surface drainage systems introduction -...

10
2017 129 7. CATCH BASINS COVERS GRILLS 8. RAINWATER GULLIES 9. MODULAR CHANNELS 10. FLOOR DRAINS Surface drainage systems introduction 150 300 450 600 750 900 1.050 1.200 1.350 1.500 1.650 1.800 1.950 2.100 2.250 2.400 0 1,5 3 4,5 6 7,5 9 13,5 10,5 12 16,5 15 19,5 18 22,5 21 25,5 24 28,5 27 31,5 30 40 mm/hours Area (m2) Total discharge qt (l/sec) 50 mm/hours 75 mm/hours 100 mm/hours 125 mm/hours Fig. 4

Upload: doliem

Post on 06-Mar-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

2017 129

7. CATCH BASINS

COVERS GRILLS

8. RAINWATER

GULLIES

9. MODULAR

CHANNELS

10. FLOOR

DRAINS

Surface drainage systemsintroduction

150 300 450 600 750 900 1.050 1.200 1.350 1.500 1.650 1.800 1.950 2.100 2.250 2.4000

1,5

3

4,5

6

7,5

9

13,5

10,5

12

16,5

15

19,5

18

22,5

21

25,5

24

28,5

27

31,5

30

40 m

m/h

ours

Area (m2)

To

tal d

isc

ha

rge

qt

(l

/se

c)

50 m

m/h

ours

75 m

m/h

ours

100 m

m/h

ours

125 m

m/h

ours

Fig. 4

Page 2: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

130 2017

Surface drainage systems introduction

23 12

1

1 Formwork with handle

4 Modular channels 5 Floor drains 6 Untrapped floor drains

7 Floor drains for balconies 8 High drainage floor drains 9 Dry floor drains

11 Irrigation valve box

10 “Design” modular channels

12 Green drainage channels 13 Rainwater gullies

10

4

5

6

9

7

8

11

13

2 Catch basins, covers & grills

3 Drainage channels

The range

Page 3: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

131

Surface drainage systems introduction

7. CATCH BASINS

COVERS GRILLS

8. RAINWATER

GULLIES

9. MODULAR

CHANNELS

10. FLOOR

DRAINS

regulations & Tests

UV rAYS reSISTAnce TeSTS

Coverings EN4892

Flow TeSTS

Gullies for buildings EN1253

loAd reSISTAnce TeSTS

Drainage channels EN1433

Floor drains EN1253

Covers and Grills EN124

MechAnIcAl reSISTAnce

Voluntary Tests

IngreSS proTecTIon TeSTS

Electrical catch basin EN-CEI 60529

Page 4: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

132 2017

Surface drainage systems introduction

Technical specifications

Picture 1

Floor drains

Picture 2Catch basins and grills

150 300 450 600 750 900 1.050 1.200 1.350 1.500 1.650 1.800 1.950 2.100 2.250 2.4000

1,5

3

4,5

6

7,5

9

13,5

10,5

12

16,5

15

19,5

18

22,5

21

25,5

24

28,5

27

31,5

30

40 m

m/h

ours

Area (m2)

To

tal d

isch

arg

e q

t (l

/sec)

50 m

m/h

ours

75 m

m/h

ours

100 m

m/h

ours

125 m

m/h

ours

Picture 3

Flow rate calculation

localized evacuation

This kind of evacuation is mainly considered when it is

necessary to gather water trapping every single

evacuation point.

In this way, using small drainage accessories called floor

drains (see picture 1), a small excavation will be enough

to convoy water, especially in low excavation width areas

like garages, terraces, etc.

The localized evacuation is often adopted for

aesthetical reasons too, because it is possible to

place drains in hidden or definite site. In this way

catch basins with walkway and light traffic grills are

the best solution for areas with no trucks or industrial

vehicles passage, because they are designed to

optimize transport and installation of the whole

drainage system (see pictures 1 - 2).

To get the best performance in a localized evacuation

system it is important to:

• calculate number of accessories to be used

considering pluviometric intensity, hydraulic discharge

of chosen item and roughness of the area to be drained

• divide the whole area into several squares as the

number of localized evacuation points

• install the catch basin at the centre of the mentioned

drainage points

• keep all the 4 levels of each square with a slight slope

inward.

