surry unit 2,cycle 5 startup physics test rept.'each test, a comparison of the test results with...

73
:I I I I ., I I I I '·1 I I ·1 ·1 I I I .I ·1 '1 VEP-FRD-37 Vepco SURRY UNIT 2, CYCLE 5 STARTu·p PHYSICS TEST J. · FUEL ; · VI R GlNI A 8 0 11 0 0 tJl'f -~· REPO·R·T .\ NOTICE·. - . \ THE AT. TACHED FILES ARE OFF.ICl~L RECORDS OF THE ' DIVISION .OF DOCUMENT CONTROL. THEY HAVE BEEN 'CHARGED TO YOU FOR A LIIYIITED TIME PERIOD AND · MUST BE RETURNED TO THE RECORDS F.ACILITY. BRANCH 016. PLEASE ob NOT SEND · DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY : PAGE(S). FROM DOCUMENT FOR REPRODUCTION MUST '. BE REFERRED TO FILE PERSONNEL. . Docket# ~o- ~s, · C,o,ri,trnl # 0<>11ocJt>o1z. . . I J .. DEADLINE RETURN DATE Date 1012.91g~f Dssumeirt:i 'B~~U~TQRJ D9.;C§ f~ REG.UI.ATORY .DOCKET .Flt[ COPY RECORDS FACILITY BRANCH· RESOURCES DEPARTMENT ELECTRIC POWER COMPANY

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • :I

    I I I ., I I I I

    '·1 I I ·1 ·1 I I I .I ·1

    • '1

    VEP-FRD-37

    Vepco

    SURRY UNIT 2, CYCLE 5 STARTu·p PHYSICS TEST

    J. · FUEL ; · VI R GlNI A 8 0 11 0 4· 0 tJl'f -~·

    REPO·R·T .\ NOTICE·. - .

    \

    THE AT. TACHED FILES ARE OFF.ICl~L RECORDS OF THE ' DIVISION .OF DOCUMENT CONTROL. THEY HAVE BEEN 'CHARGED TO YOU FOR A LIIYIITED TIME PERIOD AND · MUST BE RETURNED TO THE RECORDS F.ACILITY. BRANCH 016. PLEASE ob NOT SEND · DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY : PAGE(S). FROM DOCUMENT FOR REPRODUCTION MUST '. 1 BE REFERRED TO FILE PERSONNEL. . ,

    Docket# ~o- ~s, · C,o,ri,trnl # 011ocJt>o1z. . I

    . I J .. I DEADLINE RETURN DATE Date 1012.91g~f Dssumeirt:i

    'B~~U~TQRJ D9.;C§ f~

    REG.UI.ATORY .DOCKET .Flt[ COPY

    RECORDS FACILITY BRANCH·

    RESOURCES DEPARTMENT

    ELECTRIC POWER COMPANY

  • I I I I I I I I I I I I I I I I I ·I I

    Approved:

    VEP-FRD-37

    SURRY UNIT 2, CYCLE 5 STARTUP PHYSICS TEST REPORT

    Group

    BY

    J. H. LEBERSTIEN T. K. ROSS

    Nuclear Fuel Operation Group Fuel Resources Department Virginia Electric and Power Company Richmond, Virginia

    October, 1980

    REGULATORY .DOCKET fill COP1.

  • I I I I I I I I I I I I I

    CLASSIFICATION/DISCLAIMER

    The data, .techniques, information, and conclusions in this report have been

    prepared solely for use by the Virginia Electric and Power Company (the Company),

    and they may not be appropriate for use in situations other than those for which

    they were specifically prepared. The Company therefore makes no claim or

    warranty whatsoever, express or implied, as to their accuracy, usefulness, or

    applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY

    OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE

    FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of

    the data, techniques, information, or conclusions in it. By making this report

    available, the Company does not authorize its use by others, and any such use is

    expressly forbidden except with the prior written approval of the Company. Any

    such written approval shall itself be deemed to incorporate the disclaimers of

    liability and disclaimers of warranties provided herein. In no event shall the

    Company be liable, under any legal theory whatsoever (whether contract, tort,

    warranty, or strict or absolute liabiiity), for any property damage, mental or

    physical injury or death, loss of use of property, or other damage resulting

    from or arising out of the use, authorized or unauthorized, of thi~ report or

    ~ the data, techniques, information, or conclusions in it.

