supplementary table 1: clinical characteristics of …€¦ · web viewtemporal bone cavernous...

46
Supplementary Table 1: Clinical characteristics of the 41 NPC patients and 21 patients with NPC and unilateral TLN Characteristic Value for the 41 NPC Value for the 21 NPC patients Number 41 21 Gender Male 31 16 Female 10 5 Age (years) ≤ 40 13 8 > 40 28 13 T stage a T1 7 1 T2 9 1 T3 17 3 T4 8 16 N stage a N0 6 4 N1 20 12 N2 11 5 N3 4 0 Overall stage a I 2 1 II 11 1 III 16 3 IV 12 16 Radiation technique b VMAT 17 0 Static IMRT 24 21 Chemotherapy No 6 3 Yes 35 18 Involved Left side 13 Right side 8 Abbreviations: TLN, temporal lobe necrosis; IMRT, intensity modulated radiotherapy; VMAT, volumetric modulated arc therapy a According to the 7th AJCC/UICC staging system. b All the patients were treated with IMRT including 17 with VMAT and 24 with static IMRT.

Upload: others

Post on 24-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Supplementary Table 1: Clinical characteristics of the 41 NPC patients and 21 patients with NPC and unilateral TLN

Characteristic Value for the 41 NPC patients Value for the 21 NPC patients with unilateral TLNNumber 41 21

Gender

Male 31 16

Female 10 5

Age (years)

≤ 40 13 8

> 40 28 13

T stagea

T1 7 1

T2 9 1

T3 17 3

T4 8 16

N stagea

N0 6 4

N1 20 12

N2 11 5

N3 4 0

Overall stagea

I 2 1

II 11 1

III 16 3

IV 12 16

Radiation techniqueb

VMAT 17 0

Static IMRT 24 21

Chemotherapy

No 6 3

Yes 35 18

Involved laterality

Left side 13

Right side 8

Abbreviations: TLN, temporal lobe necrosis; IMRT, intensity modulated radiotherapy; VMAT, volumetric modulated arc therapyaAccording to the 7th AJCC/UICC staging system.bAll the patients were treated with IMRT including 17 with VMAT and 24 with static IMRT.

Supplementary Table 2: Comparison of dosimetric parameters between temporal lobes with and without TLN using the two contouring methods

Dosimetric parameters

Method 1a Method 2b

t Mean difference P-value t Mean difference P-valueD0.1ccc 6.15 10.46 <0.001 6.09 10.40 <0.001D0.5cc 5.08 8.03 <0.001 6.84 11.87 <0.001D1cc 6.98 12.84 <0.001 7.01 12.86 <0.001D5cc 7.12 14.28 <0.001 7.70 14.81 <0.001

D10cc 5.92 12.91 <0.001 6.55 13.45 <0.001D15cc 4.70 10.09 <0.001 5.08 10.49 <0.001D20cc 3.80 7.29 0.001 4.26 7.77 <0.001D25cc 3.52 5.44 0.002 3.96 5.79 0.001D30cc 3.44 3.45 0.004 4.18 4.24 0.001D35cc 2.42 1.97 0.025 4.42 3.03 <0.001D40cc 2.00 1.31 0.049 3.85 2.17 0.001

D1d 7.06 12.54 <0.001 7.14 12.90 <0.001D2 7.23 13.82 <0.001 7.25 14.12 <0.001D5 7.84 14.89 <0.001 8.04 15.05 <0.001D10 7.12 14.66 <0.001 7.01 14.16 <0.001D15 6.17 13.02 <0.001 5.46 11.66 <0.001D20 4.98 11.33 <0.001 4.58 9.12 <0.001D25 4.61 8.91 <0.001 4.20 6.84 0.001D30 4.21 7.05 0.001 4.23 4.96 <0.001D35 4.62 5.75 <0.001 4.81 3.98 <0.001D40 4.51 4.19 <0.001 4.39 3.00 <0.001D45 4.03 3.14 0.001 3.98 2.27 0.001D50 3.63 2.36 0.002 3.74 1.77 0.001D55 3.61 1.76 0.002 3.67 1.51 0.002D60 3.59 1.4 0.002 3.71 1.47 0.001V10e 3.32 4.88 0.003 3.17 5.28 0.005V20 5.13 5.86 <0.001 5.31 6.15 <0.001V25 5.95 7.16 <0.001 6.16 6.79 <0.001V30 6.97 8.72 <0.001 6.95 7.69 <0.001V35 6.77 9.71 <0.001 6.86 8.18 <0.001V40 6.18 10.01 <0.001 6.48 8.26 <0.001V45 5.84 9.89 <0.001 6.10 8.03 <0.001V50 2.72 3.37 0.013 5.81 7.78 <0.001V55 5.19 8.61 <0.001 5.39 7.02 <0.001V60 4.75 7.07 <0.001 4.78 5.75 <0.001V65 3.88 4.93 0.001 3.88 4.01 0.001V70 2.85 2.64 0.01 2.87 2.20 0.009V75 2.06 0.83 0.042 2.19 0.72 0.041