Page 5: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

2017 133

Surface drainage systems introduction

7. CATCH BASINS

COVERS GRILLS

8. RAINWATER

GULLIES

9. MODULAR

CHANNELS

10. FLOOR

DRAINS

drainage networks calculation

To establish the correct size of drainage networks it is

important to consider the following parameters:

• rain flow to be evacuated Qt (l/sec)

• area to be drained (m2)

• rain intensity (mm/hour)

• ground morphology and slope

• Flow rate of the selected item Qt (l/sec)

In the picture 3 it is possible to link together area to be

drained, pluviometric intensity and rain discharge to be

evacuated.

For example: Rain intensity = 75 mm/hour

A Lenght of area to be drained = 20 m

B Breadth of area to be drained = 15 m

Selected item for drainage

Floor drain internal

outlet E193004

(250x250, outlet Ø100 3,0 l/s

certified flow rate)

N° of floor drains to be installed = ?

1) Total area calculation:

Area = AxB = 20x15 = 300 m2

2) Research in picture 4 of correspondence between

area, pluviometric intensity line and related total

hydraulic discharge of rain to be evacuated: about 6 l/s

3) Divide the total hydraulic discharge by single chosen

item hydraulic discharge and you will find the total

number of floor drains to be placed in the area:

n° floor drains = Qt : Qe = 6 : 3 = 2

Estimate of the total rainwater quantity in the area is the

key issue in measuring drainage networks. Data in

picture 5 are average results and they are not influenced

by external factors (slope and surface characteristics)

which can have a relevant impact on these results.

During installation of catch basins and grills it is

important to consider the following 2 parameters:

1) hydraulic discharge of pipelines connecting catch

basins and sewage network (litres/second)

2) hydraulic discharge of grills placed on catch

basins (litres/seconds)

Hydraulic discharge of pipelines depends on pipe

diameter, slope and roughness. Roughness in

particular can influence the hydraulic discharge,

because pipelines dirtied by using slow down flow,

especially with small slopes.

Picture 4

Pluviometer Weather station

*Data referred to highest monthly rainfall registered during the year

Picture 5

Rainfall data

In this way it is important to link the right pipeline (see

table A) with the suitable hydraulic discharge grill

(see table B) to obtain a balanced evacuation.

Linear evacuation is more complex. For grill evacuation

you can consider table A hydraulic discharge multiplied

by the number of grills.

It is important to link the suitable hydraulic discharge grill

(table B) with the right pipeline (see table A) to obtain a

balanced evacuation. In case hydraulic discharge is

higher than pipeline one it will be necessary to connect

several different evacuation points.

Page 6: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

134 2017

Surface drainage systems introduction

description h int. (mm) roughness pVc - pp 0,5% 1,0% 1,5% 2,0% 3,0% 4,0% 5,0% 10%

52130 x 1000 0,02 1,4 2,0 2,5 2,9 3,5 4,1 4,6 6,5

70130 x 1000 0,02 2,3 3,3 4,0 4,6 5,7 6,6 7,3 10,4

90130 x 1000 0,02 3,1 4,4 5,4 6,3 7,7 8,8 9,9 14,0

130130 x 1000 0,02 4,8 6,8 8,3 9,6 11,7 13,5 15,1 21,4

50100 x 500 0,02 0,5 0,7 0,9 1,0 1,3 1,4 1,6 2,3

70130 x 500 0,02 1,0 1,4 1,7 1,9 2,4 2,8 3,1 4,4

134130 x 500 0,02 3,3 4,7 5,7 6,6 8,1 9,4 10,5 14,8

94200 x 500 0,02 3,5 5,0 6,1 7,0 8,6 9,9 11,1 15,7

170200 x 500 0,02 9,6 13,6 16,6 19,2 23,5 27,2 30,4 43,0

grill 100x500 130x500 130x500 130x500 130 x 500 200 x 500

hight swimming slot

Flow rate drainage pool

(l/s) 2,3 (l/s) 1,9 (l/s) 3,6 (l/s) 1,2 (l/s) 0,4 (l/s) 2,8 (l/s)