    I I I I I

    i

  • I ,I

    I I I' I I I I I I· I I I I I I I I

    . ACKNOWLEDGEMENTS

    The authors would like to acknowledge the cooperation of the Surry

    Power Station personnel in performing the tests documented in this report.

    Special thanks are due Messrs. L. J, Curfman, J. I. Kelly, D. Padula, and

    R. H. Blount, Also,. the authors would like to express their gratitude to

    Dr. E. J. Lozito for his aid and guidance in preparing this report, We would

    like to thank Ms. C. E. Bullock for her patience and accurate typing of the

    text.

    ii

  • I .I I I I I I I I I I I I I I I I I I

    SECTION

    1

    2

    3

    4

    5

    6

    7

    8

    APPENDIX

    TABLE OF CONTENTS

    TITLE

    Classification/Disclaimer

    Acknowledgements

    List of Tables

    List of Figures •

    Preface

    Introduction and Summary

    Control Rod Drop Time Measurements

    Reactor Coolant System Flow Measurement

    Control Rod Bank Worth Measurements .

    Boron Endpoint and Worth Measurements

    Temperature Coefficient Measurements

    Power Distribution Measurements

    References

    Startup Physics Test Results and Evaluation Sheets . . . . • • . . • • . . . . . . . . •

    iii

    PAGE NO.

    i

    ii

    iv

    V

    vi

    1

    8

    13

    15

    20

    24

    28

    42

    A.l

  • I I I I 1·

    I I I I I I I I I I I I I I

    TABLE

    1.1

    2.1

    3.1

    4.1

    5.1

    6.1

    7.1

    7.2

    LIST OF TABLES

    TITLE

    Chronology of Tests ••

    Hot Rod Drop Time Summary.

    Reactor Coolant System Flow Measurement Summary .

    Control Rod Bank Worth Summary

    Boron Endpoints Summary •••••

    Isothermal Temperature Coefficient Summary

    Incore Flux Map Summary .••.••..•• ,

    Comparison of Measured Power Distribution Parameters

    PAGE NO.

    3

    10

    14

    17

    22

    25

    30

    With Their Technical Specifications Limit ..• , . , 31

    iv

  • I I I I I I I' I I I I I I I I I I I I

    FIGURE

    1.1

    1.2

    1.3

    1.4

    2.1

    2.2

    4.1

    4.2

    5.1

    6.1

    6.2

    7.1

    7.2

    7.3

    7.4

    7.5

    7.6

    7.7

    7.8

    7.9

    7.10

    LIST OF FIGURES

    TITLE

    Core Loading Map •.•• . . . . . . . . . . Assembly ID's and Incore Instrumentation Locations

    Burnable Poison and Source Assembly Locations

    Control Rod Locations

    Typical Rod Drop Trace

    Rod Drop Time - Hot·Full Flow Conditions.

    Bank B Integral Rod Worth - HZP ..••

    Bank B Differential Rod Worth - HZP

    Boron Worth Coefficient . . . • . • •.•

    Isothermal Temperature Coefficient - HZP, ARO

    Isothermal Temperature Coefficient - HZP, B-Bank In

    Assemblywise Power Distribution - HZP, ARO ••.

    . . . .

    Assemblywise Power Distribution - HZP, B-Bank In

    Assemblywise Power Distribution - D-Bank At 1'06 Steps

    Assemblywise Power _Distribution .,... I/E Cal. - Flux ijap

    Assemblywise Power Distribution - I/E Cal, - Flux Map

    Assemblywise Power Distribution - I/E Cal. - Flux }!ap

    Assemblywise Power Distribution.,... I/E Cal~ - Flux ijap

    Assemblywise Power Distribution.,... I/E Cal, ~ Flux Map

    Assemblywise Power Distribution - I/E Cal~ - Flu~ Map

    Assemblywise Power Distribution.,... HFP, Eq, Xenon. , ,

    V

    •. '

    . '

    , .

    PAGE NO.

    4

    5

    6

    7

    11

    12

    18

    19

    23

    26

    27

    32

    33

    34

    35

    36.

    37

    38

    39.

    40

    41

  • I I I I I I I I I I I I I I I

    I

    PREFACE

    The .purpose of this report is to present the analysis and evaluation

    of the physics tests which were performed to verify that the Surry 2, Cycle 5

    core could be operated safely, and to make an initial evaluation of the expected

    performance of the core. It is not the intent of this report to discuss the

    particular methods of testing or to present the detailed data taken. Standard

    test techniques and methods of data analysis were used. The test data, results

    and evaluations, together with the detailed startup procedures, are on file at

    the Surry Power Station. Therefore, only a cursory discussion of these items

    is included in this report. The analyses presented includes a brief summary of

    each test, a comparison of the test results with design predictions, and an

    evaluation of the results.