Volume 2.92 3.62 0.009 2.26 3.10 0.035Dmean 5.83 4.98 <0.001 5.83 4.36 <0.001

D1 of PRVf 7.35 11.48 <0.001 7.50 11.80 <0.001D5 of PRV 7.80 14.19 <0.001 8.20 14.73 <0.001D10 of PRV 6.80 14.18 <0.001 7.27 14.73 <0.001D15 of PRV 5.95 13.14 <0.001 5.72 12.45 <0.001

D20 of PRV 4.93 11.02 <0.001 4.71 9.59 <0.001D25 of PRV 4.30 8.60 <0.001 4.29 7.15 <0.001D30 of PRV 4.01 6.77 0.001 4.20 5.25 <0.001D35 of PRV 3.94 5.07 0.001 4.26 3.92 <0.001D40 of PRV 4.16 3.88 <0.001 4.38 3.06 <0.001D45 of PRV 3.89 2.93 0.001 4.13 2.35 0.001D50 of PRV 3.70 2.23 0.001 3.91 1.88 0.001D55 of PRV 3.72 1.66 0.001 3.76 1.59 0.001D60 of PRV 3.44 1.25 0.003 3.57 1.40 0.002V20 of PRV 5.31 5.66 <0.001 5.21 5.72 <0.001V25 of PRV 5.73 6.88 <0.001 6.01 6.70 <0.001V30 of PRV 6.94 8.77 <0.001 6.70 7.73 <0.001V35 of PRV 6.59 9.40 <0.001 6.82 8.28 <0.001V40 of PRV 6.22 9.61 <0.001 6.52 8.31 <0.001V45 of PRV 5.96 9.92 <0.001 6.31 8.06 <0.001V50 of PRV 5.74 9.17 <0.001 6.04 7.78 <0.001V55 of PRV 5.53 8.47 <0.001 5.76 7.18 <0.001V60 of PRV 5.05 7.16 <0.001 5.17 6.08 <0.001V65 of PRV 4.33 5,.30 <0.001 4.38 4.51 <0.001V70 of PRV 3.18 2.99 0.005 3.42 2.66 0.003V75 of PRV 2.45 1.10 0.024 2.55 0.98 0.019

Abbreviations: PRV=planning organ at risk volume; D mean= mean dose; TLN=temporal lobe necrosis;aTemporal lobe including the basal ganglia and insula, excluding parahippocampal gyrus and hippocampusbTemporal lobe including parahippocampal gyrus and hippocampus, excluding basal ganglia and insula.cD0.1cc is the minimum dose received by the ‘‘hottest’’ 0.1ml of the organ, the other D with suffixes

expresses the same meaning, but the suffix numbers represent the absolute volume.dD1 is the minimum dose received by the ‘‘hottest’’ 1% of the organ, the other D with suffixes express the same meaning, but the suffix numbers represent the percentage of volume.eV10 is the percentage of volume of temporal lobe that receives more than 10 Gy, the other V with suffixes express the same meaning, but the suffix numbers represent the doses received.f D1of PRV is the minimum dose received by the ‘‘hottest’’ 1% of the planning organ at risk volume of temporal lobe volume, the other Dx of PRV, Vx of PRV express the same meaning, but the prefix parameter represent the percentage of volume or the dose received.

Supplementary Table 3: Anatomic boundaries of the organs at risk in NPC.