pVc pipe Ø (mm) 0,5% 1% 1,5% 2% 3% 5% 10%

40 0,15 0,26 0,30 0,35 0,43 0,57 0,80

50 0,37 0,52 0,60 0,73 0,89 1,14 1,61

63 0,73 1,04 1,28 1,47 1,77 2,28 3,16

75 1,21 1,63 2,10 2,41 2,94 3,80 5,35

80 1,44 2,05 2,51 2,88 3,54 4,56 6,44

100 2,78 3,91 4,78 5,57 6,78 8,75 12,34

125 5,20 7,36 8,99 10,40 13,00 16,41 23,19

140 6,91 9,78 11,96 13,80 16,90 21,81 30,93

160 9,80 13,74 16,86 19,46 23,86 30,76 43,57

200 16,94 24,01 29,40 33,96 41,61 53,70 75,78

250 30,09 42,54 52,06 60,15 73,64 95,10 134,60

315 54,48 77,11 94,32 108,90 133,40 172,00 244,50

TABle A - pIpeS Flow rATe (l/s) wITh dIFFerenT SlopeS

grill 130x1000 130x1000 130x1000 130 x 1000

PP galvanized steel galvanized steel galvanized steel

grill load grill load class B125 grill load class C250

Flow rate class A15 square mesh 33 x 33 square mesh 33 x 33

(l/s) 3,5 (l/s) 2,3 (l/s) 7,9 (l/s) 7,5 (l/s)

TABle B - grIll Flow rATe (l/s)

chAnnel Flow rATe (l/s) wITh dIFFerenT SlopeS

grill 100x500 100x500 100x500 100 x 500

Flow rate “Laser” “Drop” “Circle” “Led”

(l/s) 0,8 (l/s) 0,5 (l/s) 1,1 (l/s) 0,3 (l/s)

Page 7: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

2017 135

Surface drainage systems introduction

7. CATCH BASINS

COVERS GRILLS

8. RAINWATER

GULLIES

9. MODULAR

CHANNELS

10. FLOOR

DRAINS

channel description Bazin ϒ (m1/2)

Channel made of PVC, PP, PE 0,02

Channels made of concrete 0,10

Channels made of concrete (low level of maintenance) 0,23 ÷ 0,36

Channels made of stone 0,46

Channels made of concrete with grass on the bottom 1,30

Abandoned channels with vegetation 2,0 ÷ 2,3

Picture 6

Linear evacuation

linear evacuation

All the underground connectors for rain gathering can be

partially substituted by superficial drainage channels with

grills. These channels can be placed in flat open areas

without digging limitations. Linear drainage system

permits an easier installation than localized one, because

it is less difficult to project the drainage plane.

All ground drained in this way are flatter and more

suitable for vehicular traffic. Both evacuation systems are

efficient in case of meteoric water gathering.

There are particular cases, when water reaches drainage

area with high speed (like for example in a swimming

pool border or between underground garages and

ramps or along borders with slope changes), in which it

is necessary to gather water for a wide area set at 90° of

the flow direction.

REDI proposes its range of channels with walkway and

light traffic grills (A15, B125, C250 load classes) to get an

efficient linear evacuation.

In case of linear evacuation drainage channels are

chosen both for granted load resistance and for water

quantity to be drained.

estimate of quantity of water to be drained

Qt = quantity of water to be drained

A = area to be drained

P = average quantity of rainfall

Qt = A x P

For example considering daily highest rainfall tables it is

possible to determine the quantity of water to be drained

over an area 10x5 mt characterized by a daily highest

rainfall value between 90 mm/day - 120 mm/day

(minimum-maximum):

Area = 10 x 5 m = 50 m2

Hypothetical average rainfall estimated = 105 mm/hour

Qt = 50 x 105 = 5.250 mm/hour

5.250 mm/hour corresponding to 1,46 mm/second (1,46 l/s).

estimate of channels hydraulic discharge

Channels hydraulic discharge have been calculated

supposing hydraulic discharge (Q) has uniform motion.

Chézy’s formula permits to calcolate respectively Speed

(V) and Hydraulic discharge (Q):

Q = AxV

V = C√(Rxi)

Coefficient C can be calculated with Bazin’s formula

C = 87 / (1+ϒ / √R) where A is the section, R is the

average radius of the channel and ϒ is the roughness

coefficient of the internal channel surface. As indicated in

the table on the side the roughness coefficient of plastics

(PVC and PP) is much lower if compared with other

materials.

Grills flow discharge has to be linked with channels flow

discharge in table below.

If hydraulic discharge is higher than channels one other

vertical or lateral pipes can be connected to the channels,

improving the hydraulic discharge of the all system.