    The Surry 2, Cycle 5 Startup Physics Tests Results and Evaluation

    Sheets have been included as an appendix to provide additional information on

    the startup test results. Each data sheet provides the following information:

    1) test identification, 2) test conditions (design), 3) test conditions (actual),

    4) test results, 5) acceptance criteria, and 6) comments concerning the test.

    These sheets provide a compact summary of the startup test results in a consistent

    format. The design test conditions and design values of the measured parameters

    were completed prior to startup physics testing. The entries for the design

    values were based oµ calculations performed by Vepco's Nuclear Fuel Engineering

    1 Group. During the tests, the data sheets were used as guidelines both to verify

    that the proper test conditions were met and to facilitate the preliminary compari-

    son between measured and predicted test results, thus enabling a quick identi-

    fication of possible problems occurring during the tests. The appendix to this

    report contains the final completed and approved version of the Startup Physics

    Tests Results and Evaluation Sheets.

    vi

  • I I I I I I I I I I I I I I I I I I I

    Section 1

    INTRODUCTION AND SUMMARY

    On February 4, 1979, Unit No. 2 of the Surry Power Station was shut-

    down for its fourth refueling and a steam generator replacement outage. During

    this shutdown, 64 of the 157 fuel assemblies in the core were replaced with

    fresh fuel assemblies. The second cycle core consists of six batches of fuel:

    two once-burned batches from Cycle 4 (Batches 6Al and 6B), one tw:,ice-buined

    batch that is carried over from Cycles 3 and 4 (Batch 5A), one~thrice-burned

    batch that is carried over from Cycles 2, 3 and 4 (Batch 4B2), and two fresh

    batches (Batches 7A and 7B). The core loading pattern and the design parameters

    for each batch are shown in Figure 1.1. The core location of each fuel assembly

    is identified in Figure 1.2 together with the incore instrumentation locations.

    Figure 1.3 identifies the location and number of burnable poison rods in the

    Cycle 5 core. Figure 1.4 identifies the location and number of control rods in

    the Cycle 5 core.

    On August 14, 1980, at 1208, the fifth cycle core achieved initial

    criticality. Following criticality, startup physics tests were performed as

    outlined in Table 1.1. A summary of the results of these tests follows:

    1. ~e drop time of each control rod was confirmed to be within

    the 1.8 second limit of the Technical Specifications.2

    2. The reactor coolant system flow rate was confirmed to be greater

    than the minimum limit specified in the Final Safety Analysis

    Report. 3

    3. Individual control rod bank worths for all control rod banks were

    measured using the rod swap technique4 and were .. ·found ·to be. within

    13. 2% of thia design predictions. The sum of. the individual c0ntrol .rod ·

    bank worths was measured to be.within 3.8% of the design prediction.

    1

  • I I I I I I I I I I I I I I I I I I I

    These results are within the design tolerance of +15% for indi-

    vidual bank worths (+10% for the rod swap reference bank worth)

    and the design tolerance of +10% for the sum of the individual

    control rod bank worths.

    4. Critical boron concentrations for two control bank configurations

    were measured to be within 43 ppm of the design predictions.

    These results are within the design tolerances and also met the

    accident analysis acceptance criterion.

    5. The boron worth coefficient was measured to be within 5.9% of

    the design prediction, which is within the design tolerance of

    +10% and met the accident analysis acceptance criterion.

    6. Isothermal temperature coefficients for two control bank config-

    urations were measured to be within 0.6 pcm/°F of the design

    predictions. These results are within the design tolerance of

    +3 pcm/ 8 F and also met the accident analysis acceptance criterion.

    7. Core power distributions for various HZP and at-power conditions

    were generally within 6% of the predicted power distributions.

    For all maps, the hot channel factors were measured to be within

    the limits of the Technical Specifications. Generally, all

    measurement parameters met their respective design value tolerances.

    All measurement parameters met their respective accident analysis

    acceptance criteria.

    In summ~ry, all startup physics test results were acceptable.

    Detailed results, .together with specific design tolerances and acceptance

    criteria for each measurement,· are presented in the appropriate sections of

    this report.