Organ Standard TPS name [20]

Cranial Caudal Anterior Posterior Lateral Medial

TMJ TMjointa Disappearance of articular cavity

Appearance of the head of mandible or one slice superior to the sigmoid notch of the neck of mandible

Articular condyle of the temporal bone, ant. edge of mandibular condyle

Surface of fossa glenoid

Lat. edge of mandibular condyle or surface of fossa glenoid

Brainstem BrainStem Optic tract or the disappearance of posterior cerebral artery

Foramen magnum Post. edge of prepon- tine cistern or basilar artery

Ant. edge of forth ventricle or mesencephalic aqueduct

Posterior cerebral artery, anterior inferior cerebellar artery, cerebellar peduncle

Optic chiasm Chiasm One or two slices superiorly

Pituitary or suprasellar cistern

Optic canal Infundibulum Internal carotid arteries, middle cerebral arteries

Tongue(oral cavity)b

Tongue Post. edge of the hard palate or soft palate

Disappearance of anterior belly of digastric muscle

Post. edge of mandible or is free

Palate, oropharynx, the palatine tonsil, hyoid bone

Med. edge of the mandible or inferior alveoli socket

Larynx(larynx and laryngopharynx)

Larynx Cranial edge of epiglottis

Caudal edge of cricoid cartilage

Ant. edge of thyroid cartilage or cricoid cartilage

Including arytenoid cartilage, the superior and inferior horns of thyroid cartilage and post. edge of pharyngeal constrictor

Med. edge of hyoid bone, lat. edge of thyroid cartilage and cricoid cartilage, cervical vessels, nerves, and lateral thyroid

Upper Pharyngeal- Caudal edge of Cranial edge of hyoid Nasopharynx, Longus capitis m., Carotid sheath

pharyngeal constrictor [22]

Const_Upper pterygoid plates bone oropharynx, laryngopharynx, base of tongue

longus colli m., body of cervical vertebra

Middle pharyngeal constrictor [22]

Pharyngeal- Const_Middle

Cranial edge of hyoid bone

Caudal edge of hyoid bone

Laryngopharynx Longus capitis m., longus colli m., body of cervical vertebra

Hyoid bone

Inferior pharyngeal constrictor [22]

Pharyngeal- Const_Lower

Caudal edge of hyoid bone

Caudal edge of cricoid cartilage

Laryngopharynx or cricoids cartilage

Longus capitis m., longus colli m., body of cervical vertebra

Thyroid cartilage or thyroid gland

Trachea Trachea Caudal edge of cricoid cartilage

Two centimeters below the caudal edge of the clavicular head

Post. edge of isthmus of thyroid gland

Ant. edge of esophagus

Lateral thyroid gland One-two millimeters expanded from the lumen of trachea

Subman-dibular gland

Submandibulara Inferior edge of medial pterygoid or the level of C3

Appearance of fat space of submandibular triangle

Lat. surface of mylohyoid m. or hyoglossus m.

Parapharyngeal space, cervical vessels and post. belly of digastric m., sternocleidomastoid m.

Ramus of the mandible, subcutaneous fat or platysma

Cervical vessels, superior and middle pharyngeal constrictor m., hyoid bone, post. belly of the digastric m., mylohyoid m. or hyoglossus m.

Esophagus [22] Esophagus Caudal edge of cricoid cartilage

Two centimeters below the caudal edge of the clavicular head

Trachea Vertebral body or longus colli m.

Fat space or thyroid gland

Optic nerve [23] OpticNervea Below the superior rectus

Superior the inferior rectus

Posterior edge of the center of globe

Optic canal

Temporal lobe TemporalLobea Cranial edge of the Base of middle cranial Temporal bone and Petrous part of Temporal bone Cavernous sinus,

sylvian fissure fossa sylvian fissure, greater wing of sphenoid

temporal lobe, tentorium of cerebellum, incisura preoccipitalis

sphenoid sinus, sella turcica, and sylvian fissure(including parahippocampal gyrus and hippocampus

Parotid gland [21]

Parotida External auditory canal, mastoid process

Appearance post. part submandibular space

Masseter m. post. border mandibular bone, medial pterygoid m.

