the Internet at http://www.ccdc.cam.ac.uk/Community/Requestastructure/Pages/DataRequest.aspx. WebCSD can be

available via the Internet at http://webcsd.ccdc.cam.ac.uk/index.php.

Material Chemical formula Metal ion Refcode CCDC or DOI Ref.

MOF-5 Zn4O(BDC)3 Zn SAHYIK 256965 13

IRMOF-1 Zn4O(BDC)3 Zn EDUSIF 175572 5

IRMOF-3 Zn4O(BDC-NH2)3 Zn EDUSUR 175574 5

n.a. Zn4O(fumarate)3 Zn XOZXOA 715031 34

IRMOF-16 Zn4O(TPDC)3 Zn EDUWAB 175585 5

MOF-177 Zn4O(BTB)2 Zn ERIRIG 230642 15

MOF-180 Zn4O(BTE)2 Zn CUSXIY 775690 17

MOF-200 Zn4O(BBC)2 Zn CUSXOE 775691 17

MOF-210 (Zn4O)3(BTE)4(BPDC)3 Zn CUSYAR 775693 17

UMCM-1-NH2 (Zn4O)3(BTB)4(BDC-NH2)3 Zn HOMXIR 718531 135

MOF-1001 Zn4O(BPP34C10DA)3 Zn UHUPOD 728415 125

HKUST-1, MOF-199 Cu3(BTC)2 Cu FIQCEN 112954 35

PCN-6′ Cu3(TATB)2 Cu NIBHOW 643188 38

Meso-MOF-1 Cu3(TATAB)2 Cu HEXVEM 638722 36

PCN-20 Cu3(TTCA)2 Cu LUKLIN 685824 39

PCN-HTB′ Cu3(HTB)2 Cu NIBJAK 643190 38

MOF-399 Cu3(BBC)2 Cu BAZGAM 780452 21

n.a. Zn3(TPBTM) Zn SIZPUN 665862 40

NOTT-112 Cu3(BTPI) Cu FOPFAS 706575 41

Page 21: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Material Chemical formula Metal ion Refcode CCDC or DOI Ref.

PCN-68 Cu3(PTEI) Cu HABRAF 764973 43

NOTT-116 Cu3(PTEI) Cu LURRIA 781052 44

PCN-61 Cu3(BTEI) Cu VUJBIM 745528 42

PCN-66 Cu3(NTEI) Cu VUJBOS 745529 42

PCN-69 Cu3(BTTI) Cu QAQNED 806144 45

NOTT-119 Cu3(BTTI) Cu IYOXUQ 828163 136

PCN-610 Cu3(TTEI) Cu HABQUY 764972 43

NU-100 Cu3(TTEI) Cu GAGZEV 777421 24

n.a. Cu3(TPBTM) Cu UXISAW 787640 46

n.a. Cu3(TDPAT) Cu XALXUF 846266 137

n.a. Cu3(TDPAT) Cu XALXUF01 831219 47

NU-108 Cu3(BTETCA) Cu DAWMUL 878099 48

NU-109 Cu3(BNETPI) Cu n.a. DOI: 10.1021/ja3055639 20

NU-110 Cu3(BHEHPI) Cu n.a. DOI: 10.1021/ja3055639 20

NU-111 Cu3(BHEI) Cu n.a. DOI: 10.1021/ja302623w 19

n.a. Zn3(BTC)2 Zn EBUCOT 156777 49

n.a. Fe3(BTC)2 Fe NINVAI 665195 50

TUDMOF-1 Mo3(BTC)2 Mo n.a. n.a. 51

n.a. Cr3(BTC)2 Cr n.a. n.a. 52

n.a. Ru3(BTC)2 Ru IVESOS 814515 53

MOF-11 Cu2(ATC) Cu BIMDEF n.a. 30

PCN-14 Cu2(ADIP) Cu XITYOP 678724 25

Page 22: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Material Chemical formula Metal ion Refcode CCDC or DOI Ref.

MOF-74 Zn2(DOT) Zn FIJDOS 265095 54

CPO-27-Co, Co-MOF-

74 Co2(DOT) Co NAVJAW 270292 138

CPO-27-Co, Co-MOF-

74 Co2(DOT) Co SATNOR 270293 138

CPO-27-Ni, Ni-MOF-74 Ni2(DOT) Ni LECQEQ 288477 139

CPO-27-Ni, Ni-MOF-74 Ni2(DOT) Ni LEJRIC 288478 139

Mn-MOF-74 Mn2(DOT) Mn n.a. n.a. 55

Fe-MOF-74 Fe2(DOT) Fe CAXVII 853659 140

Cu-MOF-74 Cu2(DOT) Cu n.a. n.a. 141

CPO-27-Mg, Mg-MOF-

74, IRMOF-74-I Mg2(DOT) Mg VOGTIV 668974 142

IRMOF-74-II Mg2(DH2PhDC) Mg RAVVUH 841642 22

IRMOF-74-III Mg2(DH3PhDC) Mg RAVWAO 841643 22

IRMOF-74-IV Mg2(DH4PhDC) Mg RAVWES 841644 22

IRMOF-74-V Mg2(DH5PhDC) Mg RAVWIW 841645 22

IRMOF-74-VI Zn2(DH6PhDC) Mg RAVWUI 841647 22

IRMOF-74-VII Mg2(DH7PhDC) Mg RAVXAP 841648 22

IRMOF-74-VII-oeg Mg2(DH7PhDC-oeg) Mg RAVXET 841649 22

IRMOF-74-IX Mg2(DH9PhDC) Mg RAVXIX 841650 22

IRMOF-74-XI Mg2(DH11PhDC) Mg RAVXOD 841651 22

ZIF-8 Zn(MIm)2 Zn VELVOY 602542 56

UiO-66 Zr6O4(OH)4(BDC)6 Zr RUBTAK 733458 57

UiO-66-NO2 Zr6O4(OH)4(BDC-NO2)6 Zr n.a. n.a. 58

Page 23: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Material Chemical formula Metal ion Refcode CCDC or DOI Ref.

UiO-66-Br Zr6O4(OH)4(BDC-Br)6 Zr n.a. n.a. 58

UiO-66-NH2 Zr6O4(OH)4(BDC-NH2)6 Zr n.a. n.a. 58

MOF-525 Zr6O4(OH)4(TpCPP-H2)3 Zr n.a. DOI: 10.1021/ic300825s 59

MOF-545 Zr6O8(TpCPP-H2)3 Zr n.a. DOI: 10.1021/ic300825s 59

n.a. Ni3(BTP)2 Ni UTEWOG 804989 60

POST-1 Zn3(μ3-O)(D-PTT)6 Zn UHOPUC 212735 31

n.a. CdCl2(DCDPBN) Cd DARSEV 261744 67

n.a. Cd(BPy)2(NO3)2 Cd YECFAN n.a. 29

MIL-101 Cr3X(H2O)2O(BDC)3; X = F, OH Cr OCUNAC 605510 143

Mn-BTT Mn3[(Mn4Cl)3(BTT)8]2 Mn JEWYAM 604558 144

MOF-48 VO[BDC-(Me)2] V n.a. DOI: 10.1021/ic201396m 73

PIZA-3 Mn2(TpCPP)2Mn3 Mn n.a. n.a. 76

rho-ZMOF In(ImDC)2 In TEFWIL 294663 145

n.a. Zr6O4(OH)4[Ir(DPBPyDC)(PPy)2·X]6 Zr n.a. DOI: 10.1021/ja300539p 83

n.a. Zn3(BDC)3[Cu(Pyen)] Zn COJGEO 701519 88

n.a. CuSiF6(BPy)2 Cu GORWUF 142080 93

MOF-2 Zn(BDC) Zn GECXUH n.a. 12

CuBTTri H3[(Cu4Cl)3(BTTri)8(mmen)12] Cu n.a. n.a. 98

n.a. Cu2(PZDC)2(Pyz) Cu FEVNOK 249301 146

MOF-508 Zn2(BDC)2(BPy) Zn ECIWUJ 265851 102

n.a. Cu(DTOA) Cu n.a. n.a. 105

MIL-53 Fe(OH)(BDC) Fe POJTOY 690314 147

Page 24: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Material Chemical formula Metal ion Refcode CCDC or DOI Ref.

MIL-53 Fe(OH)(BDC) Fe POJTUE 690316 147

MIL-53-(COOH)2 Fe(OH)[BDC-(COOH)2] Fe n.a. n.a. 106

PCMOF-5 La(H5DTP)(H2O)3 La n.a. DOI: 10.1021/ja310435e 107

PCMOF-2 Na3(THBTS) Na GUXVUR 746416 110

n.a. Fe(oxalate)(H2O)2 Fe n.a. DOI: 10.1007/s00269-

008-0241-7

148

n.a. Al(OH)(NDC) Al WOJJOV 710000 149

soc-MOF-1 [In6O2(ADB)3(H2O)6](H2O)6(NO3)2 In RIDCEN 624028 150

soc-MOF-1 [Ga6O2(ADB)3(H2O)6](H2O)6(NO3)2 Ga n.a. n.a. 119

n.a. Zn2(NDC)2(DABCO) Zn DOWBOH 704442 130

n.a. Cu2(NDC)2(DABCO) Cu DOWBIB 260861 130

n.a. Zn(Gly-Ala)2 Zn BUWLEL 764869 132

CPM-7 Zn26O3(OH)4(FDA)30·(H2O)12(Et2NH2)6 Zn n.a. 867864 134

CPM-24 Co9(OH)2(acetate)(BTC)4(IN)8·(H2O)4(Me2NH2)5] Co IYATAE 824096 133

n.a. Ag6(OH)2(H2O)4(TIPA)5 Ag OYEYOH 845627 23

n.a. Zn2(oxalate)3 Zn VUKXUV 733240 26

n.a. Zn2(TTFTB) Zn n.a. DOI: 10.1021/ja3059827 27

n.a. Zn3(HCOO)6 Zn FIQZAH 238107 151

MOF-73 Mn(BDC) Mn FIJDIM 265094 54

Page 25: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 26: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S2. The isoreticular (maintaining same topology) expansion of archetypical MOFs resulting

from discrete inorganic SBUs combined with ditopic organic linkers to obtain MOFs in a pcu net.

The scaled comparison of the smallest, medium, and largest crystalline structures of MOFs

representative of these nets are shown. The large yellow sphere represents the largest sphere that

would occupy the cavity. Numbers above each arrow represent the degree of volume expansion

from the smallest framework. Atom colors; C, black; O, red; Zn, blue polyhedra. Hydrogen

atoms are omitted for clarity (5, 13, 34).

Page 27: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 28: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 29: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S3. A pcu net shown in augmented form and crystal structures of representative MOFs in its

net. The yellow sphere represents the size of the largest sphere that would occupy the cavity

without contacting the interior van der Waals surface. Zn, blue polyhedra; O, red; C, black; S,

yellow; Br, large green; N, green; I, large purple; Cu, large blue; all hydrogen atoms are omitted

for clarity. Interpenetrating frameworks are shown in light blue, orange, and light green.

Page 30: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S4. A qom net shown in augmented form and crystal structures of representative MOFs in

its net. The yellow sphere represents the size of the largest sphere that would occupy the cavity

without contacting the interior van der Waals surface. Zn, blue polyhedra; O, red; C, black; all

hydrogen atoms are omitted for clarity.

Page 31: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S5. A tbo net shown in augmented form and crystal structures of representative MOFs in its

net. The yellow sphere represents the size of the largest sphere that would occupy the cavity

without contacting the interior van der Waals surface. Metal ions, blue squares; O, red; C, black;

N, green; all hydrogen atoms and terminal ligands on the square units are omitted for clarity.

Interpenetrating frameworks are shown in light blue. Interpenetrating framework is shown in

light blue.

Page 32: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 33: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. 6. A ntt net shown in augmented form and crystal structures of representative MOFs in its

net. The yellow sphere represents the size of the largest sphere that would occupy the cavity

without contacting the interior van der Waals surface. Cu and Zn, blue squares; O, red; C, black;

N, green; all hydrogen atoms and terminal ligands on the square units are omitted for clarity.

Fig. S7. Crystal structure of NU-110 and 108 along to the (111) direction (20, 48).

Page 34: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …
Page 35: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Fig. S8. An etb net shown in ball-and-stick form and crystal structures of representative MOFs

in its net. The yellow sphere represents the size of the largest sphere that would occupy the

cavity without contacting the interior van der Waals surface. Metal ions, green or blue polyhedra;

O, red; C, black; all hydrogen atoms and terminal ligands on the polyhedra are omitted for clarity.

Page 36: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Table S3: Summary of the Structures of MOFs

Material Chemical formula Inner diameter

(Å)

Pore aperture

(Å)

Density

(g/cm3)

Void fraction

(%) Ref.

MOF-5 Zn4O(BDC)3 15 8 0.59 79 13

MOF-200 Zn4O(BBC)2 18 × 28 16 0.22 90 17

MOF-210 (Zn4O)3(BTE)4(BPDC)3 27 × 48 13 0.25 89 17

MOF-399 Cu3(BBC)2 43 23 0.13 94 21

IRMOF-74-IX Mg2(DH9PhDC) 72 72 0.25 85 22

IRMOF-74-XI Mg2(DH11PhDC) 98 98 0.25 87 22

PCN-21 Cu2(PMTB) 37 13 0.42 82 170

mesMOF-1 Tb(TATB) 47 17 0.57 69 171

CMOF-4b Cu2(L) 32 × 24 32 × 24 0.18 92 172

UMCM-1 (Zn4O)3(BTB)4(BDC)3 23 23 0.39 85 173

UMCM-2 (Zn4O)3(BTB)4(T2DC)3 23 × 30 13 0.40 83 174

MIL-101c Cr3OF(H2O)2(BDC)3 26, 34 14 0.44 83 143

MIL-101-NDC Cr3O(OH)(H2O)2(NDC)3 33, 42 17 0.31 86 175

Bio-MOF-100 Zn4O(ad)2(BPDC)3 23 23 0.30 86 176

DUT-49 Cu2(BBCDC) 24 13 0.32 87 177

NU-110 Cu3(BHEHPI) 32 13 0.22 90 20

BDC2-

= benzenedicarbxylate, BBC3-

= 4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate, BTE3-

= 4,4′,4″-[benzene-1,3,5-triyl-

tris(ethyne-2,1-diyl)]tribenzoate, BPDC2-

= biphenyl-4,4′-dicarboxylate, DH9PhDC4-

= 2″″,5″″-dihexyl-

2′,2″,2‴ ,2‴ ″,2‴‴ ,2‴‴ ′,5′,5″,5‴ ,5‴ ″,5‴‴ ,5‴‴ ′-dodecamethyl-3,3‴‴ ″-dioxido-

[1,1′:4′,1″:4″,1‴ :4‴ ,1″″:4″″,1‴ ″:4‴ ″,1‴‴ :4‴‴ ,1‴‴ ′:4‴‴ ′,1‴‴ ″-noviphenyl]-4,4‴‴ ″-dicarboxylate, DH11PhDC4-

= 2‴ ,2‴‴ ′,5‴ ,5‴‴ ′-

tetrahexyl-3,3‴‴‴ ′-dioxido-2′,2″,2″″,2‴ ″,2‴‴ ,2‴‴ ″,2‴‴‴ ,5′,5″,5″″,5‴ ″,5‴‴ ,5‴‴ ″,5‴‴‴ -tetradecamethyl-

[1,1′:4′,1″:4″,1‴ :4‴ ,1″″:4″″,1‴ ″:3‴ ″,1‴‴ :4‴‴ ,1‴‴ ′:4‴‴ ′,1‴‴ ″:4‴‴ ″,1‴‴‴ :4‴‴‴ ,1‴‴‴ ′-undeciphenyl]-4,4‴‴‴ ′-dicarboxylate,

PMTB4-

= diphenyl-methane-3,3′,5,5′-tetrakis(3,5-bisbenzoate), TATB3-

= 4,4′,4″-s-triazine-2,4,6-triyltribenzoate, H4L = (R)-4,4′,4″,4‴ -

(1E,1′E,1″E,1‴ E)-2,2′,2″,2‴ -(2,2′-dihydroxy-1,1′-binaphthyl-4,4′,6,6′-tetrayl)tetrakis(ethene-2,1-diyl)tetrabenzoic acid, BTB3-

= 4,4′,4″-benzene-

1,3,5-triyl-tribenzoate, T2DC2-

= thieno[3,2-b]thiophene-2,5-dicarboxylate, NDC2-

= naphthalenedicarboxylate, ad- = adeninate, BBCDC

2- = 9,9′-

([1,1′-biphenyl]-4,4′-diyl)bis(9H-carbazole-3,6-dicarboxylate), BHEHPI6-

= 5,5′,5″-((((benzene-1,3,5-triyltris(benzene-4,1-diyl))tris(ethyne-2,1-

diyl))-tris(benzene-4,1-diyl))tris(ethyne-2,1-diyl))triisophthalate.

Page 37: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Table S4: Recent reports of post-synthetic modification of MOFs.

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Coordinative Interactions

Cu3(BTC)2 HKUST-1 Dehydration/ligand replacement on

SBU Water, pyridine

35

Cu3(BTC)2 HKUST-1 Dehydration/ligand replacement on

SBU Water, 4-(methylamino)pyridine 97% (best) Active site for NO capture 178

60% Active site for NO capture 178

Cu3(BTC)2 HKUST-1 Ligand exchange on SBU Dithioglycol

179

Cu2(ATC) MOF-11 Dehydration of SBU Water

30

Zn2(DOT) MOF-74(Zn) Ligand exchange/removal on SBU Water or ethanol

54

Co2(DOT) MOF-74(Co) Dehydration of SBU Water

Magnetic properties 138

Ni2(DOT) MOF-74(Ni) Dehydration of SBU Water

H2 storage investigated 139

Ni2(DOT) MOF-74(Ni) Ligand exchange on SBU Piperazine 25%

CO2 adsorption by

physisorption and

chemisorption

180

H3[Co6(TATB)4] PCN-9 Ligand exchange/removal on SBU Tetrabutylammonium, CO2

H2 and CH4 adsorption 181

H3[(Mn4Cl)3(BTT)8)] Mn-BTT Ligand exchange on SBU N,N-dimethylformamide (DMF),

methanol Enhanced H2 adsorption 144

H3(Cu4Cl)3(BTT)8 Cu-BTT Dehydration/ligand replacement on

SBU Water, methanol

Enhanced H2 adsorption 182

H3(Cu4Cl)3(BTT)8 Cu-BTT Ligand exchange on SBU Ethylenediamine

Enhanced CO2 uptake and

selectivity over N2 183

Fe3[(Fe4Cl)3(BTT)8]2 Fe-BTT Ligand exchange/removal on SBU DMF, methanol

184

NaNi3(OH)(SIP)2

Dehydration of SBU Water

H2 adsorption 185

Cr3O(H2O)3F(BTC)2 MIL-100(Cr) Dehydration/ligand replacement on

SBU Water, methanol

186,

187

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Ligand exchange on SBU

Ethylenediamine,

diethylenetriamine, 3-

aminopropyltrialkoxysilane

Catalyst for Knoevenagel

condensation 81, 186

Page 38: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Ligand replacement on SBU L-proline

Catalyst for asymmetric aldol

reactions 188

(Cr3O(H2O)2F(BDC-

NHBoc)4

MIL-101(Cr)-

NHBoc Ligand replacement on SBU Ethylenediamine

sequential deacetalization-

nitroaldol reaction 189

Zn2(BTetB)

Ligand exchange on SBU DMF, pyridine

CO2 and H2 adsorption

properties 190

Zn2(BTetB)

Ligand exchange on SBU DMF, trifluoromethyl, pyridine

Enhancement of CO2/N2

selectivity 191

Zn2(TCPBDA) SNU-30 Dehydration/ligand replacement on

SBU Water, BPTA

BPTA bridge neighboring

SBUs to form new MOF 192

Cd1.5(H3O)3[(Cd4O)3-

(HETT)8] Metal ion exchange Cd(II), Pb(II), Dy(III), Nd(III) 100%

Single-crystal-to-single-crystal

transformation involving

complete and reversible

exchange of metal ions in SBUs

193

Zn2(BDCPPI) SNU-50 Metal ion exchange Zn(II), Cu(II) 97%

Form PtS-type net with Cu(II),

which was not possible via

direct solvothermal synthesis

194

Mn(NDC)

Ligand removal on SBU N,N-Diethylformamide

Enhancement of N2, H2, CO2,

and CH4 uptake 195

Metalation

Cd3Cl6(L1)3

Metal Complexation within Pore Ti(OiPr)4

Catalyst in the addition of

ZnEt2 to 1-napthaldehyde with

complete conversion and 93%

ee.

67

Zn4O(BDC)3 MOF-5 Organometallic complexation of

BDC Cr(CO)6

Photolysis used to substitute

single CO ligand per metal site

for N2 or H2

196

In2(HImDC)4 rho-ZMOF Metalation of ligand

5,10,15,20-tetrakis(1-methyl-4-

pyridinio)-porphyrin tetra(p-

toluenesulfonate) (H2RTMPyP),

Mn(II)

Catalyst for cyclohexane

oxidation with 91.5% product

yield.