TABle c - roUghneSS coeFFIcIenT oF InTernAl chAnnel SUrFAce

Page 8: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

136 2017

Surface drainage systems introduction

Materials

The surface drainage system products are made by

moulding the following plastics:

• Polyvinyl chloride (PVC), thermoplastic polymer

obtained from polymerization of vynil chloride. PVC is

nowadays more and more largely used in buildings,

thanks to its resistance to external atmospheric agents

and to mechanical solicitations.

• Polypropylene (PP), thermoplastic polymer obtained

from polymerization of propylene. PP, thanks to its

versatility, is largely used in buildings, mainly when

product doesn’t require specific resistance

performances.

• Acrylonitrile - Butadiene - Stirene (ABS), thermoplastic

copolymer obtained from polymerization of Acrylonitrile,

Butadiene and Stirene. ABS, thanks to its

characteristics is particularly used for shock resistant

items which satisfy aesthetical requirements.

Raw materials used to realize surface DRAINAGE

SYSTEM products are subjected to periodical controls in

chemical laboratories. Their formulation has been

carefully studied to optimize their chemical and

mechanical resistances. The following tables are the

result of several laboratory tests. It is important to check

the real behaviour during practical use.

TECHNICAL CHARACTERISTICS

pVc mechanical features (23°c)

pp mechanical features (23°c)

pVc physical features

characteristcs Test Size result*

Yeld point ISO 527 Kg/cm2 530

Breaking load ISO 527 Kg/cm2 430

Enlongation at break ISO 527 % 70/80

Traction stretch ISO 527 Kg/cm2 34.000

characteristcs Test Size result*

Yeld point ISO 527 Kg/cm2 260

Breaking load ISO 527 Kg/cm2 200

Enlongation at break ISO 527 % 20/30

Traction stretch ISO 527 Kg/cm2 17.000

characteristcs Test Size result*

Mass volume ISO 1183 Kg/dm3 1,43

Vicat softeningtemperature ISO 306-B °C 80

Thermal linear expansioncoefficient / mm/m°C 0,07

pVc physical features

characteristcs Test Size result*

Mass volume ISO 1183 Kg/dm3 0,92

Vicat softeningtemperature ISO 306-B °C 94

Thermal linear expansioncoefficient / mm/m°C 0,15

* = Data obtained from tests effected: • Test tube type ISO 2 • Traction speed = 5 mm/min

** = Temperature: • min. -10° • max. 60°

* = Data obtained from tests effected: • Test tube type ISO 1 • Traction speed = 50 mm/min