Ant. belly sternocleidomastoid m., lat. side post. belly of the digastric m. (posterior medial), mastoid process

Submandibular fat, platysma

Post. belly of the digastric m., styloid process, parapharyngeal space, sternocleidomastoid

Spinal cord SpinalCord Disappearance of cerebellum

Two centimeters below the inferior edge of the clavicular head

Exclude the subarachnoid space

Brachial plexus [24]

BrachialPlexusa Caudal edge of C4 Caudal edge of T1 at neural foramina and one to two CT slices below the clavicular head as the posterior aspect of the neurovascularbundle

Anterior scalene muscle Middle scalene muscle

Fat space Spinal cord

Thyroid gland Thyroid Caudal edge of pyriform sinus or midpoint of thyroid

Body of fifth to seventh cervical vertebra

Sternohyoid or sternocleidomastoid

Cervical vessels or longus colli m.

Cervical vessels or sternocleidomastoid

Thyroid cartilage or cricoids cartilage or esophagus or

cartilage pharyngeal constrictor

Mandible Mandible The mandible be contoured as whole organ but not be divided into the left and the right. Contouring of the mandible should include alveolar bone and exclude the teeth.

Inner ear Ear_Innera Cochlea and IAC should be individually delineated and named.

Middle ear Ear_Middlea Tympanic cavity, bony part of ET should be individually delineated and named.

Eyes Eyesa Ensure the retina to be contoured completely.

Lens Lensa The boundary between the lens and the vitreum is obvious

Pituitary Pituitary The pituitary is located in the hypophysial fossa. Insure the organ be contoured completely but not beyond the surrounding bone. The pituitary is ovoid and can be visualized on 1-2 slices on CT scans of 3 mm thickness

Abbreviations: TMJ, temporomandibular joint; ET, Eustachian tube; IAC, internal auditory canal; m., muscle.a The organs should be divided into left and right, and the standard TPS name of laterality is indicated by appending an underscore character ( _ ), followed by L or R, respectively. For example, the left parotid is named Parotid_L; the right parotid is named Parotid_R.b include the base of the tongue, body of tongue and mouth floor.

Supplementary table 4: Abbreviations mentioned in the manuscript.

Abbreviations Full name

OAR organ at risk

TMJ temporomandibular joint

NPC nasopharyngeal carcinoma

PC pharyngeal constrictor

ET Eustachian tube

ROC receiver operating characteristic

TLN temporal lobe necrosis

IAC internal auditory canal

RT radiotherapy

GTV gross target volume

CTV clinical target volume

PTV planning target volume

PRV planning organ at risk volume

Dmean mean dose

Dmax maximum dose

S.E. standard error

SNHL sensorineural hearing loss

OME otitis media with effusion

IMRT intensity modulated radiotherapy

VMAT volumetric modulated arc therapy

AUC Area under the curve

Dx(xcc) minimum dose received by the ‘‘hottest’’ x% (or x ml) of the organ

Vx volume percentage of the organ receiving ≥ X Gy

Supplementary Figure 1. Receiver operating characteristic (ROC) curve analysis for the D1 of

the PRV using two different temporal lobe contouring methods in 21 NPC patients with

unilateral TLN.

Supplementary Figure 2. Recommended atlas of the tympanic cavity, Eustachian tube (ET), cochlea, IAC,

TMJ, temporal lobe, brainstem, parotid gland, spinal cord, optic nerve, chiasm, submandibular gland,

pituitary, mandible, eyes, lens, brachial plexus, tongue(oral cavity), larynx, pharyngeal constrictors and

trachea as OARs based on CT-MRI fusion in NPC patients.

Supplementary References 1: The list of literatures relative to OARs contouring

1. Baxi S, Park E, Chong V, Chung HT. Temporal changes in IMRT contouring of organs at

risk for nasopharyngeal carcinoma - the learning curve blues and a tool that could help.

Technol Cancer Res Treat 2009; 8:131-140.

2. Gondi V, Tome WA, Rowley HA, Mehta MP. Hippocampal Contouring: A Contouring

Atlas for RTOG 0933. 2011.

3. Penumetcha N, Kabadi S, Jedynak B, et al. Feasibility of geometric-intensity-based semi-

automated delineation of the tentorium cerebelli from MRI scans. J Neuroimaging 2011;

21:e148-55.

4. Chau RM, Leung SF, Kam MK, et al. A split-organ delineation approach for dose

optimisation for intensity-modulated radiotherapy for advanced T-stage nasopharyngeal

carcinoma. Clin Oncol (R Coll Radiol) 2008; 20:134-41.