78

Zn4O(BDC-NH2)3 IRMOF-3 Metal complexation within pore V(O)(acac)2

Catalyst for oxidation of

cyclohexene with tBuOOH

(40% conversion)

197

Page 39: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Zn4O(BDC-NH2)3 IRMOF-3 Metal complexation within Pore NaAuCl4 ~2 wt%

Used for three-component

coupling and cyclization of N-

protected ethylaniline,

aldehyde, and amines

198

Zn4O(BDC-NH2)3 IRMOF-3 Imine condensation metalation Mn(acac)2 ~8% Catalyst for epoxidation of

alkenes 199

Zn4O(dimethylthioethyl

enethio-BDC)3

Metalation of

methylthioethylenethio groups HgCl2 ~12%

Removal of HgCl2 from an

ethanol solution 200

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Metalation of hydroxide groups in

SBU 1,1'-Ferrocenediyl-dimethylsilane ~25%

Redox catalyst for the oxidation

of benzene with H2O2 201

Fe3O(H2O)2F(BDC)3 MIL-101(Fe) Metalation through acylation of

amine functionality

cisplatin prodrug, c,c,t-

[PtCl2(NH3)2(OEt)(O2CCH2CH2C

O2H)]

~40% Utilized for cytotoxicity studies

on cancer cell lines 202

Pb3(TMBD)3 PbTMBD Metalation of thioether

functionality HgCl2

203

Zn2(TCPB)(DPG) DO-MOF

Esterification with metal

complexation of free carboxylate

groups

CuCl2

204

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2

Metal complexation of

iminopyridine moiety PdCl2

205

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Metal complexation Fe(acac)3, Cu(acac)2 50%

Fe(salicylate) complex

catalyzes Mukaiyama aldol

reactions (58% conversion after

24 hrs)

68

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Metal complexation In(acac)3 3.76 wt%,

Selective catalyst for epoxide

ring opening reactions 206

2.92 wt%

206

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Metal complexation Fe(III)

207

Zr6O4(OH)4(BDC)6 UIO-66 Organometallic complexation Cr(CO)6 1 wt%

Photolysis used to substitute

single CO ligand per metal site

for N2

208

Page 40: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Zn2(L2) and Zn2(L3)

Metalation Ti(IV)

Heterogeneous asymmetric

Catalysis 209

Al(OH)(BPyDC) MOF-253 Metalation of 4,4'-bipyridine linker Cu(II), Pd(II) >80% Increased selectivity for CO2/N2 210

Zn2(TCPB)(Mn(III)(sal

en)) MnSO-MOF Demetalation from link Mn(III) 90%

Selectively removed from

surface of MOF 211

Zn4O(TATAB)2 PCN-100 Metalation of TATAB linker Co(NO3)2, Cd(NO3)2, or HgCl2 40-43% Capture of heavy metal ions 212

Zn(mBDC)(L4)

single-crystal-tosingle-crystal post-

synthetic modification Cu(BF4)2

213

Covalent Bond Formation

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Acetic anhydride >80%

6

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine 10 linear anhydrides 97%-11%

214

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Crotonic anhydride, acetic

anhydride Tandem modification proven 215

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Various functionalized anhydrides Up to 99%

216

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Benzoic anhydride 70% Increased H2 gravimetric uptake

at 77 K and 1 atm 66

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Nicotinoyl chloride, pyridine 50%

Catalyst for aza-Michael

reaction and transesterification

of ethyldecanoate with

methanol

217

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling with free amine Isobutyric anhydride 88% Increase in hydrophobicity and

stability of framework 218

Zn4O(BDC-NH2)3 IRMOF-3 Imine condensation of free amine Salicylaldehyde 13%

197

Zn4O(BDC-NH2)3 IRMOF-3 Imine condensation of free amine Salicylaldehyde 3%

Metalation followed by

catalysis three-component

coupling and cyclization of N-

protected ethylaniline,

aldehyde, and amines

198

Zn4O(BDC-NH2)3 IRMOF-3 Imine condensation of free amine Mn(acac)2 ~8% Catalyst for epoxidation of

alkenes 199

Zn4O(BDC-NH2)3 IRMOF-3 Urea formation of free amine Various isocyanate derivatives ~99%

219

Page 41: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Zn4O(BDC-NH2)3 IRMOF-3 Amide coupling/urea formation

through free amine Various isocyanate derivatives 32%

216

Zn4O(BDC-NH2)3 IRMOF-3 Urea formation through free amine Phenyl isocyanate 41%

Increased H2 wt% uptake at 77

K and 1 atm in comparison to

parent IRMOF-3

66

Zn4O(BDC-NH2)3 IRMOF-3 Thiourea formation through free

amine Fluorescein-isothiocyanate

Confocal Microscopy used to

probe the distribution of

fluorescent dyes encapsulated

within the MOF

220

Zn4O(BDC-NH2)3 IRMOF-3 Halogenation Bromine

215

Zn4O(BDC-NH2)3 IRMOF-3 Ring-opening reaction through

Free Amine

1,3-Propanesultone and 2-

methylaziridine 57%

221

Zn4O(BDC-NH2)3 IRMOF-3 Formation of N-diazenium diolates

from free amine Nitric oxide 8%

222

Zn4O(BDC-NH2)3 IRMOF-3 Reaction of cyanuric chloride with

amine Cyanuric chloride

CO2 breakthrough testing 223

Zn4O(BDC-NH2)3 IRMOF-3 Conversion of primary amines into

secondary amines Various aldehyde, NaBH3CN 31-67%

224

Zn4O(BDC-NH2)4 IRMOF-3 Vapor-phase post-synthetic

modification Salicylic acid >99%

225

Zn4O(BPDC)3 IRMOF-9 Imine Condensation through free

aldehyde Dinitrophenylhydrazine 50-60%

226

Zn4O(BPDC)3 IRMOF-9 Oxidation of sulfur-tagged BPDC Dimethyldioxirane 100% First example of oxidation

postsynthetic modification 227

Zn4O(BPDC)3 IRMOF-9 Deprotection of Boc-protected

amine Thermolysis

228

Zn4O(BPDC-

C5H8ON2)3 IRMOF-9-Pro-Boc

Deprotection of amide-coupled

Boc-protected proline unit Thermolysis

Chiral organocatalyst for aldol

reaction 229

Zn4O(TPDC-(CH2N3)2)3 IRMOF-16-N3 Click reaction through free azide Alkynes of varying lengths and

sizes 230

Zn4O(BPDC-

(CH2N3)2)4 IRMOF-10-N3 Click reaction through free azide

Conversion of azide to primary

amine via Staudinger reaction 231

Page 42: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Gd2(BDC-NH2)3 MOF-LIC-1 Amide coupling with free amine Acetic Anhydride 50%

232

(ZnI2)3(L5)2(L6)

Amide coupling with free amine Various anhydride derivatives

233

Zn2(BDC-

NH2)2(DABCO) DMOF-1-NH2 Amide coupling with free amine

Various anhydrides with differing

lengths, trimethylacetic anhydride

and isobutyric anhydride

99% - 0%

135

Zn2(BDC-

NH2)2(DABCO) DMOF-1-NH2

Click reaction through free azide

converted from amine Phenylacetylene >90% One-pot modification 234

Zn2(BDC-

NH2)2(DABCO) DMOF-1-NH2 Amide coupling with free amine Benzoic anhydride 63% No enhanced H2 properties 96

Zn2(TDC)2(L7)

Epoxidation and subsequent

epoxide ring-opening

3-(But-3-en-1-yl)-3‟-methyl-4,4‟-

bipyridine, ethyl mercaptan 235

51Zn6(BTB)4(BPy-

NH2)3

Thiourea formation from

isothiocyanate Fuorescein isothiocyanate 7.50%

Selective sensing and

adsorption of Ag+ 236

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Amide coupling with free amine

Various anhydrides with differing

lengths, trimethylacetic anhydride

and isobutyric anhydride

99% - ~1%

135

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Amide coupling with free amine Benzoic anhydride 76%

Increased H2 uptake at 77 K and

1atm 66

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Amide coupling with free amine

3-Hydroxyphthalic anhydride,

2,3-pyrazinedicarboxylic

anhydride

35%, 50% Used for subsequent metal

complexation 206

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2 Imine condensation of free amine 2-Pyridinecarboxyaldehyde

Iminopyridine moiety metalated

with PdCl2 205

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2

Ring-opening reaction using free

amine

3-Hydroxyphthalic anhydride,

2,3-pyrazinedicarboxylic

anhydride

35%, 50% Used for metal complexation 68

(Zn4O)3(BDC-

NH2)3(BTB)4 UMCM-1-NH2

Formation of N-diazenium diolates

from free amine Nitric oxide 6%

222

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Amide coupling with free amine Formic acid

237

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Amide coupling with free amine Acetic anhydride, long chain

alkyl anhydrides 91%-17%

Enhanced hydrophobicity of the

MOF 218

Page 43: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Urea and thiourea formation from

Iso(thio)cyanate Various primary amines >90% - 0%

238

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Ring-opening reaction using free

amine Maleic and succinic anhydrides 43%, 40%

Organocatalyst for

methanolysis of cis-2,3-

epoxybutane and other epoxides

239

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Iso(thio)cyanate formation from

free amine Diphosgene, thiophosgene 90% Increased CO2 uptake 238

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 (Thio)carbamate formation from

Iso(thio)cyanates Various primary alcohols >95% - ~65%

238

Al(OH)(BDC-NH2) MIL-53(Al)-NH2 Amide coupling with free amine Ferrocenecarboxylic anhydride

Cyclic voltammetry 240

Fe3O(H2O)2F(BDC)3 MIL-101(Fe) Acylation

Cisplatin prodrug, c,c,t-

[PtCl2(NH3)2(OEt)(O2CCH2CH2C

O2H)]

~40% Utilized for cytotoxicity studies

on cancer cell lines 202

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Urea formation from free amine Ethyl isocyanate 100% Multi-step post synthetic

modification 241

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Reduction of NO2-functionalized

BDC Tin(II) Chloride in Ethanol

Multi-step post synthetic

modification 241

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Alkylation of incorporated Amine-

functionalized BDC

1,3,5,7-Tetramethyl-4,4-difluoro-

8-bromomethyl-4-bora-3a,4a-

diaza-s-indacene (Br-BODIPY)

40.3% Integration of imaging

component 32

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Electrophilic Aromatic Substitution

of BDC HNO3

241

Cr3O(H2O)2F(BDC-

NH2)3 MIL-101(Cr)-NH2 Amide coupling with free amine p-phenylazobenzoylchloride

UV/Vis switching experiments,

methane adsorption 242

Cr3O(H2O)2F(BDC-

NH2)3 MIL-101(Cr)-NH2 Urea formation from free amine 4-(phenylazo)phenylisocyanate

UV/Vis switching experiments,

methane adsorption 242

Cr3O(H2O)2F(BDC-

NHBoc)4

MIL-101(Cr)-

NHBoc

Deprotection of amide-coupled

Boc-protected proline unit Thermolysis

sequential deacetalization-

nitroaldol reaction 189

Zr6O4(OH)4(BDC-

NH2)12 UIO-66-NH2 Amide coupling with free amine

Acetic, valeric, octanoic, maleic

anhydride 25-88%

243,

244

Zr6O4(OH)4(BDC-Br)12 UIO-66-Br Cyanation of Br-functionalized CuCN in N-methyl-2-pyrrolidone 90%

245

Page 44: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

ZnF(Am2TAZ)

Amide coupling with free amine Nicotinoyl chloride, pyridine 60%

Catalyst for aza-Michael

reaction and transesterification

of ethyldecanoate with

methanol

217

Zn(ICA)2 ZIF-90

Imine Condensation of

Carboxyaldehyhde-functionalized

Link

Ethanolamine 100%

69

Zn(ICA)2 ZIF-90 Imine condensation of free

aldehyde 3-Aminopropyltriethoxysilane

Used as molecular sieve with

high H2 permselectivity 246

Zn(ICA)2 ZIF-90 Reduction of aldehyde-

functionalized link Sodium borohydride 80%

69

Zn(MICA)2 SIM-1 Imine condensation of aldehyde-

functionalized link Dodecylamine

Catalyst for Knoevenagel

condensation 247

(ZnI2)3(L5)2(L8)

Imine condensation of amine-

functionalized imbedded link Acetaldehyde 60%

248

(ZnI2)3(L5)2(L8)

Imine condensation of amine-

functionalized imbedded link Acetaldehyde 36%

Observed transient hemiaminal

intermediate by single crystal x-

ray diffraction techniques

249

(ZnI2)3(L5)2(L6)

Imine condensation of

carboxyaldehyde-functionalized

imbedded link

Aniline, aminobenzoic acid

233

Zn3( 3-O)(D-PTT)6 POST-1 N-alkylation of free pyridyl groups Iodomethane 100%

Changes framework charge

from negative to positive, and

makes it possible for reversible

exchange of counterions

172

Zn4O(trans-4,4′-stilbene

dicarboxylate)3 Halogenation of stilbene units Bromine 60%

Stabilization of framework with

corresponding increase in

measured porosity, lack of

significant hysteresis, and

retention of crystallinity

250

Zn3(TCPB)(L9) TO-MOF Click Reaction of Terminal

Alkynes Benzyl azide

251

Al4(OH)2(OMe)4(BDC-

NH2)3 CAU-1-NH2 Amide Coupling with Free Amine acetic anhydride

CO2 and water adsorption

properties 252

Page 45: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

(L10)·AgOTf

Silylation of Free Alcohol Groups Silyl Triflates

253

(L11)·AgOTf

Esterification of Free Alcohol

Groups Trifluoroacetic anhydride

254

Cu3(TATB)2 mesoMOF-1 Protonation of ionic framework HF, HCl, HBr

Stabilization of mesochannels 36

Ni2(L-asp)2(BPy)

Protonation of ionic framework HCl

Catalyst for methanolysis of

cis-2,3-epoxybutane (<17% ee

values and 2.6 turnover

frequency

255

Zn2(mBDC-N3)2(BPy)2 CID-N3 Oxidation to reactive triplet nitrene

functionality O2

Increased uptake of O2,

specifically in low pressure

region

256

Metal Doping

Zn4O(BDC)3 MOF-5 Physical mixture Pt on Activated Carbon

Enhanced hydrogen storage via

spillover mechanism

(enhancement factor of 3.3)

257

Zn4O(BDC)3 MOF-5 Impregnation Pd nanoparticles ~1 wt%

Catalyst for hydrogenation of

styrene and showed enhanced

H2 uptake capacity

258

Zn4O(BDC)3 MOF-5 Gas-phase loading 1.5-1.7 nm Ru nanoparticles 30 wt% Catalyst for alcohol oxidation,

hydrogenation of benzene 259

Zn4O(NDC)3 IRMOF-8 Physical mixture Pt on activated carbon

Enhanced hydrogen storage via

spillover mechanism

(enhancement factor of 3.1 to

1.8 wt% at 298 K and 10 MPa)

257

Zn4O(BTB)2 MOF-177 Gas-phase loading 2-5 nm Pt nanoparticles 43 wt% Catalyst for oxidation of

alcohols 260

Al3O(H2O)3F(BTC)2 MIL-100(Al) Impregnation 2 nm Pd nanoparticles 10 wt % Excess H2 adsorption was

doubled at room temperature 261

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Inclusion [Mo6Br8F6]2- cluster units

262

Zn2(TCPB)(DPG) DO-MOF Metal Alkoxide formation from

free diol groups Li+ and Mg2+

Variable

loadings

Slightly higher H2 wt% uptake

(1.32 wt% for Li in comparison

to 1.23 wt% for parent MOF at

77 K and 1 atm)

263

Page 46: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Zn2(NDC)2(diPyNI)

Reduction of Redox Active diPyNI

link Li metal 5 mol%

Nearly doubled H2 capacity

(0.93 wt% H2 capacity of parent

MOF to 1.63 wt% of PSM

MOF) at 77 K and 1 atm

263

Zn2(NDC)2(diPyNI)

Reduction of redox AActive

diPyNI link Na and K metal

Enhanced H2 capacity (at low

pressure and temperature). Up

to 65% higher H2 uptake than

neutral framework

264

Ligand Exchange

Zn2(BDC-

NH2)2(DABCO) DMOF-1-NH2

Ligand Exchange through

Selective Surface Modification Boron dipyrromethene (BODIPY)

265

Cu3(BTC)2 HKUST-1 Ligand exchange through selective

surface modification Boron dipyrromethene (BODIPY)

265

Cation Exchange

Zn8(ad)4(BPDC)6O BIO-MOF-1 Cation exchange of DMA cations

within pores

Lanthanide Cations [Sm(III),

Ln(III), Eu(III), Tb(III)]

Enahanced luminescence

properties 266

Zn8(ad)4(BPDC)6O BIO-MOF-1 Cation exchange of DMA cations

within pores

Tetramethylammonium,

Tetraethylammonium,

Tetrabutylammonium

Enhanced CO2 adsorption at

273 K and an increase in the

isoteric heat of adsorption of

CO2

266

Photochemical Modification

(Zn4O)3(BDC-

(NO2BnO)2)3(BTB)4

UMCM-1-

OBnNO2

Cleavage of protecting groups by

UV irridiation at 365 nm 100%

207

(Zn4O)3(BDC-

(NO2BnO)2)3(BTB)4

UMCM-1-

(BnNO2)2

Cleavage of protecting groups by

UV irridiation at 365 nm 75%

207

Zn2(mBDC-N3)2(BPy)2 CID-N3 Irridation to produce reactive

triplet nitrene Hg Lamp 70%

Exposed reactive nitrene

functionalities to O2 and CO to

demonstrate increased uptake as

a result of PSM

256

Zn4(μ3-OH)2(5-

SIPA)2(1,4-BPEB)2

Regioselective [2+2]

photodimerization of BPEB links

to generate dicyclobutane link

Hg Lamp

Single-crystal-to-single-crystal

transformation induced by

photochemical modification

267

Page 47: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Parent MOF

Common Name Reaction Type Reactants Used

Percent

Conversion Application/Use Ref.

Cd2(1,3-PDA)2(1,4-

BPEB)2

Regioselective [2+2]

photodimerization of BPEB links

to generate dicyclobutane link

Hg Lamp

Single-crystal-to-single-crystal

transformation induced by

photochemical modification

267

Zn(BPE)(MUCO)

Regioselective [2+2]

Photodimerization of bpe Links to

Generate Dicyclobutane Link

Xe Lamp 100%

268

Zn(BPE)(BDC)

Regioselective [2+2]

Photodimerization of bpe Links to

Generate Dicyclobutane Link

Xe Lamp 100%

268

Zn(BPE)(FUM)

Regioselective [2+2]

Photodimerization of bpe Links to

Generate Dicyclobutane Link

Xe Lamp

268

Core-Shell Structure

Zn4O(BDC-NH2)3 IRMOF-3 Core-Shell Single Crystal

Fabrication Zn4O(BDC)3 (MOF-5)

Demonstration of a three-layer

core-shell structure of

alternating layers of MOF-

5@IRMOF-3@MOF-5 were

shown to be possible

269

Zn4O(BDC-NH2)3 IRMOF-3 Core-shell single crystal

fabrication Zn4O(BDC)3 (MOF-5)

Heteroepitaxially Grew

IRMOF-3 around MOF-5 as a

thin film

270

Zn2(NDC)2(DABCO)

Core-shell single crystal

fabrication Cu2(NDC)2(DABCO)

Zn2(NDC)2(DABCO) chosen as

the core and Cu2(NDC)2-

(DABCO) used as the shell.