** = Temperature: • min. 0° • max. 60°

Page 9: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

2017 137

Surface drainage systems introduction

7. CATCH BASINS

COVERS GRILLS

8. RAINWATER

GULLIES

9. MODULAR

CHANNELS

10. FLOOR

DRAINS

product conc. Temp. Temp. % 20 °c 60 °c

ACETIC ACID 60 S LACETIC ACID MONOCHLORIDE SOL. S LACETIC ALDEHYDE 33 L NSACETIC ANHYDRIDE 100 L NSACETONE 100 S SADIPIC ACID - - -ALLYL ALCOHOL 96 S SALUMINUM CHLORIDE SOL. SAT. S SALUMINUM SULPHATE SOL. SAT. S SAMMONIA (GAS) 100 S SAMMONIA (LIQUID) 100 S LAMMONIA (SOLUTION) SOL. DIL. S LAMMONIUM CHLORIDE SOL. SAT. S SAMMONIUM FLUORIDE - - -AMMONIUM NITRATE SOL. SAT. S SAMMONIUM SULPHATE SOL. SAT. S SAMYL ACETATE 100 NS NSAMYL ALCOHOL 100 S LANILINE 100 S LANILINE SOL. SAT. S LANILINE HYDROCHLORIDE SOL. SAT. - -ANTIMONY CHLORIDE 90 S SARSENIC ACID SOL. DIL. S -BEER S SBENZALDEHYDE 100 S -BENZENE 100 NS NSBENZOIC ACID SOL. SAT. S LBORAX SOL. SAT. S LBORIC ACID SOL. DIL. S LBROMINE (LIQUID) 100 NS NSBROMINE ACID 10 S -BUTADIENE 100 S SBUTANE 100 S -BUTYL ACETATE 100 NS NSBUTYL PHENOL 100 NS NSBUTYLENE 100 S LBUTYRIC ACID 20 S LBUTYRIC ACID 98 NS NSCALCIUM CHLORIDE SOL. SAT. S SCALCIUM NITRATE 50 S SCARBON DIOXIDE 100 S SCARBON SULPHIDE 100 S -CARBON TETRACHLORIDE 100 NS NSCHLORINE (DRY GAS) 100 NS NSCHLORINE (LIQUID) SOL. SAT. NS NSCHLOROSULPHONIC ACID 100 NS NSCHROMIC ACID - -CITRIC ACID SOL. SAT. S SCOPPER CHLORIDE SOL. SAT. S SCOPPER FLUORIDE 2 S SCREOSOL 100 L NSCRESOL ACID SOL. SAT. NS NSCROTONIC ALDEHYDE 100 NS NSCYCLOHEXANOL 100 L NSCYCLOHEXANONE 100 L NSDEVELOPING BATH S SDEXTRINE SOL. SAT. - -DIBUTYL PHTHALATE 100 NS LDICHLOROETHYLENE 100 NS NSDIGLYCOLIC ACID 18 S LDIMETHYLAMMINE 30 S -ETHYL ACETATE 100 NS NSETHYL ALCOHOL 95 S LETHYL BENZENE 100 NS NSETHYL ETHER 100 S -ETHYLENE GLYCOL CONC. S SFLUORINE 100 NS NSFORMALDEHYDE SOL. DIL. S SFORMALDEHYDE 40 S SFORMIC ACID 1~50 L NSFURFURAL ALCOHOL 100 NS NSGLUCOSE SOL. SAT. S LGLYCERIN 100 S SGLYCOLIC ACID 30 S SGOLDEN SYRUP SOL. S LHYDROBROMIC ACID 50 - -HYDROCHLORIC ACID 30 L NSHYDROFLUORIC ACID 60 L NS

product conc. Temp. Temp. % 20 °c 60 °c

HYDROGEN 100 S SHYDROGEN DIOXIDE 30 S LHYDROGEN SULPHIDE 100 S SISOOCTANE 100 L SLACTIC ACID 10 S LLACTIC ACID 10~90 L LLEAD TETRAETHYL 100 S -MAGNESIUM SULPHIDE SOL. SAT. S SMALEIC ACID SOL. SAT. S LMETHYL ALCOHOL 100 S LMETHYL METHACRYLATE 100 NS NSMETHYLENE CHLORIDE 100 NS NSMILK S SMINERAL OIL 100 L LN-HEPTANE 100 L NSNICKEL SULPHIDE SOL. SAT. S SNICOTINIC ACID CONC. S SNITRIC ACID <25 L NSNITRIC ACID 50 NS NSOLEIC ACID 100 L LOLEUM 10% OF SO³ NS NSOXALIC ACID 25 S LOXALIC ACID SOL. SAT. L LOXIGEN SOL. SAT. L LPETROL 80/20 NS NSPETROLEUM 100 L NSPHENOL SOL. SAT. S SPHOSPHINE 100 S LPHOSPHOR OXICHLORIDE 100 L LPHOSPHORIC ACID 30 S LPOTASSIUM BICHROMATE SOL. 20 S SPOTASSIUM BROMIDE SOL. SAT. S SPOTASSIUM CHLORIDE SOL. SAT. S SPOTASSIUM CHROMATE 40 S SPOTASSIUM CYANIDE SOL. S SPOTASSIUM FERRICYANIDE SOL. SAT. S SPOTASSIUM FERROCYANIDE SOL. SAT. S SPOTASSIUM HYDROXIDE SOL. S SPOTASSIUM NITRATE SOL. SAT. S LPOTASSIUM PERMANGANATE 20 S SPOTASSIUM PERSULFATE SOL. SAT. S LPROPANE (GAS LIQUID) 100 S -PROPIONIC ACID 50 S SPYRIDINE 100 NS NSSEA WATER S LSILVER NITRATE SOL. SAT. S LSOAP SOL. S SSODIUM BISULPHITE SOL. SAT. S SSODIUM CHLORATE SOL. SAT. S SSODIUM CHLORIDE SOL. SAT. S SSODIUM FERRICYANIDE SOL. SAT. S SSODIUM HYDROXIDE SOL. S SSODIUM HYPOCHLORITE 25 L NSSODIUM HYPOCHLORITE 100 (13% CL.) S LSODIUM SILICATE SOL. S SSODIUM SULPHITE SOL. SAT. S LSULPHUR ACID SOL. S SSULPHUR ANHYDRIDE 100 (LIQUID) S LSULPHUR ANHYDRIDE 100 (DRY) L NSSULPHURIC ACID 40~90 L LSULPHURIC ACID 96 NS NSSULPHURIC CHLORIDE 100 NS NSSULPHURYL CHLORIDE 100 NS NSTANNIC ACID SOL. S STARTARIC ACID SOL. S STETRACHLOROETHENE 100 NS NSTHIOPHENE 100 L LTIN CHLORIDE SOL. SAT. S STOLUENE 100 NS NSTRICHLOROETHYLENE 100 NS NSTURPENTINE (OIL) 100 NS NSUREA 10 S LVASELINE L LVINAGRE S SVINYL ACETATE 100 NS NSWINE S SXYLENE 100 NS NSYEAST SOL. S L