5. Bonilha L, Kobayashi E, Cendes F, Li LM. The importance of accurate anatomic

assessment for the volumetric analysis of the amygdala. Braz J Med Biol Res 2005; 38:409-

18.

6. Wang SZ, Yan XJ, Guo M, et al. Clinical analysis of otitis media with effuse after 3D

planning system based radiotherapy of nasopharyngeal carcinoma. China Oncol 2006;

16:503–7.

7. Walker GV, Ahmed S, Allen P, et al. Radiation-induced middle ear and mastoid

opacification in skull base tumors treated with radiotherapy. Int J Radiat Oncol Biol Phys

2011; 81:e819-e823.

8. Wang SZ, Wang WF, Guo M, et al. Analysis of anatomic factors controlling the morbidity

of radiation-induced otitis media with effusion. Radiotherapy and Oncology 2007; 85: 463–

468.

9. Wang SZ, Li J, Miyamoto CT, et al. A study of middle ear function in the treatment of

nasopharyngeal carcinoma with IMRT technique. Radiotherapy and Oncology 2009;

93:530-3.

10. Hsin CH, Chen TH, Young YH, Liu WS. Comparison of otologic complications between

intensity-modulated and two-dimensional radiotherapies in nasopharyngeal carcinoma

patients. Otolaryngology-Head and Neck Surgery 2010; 143: 662-8.

11. Bhandare N, Antonelli PJ, Morris CG, Malayapa RS, Mendenhall WM.

Ototoxicity after radiotherapy for head and neck tumors. Int J Radiat Oncol Biol

Phys 2007; 67:469-79.

12. Petsuksiri J, Sermsree A, Thephamongkhol K, et al. Sensorineural hearing loss after

concurrent chemoradiotherapy in nasopharyngeal cancer patients. Radiat Oncol 2011; 6:19.

13. Pacholke HD, Amdur RJ, Schmalfuss IM, Louis D, Mendenhall WM. Contouring the

middle and inner ear on radiotherapy planning scans. Am J Clin Oncol 2005; 28:143-147.

14. Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective study

of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat

Oncol Biol Phys 2005; 61:1393-1402.

15. Low WK, Burgess R, Fong KW, Wang DY. Effect of radiotherapy on retro-cochlear

auditory pathways. Laryngoscope 2005; 115:1823-1826.

16. Chen WC, Jackson A, Budnick AS, et al. Sensorineural hearing loss in combined modality

treatment of nasopharyngeal carcinoma. Cancer 2006; 106 (Suppl. 4):820-829.

17. Bhandare N, Jackson A, Eisbruch A, Radiation therapy and hearing loss. Int J Radia Oncol

Biol Phy 2010; 76:S50-7. 

18. Zuur CL, Simis YJ, Lamers EA, et al. Risk factors for hearing loss in patients treated with

intensity-modulated radiotherapy for head-and-neck tumors. Int J Radiat Oncol Biol Phys

2009; 74:490-6.

19. Parashar B, Kuo C, Kutler D, et al. Importance of contouring the cervical spine levels in

initial intensity-modulated radiation therapy radiation for head and neck cancers:

implications for re-irradiation. J Cancer Res Ther 2009; 5:36-40.

20. Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of

thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs,

and brachial plexus. Int J Radiat Oncol Biol Phys 2011; 81:1442-1457.

21. Leung WM, Tsang NM, Chang FT, Lo CJ. Lhermitte's sign among nasopharyngeal cancer

patients after radiotherapy. Head Neck 2005; 27:187-194.

22. Harari PM, Song S, Tome WA. Emphasizing Conformal Avoidance vs. Target Definition

for IMRT Treatment Planning in Head and Neck Cancer. Int J Radiat Oncol Biol Phys

2010; 77: 950–958.

23. Ezhi M, Starkschall G, Mohan R, Cox J, Komski R. Validation of a model-based

segmentation approach to propagating normal anatomic regions of interest through the 10

phases of respiration. Int J Radiat Oncol Biol Phys 2008; 71: 900-6. 

24. Weiss W, Wijesooriya K, Ramakrishnan V, Keall P. Comparison of intensity-modulated

radiotherapy planning based on manual and automatically generated contours using

deformable image registration in four-dimensional computed tomography of lung cancer

patients. Int J Radiat Oncol Biol Phys 2008; 70: 572–581.