Nitrogen pilllar ligands of Zn

MOF were used as coordination

sites for epitaxial growth

130

Zn2(NDC)2(DPNDI)

Core-shell single crystal

fabrication Zn2(NDC)2(DPNDI)

Zn2(NDC)2(DPNDI) used as the

shell. Nitrogen pilllar ligands of

the core MOF were used as

coordination sites for epitaxial

growth

271

M6(BTB)4(BPy)3

Core-shell single crystal

fabrication Zn, Co, Ni, and Cu nitrate

Demonstration of enhanced

framework stabilities by

transmetalations of the

framework metal ions

272

Page 48: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

BTC3-

= benzenetricarbxylate, ATC4-

= 1,3,5,7-adamantane tetracarboxylate, DOT4-

= 2,5-dioxidoterephthalate, TATB3-

= 4,4′,4″-s-triazine-2,4,6-

triyltribenzoate, BTT3-

= 1,3,5-benzenetristetrazolate, SIP2-

= 5-sulfoisophthalate, BDC2-

= benzenedicarbxylate, BTetB4-

= 4,4′,4″,4‴ -benzene-

1,2,4,5-tetrayltetrabenzoate, H4TCPBDA = N,N,N′,N′-tetrakis(4-carboxyphenyl)biphenyl-4,4′-diamine, BPTA = 3,6-di(4-pyridyl)-1,2,4,5-tetrazine,

H3HETT = 5,5′,10,10′,15,15′-hexaethayltruxene-2,7,12-tricarboxylic acid, H4BDCPPI = N,N′-bis(3,5-dicarboxyphenyl)pyromellitic diimide,

NDC2-

= naphthalenedicarboxylate, L1 = (R)-6,6′-dichloro-2,2′-dihydroxy-1,1′-binaphthyl-4,4′-bipyridine, H3ImDC = 4,5-imidazoledicarboxylic

acid, H2TMBD = tetrakis(methylthio)-1,4-benzenedicarboxylic acid, H4TCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene, DPG = meso-1,2-

bis(4-pyridyl)-1,2-ethanediol, BTB3-

= 4,4′,4″-benzene-1,3,5-triyl-tribenzoate, L24-

= (R)-2,2′-diethoxy-1,1′-binaphthyl-4,4′,6,6′-tetrabenzoate,

L34-

= (R)-2,2′-dihydroxy-1,1′-binaphthyl-4,4′,6,6′-tetrabenzoate, H2BPyDC = 2,2′-bipyridine-5,5′-dicarboxylic acid, Mn(III)(salen) = (R,R)-(–)-

1,2-cyclohexanediamino-N,N′-bis(3-tert-butyl-5-(4-pyridyl)salicylidene)Mn(III)Cl, TATAB3-

= 4,4′,4″-((1,3,5-triazine-2,4,6-

triyl)tris(azanediyl))tribenzoate, mBDC2-

= isophthalate, L4 = N,N′-bis(pyridin-4-yl)-2,2′-bipyridine-5,5′-dicarboxamide, BPDC2-

=

biphenyldicarboxylate, TPDC2-

= terphenyldicarboxylate, L5 = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine, L6 = triphenylen-2-amine, DABCO = 1,4-

diazabicyclo[2.2.2]octane, H2TDC = 9,10-triptycenedicarboxylic acid; L7 = 3-(but-3-en-1-yl)-3′-methyl-4,4′-bipyridine, Am2TAZ- =

diaminotriazolate, ICA- = imidazolate-2-carboxyaldehyde, HMICA = 4-methyl-1H-imidazole-5-carbaldehyde, L8 = triphenylen-1-amine, D-PTT

-

= (4S,5R)-2,2-dimethyl-5-(1-(pyridin-4-ylamino)vinyl)-1,3-dioxolane-4-carboxylate, L9 = 4-(2-(pyridin-4-yl)vinyl)-3-

((trimethylsilyl)ethynyl)pyridine, L10 = 2,4,6-tris(4-((4-cyanophenyl)enthynyl)phenylethynyl)phenoxy)-ethanol, L11 = (2,4,6-tris(4-

ethynylbenzonitrile)phenoxy)ethanol, L-asp- = L-aspartate, BPy = 4,4′-bipyridine, DPG = 1,2-di(pyridin-4-yl)ethane-1,2-diol, diPyNI = N,N′-di-

(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, ad- = adeninate, H3SIPA = 5-sulfoisophthalic acid, BPEB = 1,4-bis[2-(4-

pyridyl)ethenyl]benzene, H2PDA = 1,3-phenylenediacetic acid, BPE = 1,2-bis(4-pyridyl)ethane, H2MUCO = trans,trans-muconic acid, FUM- =

fumarate.

Page 49: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Table S5: Recent reports of MOF based catalysts.

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Cd(BPy)2(NO3)2

Benzaldehyde and cyanotrimethylsilane Cyanosilylation of aldehyde 77%

29

Gd(R-L1H2)(R-L1H3)(H2O)4

benzaldehyde, propionaldehyde, 1-

naphthaldehyde, and trimethylsilyl cyanide Cyanosilylation of aldehyde 55-69% <5% 273

Cu3(BTC)2

Benzaldehyde and cyanotrimethylsilane Cyanosilylation of aldehyde 57%

274

Mn3[(Mn4Cl)3(BTT)8]2

Benzaldehyde and cyanotrimethylsilane Cyanosilylation of aldehyde 98%

62

Zn(HPTA)

4-Nitrobenzaldehyde and

cyanotrimethylsilane Cyanosilylation of aldehyde 92%

275

Sc2(C4O4)3

Benzaldehyde, acetophenone Cyanosilylation of aldehyde 45-90%

276

Ce(MDIP)(H2O) Ce-MDIP1 2-Naphthaldehyde and cyanotrimethylsilane Cyanosilylation of aldehyde >98% >98% 277

Zn(3,3′-TPBC)(DABCO)0.5

4-Nitrobenzaldehyde and nitroalkanes Henry reaction of 4-nitrobenzaldehyde 12-80%

278

Cd(BTAPA)2(NO3)2

Benzaldehyde and malononitrile Knoevenagel condensation 98%

279

Zn4O(BDC-NH2)3 IRMOF-3 Benzaldehyde and ethyl cyanoacetate Knoevenagel condensation 99%

280

Cr3O(H2O)2F(BDC)3 MIL-101(Cr) Benzaldehyde and ethyl cyanoacetate Knoevenagel condensation 98%

281

Zn(HPTA)

4-Nitrobenzaldehyde and ethyl 2-

cyanoacetate Knoevenagel condensation 80%

275

Zn4O(TATAB)2 PCN-100 Butyl cyanoacetate, benzaldehyde, and 4-

phenylbenzaldehyde Knoevenagel condensation 58-93% 212

Zn4O(BTATB)2 PCN-101 Butyl cyanoacetate, benzaldehyde, and 4-

phenylbenzaldehyde Knoevenagel condensation 65-96% 212

[(iPrO)TiCl]2(L2)

Acrolein and 1,3-cyclohexadiene Diels-Alder reaction 100%

282

Gd(R-L1H2)(R-L1H3)(H2O)4

Methyl acrylate cyclopentadiene Diels-Alder reaction 86% <5% 273

Acid-activated Fe3O(H2O)3F(BTC)2 MIL-100(Fe) 1,3-Cyclohexadiene, dimethyl fumarate,

Methyl acrylate, Methacrolein, Acrolein Diels–Alder reactions 21-81%

283

Ti/Cu2(DDBD)(H2O)2 Ti/(S)-KUMOF-

1 Danishefsky‟s diene and benzaldehyde Hetero Diels–Alder reactions 52-80% 33-55% 284

Cd(BTB)(L-IP)(H2O)4 Cd-TBT 4-Nitrobenzaldehyde and cyclohexanone Aldol reactions 97% 58% 285

Page 50: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Zn4O(BPDC-C5H8ON2)3 IRMOF-Pro 4-Nitrobenzaldehyde and acetone Aldol reactions

29% 229

Cu3(BTC)2

2-Hydroxy-5-methylbenzaldehyde and ethyl

3-formyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-

tetrahydropyrimidine-5-carboxylate

derivatives

Aldol reactions 30-87%

285

(Zn4O)3(BTB)4(BDC-

C8H5O4NFe(III))3

UMCM-1-

AMFesal

Naphthaldehyde, mesitaldehyde, and 1-

methoxy-2-methyl-1-(trimethylsiloxy)

Propene

Mukaiyama-aldol reactions 53-70%

68

Zn4O(BDC)3 MOF-5 Biphenyl and toluene Friedel-Crafts alkylation reactions 40-73%

286

Zn3(OH)2(BPDC)2 MOF-69A Biphenyl and tert-butyl chloride Friedel-Crafts alkylation reactions 10-33%

286

Zn4O(BDC)3 MOF-5 Toluene and benzyl bromide Friedel–Crafts alkylation reactions >99%

287

Zn4O(BDC)3 IRMOF-1 tert-Butylchloride and toluene Friedel-Crafts alkylation 60-80%

288

Zn2(L3)(BPY)2 NU-601 N-methylpyrrole and (E)-1-nitroprop-1-ene Friedel−Crafts reactions between

pyrroles and nitroalkenes 98%

289

Pd(PYMO)2

Phenylboronic acid and 4-bromoanisole Suzuki-Miyaura coupling 74-90%

290

Pd Al(OH)(BDC-NH2) Pd/MIL-53(Al)-

NH2 Bromobenzene and phenylboronic acid Suzuki-Miyaura coupling 29-97%

291

Cu(PdCl2BPy)

Phenyl halides and arylboronic acid Suzuki-Miyaura coupling 75-99%

292

Pd Zn4O(BDC)3 Pd@MOF-5 Phenylacetylene and iodobenzene Sonogashira coupling reaction 3-98%

293

Pd EDTA-MIL-101(Cr) Pd-DETA-MIL-

101(Cr) Acrylic acid, triethylamine, and iodobenzene

Heck reactions of acrylic acid and

Iodobenzene 13-36%

294

Cu(SO4)(PBBM)

2,6-Dimethylphenol Oxidative coupling of dimethylphenol 85%

75

(Cu(Ac)2(PBBM))(CH3OH)

2,6-Dimethylphenol Oxidative coupling of dimethylphenol 90%

75

Gd(R-L1H2)(R-L1H3)(H2O)4

meso-2,3-Dimethylsuccinic anhydride and

trimethylsilyl cyanide Ring Opening of Cyclic Anhydrides 81% <5% 273

(R)-Cu2(5,5′-BDA)2(H2O)2

Epoxide, aniline, toluene Ring-opening reaction of epoxide 15-54% 43-45% 295

(Zn4O)3(BDC-C8H5O4NIn)3(BTB)4 UMCM-1-

AMInsal 2-Phenyloxirane and aniline Epoxide ring-opening reactions 99%

206

Cu(BPy)(H2O)2(BF4)2(BPy)

2-Methyl-2-phenyloxirane and methanol Ring-opening of epoxides 99%

296

Page 51: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Cu2(L-asp)2(BPE)

cis-2,3-Epoxybutane and methanol Methanolysis of epoxide 30-59% 10-17% 255

Cu2(L-asp)2(BPE)

cis-2,3-Epoxybutane and methanol Methanolysis of epoxide 32-65% 6-13% 255

Cu(BPy)(H2O)2(BF4)2(BPy)

Styrene, methanol, 2-propanol, tert-buthanol Alcoholysis of epoxide 4-93%

297

Zn4O(BDC)3-x(BDC-NH2)x

Propylene oxide, CO2, and

tetraalkylammonium halides Formation of propylene carbonate 0-89%

298

Zn2(TCPB)(Mn(III)(salen)) Mn(III)SO-MOF Ethyl 4-vinylbenzoate and 2-(tert-

butylsulfonyl)iodosylbenzene Epoxidation reaction 40% 80% 211

Zn2(TCPB)(Mn(II)(salen)) Mn(II)SO-MOF 2,2-Mimethyl-2H-chromene and 2-(tert-

butylsulfonyl)iodosylbenzene Epoxidation reaction

299

Sc2(NDS)(OH)4, Y(1,5-

NDS)(OH)(H2O) RPF-12, 13, 14 Linalool Epoxidation of linalool 62-100%

300

Ln(OH)(1,5-NDS) LnPF-1 Linalool Epoxidation of olefin 76-100%

301

Ln2(N3)(NIC)2(OH)3(HNIC)(H2O),

(Y(III), Gd(III))

Cyclooctene, styrene, 4-methylstyrene,

3-methylstyrene, 1-hexene, and tert-butyl

hydroperoxide

Epoxidation of olefins 41-99%

302

Sm4(N3)2(NIC)4(OH)6(HNIC)2

(H2O)2

Cyclooctene, styrene, 4-methylstyrene,

3-methylstyrene, 1-hexene, and tert-butyl

hydroperoxide

Epoxidation of olefins 40-99%

302

Zn2(BPDC)2(Mn(III)(salen))

2,2-Dimethyl-2H-chromene and 2-(tert-

butylsulfonyl)iodosylbenzene Epoxidation of olefins 71% 82% 303

(Mn(TpCPP)Mn1.5)(C3H7NO) PIZA-3 Cyclic alkenes Epoxidation of olefin 20-74%

76

Co2(H2O)(H2O)4(Co-DCDPD) MMPF-3 stilbene and tert-butyl hydroperoxide Epoxidation of stilbene 96%

304

Co(HOBA)2

Styrene, 4-Chlorostyrene, 4-tert-Butylstyrene,

Ethyl cinnamate, trans-Stilbene Epoxidation of olefins (solvent-free) 47-96%

305

Co(L4)2(H2O)4

Olefins and isobutyraldehyde Aerobic epoxidation of olefin 37-66%

306

Cu(L4)2(H2O)2

Olefins and isobutyraldehyde Aerobic epoxidation of olefin 48-74%

307

Pt Zn4O(BTB)2 Pt@MOF-177 2-Chlorobenzyl alcohol Oxidation of alcohol 99%

260

Pd(PYMO)2

Cinnamyl alcohol Oxidation of alcohol 99%

290

Page 52: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Mn-TMPyP [In48(HImDC)96] Cyclohexane and tert-butylhydroperoxide Oxidation of alkane 92%

78

(Mn2(TpCPP)2Mn3)(C3H7NO)2 PIZA-3 Cyclic alkanes, iodosylbenzene Oxidation of alkane 48-53%

76

Zn2(L5-Zn)(L6-Mn) ZnMn-RPM Cyclohexane and 2-(tert-

butylsulfonyl)iodosylbenzene Oxidation of cyclohexane

298

[PW11TiO39] MIL-101 α-Pinene and H2O2 Oxidation of olefin 40%

79

[PW11CoO39] MIL-101 α-Pinene and O2 Oxidation of olefin 45%

79

Structure is not determined In-Mn(III)-

porphyrin MOF

Styrene and 2-(tert-

butylsulfonyliodosyl)benzene Oxidation of olefin

308

(Zn4O)(BDC-NH2)2.6(BDC-

C7H5NO-VO-acac)0.4

IRMOF-3-

Vsal0.4 Cyclohexene and BuOOH Oxidation of olefin

197

Cu(H2BTEC)(2,2′-BPy)

Cyclohexene, styrene Oxidation of olefins 6-65%

309

Ln(OH)(NDS)(H2O) LnPF-1 Acetonitrile, H2O2 Oxidation of linalool 75-100% 310

Sc2(NDS)(OH)4, Y(1,5-

NDS)(OH)(H2O) RPF-12, 13, 14 Methylphenylsulfide, H2O2 Oxidation of sulfides 100%

300

Ru Zn4O(BDC)3 Ru + MOF-5 Benzyl Alcohol and O2/Ar Oxidation of Benzyl Alcohol 25%

259

Fe3O(H2O)3F(BTC)2 MIL-100(Fe) Diphenylmethane and tert-

butylhydroperoxide Oxidation of diphenylmethane 48%

311

Zr3O4(Fe(III)Cl-TCPP) PCN-222(Fe) Pyrogallol and hydrogen peroxide Oxidation of pyrogallol

312

Al(OH)(BDC-NH2)SiMe2Fc MIL-53-NH2 Benzene, H2O2 Oxidation of benzene 15%

201

Co4O(C16H16N4)3 NHPI@MFU-1

Cyclohexene, ethylbenzene, cyclohexanol,

cyclohexane, atmospheric oxygen, N-

hydroxyphthalimide

Oxidation of hydrocarbons 2-95%

313

Cu(BPy)(H2O)2(BF4)2(BPy)

Cyclohexene and O2 Oxidation of cyclohexene 5-7%

314

VO(BDC) MOF-47 Cyclohexene, tert-butylhydroperoxide Oxidation of cyclohexene 55-90%

315,

316

Co(BPB) MFU-3 Cyclohexene and tert-butyl hydroperoxide Oxidation of cyclohexene 63%

74

MP11 Tb(TATB) MP-11@Tb-

mesoMOF 3,5-Di-tert-butylcatechol Oxidation of catechol 49%

317

Page 53: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Cu(BPED)2(H2O)2(SiF6)

Tetralin and tert-butyl hydroperoxide Oxidation of benzylic compounds 84-88%

318

Mn5Cl2(MnCl-

OCPP)(DMF)4(H2O)4 ZJU-18

Ethylbenzene, propylbenzene, tetralin,

diphenylmethane, fluorine, and 4-ethyl-1,1'-

biphenyl

Oxidation of Alkylbenzenes 18-99% 319

M3(BTC)2 (M = Cu, Co, Ni)

Hydroquinone and O2 Oxidation of hydroquinone

320

Cu3(BTC)2

Olive oil mill wastewaters Oxidation of polyphenol

321

Yb(OH)(2,6-AQDS)(H2O) Yb-RPF-5 Methylphenylsulfide Oxidation of sulfide >90%

322

Yb2(succinate)3

Methylsulfanylbenzene and H2O2 Oxidation of sulfides 50%

323

In4(OH)6(BDC)3

Methyphenylsulfide, (2-

ethylbutyl)phenylsulfide Oxidation of sulfide 100%

324

Na20(Ni8(ImDC)12)(H2O)28

CO, O2, and He Oxidation of CO

325

Zn4O(BDC)3-x(BDC-NH2)x

CO and O2 Oxidation of CO 80-90%

326

Au Zn(2Me-Im)2 Au@ZIF-8 CO and O2 Oxidation of CO 100%

327

Zr3O2(OH)2(BPDC)3-x(L7)x

Water and cerium ammonium nitrate Oxidation of water

328

[CuPW11O39H(Me4N)4]

[Cu3(BTC)2]4

PW12 MOF-

199 Thiols Aerobic oxidation of thiol 27-95%

329

Cu(PYMO)2

Tetralin Aerobic oxidation of olefin 52%

330

Co(PhIM)2

Tetralin Aerobic oxidation of olefin 23%

330

Au Zn4O(BDC)3 Au MOF-5 Benzyl alcohol, 1-phenylethanol, K2CO3 and

methanol Aerobic oxidation of alcohols 79-99%

331

Au Al(OH)(BDC) Au MIL-

53(Al)

Benzyl alcohol, 1-phenylethanol, K2CO3 and

methanol Aerobic oxidation of alcohols 56-98%

331

Co2(C6H12N2P2O6)2(H2O) STA-12(Co) (E)-Stilbene Aerobic epoxidation of (E)-stilbene 97%

332

Fe3O(H2O)3F(BTC)2 MIL-100(Fe) Thiophenol Aerobic oxidation of thiophenol >99%

311

ZnF(Am2TAZ)

Dibutylamine and acrylonitrile aza-Michael reaction 85%

217

Page 54: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Zn/Cu2(DDBD)(H2O)2 Zn/(S)-KUMOF-

1 3-Methyl citronellal carbonyl-ene reaction 89-92% 23-50% 284

Cu(PYMO)2

Benzyl azide and phenylacetylene 1,3-dipolar cycloaddition reactions >99%

233

[Cd3Cl6(L8)3]Ti(OiPr)4

1-Naphthaldehyde Alkylation of aldehyde >99% 94% 67

[Cd3(L8)4(NO3)6]

1-Naphthaldehyde Alkylation of aldehyde >99% 90% 334

Zn2(L9)(DMF)(H2O)Ti(OiPr)2

Diethylzinc, aromatic aldehydes Addition of diethylzinc to aromatic

aldehydes 99% 11-30% 209

Cu2(L10)(H2O)2(Ti(OiPr)2)n CMOF-3a Ethyl(phenylalkynyl)zinc, benzaldehyde Addition of diethylzinc to aromatic

aldehydes >99% 0% 176

Cu2(L11)(H2O)2(Ti(OiPr)2)n CMOF-3b Ethyl(phenylalkynyl)zinc, aromatic aldehydes Addition of alkylzinc to aromatic

aldehydes >99% 31-76% 176

Cu2(L12)(H2O)2(Ti(OiPr)2)n CMOF-4b Ethyl(phenylalkynyl)zinc, aromatic aldehydes Addition of alkylzinc to aromatic

aldehydes >99% 49-77% 176

Zn(HFIPBB) (R,S)-2-phenylpropionaldehyde, CCl4 Acetalization of (R,S)-2-

phenylpropionaldehyde 60% 30% 335

Sc2(C4O4)3

-Methyl benzeneacetaldehyde,

Benzaldehyde Acetalization of carbonyls 78-100%

276

Yb2(succinate)3

Benzaldehyde and trimethyl orthoformate acetalization of aldehydes 90%

323

Cu2(L13)2Cl2

Grignard reagent, cinnamaldehyde derivatives 1,2-addition of α,β-unsaturated

ketones 48-98% 51-99% 336

Pd(II) Zn4O(BDC)3 Pd(II) MOF-

5(Oh)

Diphenyliodoniumtetrafluoroborate,

nitrobenzene 64% 337

Zr3O2(OH)2(BDC-X)3

UiO-66-X (X =

NH2, Cl, Br,

NO2)

(+)-Citronellal Cyclization of citronellal 15-100%

338

Cu3(BTC)2

Citronellal Cyclization of citronellal >97%

71

Cu3(BTC)2

2-(1-Bromoethyl)-2-phenyl-1,3-dioxolane Rearrangement of the ethylene acetal of

2-bromopropiophenone 13-82%

338

Cu3(BTC)2

-Pinene oxide Isomerization of α-pinene oxide 54-86%

71

Zn2(TCPB)(Zn-DPFPP) ZnPO-MOF N-acetylimidazole and 3-pyridylcarbinol Intermolecular acyl-transfer reaction