pp - Chemical resistance

S = Without corrosion, unchanged properties l = Limited corrosion, slightly changed properties nS = Corrosion, changed properties

For any special application, please contact the REDI Technical Service beforehand.

Page 10: Surface drainage systems introduction - redi.euredi.eu/.../2017/04/07_a-REDI_Cat_export_INTRO_Drainage_2017.pdf130 2017 Surface drainage systems introduction 3 2 12 1 1 F orm wk it

138 2017

Surface drainage systems introduction

product conc. Temp. Temp.% 20 °c 60 °c

HYDROFLUORIC ACID 60 L NSHYDROGEN 100 S SHYDROGEN DIOXIDE 30 S SHYDROGEN SULPHIDE 100 S SIRON CHLORIDE SOL. SAT. S SLACTIC ACID 10 S LLACTIC ACID 10~90 L NSLEAD ACETATE SOL. SAT. S SLEAD TETRAETHYL 100 S -MAGNESIUM CHLORIDE SOL. SAT. S SMAGNESIUM SULPHIDE SOL. SAT. S SMALEIC ACID SOL. SAT. S LMETHYL ALCOHOL 100 S LMETHYL METHACRYLATE 100 NS NSMETHYLENE CHLORIDE 100 NS NSMILK S SNICKEL SULPHIDE SOL. SAT. S SNICOTINIC ACID CONC. S SNITRIC ACID <46 S LNITRIC ACID 46~98 NS NSOILS S SOLEIC ACID 100 S SOLEUM 10% OF SO³ NS NSOXALIC ACID SOL. DIL. S LOXALIC ACID SOL. SAT. S SOXIGEN 100 S SOZONE 100 NS NSPERCHLORIC ACID 10 S LPERCHLORIC ACID 70 L NSPETROL 80/20 NS NSPHENOL 90 NS NSPHOSPHINE 100 S SPHOSPHOR TRICHLORIDE 100 NS -PHOSPHORIC ACID 30 S LPICRIC ACID SOL. SAT. S SPOTASSIUM BICHROMATE 40 S SPOTASSIUM BROMIDE SOL. SAT. S SPOTASSIUM CHLORIDE SOL. SAT. S SPOTASSIUM CHROMATE 40 S SPOTASSIUM CYANIDE SOL. S SPOTASSIUM FERRICYANIDE SOL. SAT. S SPOTASSIUM FERROCYANIDE SOL. SAT. S SPOTASSIUM HYDROXIDE SOL. S SPOTASSIUM NITRATE SOL. SAT. S SPOTASSIUM PERMANGANATE 20 S SPOTASSIUM PERSULFATE SOL. SAT. S LPROPANE (GAS LIQUID) 100 S -PYRIDINE 100 NS -SEA WATER S LSILVER NITRATE SOL. SAT. S LSOAP SOL. S LSODIUM BENZOATE 35 S LSODIUM BISULPHITE SOL. SAT. S SSODIUM CHLORATE SOL. SAT. S SSODIUM FERRICYANIDE SOL. SAT. S SSODIUM HYDROXIDE SOL. S LSODIUM HYPOCHLORITE 100 (13% CL.) S LSODIUM SULPHITE SOL. SAT. S LSUGAR SOL. SAT. S SSULPHUR ACID SOL. S SSULPHUR ANHYDRIDE 100 (LIQUID) L NSSULPHUR ANHYDRIDE 100 (DRY) L NSSULPHURIC ACID 40~90 S LSULPHURIC ACID 96 L NSTANNIC ACID SOL. S STARTARIC ACID SOL. S STIN CHLORIDE SOL. SAT. S STOLUENE 100 NS NSTRICHLOROETHYLENE 100 NS NSTRIMETHYL PROPANE <10 S LUREA 10 S LURINE S LVINAGRE S SVINYL ACETATE 100 NS NSWINE S SXYLENE 100 NS NSYEAST SOL. S LZINC CHLORIDE SOL. SAT. S S