    2

  • I I I

    -1 I I I I I I I I I I I I I I I

    Table 1.1

    SURRY UNIT 2 - BOL CYCLE 5 PHYSICS TESTS

    CHRONOLOGY OF TESTS

    Test Date Time Power

    Hot Rod Drops-Hot Full Flow 8-8-80 1748 HSD Reactivity Computer Checkout 8-15-80 0040 HZP Boron Endpoint - ARO 8-15-80 0358 HZP Temperature Coefficient - ARO 8-15-80 0825 HZP Flux Map - ARO 8-15-80 1154 HZP Bank :B Worth 8-15-'80 1820 HZP Boron Endpoint - B Iri 8-16-80 0428 HZP Temperature Coefficient - B Ir. 8-16-80 0601 HZP Flux Map-B In 8-16-80 0842 HZP Bank D Worth - Rod Swap 8-16-80 1616 HZP Bank C Worth - Rod Swap 8-16-80 1744 HZP Bank A Worth - Rod Swap 8-16-80 1759 HZP Bank SB Worth - Rod Swap 8-16-80 1941 HZP Bank SA Worth - Rod Swap 8-16-80 2206_ HZP Flux Map·,,,_. ·D at 106 Steps 8-18-80 1108 ."'5% Flux Map - I/E Calibration 8-20-80 1221 "-'42% Flux Map - I/E Calibration 8-21-80 0233 'v5 0% Flux Map - I/E Calibration 8-21-80 2307 'v61% Flux Map - I/E Calibration 8-26-80 1538 "'71% Flux Map - I/E Calibration 9-1-80 1054 'v89% RCS Flow Measurement 9-12-80 1040 rvl00% Flux Map - HFP, Eq. Xenon 9-12/80 1422 ",100%

    3 .

    Reference Procedure

    PT-7.0 PT28.ll(B) PT28.ll(C) PT28.ll(D) OP-57/PT28.2 PT28. ll (E) PT28.ll(C) PT28.ll(D) OP-57/PT28.2 PT28. ll (F) PT28. ll (F) PT28.ll(F) PT28.ll(F) PT28.ll(F) OP-57/PT28.2 OP-57/PT28.2 OP-57/PT28.2 OP-57/PT28.2 OP-57/PT28.2 OP-57/PT28.2 ST-52 OP-57/PT28.2

  • I I

    , I

    I I I I

    I I I I I I I I

    , I I

    I I

    p ·N M L

    Figure 1.1

    SURRY UNIT 2 - CYCLE 5

    CORE LOADING HAP

    K J l:i G F E D C B A

    I I ~i 7B 16Al j I I I I '1· I ( l~ri~Sj O O 16 .18 i--' _,____--+---+----;.---'----,--- l 2~:~,1 1~, I ,fi' •:i: I ,fi' 0~~ h'

    7

    :T I ! I . ,1. ,', 2

    J .. 6B I 7B 7B 6B I 6B If 6B I 7B ., I 6B 9.27 o.o o.o 14.04 15.33 4.13 o.o o_.o 9.45 I ~ -· 1"14 vn 1rn1 ?n, - T,,

    ~, ~~~s I /~ j1/~2 /~ 1!~1 /1 /~ j1}~81. /~ ~\8j ~\6 · 1 4 I ~i12 c10 . - P07 - H07 _ - B07 - Kl3 Pll . I I 5

    D09 - Cl2 .,ni; T11 r, 'i r., 1 T.()I; Ml 1 - - Mno 22\2 j /~ I o~~ 19-~~ 23\812/ 7419~~2 1121\9 22~91 j 1o~~s 1 ~\ ~\ I 2/091 i. II j 7B I 7B 6B I 5 j 6B I 7B I 6Al I 7B I 6B I 5 I 6B I 7B \ 7B l i,· o.o I o.o 14.13 23.09 1 9.95 o.o 15.64 o.o 9.99 22.98 14.34 1 o.o I o_.o 1--

    1-.

    1

    - 6 j , - - J02 Kll f 1'!03 - 112 - C04 Fll . G02 I -

    6Al I 7B I 6BI. 7B i 5 I 7B I 6Al I 7 A / 6Al I 7B j - I 7B I 6B I 7B I 6Al I 16.391 o.o 14.12 0.0 121.80 o.o 15.821 o.o 115. 71 0.0 121'.46 o.o '114.10 o.o 16.44[ ,

    JQ6 - Nll - , E09 ! - DOS - 104 - 109 - Cll - G06, ----..'.-.