339

Page 55: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Gd(R-L1H2)(R-L1H3)(H2O)4

trans-1,2-Diaminocyclohexane and 3-

methylbenzoyl chloride

Enantioselective separation of trans-

1,2-diaminocyclohexane 4-14% 273

Zn3O(D-PTT) D-POST-1 2,4-Dinitrophenyl acetate and ethanol Enantioselective transesterification

reaction 77% 8% 31

Zn4O(BDC-C6H5ON2)3

Ethyldecanoate Transesterification of ethyldecanoate 55%

217

PW11O40 Cr3O(H2O)2F(BDC)3 POM@MIL-

101(Cr) n-Butanol Esterification of alcohols 65%

340

PW12O40 Cu3(BTC)2 Keggin HPW/

Cu3(BTC)2 Acetic acid and 1-propanol Esterification of acetic acid 15-30%

341

Ag2(BPy)2(O3SCH2CH2SO3) (M =

Ag(I), Cu(I)) SLUG-21/22

2-Butanone, 2-pentanone, benzophenone, and

ethylene glycol Ketal Formation 31-97%

342

XM12O40 Cu3(BTC)2 (X = Si, Ge,

P, As; M = W, Mo) Ethyl acetate Ethyl acetate hydrolysis 63%

80

Fe2(DOT) Fe-MOF-74 Phenol and H2O2 Hydroxylation of phenol 5-60%

168

PW11O40 Cr3O(H2O)2F(BDC)3 POM@MIL-

101(Cr) Methanol Dehydration of methanol 75%

340

Pd Cr3O(H2O)2F(BDC)3 Pd/MIL-101 Propiophenone Reduction of aryl alkyl ketones 95-100%

343

Pd-Ni Cr3O(H2O)2F(BDC)3 Pd/Ni/MIL-101 Cyclohexanone, cycloheptanone, 3-heptanone Reduction of alkyl ketones 1-99%

344

Pd Zn4O(BDC)3 Pd/MOF-5 Styrene Hydrogenation of styrene >99.7%

159

Ru Zn4O(BDC)3 Ru/MOF-5 Benzene Hydrogenation of Benzene 25%

160

Pd(PYMO)2

1-Octene Hydrogenation of olefin 99%

290

Zn4O(BDC-C7H5ON-AuCl2)3 IRMOF-3-SI-Au 1,3-Butadiene Hydrogenation of 1,3-butadiene 97%

198

Ni Tb16(TATB)16 Ni-MesMOF-1 Styrene, H2, methanol Hydrogenation of styrene >99%

345

Ca(HFIPBB)(H2HFIPBB)0.5(H2O) AEPF-1 Styrene, H2, toluene Hydrogenation of styrene 100%

346

Pd Zn4O(BDC)3 Pd@MOF-5 Ethyl cinnamate Hydrogenation 100%

347

Page 56: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

In2(OH)3(BDC)1.5

Nitrobenzene and 2-methyl-1-

nitronaphthalene Reduction of nitroaromatic 100%

324

Ni + Tb16(TATB)16 Ni-MesMOF-1 Nitrobenzene, NaBH4 Hydrogenolysis of nitrobenzene >99%

345

Yb(OH)(2,6-AQDS)(H2O) Yb-RPF-5 Thiophene Hydrosulfurization of thiophene >90%

322

Ni2(DOT)Mo(CO)6

Sibenzothiophene, indole, naphtalene,

dimethyldisulfide Hydrodesulfurization

348

VO(BDC-(Me)2) MOF-48 Methane, K2S2O8, trifluoroacetic acid Conversion of methane to acetic acid 36-48%

73

(Cu/ZnO) Zn4O(BDC)3 (Cu/ZnO)

MOF-5 CO/CO2/H2/He Methanol synthesis from CO/CO2/H2

349

Ni(BPy)(HBTC)

NH3BH3 H2 Generation 100%

350

Au-Pd ED-Cr3O(H2O)2F(BDC)3 Au-Pd/ED-MIL-

101 Formic acid Dehydrogenation of formic acid >99%

351

Cu(PYMO)2

Piperidine, benzonitrile, and butyraldehyde

Three-component coupling and

cyclization reactions for the synthesis

of propargylamines

55-99%

352

Cu(PYMO)2

Phenylacetylene, 2-aminopyridine, and

benzaldehyde

Three-component coupling and

cyclization reactions for the synthesis

of indoles

61-97%

352

Cu2(PDAI) PCN-124 Dimethoxymethylbenzene and malononitrile Sequential deacetalization-

Knoevenagel condensation reactions 100%

353

Al3O(H2O)2F(BDC-NH2)3 MIL-101(Al)-

NH2 2-methyl-2-phenyloxirane and malononitrile

Sequential Meinwald rearrangement–

Knoevenagel condensation reaction 80%

354

Cr3O(H2O)2(EDA)(BDC-SO3H)3 MIL-101(Cr)-

SO3H-NH2 benzaldehyde dimethyl acetal and CH3NO2

Sequential deacetalization-nitroaldol

reaction 97%

189

Pd + Cu3(BTC)2 Cu3(BTC)2(L14)

1.5(H2O)1.5

2-Iodobenzyl bromide, sodium azide,

ethynylbenzene

Sequential Sonogashira and click

reactions trace-100%

355

Zn4O(BDC-C7H5ON-AuCl2)3 IRMOF-3-SI-Au Ethynylaniline, octanal, and piperidine Three component coupling and

cyclization 95%

198

Zn4O(L15)3 CMOF-1 2-(tert-Butylsulfonyl)iodosylbenzene and 2,2-

dimethyl-2H-chromene derivatives

Sequential epoxidation and ring-

opening of epoxide 57-60% 50-81% 356

Page 57: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Chemical Formula Common

Name Substrate(s) Reaction(s) Catalyzed Conv. (%) ee (%) Ref.

Cu2(L13)2Cl2

Benzaldehyde, urea and ethyl acetoacetate Biginelli reaction 90% 0% 336

Zr3O2(OH)2(BPDC)3-x(L16)x

CO2, Xe light Photocatalytic CO2 reduction

328

Zr3O2(OH)2(BPDC)3-x(L17)x

2-(4-Methoxyphenyl)-1,2,3,4-

tetrahydroisoquinoline and MeNO2,

fluorescent light

Aza-Henry reactions 97%

328

Zr3O2(OH)2(BPDC)3-x(L17)x

p-Tolylmethanamine and MeCN, Xe light Photocatalytic aerobic amine coupling

Reactions 90%

328

Zr3O2(OH)2(BPDC)3-x(L17)x

Thioanisole, methanol, fluorescent light Aerobic photo-oxidation of thioanisole 73%

328

Zn2Sn(IV)(TPyP)(HCOO)2(H2O)4

Xe light Photo-oxygenation of 1,5-

dihydroxynaphthalene >99.8%

357

Zn2Sn(IV)(TPyP)(HCOO)2(H2O)4

Methyl(phenyl)sulfane Photo-oxygenation of Sulfides >99.9%

357

Mn2(L18)2(H2O)2

phenylmethanol and NaIO4, ambient light Oxidation of phenylmethanol 64%

358

Mn2(L19)(H2O)2

Phenylmethanol and NaIO4, ambient light Oxidation of phenylmethanol 97%

358

Pt Zr3O2(OH)2(L20)3

Water and Xe light Photocatlytic hydrogen evolution

83

Zr3O2(OH)2(BDC-NH2)3 UiO-66-NH2 Styrene derivatives and alcohols Photocatalitic aerobic oxygenation

359

Zn2(BDC)2(TED)

Styrene Radical polymerisation of styrene 71%

360

Zn2(BDC)2(TED)

Styrene Confinement of single polystyrene

chain 361

[{Ni-

(dmen)2}2{Fe(III)(CN)6}]PhBSO3 Pyrrole Oxidative polymerization of pyrrole

362

Nd(BTB)(H2O) MIL-103(Nd) Isoprene and modified methylaluminoxane Polymerization of isoprene 2 - >99%

363

Nd(BTC)(H2O) MIL-81(Nd) Isoprene and modified methylaluminoxane Polymerization of isoprene 2-77%

363

BPy = 4,4′-bipyridine, H4L1 = 2,2′-diethoxy-1,1′-binaphthalene-6,6′-bisphosphonic acid, BTC3-

= benzenetricarboxylate, BTT3-

= 1,3,5-

benzenetristetrazolate, H3PTA = tris-(4-carboxy-2-phenoxyethyl)amine, TATAB3-

= 4,4′,4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoate,

BTATB3-

= 4,4′,4″-(benzene-1,3,5-triyltris(azanediyl))tribenzoate, H2C4O4 = squaric acid, H4MDIP = methylenediisophthalic acid, 3,3′-TPDC2-

=

terphenyl-3,3′-dicarboxylate, DABCO = 1,4-diazabicyclo[2,2,2]octane, BTAPA = 1,3,5-benzene tricarboxylic acid tris[N-(4-pyridyl)amide],

BDC2-

= benzenedicarboxylate, H4L2 = 5,5′-(anthracene-9,10-diyl)bis(benzene-1,3-diol), DDBD2-

= 2,2′-dihydroxy-6,6′-dimethyl(1,1′-biphenyl)-

4,4′-dicarboxylate, BTB3-

= 4,4′,4″-benzene-1,3,5-triyl-tribenzoate, L-IP = 1-(pyrrolidin-2-ylmethyl)-1H-imidazole, BPDC2-

=

Page 58: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

biphenyldicarboxylate, H4L3 = 5,5′-(carbonylbis(azanediyl))diisophthalic acid, HPYMO = 2-hydroxypyrimidine, DETA = diethylenetriamine,

PBBM = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole, 5,5′-BDA2-

= 2,2′-dihydroxy-1,1′-binaphthalene-5,5′-dicarboxylate, asp- = aspartate, BPE =

1,2-bis(4-pyridyl)ethylene, H4TCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)benzene, Mn(III)(salen) = (R,R)-(–)-1,2-cyclohexanediamino-N,N′-bis(3-

tert-butyl-5-(4-pyridyl)salicylidene)Mn(III)Cl, Mn(II)(salen) = (R,R)-(–)-1,2-cyclohexanediamino-N,N′-bis(3-tert-butyl-5-(4-

pyridyl)salicylidene)Mn(II), NDS2-

= naphthalene-disulfonate, NIC- = nicotinate, H4TpCPP = tetra(p-carboxyphenyl)porphyrin, H4-Co-DCDPD =

5,15-bis(3,5-dicarboxyphenyl)-10,20-bis(2,6-dibromophenyl)porphyrin, H2OBA = 4,4′-oxybis(benzoic acid), L4- = 2-(4-formylphenoxy)acetate,

H2-TMPyP = 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin, H3ImDC = 4,5-imidazoledicarboxylic acid, H4L5-Zn = meso-tetrakis(4-

carboxyphenyl)-porphyrinato zinc(II), L6-Mn = 5,15-dipyridyl-10,20-bis(pentafluorophenyl))porphyrinato manganese (III) chloride, acac =

acetylacentone, BTEC4-

= 1,2,4,5-benzenetetracarboxylate; 2,2′-BPy = 2,2′-bipyridine, H4TCPP = tetrakis(4-carboxyphenyl)porphyrin, SiMe2Fc =

1,1′-ferrocenediyl-dimethylsilane, H2BPB = 1,4-di(1H-pyrazol-4-yl)benzene, MP11 = Microperoxidase-11, TATB3-

= 4,4′,4″-s-triazine-2,4,6-

triyltribenzoate, BPED = meso-1,2-bis(4-pyridyl)-1,2-ethanediol, MnCl-H8OCPP = 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin

manganese(III) chloride, 2,6-AQDS2-

= anthraquinone-2,6-disulfonate, H3ImDC = 4,5-imidazoledicarboxylic acid, 2Me-Im- = 2-

methylimidazolate, H2L7 = chloro(η5-pentamethylcyclopentadienyl)(2-(4-carboxyl)phenyl-(5-carboxyl)pyridine-C

2,N′)iridium(III), PhIM

- =

phenylimidazolate, Am2TAZ- = diaminotriazolate, L8 = (R)-6,6′-dichloro-2,2′-dihydroxy-1,1′-binaphthyl-4,4′-bipyridine, L9

4- = (R)-2,2′-

dihydroxy-1,1′-binaphthyl-4,4′,6,6′-tetrabenzoate, H4L10 = (R)-2,2′-diethoxy-1,1′-binaphthyl-4,4′,6,6′-tetrakis(4-benzoic acid), H4L11 = (R)-2,2′-

dihydroxy-1,1′-dinaphthyl-4,4′,6,6′-tetrakis(4-benzoic acid), H4L12 = (R)-4,4′,4″,4‴ -(1E,1′E,1″E,1‴ E)-2,2′,2″,2‴ -(2,2′-dihydroxy-1,1′-

binaphthyl-4,4′,6,6′- tetrayl)tetrakis(ethene-2,1-diyl)tetrabenzoic acid, H2HFIPBB = 4,4′-(hexafluoroisopropylidene)bis(benzoic acid), HL13 =

(S)-3-hydroxy-2-(pyridin-4-ylmethylamino)propanoic acid, DPFPP = 5,15-dipyridyl-10,20-bis(pentafluorophenyl))porphyrin, D-PTT- = (4S,5R)-

2,2-dimethyl-5-(1-(pyridin-4-ylamino)vinyl)-1,3-dioxolane-4-carboxylate, DOT4-

= 2,5-dioxidoterephthalate, ED = ethylenediamine, PDAI4-

=

5,5′-((pyridine-3,5-dicarbonyl)bis(azanediyl))-diisophthalate, EDA = Ethylenediamine, L14 = C5H4N-NH-Pd(Cl)2(PhCN), H2L15 = 4,4′-(1E,1′E)-

2,2′-(5,5′-(1E,1′E)-(1R,2R)-cyclohexane-1,2-diylbis(azan-1-yl-1-yli-dene)-bis(methan-1-yl-1-ylidene)bis(3-tert-butyl-4-hydroxy-5,1-

phenylene))bis(ethene-2,1-diyl)dibenzoic acid manganese(III) chloride, H2L16 = tris-carbonyl-chloro(5,5′-dicarboxyl-2,2′-bipyridine)rhenium(I),

H2L17 = [bis(2,2′-bipyridine,N1,N1′)(5,5′-dicarboxy-2,2′-bipyridine-)ruthenium(II)] dichloride, Sn(IV)TPyP = 5,10,15,20-tetra(4-pyridyl)-

tin(IV)porphyrin, L182-

= E-5-(2-(pyridin-4-yl)vinyl)isophthalate, L194-

= 5,5′-(3,4-diphenylcyclobutane-1,2-diyl)diisophthalate, H2L20 = bis(4-

phenyl-2-pyridine)(5,5′-di(4-carboxyl-phenyl)-2,2′-bipyridine)-iridium(III) chloride, TED = triethylenediamine, dmen = 1,1-

dimethylethylenediamine, PhBSO3- = p-phenylbenzenesulfonate.

Page 59: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

Related Web Sites (accessed May 4, 2013)

1. BASF receives French Pierre Potier Award for metal organic frameworks (MOFs)

research: http://www.basf.com/group/pressrelease/P-12-408

2. EcoFuel world tour around the world with natural gas: http://www.ecofuel-world-tour.com/

3. Current technology of hydrogen storage:

http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html

References and Notes

1. O. M. Yaghi et al., Reticular synthesis and the design of new materials. Nature 423, 705

(2003). DOI: 10.1038/nature01650

2. 2012 metal-organic frameworks issue. Chem. Rev. 112, issue 2 (2012).

3. U. Mueller et al., Metal-organic frameworks―Prospective industrial applications. J. Mater.

Chem. 16, 626 (2006). DOI: 10.1039/b511962f

4. M. Jacoby, Heading to market with MOFs. Chem. Eng. News 86(34), 13 (2008).

DOI: 10.1021/cen-v086n034.p013

5. M. Eddaoudi et al., Systematic design of pore size and functionality in isoreticular MOFs

and their application in methane storage. Science 295, 469 (2002). DOI:

10.1126/science.1067208

6. Z. Wang, S. M. Cohen, Postsynthetic covalent modification of a neutral metal-organic

framework. J. Am. Chem. Soc. 129, 12368 (2007). DOI: 10.1021/ja074366o

7. H. Deng et al., Multiple functional groups of varying ratios in metal-organic frameworks.

Science 327, 846 (2010). DOI: 10.1126/science.1181761

8. A. F. Wells, Structural Inorganic Chemistry (Oxford University Press, New York, 1984).

9. Y. Kinoshita, I. Matsubara, T. Higuchi, Y. Saito, The crystal structure of

bis(adiponitrilo)copper(I) nitrate. Bull. Chem. Soc. Jpn. 32, 1221 (1959). DOI:

10.1246/bcsj.32.1221

10. O. M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large

rectangular channels. J. Am. Chem. Soc. 117, 10401 (1995). DOI: 10.1021/ja00146a033

11. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional

Page 60: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

References

1. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular

synthesis and the design of new materials. Nature 423, 705–714 (2003).

doi:10.1038/nature01650 Medline

2. 2012 metal-organic frameworks issue. Chem. Rev. 112, 673–1268 (2012);

http://pubs.acs.org/toc/chreay/112/2.

3. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, Metal-organic

frameworks—prospective industrial applications. J. Mater. Chem. 16, 626 (2006).

doi:10.1039/b511962f

4. M. Jacoby, Heading to market with MOFs. Chem. Eng. News 86, 13 (2008). doi:10.1021/cen-

v086n034.p013

5. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Systematic

design of pore size and functionality in isoreticular MOFs and their application in

methane storage. Science 295, 469–472 (2002). doi:10.1126/science.1067208

6. Z. Wang, S. M. Cohen, Postsynthetic covalent modification of a neutral metal-organic

framework. J. Am. Chem. Soc. 129, 12368–12369 (2007). doi:10.1021/ja074366o

Medline

7. H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O.

M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks.

Science 327, 846–850 (2010). doi:10.1126/science.1181761

8. A. F. Wells, Structural Inorganic Chemistry (Oxford Univ. Press, New York, 1984).

9. Y. Kinoshita, I. Matsubara, T. Higuchi, Y. Saito, The crystal structure of

bis(adiponitrilo)copper(I) nitrate. Bull. Chem. Soc. Jpn. 32, 1221–1226 (1959).

doi:10.1246/bcsj.32.1221

10. O. M. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large

rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

doi:10.1021/ja00146a033

Page 61: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

11. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional

framework with channeling cavities for small molecules: [M2(4,4′-bpy)3(NO3)4]·xH2O}n

(M = Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997).

doi:10.1002/anie.199717251

12. H. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, Establishing microporosity in open metal-

organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-

benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998).

doi:10.1021/ja981669x

13. H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally

stable and highly porous metal-organic framework. Nature 402, 276 (1999).

doi:10.1038/46248

14. H. Furukawa, O. M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly

porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.

131, 8875–8883 (2009). doi:10.1021/ja9015765 Medline

15. H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe,

O. M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in

crystals. Nature 427, 523–527 (2004). doi:10.1038/nature02311 Medline

16. K. S. Walton, R. Q. Snurr, Applicability of the BET method for determining surface areas of

microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007).

doi:10.1021/ja071174k Medline

17. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr,

M. O’Keeffe, J. Kim, O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks.

Science 329, 424–428 (2010). doi:10.1126/science.1192160

18. J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, O. M. Yaghi, Gas adsorption

sites in a large-pore metal-organic framework. Science 309, 1350–1354 (2005).

doi:10.1126/science.1113247

19. O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O’Neill, A. A.

Sarjeant, S. T. Nguyen, R. Q. Snurr, J. T. Hupp, Designing higher surface area metal-

Page 62: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

organic frameworks: Are triple bonds better than phenyls? J. Am. Chem. Soc. 134, 9860–

9863 (2012). doi:10.1021/ja302623w Medline

20. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q.

Snurr, S. T. Nguyen, A. Ö. Yazaydın, J. T. Hupp, Metal-organic framework materials

with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021

(2012). doi:10.1021/ja3055639 Medline

21. H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. Kim, M. O’Keeffe, O. M.

Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square

building units and the lowest calculated density for porous crystals. Inorg. Chem. 50,

9147–9152 (2011). doi:10.1021/ic201376t Medline

22. H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.

C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart,

O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks. Science 336,

1018–1023 (2012). doi:10.1126/science.1220131

23. H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, An exceptional 54-fold interpenetrated

coordination polymer with 103-srs network topology. J. Am. Chem. Soc. 133, 11406–

11409 (2011). doi:10.1021/ja202303b Medline

24. O. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S.

T. Nguyen, R. Q. Snurr, J. T. Hupp, De novo synthesis of a metal-organic framework

material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–

948 (2010). doi:10.1038/nchem.834 Medline

25. S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H. C. Zhou, Metal-organic

framework from an anthracene derivative containing nanoscopic cages exhibiting high

methane uptake. J. Am. Chem. Soc. 130, 1012–1016 (2008). doi:10.1021/ja0771639

Medline

26. M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal-

organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009). doi:10.1021/ja9040016

Medline

Page 63: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

27. T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, High charge mobility in a tetrathiafulvalene-

based microporous metal-organic framework. J. Am. Chem. Soc. 134, 12932–12935

(2012). doi:10.1021/ja3059827

28. K. Saravanan, M. Nagarathinam, P. Balaya, J. J. Vittal, Lithium storage in a metal organic

framework with diamondoid topology—a case study on metal formates. J. Mater. Chem.