25. Qatarneh SM, Noz ME, Hyodymaa S, Maguire GQ, Kramer EL, Crafoord J. Evaluation of

a segmentation procedure to delineate organs for use in construction of a radiation therapy

planning atlas. Int J Med Inform 2003; 69: 39-55.

26. Pak D, Vineberg K, Feng F, Ten Haken RK, Eisbruch A. Lhermitte sign after chemo-IMRT

of head-and-neck cancer: incidence, doses, and potential mechanisms. Int J Radiat Oncol

Biol Phys 2012; 83(5):1528-33.

27. Uhl M, Sterzing F, Habl G, et al. CT-myelography for high-dose irradiation of spinal cord

and paraspinal tumors with helical tomotherapy: revival of an old tool. Strahlenther Onkol

2011; 187:416-20.

28. Brouwer CL, Steenbakkers RJ, Van den Heuvel E, et al. 3D Variation in delineation of

head and neck organs at risk. Radiat Oncol 2012; 7:32.

29. Schreibmann E, Fox T. Towards automated planning for unsealed source therapy. J Appl

Clin Med Phys 2012; 13:3789.

30. Urbano TG, Clark CH, Hansen VN, et al. Intensity Modulated Radiotherapy (IMRT) in

locally advanced thyroid cancer: Acute toxicity results of a phase I study. Radiother

Oncol 2007; 85:58-63.

31. Zwicker F, Roeder F, Hauswald H, et al. Reirradiation with intensity-modulated

radiotherapy in recurrent head and neck cancer.Head Neck 2011; 33:1695-702.

32. Park SH, Park HC, Park SW, et al. Multi-institutional Comparison of Intensity Modulated

Radiation Therapy (IMRT) Planning Strategies and Planning Results for Nasopharyngeal

Cancer. J Korean Med Sci 2009; 24:248-55.

33. Eisbruch A, Marsh LH, Dawson LA, et al. Recurrences near base of skull after IMRT for

head-and-neck cancer: implications for target delineation in high neck and for parotid gland

sparing. Int J Radiat Oncol Biol Phys 2004; 59:28-42.

34. Claus F, Duthoy W, Boterberg T, et al. Intensity modulated radiation therapy for

oropharyngeal and oral cavity tumors: clinical use and experience. Oral Oncol 2002;

38:597-604.

35. Chen AM, Li BQ, Farwell DG, Marsano J, Vijayakumar S, Purdy JA. Improved dosimetric

and clinical outcomes with intensity-modulated radiotherapy for head-and-neck cancer of

unknown primary origin. Int J Radiat Oncol Biol Phys 2011; 79:756-62.

36. Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer.

Lancet Oncol 2010; 11:85-91.

37. Strigari L, Benassi M, Arcangeli G, Bruzzaniti V, Giovinazzo G, Marucci L. A novel dose

constraint to reduce xerostomia in head-and-neck cancer patients treated with intensity-

modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010; 77:269-76.

38. Zhang Y, Lin J, Zhou W, Tang J, Liao Y. Dosimetric verification and clinical efficacy

of intensity modulated radiotherapy in nasopharyngeal carcinoma. Zhong Nan Da Xue Xue

Bao Yi Xue Ban 2009;34: 879-85

39. van Rij CM, Oughlane-Heemsbergen WD, Ackerstaff AH, Lamers EA, Balm AJ, Rasch

CR. Parotid gland sparing IMRT for head and neck cancer improves xerostomia related

quality of life. Radiat Oncol 2008; 3:41.

40. Huang K, Xia P, Chuang C, Weinberg V, et al. Intensity-modulated chemoradiation for

treatment of stage III and IV oropharyngeal carcinoma: the University of California-San

Francisco experience. Cancer 2008; 113:497-507.

41. Seung S, Bae J, Solhjem M, et al. Intensity-modulated radiotherapy for head-and-neck

cancer in the community setting. Int J Radiat Oncol Biol Phys 2008; 72:1075-81. 

42. Bhide S, Clark C, Harrington K, Nutting CM. Intensity Modulated Radiotherapy Improves

Target Coverage and Parotid Gland Sparing When Delivering Total Mucosal Irradiation in

Patients With Squamous Cell Carcinoma of Head and Neck of Unknown Primary Site Med

Dosim 2007; 32:188-95.