    I 0~~ I ~\ I 5 I 7B 22.08 o.o

    • D07 -'---• 6E

    9.44 BOS

    6B I 5 I 6B I 7B I 6Al I 7B I 6BI I 5 I 6B I 7B I 7B l-10 1ii~9. 2~0;s 1~i~4 o:o 1~0~6 o:o .1~i~o 2:0~1 1~i~o! o:o I o.o l

    7A. I 6B ~ 5 ~ 5 I 6B 1· 5 I 5 . I 6B ! . ]_j,. f 7B I 5 j :;_ 1 a:o 10.0 23.1· 21.84 9.oo 21.82 23.12 9.89 I o.o o.o 121.91 -i -- -- . D03 ElO JOS GOl I GOS 110 Gl4 - - MQ7 l 6B I 7 A I 6B 7B I 6Al I 7B ·1 6B I 7 A 1· 6B 16B : -- _. 12

    1;0~s a. o 1~0~0 . o. o 1~0!0_;:_o_:_o_.;.-..;~69~· 3-8..,../ _o_._o_,._1-~·-0-~3-·9 ... i>.Q""'2~---! 6B I 7B ., 7B I 6B 1· 6B I 6B I 7B 7B I 6B '

    9.46 o.o o.o j 14.24 15.43 114.06 ,1

    o_.o o.o 9.37? ~ E02 - 113 , Fl3 I El3 I

    ____ 13

    5 I 7B 7B 6B ' 7B 7B I S l 22.09 o.o o.o s.86 j o~o o.o 22.23 ;...1 ---------- 14

    I, ..;:G~0..:..4 __;_. ----i'--=-:--:--+--=G==l~S -.-:--:--.---·-!ll... - 1' 1i1:"11J O:~ 11 1t·:.io i-------

    F09 ·K09

    ~Batch 3 / 4"- Burnup (10 HWD/HTU)

    ~ Previous Location (Cycles 2,3 or 4)

    FUEL ASSB-IBLY DESIGN PARAMETERS

    oaLcn

    4B2 5 6Al 6B 7A 7B

    Initial Enrichment (w/o U235) 3.10 3.11 2.91 3.20 3.13 3.41 Burnup At BOC-5 (HWD/MTU) 28,803 22,296 16,033 12,008 0

    j

    0 Assembly Type 17Xl7 15Xl5 15Xl5 lSXlS 15Xl5 15Xl5 Number Of Assemblies 1 24 20 48 12 52 Fuel Rods per Assembly I 264 204 204 204 204 I 204

    --- - . I !

  • I Figure 1.2 SURRY UNIT 2 - CYCLES

    I ~ ASSEMBLY ID's AJ.'o!D INCOF.E INSTRUMENTATION LOCATIONS -~oo I, p ~ AA T T rt ,,.... .... p ~ I. K J G F N M

    I I j I J J,_I f. v19 I rnz I voz l · I I J . ! I I 1 Looo c e O I I , Loop B I I Outiet · ' Inlet

    I I V""°'\ I ""I T24 I SNl I 1N3 I W40 1N9 13: I Tl7 l ~/ . I . I • 2

    E D C B

    tN-41) I"'- 0 0 . 181 I lw32 I 4Nl 2N3 I W4S I W34 I Wl9 I ON4 lNS I W04 J , . J

    1 f @ 0 fl @ 0 @ I I j I I I I I O I W37 I 0~2 I W46 , ,., V2; 2N4 I ":: 0 I W25 I W41 ~ I ; I I I TlS I 4N9 I 017 I W21 II T04 ·1 Tl6 I W22 I Tl3 I T23 ,· W39 I lLl I 2N7 I TOl H- 5

    :.

    I @ @ 0 o O Q,@@ @,1

    ,

    ti 2N2 I 1N7 W2S j . T22 I W35 I ON2 ·1 Vl2 I lNO j W33 ., T21 I WOl ONl SN2 i ~ 6 Loop B I . I 1 0 I @ ( ® 0 ! Ell ! I Outlet. · ~~~~t c · ~v'a?'I 3N4 · 1 woz I 4N4 ·, Tl2 I 3Nl 'J v22 I OL9 I vos I 4N7 I Tll 12N1 I w10 I 4N2 I vzo ! 7 . /

    \~ 0 . 0 1 @ I I fl . I fD . 0 @ @ J--l / I '900 _ 4NO I wso I W06 I V03 I W42 I VOS I OLJ I RD2 I 011 I V24 I W24 I VlO I W27 I W07 ·, W8 l 8 _ 2700 elo!@I 1 ®!o: .o,o.~.o: [email protected], I L" I ON9 I"" I '; i '!' I "" j vis I 0~ Iv,! I o; I 707 I 'NS I "" I mi I v~~J,

    ' 2Ns J ON61' w11 I Tzo J wo3 1· 3N7 I vo4 I 1N4 ) ws1 j Toz J w44 I 3N2 j rn6 j--io ®· I ' @ I 10 ~ .@.