20, 8329 (2010). doi:10.1039/c0jm01671c

29. M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of

a two-dimensional square network material composed of cadmium(II) and 4,4′-

bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994). doi:10.1021/ja00082a055

30. B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, O. M. Yaghi,

Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC:

1,3,5,7-adamantane tetracarboxylate). J. Am. Chem. Soc. 122, 11559–11560 (2000).

doi:10.1021/ja003159k

31. J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic

porous material for enantioselective separation and catalysis. Nature 404, 982–986

(2000). doi:10.1038/35010088 Medline

32. K. M. L. Taylor, W. J. Rieter, W. Lin, Manganese-based nanoscale metal-organic

frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 130, 14358–14359

(2008). doi:10.1021/ja803777x Medline

33. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The Reticular Chemistry Structure

Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–

1789 (2008). doi:10.1021/ar800124u Medline

34. M. Xue, Y. Liu, R. M. Schaffino, S. Xiang, X. Zhao, G. S. Zhu, S. L. Qiu, B. Chen, New

prototype isoreticular metal-organic framework Zn4O(FMA)3 for gas storage. Inorg.

Chem. 48, 4649–4651 (2009). doi:10.1021/ic900486r Medline

35. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, A chemically

functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150

(1999). doi:10.1126/science.283.5405.1148

Page 64: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

36. X.-S. Wang, S. Ma, D. Sun, S. Parkin, H.-C. Zhou, A mesoporous metal-organic framework

with permanent porosity. J. Am. Chem. Soc. 128, 16474–16475 (2006).

doi:10.1021/ja066616r Medline

37. D. Sun, S. Ma, Y. Ke, D. J. Collins, H.-C. Zhou, An interweaving MOF with high hydrogen

uptake. J. Am. Chem. Soc. 128, 3896–3897 (2006). doi:10.1021/ja058777l Medline

38. S. Ma, D. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H. C. Zhou, Framework-catenation

isomerism in metal-organic frameworks and its impact on hydrogen uptake. J. Am. Chem.

Soc. 129, 1858–1859 (2007). doi:10.1021/ja067435s Medline

39. X.-S. Wang, S. Ma, D. Yuan, J. W. Yoon, Y. K. Hwang, J. S. Chang, X. Wang, M. R.

Jørgensen, Y. S. Chen, H. C. Zhou, A large-surface-area boracite-network-topology

porous MOF constructed from a conjugated ligand exhibiting a high hydrogen uptake

capacity. Inorg. Chem. 48, 7519–7521 (2009). doi:10.1021/ic901073w Medline

40. Y. Zou, M. Park, S. Hong, M. S. Lah, A designed metal-organic framework based on a

metal-organic polyhedron. Chem. Commun. 2008, 2340–2342 (2008).

doi:10.1039/b801103f Medline

41. Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey, M.

Schröder, Exceptionally high H2 storage by a metal-organic polyhedral framework.

Chem. Commun. 2009, 1025–1027 (2009). doi:10.1039/b900013e Medline

42. D. Zhao, D. Yuan, D. Sun, H.-C. Zhou, Stabilization of metal-organic frameworks with high

surface areas by the incorporation of mesocavities with microwindows. J. Am. Chem.

Soc. 131, 9186–9188 (2009). doi:10.1021/ja901109t Medline

43. D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An isoreticular series of metal-organic frameworks

with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity.

Angew. Chem. Int. Ed. 49, 5357–5361 (2010). doi:10.1002/anie.201001009

44. Y. Yan, I. Telepeni, S. Yang, X. Lin, W. Kockelmann, A. Dailly, A. J. Blake, W. Lewis, G.

S. Walker, D. R. Allan, S. A. Barnett, N. R. Champness, M. Schröder, Metal-organic

polyhedral frameworks: High H2 adsorption capacities and neutron powder diffraction

studies. J. Am. Chem. Soc. 132, 4092–4094 (2010). doi:10.1021/ja1001407 Medline

Page 65: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

45. D. Yuan, D. Zhao, H.-C. Zhou, Pressure-responsive curvature change of a ―rigid‖ geodesic

ligand in a (3,24)-connected mesoporous metal-organic framework. Inorg. Chem. 50,

10528–10530 (2011). doi:10.1021/ic201744n Medline

46. B. Zheng, J. Bai, J. Duan, L. Wojtas, M. J. Zaworotko, Enhanced CO2 binding affinity of a

high-uptake rht-type metal-organic framework decorated with acylamide groups. J. Am.

Chem. Soc. 133, 748–751 (2011). doi:10.1021/ja110042b Medline

47. B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem,

Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Enhanced binding affinity, remarkable

selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic

framework. Angew. Chem. Int. Ed. 51, 1412–1415 (2012). doi:10.1002/anie.201105966

48. I. Eryazici, O. K. Farha, B. G. Hauser, A. Ö. Yazaydın, A. A. Sarjeant, S. B. T. Nguyen, J. T.

Hupp, Two large-pore metal-organic frameworks derived from a single polytopic strut.

Cryst. Growth Des. 12, 1075–1080 (2012). doi:10.1021/cg201520z

49. J. Lu, A. Mondal, B. Moulton, M. J. Zaworotko, Polygons and faceted polyhedra and

nanoporous networks. Angew. Chem. Int. Ed. 40, 2113–2116 (2001). doi:10.1002/1521-

3773(20010601)40:11<2113::AID-ANIE2113>3.0.CO;2-3

50. L. Xie, S. Liu, C. Gao, R. Cao, J. Cao, C. Sun, Z. Su, Mixed-valence iron(II, III) trimesates

with open frameworks modulated by solvents. Inorg. Chem. 46, 7782–7788 (2007).

doi:10.1021/ic062273m Medline

51. M. Kramer, U. Schwarz, S. Kaskel, Synthesis and properties of the metal-organic framework

Mo3(BTC)2 (TUDMOF-1). J. Mater. Chem. 16, 2245 (2006). doi:10.1039/b601811d

52. L. J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C. M. Brown, J. R. Long, Highly-

selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J. Am. Chem.

Soc. 132, 7856–7857 (2010). doi:10.1021/ja1027925 Medline

53. O. Kozachuk, K. Yusenko, H. Noei, Y. Wang, S. Walleck, T. Glaser, R. A. Fischer,

Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1

structure type as thin films on oxide surfaces. Chem. Commun. 47, 8509–8511 (2011).

doi:10.1039/c1cc11107h Medline

Page 66: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

54. N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, Rod packings and

metal-organic frameworks constructed from rod-shaped secondary building units. J. Am.

Chem. Soc. 127, 1504–1518 (2005). doi:10.1021/ja045123o Medline

55. W. Zhou, H. Wu, T. Yildirim, Enhanced H2 adsorption in isostructural metal-organic

frameworks with open metal sites: Strong dependence of the binding strength on metal

ions. J. Am. Chem. Soc. 130, 15268–15269 (2008). doi:10.1021/ja807023q Medline

56. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M.

O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic

imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006).

doi:10.1073/pnas.0602439103 Medline

57. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, A

new zirconium inorganic building brick forming metal organic frameworks with

exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

doi:10.1021/ja8057953 Medline

58. M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A.

Quadrelli, F. Bonino, K. P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs.

Chem. Mater. 22, 6632–6640 (2010). doi:10.1021/cm102601v

59. W. Morris, B. Volosskiy, S. Demir, F. Gándara, P. L. McGrier, H. Furukawa, D. Cascio, J. F.

Stoddart, O. M. Yaghi, Synthesis, structure, and metalation of two new highly porous

zirconium metal-organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

doi:10.1021/ic300825s Medline

60. V. Colombo, S. Galli, H. J. Choi, G. D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J. R.

Long, High thermal and chemical stability in pyrazolate-bridged metal-organic

frameworks with exposed metal sites. Chem. Sci. 2, 1311 (2011).

doi:10.1039/c1sc00136a

61. B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, High H2 adsorption

in a microporous metal-organic framework with open metal sites. Angew. Chem. Int. Ed.

44, 4745–4749 (2005). doi:10.1002/anie.200462787

Page 67: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

62. S. Horike, M. Dincă, K. Tamaki, J. R. Long, Size-selective Lewis acid catalysis in a

microporous metal-organic framework with exposed Mn2+

coordination sites. J. Am.

Chem. Soc. 130, 5854–5855 (2008). doi:10.1021/ja800669j Medline

63. D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Highly efficient separation of

carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl.

Acad. Sci. U.S.A. 106, 20637–20640 (2009). doi:10.1073/pnas.0909718106 Medline

64. K. K. Tanabe, S. M. Cohen, Postsynthetic modification of metal-organic frameworks—a

progress report. Chem. Soc. Rev. 40, 498–519 (2011). doi:10.1039/c0cs00031k Medline

65. S. M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks.

Chem. Rev. 112, 970–1000 (2012). doi:10.1021/cr200179u Medline

66. Z. Wang, K. K. Tanabe, S. M. Cohen, Tuning hydrogen sorption properties of metal-organic

frameworks by postsynthetic covalent modification. Chemistry 16, 212–217 (2010).

doi:10.1002/chem.200902158 Medline

67. C.-D. Wu, A. Hu, L. Zhang, W. Lin, A homochiral porous metal-organic framework for

highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127,

8940–8941 (2005). doi:10.1021/ja052431t Medline

68. K. K. Tanabe, S. M. Cohen, Engineering a metal-organic framework catalyst by using

postsynthetic modification. Angew. Chem. Int. Ed. 48, 7424–7427 (2009).

doi:10.1002/anie.200903433

69. W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi, Crystals as molecules:

Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J. Am.

Chem. Soc. 130, 12626–12627 (2008). doi:10.1021/ja805222x Medline

70. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Metal-organic

framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

doi:10.1039/b807080f Medline

71. L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Probing

the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(BTC)2]

(BTC = benzene-1,3,5-tricarboxylate). Chemistry 12, 7353–7363 (2006).

doi:10.1002/chem.200600220 Medline

Page 68: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

72. A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Catalytic properties of MIL-101. Chem.

Commun. 2008, 4192–4194 (2008). doi:10.1039/b718371b Medline

73. A. Phan, A. U. Czaja, F. Gándara, C. B. Knobler, O. M. Yaghi, Metal-organic frameworks of

vanadium as catalysts for conversion of methane to acetic acid. Inorg. Chem. 50, 7388–

7390 (2011). doi:10.1021/ic201396m Medline

74. Y. Lu, M. Tonigold, B. Bredenkötter, D. Volkmer, J. Hitzbleck, G. Langstein, A cobalt(II)-

containing metal-organic framework showing catalytic activity in oxidation reactions. Z.

Anorg. Allg. Chem. 634, 2411–2417 (2008). doi:10.1002/zaac.200800158

75. B. Xiao, H. Hou, Y. Fan, Catalytic applications of CuII-containing MOFs based on N-

heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol. J. Organomet.

Chem. 692, 2014–2020 (2007). doi:10.1016/j.jorganchem.2007.01.010

76. K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry, S. R.

Wilson, Microporous porphyrin solids. Acc. Chem. Res. 38, 283–291 (2005).

doi:10.1021/ar040173j Medline

77. B.-Q. Ma, K. L. Mulfort, J. T. Hupp, Microporous pillared paddle-wheel frameworks based

on mixed-ligand coordination of zinc ions. Inorg. Chem. 44, 4912–4914 (2005).

doi:10.1021/ic050452i Medline

78. M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, M. Eddaoudi, Zeolite-like metal-organic

frameworks as platforms for applications on metalloporphyrin-based catalysts. J. Am.

Chem. Soc. 130, 12639–12641 (2008). doi:10.1021/ja804703w Medline

79. N. V. Maksimchuk, M. Timofeeva, M. Melgunov, A. Shmakov, Y. Chesalov, D. Dybtsev, V.

Fedin, O. Kholdeeva, Heterogeneous selective oxidation catalysts based on coordination

polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 257, 315–

323 (2008). doi:10.1016/j.jcat.2008.05.014

80. C.-Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, Highly stable crystalline

catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am.

Chem. Soc. 131, 1883–1888 (2009). doi:10.1021/ja807357r Medline

81. Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M.

Daturi, C. Serre, G. Férey, Amine grafting on coordinatively unsaturated metal centers of

Page 69: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47,

4144–4148 (2008). doi:10.1002/anie.200705998

82. B. Yuan, Y. Pan, Y. Li, B. Yin, H. Jiang, A highly active heterogeneous palladium catalyst

for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous

media. Angew. Chem. Int. Ed. 49, 4054–4058 (2010). doi:10.1002/anie.201000576

83. C. Wang, K. E. deKrafft, W. Lin, Pt nanoparticles@photoactive metal-organic frameworks:

Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J.

Am. Chem. Soc. 134, 7211–7214 (2012). doi:10.1021/ja300539p Medline

84. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi,

Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129

(2003). doi:10.1126/science.1083440

85. M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Hydrogen storage in metal-organic

frameworks. Chem. Rev. 112, 782–835 (2012). doi:10.1021/cr200274s Medline

86. J. L. C. Rowsell, O. M. Yaghi, Effects of functionalization, catenation, and variation of the

metal oxide and organic linking units on the low-pressure hydrogen adsorption properties

of metal-organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

doi:10.1021/ja056639q Medline

87. A. G. Wong-Foy, A. J. Matzger, O. M. Yaghi, Exceptional H2 saturation uptake in

microporous metal-organic frameworks. J. Am. Chem. Soc. 128, 3494–3495 (2006).

doi:10.1021/ja058213h Medline

88. B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K.

M. Thomas, Surface interactions and quantum kinetic molecular sieving for H2 and D2

adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc. 130, 6411–

6423 (2008). doi:10.1021/ja710144k Medline

89. S. S. Han, W. A. Goddard III, Lithium-doped metal-organic frameworks for reversible H2

storage at ambient temperature. J. Am. Chem. Soc. 129, 8422–8423 (2007).

doi:10.1021/ja072599+ Medline

90. K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, Post-synthesis alkoxide

formation within metal-organic framework materials: A strategy for incorporating highly

Page 70: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).

doi:10.1021/ja809954r Medline

91. M. Dincă, J. R. Long, High-enthalpy hydrogen adsorption in cation-exchanged variants of

the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J. Am.

Chem. Soc. 129, 11172–11176 (2007). doi:10.1021/ja072871f Medline

92. Mercedes-Benz F125; www.emercedesbenz.com/autos/mercedes-benz/concept-

vehicles/mercedes-benz-f125-research-vehicle-technology.

93. S. Noro, S. Kitagawa, M. Kondo, K. Seki, A new, methane adsorbent, porous coordination

polymer [CuSiF6(4,4′-bipyridine)2n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000).

doi:10.1002/1521-3773(20000616)39:12<2081::AID-ANIE2081>3.0.CO;2-A

94. Green Car Congress; www.greencarcongress.com/2010/10/basf-develops-method-for-

industrial-scale-mof-synthesis-trials-underway-in-natural-gas-vehicle-tanks.html.

95. A. R. Millward, O. M. Yaghi, Metal-organic frameworks with exceptionally high capacity

for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999

(2005). doi:10.1021/ja0570032 Medline

96. P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.

S. Chang, D. Y. Hong, Y. Kyu Hwang, S. Hwa Jhung, G. Férey, High uptakes of CO2

and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir 24,

7245–7250 (2008). doi:10.1021/la800227x Medline

97. S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, Dramatic tuning of carbon dioxide uptake via

metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc.

130, 10870–10871 (2008). doi:10.1021/ja8036096 Medline

98. T. M. McDonald, D. M. D’Alessandro, R. Krishna, J. R. Long, Enhanced carbon dioxide

capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic

framework CuBTTri. Chem. Sci. 2, 2022 (2011). doi:10.1039/c1sc00354b

99. J. J. Gassensmith, H. Furukawa, R. A. Smaldone, R. S. Forgan, Y. Y. Botros, O. M. Yaghi, J.

F. Stoddart, Strong and reversible binding of carbon dioxide in a green metal-organic

framework. J. Am. Chem. Soc. 133, 15312–15315 (2011). doi:10.1021/ja206525x

Medline

Page 71: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

100. R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H.

Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Highly controlled acetylene

accommodation in a metal-organic microporous material. Nature 436, 238–241 (2005).

doi:10.1038/nature03852 Medline

101. W. Morris, C. J. Doonan, O. M. Yaghi, Postsynthetic modification of a metal-organic

framework for stabilization of a hemiaminal and ammonia uptake. Inorg. Chem. 50,

6853–6855 (2011). doi:10.1021/ic200744y Medline

102. B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi,

S. Dai, A microporous metal-organic framework for gas-chromatographic separation of

alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006). doi:10.1002/anie.200502844

103. E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long,

Hydrocarbon separations in a metal-organic framework with open iron(II) coordination

sites. Science 335, 1606–1610 (2012). doi:10.1126/science.1217544

104. M. Yoon, K. Suh, S. Natarajan, K. Kim, Proton conduction in metal-organic frameworks

and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

doi:10.1002/anie.201206410

105. Y. Nagao, R. Ikeda, S. Kanda, Y. Kubozono, H. Kitagawa, Complex-plane impedance study

on a hydrogen-doped copper coordination polymer: N,N′-bis-(2-

hydroxyethyl)dithiooxamidato-copper(II). Mol. Cryst. Liq. Cryst. 379, 89–94 (2002).

doi:10.1080/713738672

106. A. Shigematsu, T. Yamada, H. Kitagawa, Wide control of proton conductivity in porous

coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011).

doi:10.1021/ja109810w Medline

107. J. M. Taylor, K. W. Dawson, G. K. H. Shimizu, A water-stable metal-organic framework

with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 135,

1193–1196 (2013). doi:10.1021/ja310435e Medline

108. T. Yamada, M. Sadakiyo, H. Kitagawa, High proton conductivity of one-dimensional

ferrous oxalate dihydrate. J. Am. Chem. Soc. 131, 3144–3145 (2009).

doi:10.1021/ja808681m Medline

Page 72: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

109. Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Approaches and recent development of polymer

electrolyte membranes for fuel cells operating above 100°C. Chem. Mater. 15, 4896–

4915 (2003). doi:10.1021/cm0310519

110. J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski, G. K.

Shimizu, Anhydrous proton conduction at 150°C in a crystalline metal-organic

framework. Nat. Chem. 1, 705–710 (2009). doi:10.1038/nchem.402 Medline

111. S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S.

Kitagawa, One-dimensional imidazole aggregate in aluminium porous coordination

polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009).

doi:10.1038/nmat2526 Medline

112. D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, S. Kitagawa, Confinement of mobile

histamine in coordination nanochannels for fast proton transfer. Angew. Chem. Int. Ed.

50, 11706–11709 (2011). doi:10.1002/anie.201102997

113. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various

MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

doi:10.1021/cr200304e Medline

114. D. Bradshaw, A. Garai, J. Huo, Metal-organic framework growth at functional interfaces:

Thin films and composites for diverse applications. Chem. Soc. Rev. 41, 2344–2381

(2012). doi:10.1039/c1cs15276a Medline

115. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, H.-K. Jeong, Current status of metal-

organic framework membranes for gas separations: Promises and challenges. Ind. Eng.

Chem. Res. 51, 2179–2199 (2012). doi:10.1021/ie202038m

116. L. Huang et al., Synthesis, morphology control, and properties of porous metal-organic

coordination polymers. Microporous Mesoporous Mater. 58, 105–114 (2003).

doi:10.1016/S1387-1811(02)00609-1

117. J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-

temperature synthesis and characterization of nanocrystals of a prototypical zeolitic

imidazolate framework. Chem. Mater. 21, 1410–1412 (2009). doi:10.1021/cm900166h

Page 73: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

118. J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling

zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal

growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141

(2011). doi:10.1021/cm103571y

119. M. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng, M. Eddaoudi, Highly

monodisperse M(III)-based soc-MOFs (M = In and Ga) with cubic and truncated cubic

morphologies. J. Am. Chem. Soc. 134, 13176–13179 (2012). doi:10.1021/ja3049282

Medline

120. A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, Morphology

design of porous coordination polymer crystals by coordination modulation. J. Am.

Chem. Soc. 133, 15506–15513 (2011). doi:10.1021/ja204233q Medline

121. M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzán, Directed self-assembly of

nanoparticles. ACS Nano 4, 3591–3605 (2010). doi:10.1021/nn100869j Medline

122. N. Yanai, S. Granick, Directional self-assembly of a colloidal metal-organic framework.

Angew. Chem. Int. Ed. 51, 5638–5641 (2012). doi:10.1002/anie.201109132

123. G. Lu, C. Cui, W. Zhang, Y. Liu, F. Huo, Synthesis and self-assembly of monodispersed

metal-organic framework microcrystals. Chem. Asian J. 8, 69–72 (2013).

doi:10.1002/asia.201200754 Medline

124. N. Yanai, M. Sindoro, J. Yan, S. Granick, Electric field-induced assembly of monodisperse

polyhedral metal-organic framework crystals. J. Am. Chem. Soc. 135, 34–37 (2013).

doi:10.1021/ja309361d Medline

125. Q. Li, W. Zhang, O. S. Miljanić, C. H. Sue, Y. L. Zhao, L. Liu, C. B. Knobler, J. F.

Stoddart, O. M. Yaghi, Docking in metal-organic frameworks. Science 325, 855–859

(2009). doi:10.1126/science.1175441

126. H. Deng, M. A. Olson, J. F. Stoddart, O. M. Yaghi, Robust dynamics. Nat. Chem. 2, 439–

443 (2010). doi:10.1038/nchem.654 Medline

127. P. Vairaprakash, H. Ueki, K. Tashiro, O. M. Yaghi, Synthesis of metal-organic complex

arrays. J. Am. Chem. Soc. 133, 759–761 (2011). doi:10.1021/ja1097644 Medline

Page 74: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

128. O. Shekhah, J. Liu, R. A. Fischer, Ch. Wöll, MOF thin films: Existing and future

applications. Chem. Soc. Rev. 40, 1081–1106 (2011). doi:10.1039/c0cs00147c Medline

129. K. M. Choi, H. J. Jeon, J. K. Kang, O. M. Yaghi, Heterogeneity within order in crystals of a

porous metal-organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011).

doi:10.1021/ja204818q Medline

130. S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo,

R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, S. Kitagawa,

Heterogeneously hybridized porous coordination polymer crystals: Fabrication of

heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship.