43. Guerrero Urbano MT, Clark CH, et al. Target volume definition for head and neck intensity

modulated radiotherapy: pre-clinical evaluation of PARSPORT trial guidelines. Clin Oncol

(R Coll Radiol) 2007; 19:604-13.

44. Lee NY, de Arruda FF, Puri DR, et al. A comparison of intensity-modulated radiation

therapy and concomitant boost radiotherapy in the setting of concurrent chemotherapy for

locally advanced oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006; 66:966-74.

45. Braam PM, Terhaard CH, Roesink JM, Raaijmakers CP. Intensity-modulated

radiotherapy significantly reduces xerostomia compared with conventional radiotherapy.

Int J Radiat Oncol Biol Phys 2006; 66:975-80. 

46. de Arruda FF, Puri DR, Zhung J, et al. Intensity-modulated radiation therapy for the

treatment of oropharyngeal carcinoma: the Memorial Sloan-Kettering Cancer Center

experience. Int J Radiat Oncol Biol Phys 2006; 64:363-73.

47. Kwong DL, Pow EH, Sham JS, et al. Intensity-modulated radiotherapy for early-stage

nasopharyngeal carcinoma: a prospective study on disease control and preservation of

salivary function. Cancer 2004; 101:1584-93.

48. Chao KS, Ozyigit G, Blanco AI, et al. Intensity-modulated radiation therapy for

oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys 2004;

59:43-50.

49. Parliament MB, Scrimger RA, Anderson SG, et al. Preservation of oral health-related

quality of life and salivary flow rates after inverse-planned intensity- modulated

radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004; 58:663-

73.

50. van Asselen B, Dehnad H, Raaijmakers CP, Roesink JM, Lagendijk JJ, Terhaard CH. The

dose to the parotid glands with IMRT for oropharyngeal tumors: the effect of reduction of

positioning margins. Radiother Oncol 2002; 64:197-204.

51. Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment of

nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol

Phys  2002; 53:12-22.

52. Sultanem K, Shu HK, Xia P, et al. Three-dimensional intensity-modulated radiotherapy in

the treatment of nasopharyngeal carcinoma: the University of California-San Francisco

experience. Int J Radiat Oncol Biol Phys 2000; 48:711-22.

53. Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids and

escalation of biologically effective dose with intensity-modulated radiation treatments of

head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 2000;

46:195-205.

54. Butler EB, Teh BS, Grant WH 3rd, et al. Smart (simultaneous modulated accelerated

radiation therapy) boost: a new accelerated fractionation schedule for the treatment of head

and neck cancer with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 1999;

45:21-32.

55. Grégoire V, Jeraj R, Lee JA, O'Sullivan B. Radiotherapy for head and neck tumours in

2012 and beyond: conformal, tailored, and adaptive? Lancet Oncol 2012; 13:e292-300.

56. Scrimger R. Salivary gland sparing in the treatment of head and neck cancer. Expert Rev

Anticancer Ther 2011; 11:1437-48.

57. Anand AK, Jain J, Negi PS, et al. Can dose reduction to one parotid gland prevent

xerostomia?--A feasibility study for locally advanced head and neck cancer patients treated

with intensity-modulated radiotherapy. Clin Oncol (R Coll Radiol) 2006; 18:497-504.

58. Faggiano E, Fiorino C, Scalco E, et al. An automatic contour propagation method to follow

parotid gland deformation during head-and-neck cancer tomotherapy. Phys Med Biol 2011;

56:775-91.

59. Feng M, Demiroz C, Karen A, et al. Normal Tissue Anatomy for Oropharyngeal Cancer:

Contouring Variability and Its Impact on Optimization. Int J Radiat Oncol Biol Phys, 2012;

84:e245-9.

60. Mukesh M, Benson R, Jena R, et al. Interobserver variation in clinical target volume and

organs at risk segmentation in post-parotidectomy radiotherapy: can segmentation protocols

help? The British Journal of Radiology 2012; 85: e530–e536.

61. Loo SW, Martin WM, Smith P, Cherian S, Roques TW. Interobserver variation in parotid

gland delineation: a study of its impact on intensity-modulated radiotherapy solutions with

a systematic review of the literature. Br J Radiol 2012; 85:1070-7.