    I I TlS , ,., I '; I ":' I 'O I 703 I "@ I 708 I'; I W~3 I OLS I '"' I 714 ~--,__] W481' wo9 I OL6 I ws21 · ON3 I '716 I ON71' was j u21' w30 I was. i , , I

    I I I I I I I I

    0 01 ® . 001@

    EJ I W29 I 2NO I ON8 ·, W4 7 I Wl3 ~ 3!0 I 4NS I W20 ! - lJ L_ , . @ I ,,__ I @ 1 . O

    J 14N' I lN' "' I '~ 14N' I 'O I O " ~ I v~ I s~ I v~ ! \\ ~5

    Loop A I Loop A Outlet i 0 Inlet 0

    ~ Fuel Assembly I.D. Number

    l____::f-Indicates Location and Type of Incore Instrumentation

    8 - M/D

    Q- T/C @) - Buth M/D and T/C

    5

  • I : I I I . I-I I I 1· I I ., I I I I I I " I I I

    Figure 1.3

    SURRY UNIT 2 - CYCLE 5

    BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS

    R P N M L K J H. G F E ·o C B A

    I 11 I I I · I I I I I I I I I.T

    ) PS 12 12 I

    I I I I J I 8 16 l ss I 16 8 I I I I 112 I 116 I I l ! I 16 12

    I l l 8 12 *

    I • ! ._____.____.

    PS - Primary Source

    SS - Secondary Source

    * - Depleted Burnable Poison

    6

    48 Depleted Burnable Poison Rods

    688 Fresh Burnable Poison Rods

    1

    2

    3

  • I

    I I .·. I .

    I . I . I I .

    1· ii I I

    I I I I I I I I I

    Figure 1.4

    SURRY ~IT 2 - CYCLE 5

    CONTROL ROD LOCATIONS

    RP N :1 L K..J HG Ft DCB A

    I I I I I . I I I I I ! I

    I I I I I . I 101 0 101 I fT I I I & & I I

    1 I I l 1.01 0 I 181 101 I I _, I l . I I l

    I

    l~I I I I I ·191 I I H-I I I

    10H-10! 101 lGI 101 101 8 l I&! I I lwl . I l I Mi I l !91 I I

    I

    181 I . I !81 I I !81 I I 18/ I I I ' I I ' ' ' I I l&I I I

    I l&I i I iyl l~i I I I I I I SA I 1 . I ' I . i

    2

    ::,

    6

    7

    3

    ')

    I . 101 181 101 181 !GI 181 101j-]:J I I I 191 I I I I l"o/1 I I 1--ll L_I 181 181 I I 181 181 J "

    I '

    I I I l&I .

    101

    Function

    Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB

    Shutdown Bank SA

    I I

    /&I i I GI 101

    7

    I I I

    Number of Clusters

    8 8 8 8 8

    8

    15

  • I I I I I I I I I I I I

    Section 2

    CONTROL ROD DROP TIME MEASUREMENTS

    The drop time of each control rod was measured at cold and at hot RCS'

    conditions in order to confirm satisfactory operation and to verify that the

    rod drop times were less than the maximum allowed by the Technical Specifica-

    tions. The hot control rod drop time measurements were run with the RCS at hot,

    full flow conditions (~547°F, ~2235 psig) and are described below.

    The rod drop time measurements were performed by first withdrawing a

    rod bank to its fully withdrawn position, and then removing the movable gripper

    coil fuse and stationary gripper coil fuse for the test rod. This allows the

    rod to drop into the core as it would in a normal plant trip. The data recorded

    during this test are, the stationary gripper coil voltage, the LVDT (Linear

    Variable Differential Transformer) primary coil voltage and a 60Hz timing trace which

    are recorded via a visicorder. The rod drop time to the dashpot entry and to the

    bottom of the dashpot are determined from this data. Figure 2.1 provides an

    example of the data that is recorded during a rod drop time measurement.