pVc - Chemical resistance

TS = Without corrosion L = Limitaded corrosion NS = Corrosion

For special applications it is recommended to contact the REDI Technical Department.

product conc. Temp. Temp.% 20 °c 60 °c

ACETIC ACID 60 S LACETIC ACID MONOCHLORIDE SOL. S LACETIC ALDEHYDE 100 NS -ACETIC ANHYDRIDE 100 NS NSACETONE 100 NS NSADIPIC ACID SOL.SAT. S LALLYL ALCOHOL 90 L SALUMINUM CHLORIDE SOL. SAT. S SALUMINUM SULPHATE SOL. SAT. S SAMMONIA (AQUEOUS) 100 L NSAMMONIA (GAS) 100 S SAMMONIA (SOLUTION) SOL. DIL. S LAMMONIUM CHLORIDE SOL. SAT. S SAMMONIUM FLUORIDE 20 S LAMMONIUM NITRATE SOL. SAT. S SAMMONIUM SULPHATE SOL. SAT. S SAMYL ACETATE 100 NS NSAMYL ALCOHOL 100 S LANILINE 100 NS NSANILINE SOL. SAT. NS NSANILINE HYDROCHLORIDE SOL. SAT. NS NSANTIMONY CHLORIDE 90 S SARSENIC ACID SOL. DIL. S -BEER S SBENZALDEHYDE 0,1 NS NSBENZENE 100 NS NSBENZOIC ACID SOL. SAT. L NSBORAX SOL. SAT. S LBORIC ACID SOL. DIL. S LBROMINE (LIQUID) 100 NS NSBROMINE ACID 10 S -BUTADIENE 100 S SBUTANE 100 S -BUTYL ACETATE 100 NS NSBUTYL PHENOL 100 NS NSBUTYLENE 100 S LBUTYRIC ACID 20 S LBUTYRIC ACID 98 NS NSCALCIUM CHLORIDE SOL. SAT. S SCALCIUM NITRATE 50 S SCARBON DIOXIDE 100 S SCARBON SULPHIDE 100 NS NSCARBON TETRACHLORIDE 100 NS NSCETYL ACID 100 S SCHLORINE (DRY GAS) 100 L NSCHLORINE (LIQUID) SOL. SAT. L NSCHLOROSULPHONIC ACID 100 L NSCHROMIC ACID 1~50 S LCITRIC ACID SOL. SAT. S SCOPPER CHLORIDE SOL. SAT. S SCOPPER FLUORIDE 2 S SCREOSOL SOL. SAT. - NSCRESOL ACID SOL. SAT. NS NSCROTONIC ALDEHYDE 100 NS NSCYCLOHEXANOL 100 NS NSCYCLOHEXANONE 100 NS NSDEVELOPING BATH S SDEXTRINE SOL. SAT. S LDICHLOROETHYLENE 100 NS NSDIGLYCOLIC ACID 18 S LDIMETHYLAMMINE 30 S -ETHYL ACETATE 100 NS NSETHYL ACRYLATE 100 NS NSETHYL ALCOHOL 95 S LETHYL ETHER 100 NS LETHYLENE GLYCOL CONC. L LFLUOSILICIC ACID 32 S SFORMALDEHYDE SOL. S SFORMALDEHYDE 40 S SFORMIC ACID 1~50 S LFURFURAL ALCOHOL 100 NS NSGLUCOSE SOL. SAT. S LGLYCERIN 100 S SGLYCOLIC ACID 30 S SGOLDEN SYRUP SOL. S LHYDRAZINE BENZENE 100 NS NSHYDRAZINE BENZENE CLORIC 97 NS NSHYDROBROMIC ACID 50 S L HYDROCHLORIC ACID >30 S S