Angew. Chem. Int. Ed. 48, 1766–1770 (2009). doi:10.1002/anie.200804836

131. J. A. Botas, G. Calleja, M. Sánchez-Sánchez, M. G. Orcajo, Cobalt doping of the MOF-5

framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010).

doi:10.1021/la100423a Medline

132. J. Rabone, Y. F. Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa, D. Bradshaw, G. R. Darling,

N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, M. J. Rosseinsky, An

adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

doi:10.1126/science.1190672

133. S.-T. Zheng, T. Wu, B. Irfanoglu, F. Zuo, P. Feng, X. Bu, Multicomponent self-assembly of

a nested Co24@Co48 metal-organic polyhedral framework. Angew. Chem. Int. Ed. 50,

8034–8037 (2011). doi:10.1002/anie.201103155

134. F. Bu, Q. Lin, Q. Zhai, L. Wang, T. Wu, S.-T. Zheng, X. Bu, P. Feng, Two zeolite-type

frameworks in one metal-organic framework with Zn24@Zn104 cube-in-sodalite

architecture. Angew. Chem. Int. Ed. 51, 8538–8541 (2012). doi:10.1002/anie.201203425

135. Z. Wang, K. K. Tanabe, S. M. Cohen, Accessing postsynthetic modification in a series of

metal-organic frameworks and the influence of framework topology on reactivity. Inorg.

Chem. 48, 296–306 (2009). doi:10.1021/ic801837t Medline

136. Y. Yan, S. Yang, A. J. Blake, W. Lewis, E. Poirier, S. A. Barnett, N. R. Champness, M.

Schröder, A mesoporous metal-organic framework constructed from a nanosized C3-

Page 75: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chem. Commun. 47, 9995–

9997 (2011). doi:10.1039/c1cc13170b Medline

137. R. Luebke, J. F. Eubank, A. J. Cairns, Y. Belmabkhout, L. Wojtas, M. Eddaoudi, The

unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption

relationship. Chem. Commun. 48, 1455–1457 (2012). doi:10.1039/c1cc15962c Medline

138. P. D. C. Dietzel, Y. Morita, R. Blom, H. Fjellvåg, An in situ high-temperature single-crystal

investigation of a dehydrated metal-organic framework compound and field-induced

magnetization of one-dimensional metal-oxygen chains. Angew. Chem. Int. Ed. 44, 6354–

6358 (2005). doi:10.1002/anie.200501508 Medline

139. P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvåg, Hydrogen adsorption in a

nickel based coordination polymer with open metal sites in the cylindrical cavities of the

desolvated framework. Chem. Commun. 2006, 959–961 (2006). doi:10.1039/b515434k

Medline

140. W. L. Queen, E. D. Bloch, C. M. Brown, M. R. Hudson, J. A. Mason, L. J. Murray, A. J.

Ramirez-Cuesta, V. K. Peterson, J. R. Long, Hydrogen adsorption in the metal-organic

frameworks Fe2(dobdc) and Fe2(O2)(dobdc). Dalton Trans. 41, 4180–4187 (2012).

doi:10.1039/c2dt12138g Medline

141. R. Sanz, F. Martínez, G. Orcajo, L. Wojtas, D. Briones, Synthesis of a honeycomb-like Cu-

based metal-organic framework and its carbon dioxide adsorption behaviour. Dalton

Trans. 42, 2392–2398 (2013). doi:10.1039/c2dt32138f Medline

142. P. D. C. Dietzel, R. Blom, H. Fjellvåg, Base-induced formation of two magnesium metal-

organic framework compounds with a bifunctional tetratopic ligand. Eur. J. Inorg. Chem.

2008, 3624–3632 (2008). doi:10.1002/ejic.200701284

143. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A

chromium terephthalate-based solid with unusually large pore volumes and surface area.

Science 309, 2040–2042 (2005). doi:10.1126/science.1116275

144. M. Dincă, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long, Hydrogen storage

in a microporous metal-organic framework with exposed Mn2+

coordination sites. J. Am.

Chem. Soc. 128, 16876–16883 (2006). doi:10.1021/ja0656853 Medline

Page 76: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

145. Y. Liu, V. Ch. Kravtsov, R. Larsen, M. Eddaoudi, Molecular building blocks approach to

the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large

cavities. Chem. Commun. 2006, 1488–1490 (2006). doi:10.1039/b600188m Medline

146. Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, T. C.

Kobayashi, Direct observation of hydrogen molecules adsorbed onto a microporous

coordination polymer. Angew. Chem. Int. Ed. 44, 920–923 (2005).

doi:10.1002/anie.200461895 Medline

147. F. Millange, N. Guillou, R. I. Walton, J. M. Grenèche, I. Margiolaki, G. Férey, Effect of the

nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem.

Commun. 2008, 4732–4734 (2008). doi:10.1039/b809419e Medline

148. T. Echigo, M. Kimata, Single-crystal X-ray diffraction and spectroscopic studies on

humboldtine and lindbergite: Weak Jahn-Teller effect of Fe2+

ion. Phys. Chem. Miner.

35, 467–475 (2008). doi:10.1007/s00269-008-0241-7

149. A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen, M. Takata, Y. Kubota,

S. Kitagawa, Nanochannels of two distinct cross-sections in a porous Al-based

coordination polymer. J. Am. Chem. Soc. 130, 13664–13672 (2008).

doi:10.1021/ja802589u Medline

150. Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. Ch. Kravtsov, R. Luebke, M. Eddaoudi,

Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks:

A porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed. 46,

3278–3283 (2007). doi:10.1002/anie.200604306 Medline

151. M. Viertelhaus, P. Adler, R. Clérac, C. E. Anson, A. K. Powell, Iron(II) formate

[Fe(O2CH)2]·1/3HCO2H: A mesoporous magnet − Solvothermal syntheses and crystal

tructures of the isomorphous framework metal(II) formates [M(O2CH)2]·n(solvent) (M =

Fe, Co, Ni, Zn, Mg). Eur. J. Inorg. Chem. 2005, 692–703 (2005).

doi:10.1002/ejic.200400395

152. D. J. Tranchemontagne, J. R. Hunt, O. M. Yaghi, Room temperature synthesis of metal-

organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.

Tetrahedron 64, 8553–8557 (2008). doi:10.1016/j.tet.2008.06.036

Page 77: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

153. J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi, Hydrogen sorption in

functionalized metal-organic frameworks. J. Am. Chem. Soc. 126, 5666–5667 (2004).

doi:10.1021/ja049408c Medline

154. K. Koh, J. D. Van Oosterhout, S. Roy, A. G. Wong-Foy, A. J. Matzger, Exceptional surface

area from coordination copolymers derived from two linear linkers of differing lengths.

Chem. Sci. 3, 2429 (2012). doi:10.1039/c2sc20407j

155. Q. Yao, J. Su, O. Cheung, Q. Liu, N. Hedin, X. Zou, Interpenetrated metal-organic

frameworks and their uptake of CO2 at relatively low pressures. J. Mater. Chem. 22,

10345 (2012). doi:10.1039/c2jm15933c

156. Z. Ni, thesis, University of California, Los Angeles (2007).

157. D. J. Tranchemontagne, K. S. Park, H. Furukawa, J. Eckert, C. B. Knobler, O. M. Yaghi,

Hydrogen storage in new metal-organic frameworks. J. Phys. Chem. C 116, 13143–

13151 (2012). doi:10.1021/jp302356q

158. R. K. Deshpande, G. I. N. Waterhouse, G. B. Jameson, S. G. Telfer, Photolabile protecting

groups in metal-organic frameworks: Preventing interpenetration and masking functional

groups. Chem. Commun. 48, 1574–1576 (2012). doi:10.1039/c1cc12884a Medline

159. O. M. Yaghi, Hydrogen storage in metal-organic frameworks (2008);

www.hydrogen.energy.gov/pdfs/review08/st_12_yaghi.pdf.

160. T.-H. Park, K. Koh, A. G. Wong-Foy, A. J. Matzger, Nonlinear properties in coordination

copolymers derived from randomly mixed ligands. Cryst. Growth Des. 11, 2059–2063

(2011). doi:10.1021/cg200271e

161. C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons,

M. D. Allendorf, Influence of connectivity and porosity on ligand-based luminescence in

zinc metal-organic frameworks. J. Am. Chem. Soc. 129, 7136–7144 (2007).

doi:10.1021/ja0700395 Medline

162. J. Duan, J. Bai, B. Zheng, Y. Li, W. Ren, Controlling the shifting degree of interpenetrated

metal-organic frameworks by modulator and temperature and their hydrogen adsorption

properties. Chem. Commun. 47, 2556–2558 (2011). doi:10.1039/c0cc04146g Medline

Page 78: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

163. K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, A metal-organic framework with

covalently bound organometallic complexes. J. Am. Chem. Soc. 132, 9262–9264 (2010).

doi:10.1021/ja103016y Medline

164. D. W. Smithenry, S. R. Wilson, K. S. Suslick, A robust microporous zinc porphyrin

framework solid. Inorg. Chem. 42, 7719–7721 (2003). doi:10.1021/ic034873g Medline

165. J. M. Falkowski, S. Liu, C. Wang, W. Lin, Chiral metal-organic frameworks with tunable

open channels as single-site asymmetric cyclopropanation catalysts. Chem. Commun. 48,

6508–6510 (2012). doi:10.1039/c2cc32232c Medline

166. A. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A.

M. Slawin, J. F. Stoddart, J. P. Sauvage, O. M. Yaghi, Metal-organic frameworks

incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160–2163

(2012). doi:10.1002/anie.201107873 Medline

167. B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin, Highly

interpenetrated metal-organic frameworks for hydrogen storage. Angew. Chem. Int. Ed.

44, 72–75 (2004). doi:10.1002/anie.200461214 Medline

168. S. Bhattacharjee, J. S. Choi, S. T. Yang, S. B. Choi, J. Kim, W. S. Ahn, Solvothermal

synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J. Nanosci.

Nanotechnol. 10, 135–141 (2010). doi:10.1166/jnn.2010.1493 Medline

169. T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, J. R. Long, Capture of

carbon dioxide from air and flue gas in the alkylamine-appended metal-organic

framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

doi:10.1021/ja300034j Medline

170. W. Zhuang, S. Ma, X. S. Wang, D. Yuan, J. R. Li, D. Zhao, H. C. Zhou, Introduction of

cavities up to 4 nm into a hierarchically-assembled metal-organic framework using an

angular, tetratopic ligand. Chem. Commun. 46, 5223–5225 (2010).

doi:10.1039/c0cc00779j Medline

171. Y. K. Park, S. B. Choi, H. Kim, K. Kim, B. H. Won, K. Choi, J. S. Choi, W. S. Ahn, N.

Won, S. Kim, D. H. Jung, S. H. Choi, G. H. Kim, S. S. Cha, Y. H. Jhon, J. K. Yang, J.

Kim, Crystal structure and guest uptake of a mesoporous metal-organic framework

Page 79: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 46, 8230–8233

(2007). doi:10.1002/anie.200702324 Medline

172. L. Ma, J. M. Falkowski, C. Abney, W. Lin, A series of isoreticular chiral metal-organic

frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2, 838–846

(2010). doi:10.1038/nchem.738 Medline

173. K. Koh, A. G. Wong-Foy, A. J. Matzger, A crystalline mesoporous coordination copolymer

with high microporosity. Angew. Chem. Int. Ed. 47, 677–680 (2008).

doi:10.1002/anie.200705020 Medline

174. K. Koh, A. G. Wong-Foy, A. J. Matzger, A porous coordination copolymer with over 5000

m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009).

doi:10.1021/ja809985t Medline

175. A. Sonnauer, F. Hoffmann, M. Fröba, L. Kienle, V. Duppel, M. Thommes, C. Serre, G.

Férey, N. Stock, Giant pores in a chromium 2,6-naphthalenedicarboxylate open-

framework structure with MIL-101 topology. Angew. Chem. Int. Ed. 48, 3791–3794

(2009). doi:10.1002/anie.200805980 Medline

176. J. An, O. K. Farha, J. T. Hupp, E. Pohl, J. I. Yeh, N. L. Rosi, Metal-adeninate vertices for

the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3,

604 (2009). doi:10.1038/ncomms1618

177. U. Stoeck, S. Krause, V. Bon, I. Senkovska, S. Kaskel, A highly porous metal-organic

framework, constructed from a cuboctahedral super-molecular building block, with

exceptionally high methane uptake. Chem. Commun. 48, 10841–10843 (2012).

doi:10.1039/c2cc34840c Medline

178. M. J. Ingleson, R. Heck, J. A. Gould, M. J. Rosseinsky, Nitric oxide chemisorption in a

postsynthetically modified metal-organic framework. Inorg. Chem. 48, 9986–9988

(2009). doi:10.1021/ic9015977 Medline

179. F. Ke, L. G. Qiu, Y. P. Yuan, F. M. Peng, X. Jiang, A. J. Xie, Y. H. Shen, J. F. Zhu, Thiol-

functionalization of metal-organic framework by a facile coordination-based

postsynthetic strategy and enhanced removal of Hg2+

from water. J. Hazard. Mater. 196,

36–43 (2011). doi:10.1016/j.jhazmat.2011.08.069 Medline

Page 80: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

180. A. Das, P. D. Southon, M. Zhao, C. J. Kepert, A. T. Harris, D. M. D’Alessandro, Carbon

dioxide adsorption by physisorption and chemisorption interactions in piperazine-grafted

Ni2(dobdc) (dobdc = 1,4-dioxido-2,5-benzenedicarboxylate). Dalton Trans. 41, 11739–

11744 (2012). doi:10.1039/c2dt31112g Medline

181. S. Ma, H.-C. Zhou, A metal-organic framework with entatic metal centers exhibiting high

gas adsorption affinity. J. Am. Chem. Soc. 128, 11734–11735 (2006).

doi:10.1021/ja063538z Medline

182. M. Dincă, W. S. Han, Y. Liu, A. Dailly, C. M. Brown, J. R. Long, Observation of Cu2+

-H2

interactions in a fully desolvated sodalite-type metal-organic framework. Angew. Chem.

Int. Ed. 46, 1419–1422 (2007). doi:10.1002/anie.200604362 Medline

183. A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long, Strong CO2 binding in a

water-stable, triazolate-bridged metal-organic framework functionalized with

ethylenediamine. J. Am. Chem. Soc. 131, 8784–8786 (2009). doi:10.1021/ja903411w

Medline

184. K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean,

G. J. Long, A. Dailly, J. R. Long, Hydrogen storage and carbon dioxide capture in an

iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-

throughput methods. Chem. Sci. 1, 184 (2010). doi:10.1039/c0sc00179a

185. P. M. Forster, J. Eckert, B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J. S. Chang, A.

K. Cheetham, Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II)

sites in a nanoporous hybrid material. J. Am. Chem. Soc. 128, 16846–16850 (2006).

doi:10.1021/ja0649217 Medline

186. G. Férey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surblé, J. Dutour, I. Margiolaki, A

hybrid solid with giant pores prepared by a combination of targeted chemistry,

simulation, and powder diffraction. Angew. Chem. Int. Ed. 43, 6296–6301 (2004).

doi:10.1002/anie.200460592 Medline

187. A. Vimont, J. M. Goupil, J. C. Lavalley, M. Daturi, S. Surblé, C. Serre, F. Millange, G.

Férey, N. Audebrand, Investigation of acid sites in a zeotypic giant pores chromium(III)

carboxylate. J. Am. Chem. Soc. 128, 3218–3227 (2006). doi:10.1021/ja056906s Medline

Page 81: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

188. M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo, K. Kim,

Postsynthetic modification switches an achiral framework to catalytically active

homochiral metal-organic porous materials. J. Am. Chem. Soc. 131, 7524–7525 (2009).

doi:10.1021/ja901440g Medline

189. B. Li, Y. Zhang, D. Ma, L. Li, G. Li, G. Li, Z. Shi, S. Feng, A strategy toward constructing

a bifunctionalized MOF catalyst: Post-synthetic modification of MOFs on organic ligands

and coordinatively unsaturated metal sites. Chem. Commun. 48, 6151–6153 (2012).

doi:10.1039/c2cc32384b Medline

190. O. K. Farha, K. L. Mulfort, J. T. Hupp, An example of node-based postassembly

elaboration of a hydrogen-sorbing, metal-organic framework material. Inorg. Chem. 47,

10223–10225 (2008). doi:10.1021/ic8018452 Medline

191. Y.-S. Bae, O. K. Farha, J. T. Hupp, R. Q. Snurr, Enhancement of CO2/N2 selectivity in a

metal-organic framework by cavity modification. J. Mater. Chem. 19, 2131 (2009).

doi:10.1039/b900390h

192. H. J. Park, Y. E. Cheon, M. P. Suh, Post-synthetic reversible incorporation of organic

linkers into porous metal-organic frameworks through single-crystal-to-single-crystal

transformations and modification of gas-sorption properties. Chemistry 16, 11662–11669

(2010). doi:10.1002/chem.201001549 Medline

193. S. Das, H. Kim, K. Kim, Metathesis in single crystal: Complete and reversible exchange of

metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc.

131, 3814–3815 (2009). doi:10.1021/ja808995d Medline

194. T. K. Prasad, D. H. Hong, M. P. Suh, High gas sorption and metal-ion exchange of

microporous metal-organic frameworks with incorporated imide groups. Chemistry 16,

14043–14050 (2010). doi:10.1002/chem.201002135 Medline

195. H. R. Moon, N. Kobayashi, M. P. Suh, Porous metal-organic framework with

coordinatively unsaturated Mn(II) sites: Sorption properties for various gases. Inorg.

Chem. 45, 8672–8676 (2006). doi:10.1021/ic0611948 Medline

Page 82: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

196. S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, Impact of preparation and handling on the

hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem.

Soc. 129, 14176–14177 (2007). doi:10.1021/ja076877g Medline

197. M. J. Ingleson, J. Perez Barrio, J. B. Guilbaud, Y. Z. Khimyak, M. J. Rosseinsky,

Framework functionalisation triggers metal complex binding. Chem. Commun. 2008,

2680–2682 (2008). doi:10.1039/b718367d Medline

198. X. Zhang, F. X. Llabrés i Xamena, A. Corma, Gold(III)-metal organic framework bridges

the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265, 155–160

(2009). doi:10.1016/j.jcat.2009.04.021

199. S. Bhattacharjee, D.-A. Yang, W.-S. Ahn, A new heterogeneous catalyst for epoxidation of

alkenes via one-step post-functionalization of IRMOF-3 with a manganese(II)

acetylacetonate complex. Chem. Commun. 47, 3637–3639 (2011).

doi:10.1039/c1cc00069a Medline

200. J. He, K.-K. Yee, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui, C.-M. Che, Thioether side

chains improve the stability, fluorescence, and metal uptake of a metalorganic

framework. Chem. Mater. 23, 2940–2947 (2011). doi:10.1021/cm200557e

201. M. Meilikhov, K. Yusenko, R. A. Fischer, Turning MIL-53(Al) redox-active by

functionalization of the bridging OH-group with 1,1′-ferrocenediyl-dimethylsilane. J. Am.

Chem. Soc. 131, 9644–9645 (2009). doi:10.1021/ja903918s Medline

202. K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic

modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and

drug delivery. J. Am. Chem. Soc. 131, 14261–14263 (2009). doi:10.1021/ja906198y

Medline

203. X.-P. Zhou, Z. Xu, M. Zeller, A. D. Hunter, Reversible uptake of HgCl2 in a porous

coordination polymer based on the dual functions of carboxylate and thioether. Chem.

Commun. 2009, 5439–5441 (2009). doi:10.1039/b910265e Medline

204. T. Gadzikwa, O. K. Farha, K. L. Mulfort, J. T. Hupp, S. T. Nguyen, A Zn-based, pillared

paddlewheel MOF containing free carboxylic acids via covalent post-synthesis

elaboration. Chem. Commun. 2009, 3720–3722 (2009). doi:10.1039/b823392f Medline

Page 83: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

205. C. J. Doonan, W. Morris, H. Furukawa, O. M. Yaghi, Isoreticular metalation of metal-

organic frameworks. J. Am. Chem. Soc. 131, 9492–9493 (2009). doi:10.1021/ja903251e

Medline

206. K. K. Tanabe, S. M. Cohen, Modular, active, and robust Lewis acid catalysts supported on a

metal-organic framework. Inorg. Chem. 49, 6766–6774 (2010). doi:10.1021/ic101125m

Medline

207. K. K. Tanabe, C. A. Allen, S. M. Cohen, Photochemical activation of a metal-organic

framework to reveal functionality. Angew. Chem. Int. Ed. 49, 9730–9733 (2010).

doi:10.1002/anie.201004736 Medline

208. S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud, S.

Bordiga, Functionalization of UiO-66 metal-organic framework and highly cross-linked

polystyrene with Cr(CO)3: In situ formation, stability, and photoreactivity. Chem. Mater.