    As shown in Figure 2.1, the initiation of the rod drop is indicated by

    the decay of the stationary gripper coil voltage when the stationary gripper

    ~ coil fuse is removed. A voltage is then induced in the LVDT primary coil as the

    I I

    rod drops. The magnitude of this voltage is a function of the rod velocity.

    When the rod enters the dashpot section of its guide tube, the velocity slows

    causing a·voltage decrease in the LVDT coil. The LVDT voltage then reaches a

    minimum as the rod reaches the bottom of the dashpot. Subsequent variations in

    ~ the trace are caused by the rod bouncing. This procedure was repeated for each

    I I I

    control rod.

    8

  • I I I I I I I I I I I I I I I I I I I

    The measured drop times for each control ro·d: are recorded ·on Figure 2. 2.

    The slowest, fastest and average drop times are summarized in Table 2.1.

    Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of

    stationary gripper coil voltage to dashpot entry of 1.8 seconds with the RCS at

    hot, full flow conditions. All test results met this limit.

    9

  • I I I I I I I I I I I I I I I I I I I

    Table 2.1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    HOT ROD DROP TIME SUMMARY

    ROD DROP TIME TO DASHPOT ENTRY

    Slowest Rod Fastest Rod Average

    Time

    E-11, 1.29 sec. J-9, 1.14 sec. 1.22 sec.

    ROD DROP TIME TO BOTTOM OF DASHPOT

    Slowest Rod Fastest Rod Average Time

    E-11, 1.83 sec. G-9, 1.68 sec. 1.76 sec.

    10

  • - - - - -· - - - - - - - - - - - ·- - -· Figure 2.1

    SURRY UNIT 2 - CYCLE 5 DOL PHYSICS 'l'ES'l'

    TYPIC/\L ROD DROP 'fHJ\CE

    ~--- ,~ =t=,~=~~;c~C:::~:.:l:~~t:~1;:r· I I ! : ; i ; J I 1·· ! r·-,~-L . _· .... ·: . .. .. .. --·-· -- ---- -- ·---- ·----- -- ·--· . ---- ··--·- --.- _.___ ... :_ ·: ·-·I : I • I . I ! I ...:, ···,-- 7"·- __ ~- _I. -ttJ .0J 01-- .. o:·.=r. ot .Dr-;..or ~ .. ...: .. . .... __ ; . · ;I i 1·

    -~---····· .. --- -···- ··-. ····-·-· --··· ·---· - ..... -· ... - -·-· -·

    .- '..- ____ .,,..-- ·--~; ,- .. LNJD.T .. r :.::·:.:... _ :1'--· 11

    ·A~Wi,~\\W,\\\/hlr1 W, ~'.l~W)~Allli~A~V,~/NN0~~~~1N,~~w'{~JN~.1"i~Nll'.;VI/,~ }N~~ IHI$ I·/~'.'/// !(!Nlf.~'h1i!!!Jr!f }W 11, NII Ii/!;\ \','t,\ Yi:,.,~',',',\~~ ;: ··. :· . 1}11N

  • I I I I I I I I I I I I I I I

    -1 I I I

    R

    Figure 2.2

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ROD DROP TIME - ROT FULL FLOW CONDITIONS

    P N M L K. J H G F E D C B A

    1.16 1.75

    1.19 1. 70

    I - I I I I I t----t--1~, --+--l _ ___, _ _,_____ 1 l. 20 I I _ I l. 77 -,---1 ------+-,- 2

    I i:;~ I i:~~ I -, -1

    ---

    1

    3

    I i:;~ I i:;~ I I i:;~ I I i:;i I I I 4 I I ::;: I I I I :: ~~ I I I . I

    1

    1 5

    1.16 I l 19 I l 21 I 11 18 I 1

    1.16 11.20 k 6 l. 70 1: 70 1: 72 I 1: 69 l. 70 11, 80 I I

    1

    1.181 1. 72 I Ii:~~ Ii:;~ I I I I i:;~ I I 1 7

    1 1.191 I 1.69 I ' I

    I i i:;~ I I I Ii:~; I l s I i:;~ I I II 1.20 I

    1. 72 '

    I ~:~: I I l I ~:;~ I I I s ,,;

    I~:;~ l 11.16 1.19 1.26 1.14 1.18 1.17 11. 20 i

    1.74 1. 69 1. 78 l. 71 I 1. 7o 1. 70 1.80 i-

    I l 1.181 I I I I 11.29 i I I 1. 76 1.83 I E I 1.19 1.141 11.181 11.18 I I 1. 71 1.69 1. 70 1.69 l I I I 11.181 11.21 I I I 1. 70 1. 75

    12

    l3

    11.20 I 1.22 11.20 I 1.82 1. 74 1. 78 15

    DRod Drop Time to Dashpot Entry (sec.) Rod Drop Time to Bottom of Dashpot (sec.)