22, 4602–4611 (2010). doi:10.1021/cm1005899

209. L. Ma, C.-D. Wu, M. M. Wanderley, W. Lin, Single-crystal to single-crystal cross-linking

of an interpenetrating chiral metal-organic framework and implications in asymmetric

catalysis. Angew. Chem. Int. Ed. 49, 8244–8248 (2010). doi:10.1002/anie.201003377

Medline

210. E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O.

M. Yaghi, Metal insertion in a microporous metal-organic framework lined with 2,2′-

bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010). doi:10.1021/ja106935d Medline

211. A. M. Shultz, O. K. Farha, D. Adhikari, A. A. Sarjeant, J. T. Hupp, S. T. Nguyen, Selective

surface and near-surface modification of a noncatenated, catalytically active metal-

organic framework material based on Mn(salen) struts. Inorg. Chem. 50, 3174–3176

(2011). doi:10.1021/ic101952y Medline

212. Q.-R. Fang, D. Q. Yuan, J. Sculley, J. R. Li, Z. B. Han, H. C. Zhou, Functional mesoporous

metal-organic frameworks for the capture of heavy metal ions and size-selective

catalysis. Inorg. Chem. 49, 11637–11642 (2010). doi:10.1021/ic101935f Medline

Page 84: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

213. T. Jacobs, R. Clowes, A. I. Cooper, M. J. Hardie, A chiral, self-catenating and porous

metal-organic framework and its post-synthetic metal uptake. Angew. Chem. Int. Ed. 51,

5192–5195 (2012). doi:10.1002/anie.201200758 Medline

214. K. K. Tanabe, Z. Wang, S. M. Cohen, Systematic functionalization of a metal-organic

framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517

(2008). doi:10.1021/ja801848j Medline

215. Z. Wang, S. M. Cohen, Tandem modification of metal-organic frameworks by a

postsynthetic approach. Angew. Chem. Int. Ed. 47, 4699–4702 (2008).

doi:10.1002/anie.200800686 Medline

216. S. J. Garibay, Z. Wang, K. K. Tanabe, S. M. Cohen, Postsynthetic modification: A versatile

approach toward multifunctional metal-organic frameworks. Inorg. Chem. 48, 7341–7349

(2009). doi:10.1021/ic900796n Medline

217. M. Savonnet, S. Aguado, U. Ravon, D. Bazer-Bachi, V. Lecocq, N. Bats, C. Pinel, D.

Farrusseng, Solvent free base catalysis and transesterification over basic functionalized

metal-organic frameworks. Green Chem. 11, 1729 (2009). doi:10.1039/b915291c

218. J. G. Nguyen, S. M. Cohen, Moisture-resistant and superhydrophobic metal-organic

frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561

(2010). doi:10.1021/ja100900c Medline

219. E. Dugan, Z. Wang, M. Okamura, A. Medina, S. M. Cohen, Covalent modification of a

metal-organic framework with isocyanates: Probing substrate scope and reactivity. Chem.

Commun. 2008, 3366–3368 (2008). doi:10.1039/b806150e Medline

220. M. Ma, A. Gross, D. Zacher, A. Pinto, H. Noei, Y. Wang, R. A. Fischer, N. Metzler-Nolte,

Use of confocal fluorescence microscopy to compare different methods of modifying

metal-organic framework (MOF) crystals with dyes. CrystEngComm 13, 2828 (2011).

doi:10.1039/c0ce00416b

221. D. Britt, C. Lee, F. J. Uribe-Romo, H. Furukawa, O. M. Yaghi, Ring-opening reactions

within porous metal-organic frameworks. Inorg. Chem. 49, 6387–6389 (2010).

doi:10.1021/ic100652x Medline

Page 85: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

222. J. G. Nguyen, K. K. Tanabe, S. M. Cohen, Postsynthetic diazeniumdiolate formation and

NO release from MOFs. CrystEngComm 12, 2335 (2010). doi:10.1039/c000154f

223. Y. Yoo, H.-K. Jeong, Generation of covalently functionalized hierarchical IRMOF-3 by

post-synthetic modification. Chem. Eng. J. 181-182, 740–745 (2012).

doi:10.1016/j.cej.2011.11.048

224. A. D. Burrows, L. L. Keenan, Conversion of primary amines into secondary amines on a

metal-organic framework using a tandem post-synthetic modification. CrystEngComm

14, 4112 (2012). doi:10.1039/c2ce25131k

225. M. Servalli, M. Ranocchiari, J. A. Van Bokhoven, Fast and high yield post-synthetic

modification of metal-organic frameworks by vapor diffusion. Chem. Commun. 48,

1904–1906 (2012). doi:10.1039/c2cc17461h Medline

226. A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Post-synthetic modification of

tagged metal-organic frameworks. Angew. Chem. Int. Ed. 47, 8482–8486 (2008).

doi:10.1002/anie.200802908 Medline

227. A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Sulfur-tagged metal-organic

frameworks and their post-synthetic oxidation. Chem. Commun. 2009, 4218–4220

(2009). doi:10.1039/b906170c Medline

228. R. K. Deshpande, J. L. Minnaar, S. G. Telfer, Thermolabile groups in metal-organic

frameworks: Suppression of network interpenetration, post-synthetic cavity expansion,

and protection of reactive functional groups. Angew. Chem. Int. Ed. 49, 4598–4602

(2010). doi:10.1002/anie.200905960 Medline

229. D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, A general thermolabile protecting group

strategy for organocatalytic metal-organic frameworks. J. Am. Chem. Soc. 133, 5806–

5809 (2011). doi:10.1021/ja202223d Medline

230. Y. Goto, H. Sato, S. Shinkai, K. Sada, ―Clickable‖ metal-organic framework. J. Am. Chem.

Soc. 130, 14354–14355 (2008). doi:10.1021/ja7114053 Medline

231. S. Nagata, H. Sato, K. Sugikawa, K. Kokado, K. Sada, Conversion of azide to primary

amine via Staudinger reaction in metal-organic frameworks. CrystEngComm 14, 4137

(2012). doi:10.1039/c2ce06633e

Page 86: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

232. J. Sánchez Costa, P. Gamez, C. A. Black, O. Roubeau, S. J. Teat, J. Reedijk, Chemical

modification of a bridging ligand inside a metal-organic framework while maintaining

the 3D structure. Eur. J. Inorg. Chem. 2008, 1551–1554 (2008).

doi:10.1002/ejic.200800002

233. T. Kawamichi, T. Kodama, M. Kawano, M. Fujita, Single-crystalline molecular flasks:

Chemical transformation with bulky reagents in the pores of porous coordination

networks. Angew. Chem. Int. Ed. 47, 8030–8032 (2008). doi:10.1002/anie.200802545

Medline

234. M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero, E. Jeanneau, V. Lecocq, C. Pinel,

D. Farrusseng, Generic postfunctionalization route from amino-derived metal-organic

frameworks. J. Am. Chem. Soc. 132, 4518–4519 (2010). doi:10.1021/ja909613e Medline

235. K. Hindelang, S. I. Vagin, C. Anger, B. Rieger, Tandem post-synthetic modification for

functionalized metal-organic frameworks via epoxidation and subsequent epoxide ring-

opening. Chem. Commun. 48, 2888–2890 (2012). doi:10.1039/c2cc16949e Medline

236. L. Zhang, Y. Jian, J. Wang, C. He, X. Li, T. Liu, C. Duan, Post-modification of a MOF

through a fluorescent-labeling technology for the selective sensing and adsorption of Ag+

in aqueous solution. Dalton Trans. 41, 10153–10155 (2012). doi:10.1039/c2dt30689a

Medline

237. T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker, G. Férey, N. Stock,

Synthesis and modification of a functionalized 3D open-framework structure with MIL-

53 topology. Inorg. Chem. 48, 3057–3064 (2009). doi:10.1021/ic8023265 Medline

238. C. Volkringer, S. M. Cohen, Generating reactive MILs: Isocyanate- and isothiocyanate-

bearing MILs through postsynthetic modification. Angew. Chem. Int. Ed. 49, 4644–4648

(2010). doi:10.1002/anie.201001527 Medline

239. S. J. Garibay, Z. Wang, S. M. Cohen, Evaluation of heterogeneous metal-organic

framework organocatalysts prepared by postsynthetic modification. Inorg. Chem. 49,

8086–8091 (2010). doi:10.1021/ic1011549 Medline

240. J. E. Halls, A. Hernán-Gómez, A. D. Burrows, F. Marken, Metal-organic frameworks post-

synthetically modified with ferrocenyl groups: Framework effects on redox processes and

Page 87: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

surface conduction. Dalton Trans. 41, 1475–1480 (2012). doi:10.1039/c1dt10734h

Medline

241. S. Bernt, V. Guillerm, C. Serre, N. Stock, Direct covalent post-synthetic chemical

modification of Cr-MIL-101 using nitrating acid. Chem. Commun. 47, 2838–2840

(2011). doi:10.1039/c0cc04526h Medline

242. A. Modrow, D. Zargarani, R. Herges, N. Stock, Introducing a photo-switchable azo-

functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton

Trans. 41, 8690–8696 (2012). doi:10.1039/c2dt30672g Medline

243. S. J. Garibay, S. M. Cohen, Isoreticular synthesis and modification of frameworks with the

UiO-66 topology. Chem. Commun. 46, 7700–7702 (2010). doi:10.1039/c0cc02990d

Medline

244. M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud, M. Tilset, Post-synthetic

modification of the metal-organic framework compound UiO-66. J. Mater. Chem. 20,

9848 (2010). doi:10.1039/c0jm02416c

245. M. Kim, S. J. Garibay, S. M. Cohen, Microwave-assisted cyanation of an aryl bromide

directly on a metal-organic framework. Inorg. Chem. 50, 729–731 (2011).

doi:10.1021/ic102436b Medline

246. A. Huang, W. Dou, J. Caro, Steam-stable zeolitic imidazolate framework ZIF-90 membrane

with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 132,

15562–15564 (2010). doi:10.1021/ja108774v Medline

247. J. Canivet, S. Aguado, C. Daniel, D. Farrusseng, Engineering the environment of a catalytic

metal-organic framework by postsynthetic hydrophobization. ChemCatChem 3, 675–678

(2011). doi:10.1002/cctc.201000386

248. T. Haneda, M. Kawano, T. Kawamichi, M. Fujita, Direct observation of the labile imine

formation through single-crystal-to-single-crystal reactions in the pores of a porous

coordination network. J. Am. Chem. Soc. 130, 1578–1579 (2008). doi:10.1021/ja7111564

Medline

Page 88: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

249. T. Kawamichi, T. Haneda, M. Kawano, M. Fujita, X-ray observation of a transient

hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

doi:10.1038/nature08326 Medline

250. S. C. Jones, C. A. Bauer, Diastereoselective heterogeneous bromination of stilbene in a

porous metal-organic framework. J. Am. Chem. Soc. 131, 12516–12517 (2009).

doi:10.1021/ja900893p Medline

251. T. Gadzikwa, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T. Nguyen,

Selective bifunctional modification of a non-catenated metal-organic framework material

via ―click‖ chemistry. J. Am. Chem. Soc. 131, 13613–13615 (2009).

doi:10.1021/ja904189d Medline

252. T. Ahnfeldt, D. Gunzelmann, J. Wack, J. Senker, N. Stock, Controlled modification of the

inorganic and organic bricks in an Al-based MOF by direct and post-synthetic synthesis

routes. CrystEngComm 14, 4126 (2012). doi:10.1039/c2ce06620c

253. Y.-H. Kiang, G. B. Gardner, S. Lee, Z. Xu, Porous siloxane linked phenylacetylene nitrile

silver salts from solid state dimerization and low polymerization. J. Am. Chem. Soc. 122,

6871–6883 (2000). doi:10.1021/ja0009119

254. Y.-H. Kiang, G. B. Gardner, S. Lee, Z. Xu, E. B. Lobkovsky, Variable pore size, variable

chemical functionality, and an example of reactivity within porous phenylacetylene silver

salts. J. Am. Chem. Soc. 121, 8204–8215 (1999). doi:10.1021/ja991100b

255. M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park, M. J. Rosseinsky, Generation

of a solid Brønsted acid site in a chiral framework. Chem. Commun. 2008, 1287–1289

(2008). doi:10.1039/b718443c Medline

256. H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Photoactivation of a

nanoporous crystal for on-demand guest trapping and conversion. Nat. Mater. 9, 661–666

(2010). doi:10.1038/nmat2808 Medline

257. Y. W. Li, R. T. Yang, Significantly enhanced hydrogen storage in metal-organic

frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006).

doi:10.1021/ja056831s Medline

Page 89: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

258. M. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel, Solution infiltration of palladium

into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 17, 3827

(2007). doi:10.1039/b706432b

259. F. Schröder, D. Esken, M. Cokoja, M. W. van den Berg, O. I. Lebedev, G. Van Tendeloo,

B. Walaszek, G. Buntkowsky, H. H. Limbach, B. Chaudret, R. A. Fischer, Ruthenium

nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]:

A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem.

Soc. 130, 6119–6130 (2008). doi:10.1021/ja078231u Medline

260. S. Proch, J. Herrmannsdörfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker,

Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis.

Chemistry 14, 8204–8212 (2008). doi:10.1002/chem.200801043 Medline

261. C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G.

Férey, M. Latroche, Pd nanoparticles embedded into a metal-organic framework:

Synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc.

132, 2991–2997 (2010). doi:10.1021/ja9084995 Medline

262. D. Dybtsev, C. Serre, B. Schmitz, B. Panella, M. Hirscher, M. Latroche, P. L. Llewellyn, S.

Cordier, Y. Molard, M. Haouas, F. Taulelle, G. Férey, Influence of [Mo6Br8F6]2–

cluster

unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance.

Langmuir 26, 11283–11290 (2010). doi:10.1021/la100601a Medline

263. K. L. Mulfort, J. T. Hupp, Chemical reduction of metal-organic framework materials as a

method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).

doi:10.1021/ja0740364 Medline

264. K. L. Mulfort, J. T. Hupp, Alkali metal cation effects on hydrogen uptake and binding in

metal-organic frameworks. Inorg. Chem. 47, 7936–7938 (2008). doi:10.1021/ic800700h

Medline

265. M. Kondo, S. Furukawa, K. Hirai, S. Kitagawa, Coordinatively immobilized monolayers on

porous coordination polymer crystals. Angew. Chem. Int. Ed. 49, 5327–5330 (2010).

doi:10.1002/anie.201001063 Medline

Page 90: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

266. J. An, C. M. Shade, D. A. Chengelis-Czegan, S. Petoud, N. L. Rosi, Zinc-adeninate metal-

organic framework for aqueous encapsulation and sensitization of near-infrared and

visible emitting lanthanide cations. J. Am. Chem. Soc. 133, 1220–1223 (2011).

doi:10.1021/ja109103t Medline

267. D. Liu, Z. G. Ren, H. X. Li, J. P. Lang, N. Y. Li, B. F. Abrahams, Single-crystal-to-single-

crystal transformations of two three-dimensional coordination polymers through

regioselective [2+2] photodimerization reactions. Angew. Chem. Int. Ed. 49, 4767–4770

(2010). doi:10.1002/anie.201001551 Medline

268. M. H. Mir, L. L. Koh, G. K. Tan, J. J. Vittal, Single-crystal to single-crystal photochemical

structural transformations of interpenetrated 3D coordination polymers by [2+2]

cycloaddition reactions. Angew. Chem. Int. Ed. 49, 390–393 (2010).

doi:10.1002/anie.200905898

269. K. Koh, A. G. Wong-Foy, A. J. Matzger, MOF@MOF: Microporous core-shell

architectures. Chem. Commun. 2009, 6162–6164 (2009). doi:10.1039/b904526k Medline

270. Y. Yoo, H.-K. Jeong, Heteroepitaxial growth of isoreticular metal-organic frameworks and

their hybrid films. Cryst. Growth Des. 10, 1283–1288 (2010). doi:10.1021/cg9013027

271. S. Furukawa, K. Hirai, Y. Takashima, K. Nakagawa, M. Kondo, T. Tsuruoka, O. Sakata, S.

Kitagawa, A block PCP crystal: Anisotropic hybridization of porous coordination

polymers by face-selective epitaxial growth. Chem. Commun. 2009, 5097–5099 (2009).

doi:10.1039/b909993j Medline

272. X. Song, T. K. Kim, H. Kim, D. Kim, S. Jeong, H. R. Moon, M. S. Lah, Post-synthetic

modifications of framework metal ions in isostructural metal-organic frameworks: Core-

shell heterostructures via selective transmetalations. Chem. Mater. 24, 3065–3073 (2012).

doi:10.1021/cm301605w

273. O. R. Evans, H. L. Ngo, W. Lin, Chiral porous solids based on lamellar lanthanide

phosphonates. J. Am. Chem. Soc. 123, 10395–10396 (2001). doi:10.1021/ja0163772

Medline

Page 91: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

274. K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic

properties of the metal-organic framework compound Cu3(BTC)2. Microporous

Mesoporous Mater. 73, 81–88 (2004). doi:10.1016/j.micromeso.2003.12.027

275. S. Neogi, M. K. Sharma, P. K. Bharadwaj, Knoevenagel condensation and cyanosilylation

reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. J.

Mol. Catal. A 299, 1–4 (2009). doi:10.1016/j.molcata.2008.10.008

276. F. Gándara, B. Gómez-Lor, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla, A. Monge, A new

scandium metal organic framework built up from octadecasil zeolitic cages as

heterogeneous catalyst. Chem. Commun. 2009, 2393–2395 (2009). doi:10.1039/b900841a

Medline

277. D. Dang, P. Wu, C. He, Z. Xie, C. Duan, Homochiral metal-organic frameworks for

heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 132, 14321–14323 (2010).

doi:10.1021/ja101208s Medline

278. J.-M. Gu, W.-S. Kim, S. Huh, Size-dependent catalysis by DABCO-functionalized Zn-MOF

with one-dimensional channels. Dalton Trans. 40, 10826–10829 (2011).

doi:10.1039/c1dt11274k Medline

279. S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S.

Kitagawa, Three-dimensional porous coordination polymer functionalized with amide

groups based on tridentate ligand: Selective sorption and catalysis. J. Am. Chem. Soc.

129, 2607–2614 (2007). doi:10.1021/ja067374y Medline

280. J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink, F. Kapteijn, Amino-

based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 261,

75–87 (2009). doi:10.1016/j.jcat.2008.11.010

281. D.-Y. Hong, Y. K. Hwang, C. Serre, G. Férey, J.-S. Chang, Porous chromium terephthalate

MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation,

sorption and catalysis. Adv. Funct. Mater. 19, 1537–1552 (2009).

doi:10.1002/adfm.200801130

Page 92: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

282. T. Sawaki, T. Dewa, Y. Aoyama, Immobilization of soluble metal complexes with a

hydrogen-bonded organic network as a supporter. A simple route to microporous solid

Lewis acid catalysts. J. Am. Chem. Soc. 120, 8539–8540 (1998). doi:10.1021/ja9743351

283. F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, J.

Gascon, F. Kapteijn, D. E. De Vos, Tuning the catalytic performance of metal-organic

frameworks in fine chemistry by active site engineering. J. Mater. Chem. 22, 10313

(2012). doi:10.1039/c2jm16030g

284. K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O. M. Yaghi, N. Jeong, Asymmetric

catalytic reactions by NbO-type chiral metal-organic frameworks. Chem. Sci. 2, 877

(2011). doi:10.1039/c0sc00582g

285. N. B. Pathan, A. M. Rahatgaonkar, M. S. Chorghade, Metal-organic framework

Cu3(BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catal.

Commun. 12, 1170–1176 (2011). doi:10.1016/j.catcom.2011.03.040

286. U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, D. Farrusseng, Engineering

of coordination polymers for shape selective alkylation of large aromatics and the role of

defects. Microporous Mesoporous Mater. 129, 319–329 (2010).

doi:10.1016/j.micromeso.2009.06.008

287. N. T. S. Phan, K. K. A. Le, T. D. Phan, MOF-5 as an efficient heterogeneous catalyst for

Friedel-Crafts alkylation reactions. Appl. Catal. A 382, 246–253 (2010).

doi:10.1016/j.apcata.2010.04.053

288. U. Ravon, M. E. Domine, C. Gaudillère, A. Desmartin-Chomel, D. Farrusseng, MOFs as

acid catalysts with shape selectivity properties. New J. Chem. 32, 937 (2008).

doi:10.1039/b803953b

289. J. M. Roberts, B. M. Fini, A. A. Sarjeant, O. K. Farha, J. T. Hupp, K. A. Scheidt, Urea

metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. J. Am.

Chem. Soc. 134, 3334–3337 (2012). doi:10.1021/ja2108118 Medline

290. F. X. Llabrés i Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: Activity,

reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250, 294–298 (2007).

doi:10.1016/j.jcat.2007.06.004

Page 93: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

291. Y. Huang, Z. Zheng, T. Liu, J. Lü, Z. Lin, H. Li, R. Cao, Palladium nanoparticles supported

on amino functionalized metal-organic frameworks as highly active catalysts for the

Suzuki-Miyaura cross-coupling reaction. Catal. Commun. 14, 27–31 (2011).

doi:10.1016/j.catcom.2011.07.004

292. T. Osako, Y. Uozumi, A self-supported palladium-bipyridyl catalyst for the Suzuki-Miyaura

coupling in water. Heterocycles 80, 505 (2010). doi:10.3987/COM-09-S(S)58

293. S. Gao, N. Zhao, M. Shu, S. Che, Palladium nanoparticles supported on MOF-5: A highly

active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Appl. Catal.

A 388, 196–201 (2010). doi:10.1016/j.apcata.2010.08.045

294. S.-N. Kim, S.-T. Yang, J. Kim, J.-E. Park, W.-S. Ahn, Post-synthesis functionalization of

MIL-101 using diethylenetriamine: A study on adsorption and catalysis. CrystEngComm

14, 4142 (2012). doi:10.1039/c2ce06608d

295. K. Tanaka, S. Oda, M. Shiro, A novel chiral porous metal-organic framework: Asymmetric

ring opening reaction of epoxide with amine in the chiral open space. Chem. Commun.

2008, 820–822 (2008). doi:10.1039/b714083e Medline

296. D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Copper-based metal-organic framework for the

facile ring-opening of epoxides. J. Catal. 257, 390–395 (2008).

doi:10.1016/j.jcat.2008.05.021

297. D. M. Jiang, A. Urakawa, M. Yulikov, T. Mallat, G. Jeschke, A. Baiker, Size selectivity of

a copper metal-organic framework and origin of catalytic activity in epoxide alcoholysis.

Chemistry 15, 12255–12262 (2009). doi:10.1002/chem.200901510 Medline

298. W. Kleist, F. Jutz, M. Maciejewski, A. Baiker, Mixed-linker metal-organic frameworks as

catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J.

Inorg. Chem. 2009, 3552–3561 (2009). doi:10.1002/ejic.200900509

299. A. M. Shultz, A. A. Sarjeant, O. K. Farha, J. T. Hupp, S. T. Nguyen, Post-synthesis

modification of a metal-organic framework to form metallosalen-containing MOF

materials. J. Am. Chem. Soc. 133, 13252–13255 (2011). doi:10.1021/ja204820d Medline

Page 94: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

300. J. Perles, N. Snejko, M. Iglesias, M. A. Monge, 3D scandium and yttrium arenedisulfonate

MOF materials as highly thermally stable bifunctional heterogeneous catalysts. J. Mater.

Chem. 19, 6504 (2009). doi:10.1039/b902954k

301. F. Gándara, A. García-Cortés, C. Cascales, B. Gómez-Lor, E. Gutiérrez-Puebla, M. Iglesias,

A. Monge, N. Snejko, Rare earth arenedisulfonate metal-organic frameworks: An

approach toward polyhedral diversity and variety of functional compounds. Inorg. Chem.

46, 3475–3484 (2007). doi:10.1021/ic0617689 Medline

302. R. Sen, S. Koner, D. K. Hazra, M. Helliwell, M. Mukherjee, Heterogeneous catalytic

epoxidation of olefins over hydrothermally synthesized lanthanide containing framework

compounds. Eur. J. Inorg. Chem. 2011, 241–248 (2011). doi:10.1002/ejic.201000937

303. S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, A metal-organic

framework material that functions as an enantioselective catalyst for olefin epoxidation.

Chem. Commun. 2006, 2563–2565 (2006). doi:10.1039/b600408c Medline

304. L. Meng, Q. Cheng, C. Kim, W. Y. Gao, L. Wojtas, Y. S. Chen, M. J. Zaworotko, X. P.

Zhang, S. Ma, Crystal engineering of a microporous, catalytically active fcu topology

MOF using a custom-designed metalloporphyrin linker. Angew. Chem. Int. Ed. 51,

10082–10085 (2012). doi:10.1002/anie.201205603 Medline

305. J. Zhang, A. V. Biradar, S. Pramanik, T. J. Emge, T. Asefa, J. Li, A new layered metal-

organic framework as a promising heterogeneous catalyst for olefin epoxidation

reactions. Chem. Commun. 48, 6541–6543 (2012). doi:10.1039/c2cc18127d Medline

306. A. Pramanik, S. Abbina, G. Das, Molecular, supramolecular structure and catalytic activity

of transition metal complexes of phenoxy acetic acid derivatives. Polyhedron 26, 5225–

5234 (2007). doi:10.1016/j.poly.2007.07.033

307. O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, Active-site-accessible,

porphyrinic metal-organic framework materials. J. Am. Chem. Soc. 133, 5652–5655

(2011). doi:10.1021/ja111042f Medline

308. H. Lee, S. Kim, M. Y. Hyun, J. Y. Hong, S. Huh, C. Kim, S. J. Lee, Controlled growth of

narrowly dispersed nanosize hexagonal MOF rods from Mn(III)-porphyrin and In(NO3)3

Page 95: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

and their application in olefin oxidation. Chem. Commun. 48, 5512–5514 (2012).

doi:10.1039/c2cc31075a Medline

309. K. Brown et al., [Cu(H2btec)(bipy)]n: A novel metal organic framework (MOF) as

heterogeneous catalyst for the oxidation of olefins. Dalton Trans. 2009, 1422 (2009).

doi:10.1039/b810414j

310. N. Snejko et al., From rational octahedron design to reticulation serendipity. A thermally

stable rare earth polymeric disulfonate family with CdI2-like structure, bifunctional

catalysis and optical properties. Chem. Commun. 2002, 1366 (2002).

doi:10.1039/b202639b

311. A. Dhakshinamoorthy, M. Alvaro, Y. K. Hwang, Y. K. Seo, A. Corma, H. Garcia,

Intracrystalline diffusion in metal organic framework during heterogeneous catalysis:

Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton

Trans. 40, 10719–10724 (2011). doi:10.1039/c1dt10826c Medline

312. D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei, H. C. Zhou, Zirconium-metalloporphyrin

PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic

catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012). doi:10.1002/anie.201204475

Medline

313. M. Tonigold, Y. Lu, A. Mavrandonakis, A. Puls, R. Staudt, J. Möllmer, J. Sauer, D.

Volkmer, Pyrazolate-based cobalt(II)-containing metal-organic frameworks in

heterogeneous catalytic oxidation reactions: Elucidating the role of entatic states for

biomimetic oxidation processes. Chemistry 17, 8671–8695 (2011).

doi:10.1002/chem.201003173 Medline

314. D. M. Jiang, T. Mallat, D. M. Meier, A. Urakawa, A. Baiker, Copper metal-organic

framework: Structure and activity in the allylic oxidation of cyclohexene with molecular

oxygen. J. Catal. 270, 26–33 (2010). doi:10.1016/j.jcat.2009.12.002

315. K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck, P.

Van der Voort, The remarkable catalytic activity of the saturated metal organic

framework V-MIL-47 in the cyclohexene oxidation. Chem. Commun. 46, 5085–5087

(2010). doi:10.1039/c0cc01506g Medline

Page 96: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

316. K. Leus, M. Vandichel, Y.-Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F.

Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V.

Van Speybroeck, P. Van Der Voort, The coordinatively saturated vanadium MIL-47 as a

low leaching heterogeneous catalyst in the oxidation of cyclohexene. J. Catal. 285, 196–

207 (2012). doi:10.1016/j.jcat.2011.09.014

317. V. Lykourinou, Y. Chen, X. S. Wang, L. Meng, T. Hoang, L. J. Ming, R. L. Musselman, S.

Ma, Immobilization of MP-11 into a mesoporous metal-organic framework, MP-

11@mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–

10385 (2011). doi:10.1021/ja2038003 Medline

318. S. Wang, L. Li, J. Zhang, X. Yuan, C.-Y. Su, Anion-tuned sorption and catalytic properties

of a soft metal-organic solid with polycatenated frameworks. J. Mater. Chem. 21, 7098

(2011). doi:10.1039/c1jm10394f

319. X.-L. Yang, M. H. Xie, C. Zou, Y. He, B. Chen, M. O’Keeffe, C. D. Wu, Porous

metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-

biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of

alkylbenzenes. J. Am. Chem. Soc. 134, 10638–10645 (2012). doi:10.1021/ja303728c

Medline

320. Y. Wu, L.-G. Qiu, W. Wang, Z.-Q. Li, T. Xu, Z.-Y. Wu, X. Jiang, Kinetics of oxidation of

hydroquinone to p-benzoquinone catalyzed by microporous metal-organic frameworks

M3(BTC)2 [M = copper(II), cobalt(II), or nickel(II); BTC = benzene-1,3,5-tricarboxylate]

using molecular oxygen. Transition Met. Chem. 34, 263–268 (2009).

doi:10.1007/s11243-009-9188-x

321. S. De Rosa, G. Giordano, T. Granato, A. Katovic, A. Siciliano, F. Tripicchio, Chemical

pretreatment of olive oil mill wastewater using a metal-organic framework catalyst. J.

Agric. Food Chem. 53, 8306–8309 (2005). doi:10.1021/jf0512609 Medline

322. F. Gándara, E. G. Puebla, M. Iglesias, D. M. Proserpio, N. Snejko, M. Á. Monge,

Controlling the structure of arenedisulfonates toward catalytically active materials. Chem.

Mater. 21, 655–661 (2009). doi:10.1021/cm8029517

Page 97: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

323. M. C. Bernini, F. Gándara, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla, E. V. Brusau, G. E.

Narda, M. A. Monge, Reversible breaking and forming of metal-ligand coordination

bonds: Temperature-triggered single-crystal to single-crystal transformation in a metal-

organic framework. Chemistry 15, 4896–4905 (2009). doi:10.1002/chem.200802385

Medline

324. B. Gomez-Lor, E. Gutiérrez-Puebla, M. Iglesias, M. A. Monge, C. Ruiz-Valero, N. Snejko,

In2(OH)3(BDC)1.5 (BDC = 1,4-benzendicarboxylate): An In(III) supramolecular 3D

framework with catalytic activity. Inorg. Chem. 41, 2429–2432 (2002).

doi:10.1021/ic0111482 Medline

325. R.-Q. Zou, H. Sakurai, Q. Xu, Preparation, adsorption properties, and catalytic activity of

3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal

ions. Angew. Chem. Int. Ed. 45, 2542–2546 (2006). doi:10.1002/anie.200503923 Medline

326. W. Kleist, M. Maciejewski, A. Baiker, MOF-5 based mixed-linker metal-organic

frameworks: Synthesis, thermal stability and catalytic application. Thermochim. Acta

499, 71–78 (2010). doi:10.1016/j.tca.2009.11.004

327. H. L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, Au@ZIF-8: CO oxidation over

gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 131, 11302–

11303 (2009). doi:10.1021/ja9047653 Medline

328. C. Wang, Z. Xie, K. E. deKrafft, W. Lin, Doping metal-organic frameworks for water

oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133,

13445–13454 (2011). doi:10.1021/ja203564w Medline

329. J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hardcastle, C. L. Hill, A

multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal

organic framework for aerobic decontamination. J. Am. Chem. Soc. 133, 16839–16846

(2011). doi:10.1021/ja203695h Medline

330. F. X. Llabrés i Xamena, O. Casanova, R. G. Tailleur, H. Garcia, A. Corma, Metal organic

frameworks (MOFs) as catalysts: A combination of Cu2+

and Co2+

MOFs as an efficient

catalyst for tetralin oxidation. J. Catal. 255, 220–227 (2008).

doi:10.1016/j.jcat.2008.02.011

Page 98: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

331. T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Deposition of gold clusters on porous

coordination polymers by solid grinding and their catalytic activity in aerobic oxidation

of alcohols. Chemistry 14, 8456–8460 (2008). doi:10.1002/chem.200800980 Medline

332. M. J. Beier, W. Kleist, M. T. Wharmby, R. Kissner, B. Kimmerle, P. A. Wright, J. D.

Grunwaldt, A. Baiker, Aerobic epoxidation of olefins catalyzed by the cobalt-based

metal-organic framework STA-12(Co). Chemistry 18, 887–898 (2012).

doi:10.1002/chem.201101223 Medline

333. I. Luz, F. X. Llabrés i Xamena, A. Corma, Bridging homogeneous and heterogeneous

catalysis with MOFs: ―Click‖ reactions with Cu-MOF catalysts. J. Catal. 276, 134–140

(2010). doi:10.1016/j.jcat.2010.09.010

334. C.-D. Wu, W. Lin, Heterogeneous asymmetric catalysis with homochiral metal-organic

frameworks: Network-structure-dependent catalytic activity. Angew. Chem. Int. Ed. 46,

1075–1078 (2007). doi:10.1002/anie.200602099 Medline

335. A. Monge, N. Snejko, E. Gutiérrez-Puebla, M. Medina, C. Cascales, C. Ruiz-Valero, M.

Iglesias, B. Gómez-Lor, One teflon-like channelled nanoporous polymer with a chiral and

new uninodal 4-connected net: Sorption and catalytic properties. Chem. Commun. 2005,

1291–1293 (2005). doi:10.1039/b415960h Medline

336. M. Wang, M.-H. Xie, C.-D. Wu, Y.-G. Wang, From one to three: A serine derivate

manipulated homochiral metal-organic framework. Chem. Commun. 2009, 2396–2398

(2009). doi:10.1039/b823323c Medline

337. T.-H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J.

Matzger, Highly dispersed palladium(II) in a defective metal-organic framework:

Application to C-H activation and functionalization. J. Am. Chem. Soc. 133, 20138–

20141 (2011). doi:10.1021/ja2094316 Medline

338. F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van

Speybroeck, D. E. De Vos, Electronic effects of linker substitution on Lewis acid

catalysis with metal-organic frameworks. Angew. Chem. Int. Ed. 51, 4887–4890 (2012).

doi:10.1002/anie.201108565 Medline

Page 99: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

339. A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, A catalytically active, permanently

microporous MOF with metalloporphyrin struts. J. Am. Chem. Soc. 131, 4204–4205

(2009). doi:10.1021/ja900203f Medline

340. J. Juan-Alcañiz, E. V. Ramos-Fernandez, U. Lafont, J. Gascon, F. Kapteijn, Building MOF

bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional

polyoxometalate-MIL-101 catalysts. J. Catal. 269, 229–241 (2010).

doi:10.1016/j.jcat.2009.11.011

341. L. H. Wee, S. R. Bajpe, N. Janssens, I. Hermans, K. Houthoofd, C. E. Kirschhock, J. A.

Martens, Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid

nanomaterial for application in catalysis. Chem. Commun. 46, 8186–8188 (2010).

doi:10.1039/c0cc01447h Medline

342. H. Fei, D. L. Rogow, S. R. J. Oliver, Reversible anion exchange and catalytic properties of

two cationic metal-organic frameworks based on Cu(I) and Ag(I). J. Am. Chem. Soc. 132,

7202–7209 (2010). doi:10.1021/ja102134c Medline

343. J. Hermannsdörfer, R. Kempe, Selective palladium-loaded MIL-101 catalysts. Chemistry

17, 8071–8077 (2011). doi:10.1002/chem.201101004 Medline

344. J. Hermannsdörfer, M. Friedrich, N. Miyajima, R. Q. Albuquerque, S. Kümmel, R. Kempe,

Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew.

Chem. Int. Ed. 51, 11473–11477 (2012). doi:10.1002/anie.201205078 Medline

345. Y. K. Park, S. B. Choi, H. J. Nam, D. Y. Jung, H. C. Ahn, K. Choi, H. Furukawa, J. Kim,

Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework.

Chem. Commun. 46, 3086–3088 (2010). doi:10.1039/c000775g Medline

346. A. E. Platero-Prats, V. A. de la Peña-O’Shea, M. Iglesias, N. Snejko, Á. Monge, E.

Gutiérrez-Puebla, Heterogeneous catalysis with alkaline-earth metal-based MOFs: A

green calcium catalyst. ChemCatChem 2, 147–149 (2010). doi:10.1002/cctc.200900228

347. S. Opelt, S. Türk, E. Dietzsch, A. Henschel, S. Kaskel, E. Klemm, Preparation of palladium

supported on MOF-5 and its use as hydrogenation catalyst. Catal. Commun. 9, 1286–

1290 (2008). doi:10.1016/j.catcom.2007.11.019

Page 100: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

348. C. Larabi, P. K. Nielsen, S. Helveg, C. Thieuleux, F. B. Johansson, M. Brorson, E. A.

Quadrelli, Bulk hydrodesulfurization catalyst obtained by Mo(CO)6 grafting on the

metal-organic framework Ni2(2,5-dihydroxoterephthalate). ACS Catal. 2, 695–700

(2012). doi:10.1021/cs200530e

349. M. Müller, S. Hermes, K. Kähler, M. W. E. van den Berg, M. Muhler, R. A. Fischer,

Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with

organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol

synthesis. Chem. Mater. 20, 4576–4587 (2008). doi:10.1021/cm703339h

350. Y. Li, L. Xie, Y. Li, J. Zheng, X. Li, Metal-organic-framework-based catalyst for highly

efficient H2 generation from aqueous NH3BH3 solution. Chemistry 15, 8951–8954

(2009). doi:10.1002/chem.200901465 Medline

351. X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic

framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for

chemical hydrogen storage. J. Am. Chem. Soc. 133, 11822–11825 (2011).

doi:10.1021/ja200122f Medline

352. I. Luz, F. X. Llabrés i Xamena, A. Corma, Bridging homogeneous and heterogeneous

catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and

cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines.

J. Catal. 285, 285–291 (2012). doi:10.1016/j.jcat.2011.10.001

353. J. Park, J. R. Li, Y. P. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L. B. Sun, P. B.

Balbuena, H. C. Zhou, A versatile metal-organic framework for carbon dioxide capture

and cooperative catalysis. Chem. Commun. 48, 9995–9997 (2012).

doi:10.1039/c2cc34622b Medline

354. R. Srirambalaji, S. Hong, R. Natarajan, M. Yoon, R. Hota, Y. Kim, Y. Ho Ko, K. Kim,

Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-

organic framework, NH2-MIL-101(Al). Chem. Commun. 48, 11650–11652 (2012).

doi:10.1039/c2cc36678a Medline

355. A. Arnanz, M. Pintado-Sierra, A. Corma, M. Iglesias, F. Sánchez, Bifunctional metal

organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] catalyst for

Page 101: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2013/08/29/341.6149... ·  Supplementary Materials for The Chemistry and Applications of Metal …

one-pot heteroannulation of acetylenic compounds. Adv. Synth. Catal. 354, 1347–1355

(2012). doi:10.1002/adsc.201100503

356. F. Song, C. Wang, W. Lin, A chiral metal-organic framework for sequential asymmetric

catalysis. Chem. Commun. 47, 8256–8258 (2011). doi:10.1039/c1cc12701b Medline

357. M.-H. Xie, X.-L. Yang, C. Zou, C.-D. Wu, A Sn(IV)-porphyrin-based metal-organic

framework for the selective photo-oxygenation of phenol and sulfides. Inorg. Chem. 50,

5318–5320 (2011). doi:10.1021/ic200295h Medline

358. M.-H. Xie, X.-L. Yang, C.-D. Wu, From 2D to 3D: A single-crystal-to-single-crystal

photochemical framework transformation and phenylmethanol oxidation catalytic

activity. Chemistry 17, 11424–11427 (2011). doi:10.1002/chem.201101321 Medline

359. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Amine-functionalized

zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic

organic transformations. Chem. Commun. 48, 11656–11658 (2012).

doi:10.1039/c2cc34620f Medline

360. T. Uemura, K. Kitagawa, S. Horike, T. Kawamura, S. Kitagawa, M. Mizuno, K. Endo,

Radical polymerisation of styrene in porous coordination polymers. Chem. Commun.

2005, 5968–5970 (2005). doi:10.1039/b508588h Medline

361. T. Uemura, S. Horike, K. Kitagawa, M. Mizuno, K. Endo, S. Bracco, A. Comotti, P.

Sozzani, M. Nagaoka, S. Kitagawa, Conformation and molecular dynamics of single

polystyrene chain confined in coordination nanospace. J. Am. Chem. Soc. 130, 6781–

6788 (2008). doi:10.1021/ja800087s Medline

362. N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H.

Hasegawa, S. Kitagawa, Fabrication of two-dimensional polymer arrays: Template

synthesis of polypyrrole between redox-active coordination nanoslits. Angew. Chem. Int.

Ed. 47, 9883–9886 (2008). doi:10.1002/anie.200803846 Medline

363. M. J. Vitorino, T. Devic, M. Tromp, G. Férey, M. Visseaux, Lanthanide metal-organic

frameworks as Ziegler-Natta catalysts for the selective polymerization of isoprene.

Macromol. Chem. Phys. 210, 1923 (2009). doi:10.1002/macp.200900354