    12

  • I I I I I

    Section 3

    REACTOR COOL.ANT SYSTEM FLOW MEASUREMENT

    The reactor coolant flow rate is measured in order to verify that the

    minimum flow rate requirement is satisfied. The RCS flow rate is determined

    using the calorimetric measurement technique. Precision calorimetric data

    I (i.e., feedwater temperature, feedwater flow, and steam pressure) are obtained in order to accurately determine the secondary-side heat rate. The primary-side

    I I I I I I I I I I I I I

    enthalpy rise is determined from the RCS pressure and the temperature increase

    associated with each RCS loop. The flow for each RCS loop is determined by

    establishing a primary-side to secondary-side heat balance. Steam generator

    blowdown heat loss, system heat losses, and the power produced by the reactor

    coolant pumps are taken into account in the heat balance. A reactor coolant

    flow measurement was performed at 100% power. This data was analyzed using

    5 the RXFLOW computer code. A sunnnary of the results for this test is given in

    Table 3.1. As shown by this table, the test results demonstrated that the RCS

    flow limit was met.

    13

  • - - - ·- - - - - - - - - - - - - - - -

    ·k

    Table 3.1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    REACTOR COOLANT SYSTEM FLOW MEASUREMENT SUMMARY

    . Percent Loop A Loop B Loop C Total Flow Minimum Flow Power Flow ( gpm) Flow (gpm) Flow ( gpm) (gpm) Limit* (gpm)

    100% 100,665 97,854 100,030 298,549 265,500

    FSAR Section 4.1.3; Letter from C. M. Stallings (Vepco) to H. R. Denton (NRC) dated May 31, 1979 (Serial No. 388); Letter from C. M. Stallings (Vepco) to E. G. Case (NRC) dated November 16, 1977 (Serial No. 516).

  • I I I I I

    I I I I I I I I I I I I

    Section 4

    CONTROL ROD BANK WORTH MEASUREMENTS

    Control rod bank worth measurements were obtained for all control and

    shutdown banks using the rod swap technique. The first step in the rod swap

    procedure was to dilute the most reactive control rod bank (hereafter referred

    to as the reference bank) into the core and measure its reactivity worth using

    conventional test techniques. The reactivity changes resulting from the

    6 reference bank movements were recorded continuously by the reactivity computer

    and were used to determine the differential and integral worth of the reference

    bank (Control Bank B). At the completion of the reference bank reactivity worth

    measurement, the reactor coolant system temperature and boron concentration were

    stabilized such that the reactor was critical with the reference bank near full

    insertion. Initial statepoint data for the rod swap maneuver were obtained by

    moving the reference bank to its fully inserted position and recording the core

    reactivity and moderator temperature. At this point, a rod swap maneuver was

    performed by withdrawing the reference bank while one of the other control rod

    banks (i.e., a test bank) was inserted. The core was kept nominally critical

    throughout this rod swap and the maneuver was continued until the test bank was

    fully inserted and the reference bank was at the position at which the core was

    just critical. This measured critical position (MCP) of the reference bank

    with the test bank fully inserted is the major parameter of interest and was

    used to determine the integral reactivity worth of the test bank. Statepoint

    data (core reactivity, moderator temperature, and the differential worth of

    the reference bank) were recorded with the reference bank at the MCP. The rod

    swap maneuver was then performed in reverse order such that the reference bank

    once again was near full insertion and the test bank was once again fully withdrawn

    from the core. The rod swap process was then repeated for all of the other control

    rod banks (control and shutdown).

    15

  • I I I I

    A summary of the results for these tests is given in Table 4.1. As

    shown by this table and the Startup Physics Test Results and Evaluation Sheets

    given in the Appendix, the individual measured bank worths for all of the

    control and shutdown banks were within the design tolerance (+10% for the

    I reference bank and +15%. for the test banks). The sum of the individual control

    I I

    rod bank worths was measured to be within 3.8% of the design prediction. This

    is well within the design tolerance of +10% for the sum of the individual

    control rod bank worths.

    The integral and differential reactivity worth of the reference bank

    ~ (Control Bank B) are shown in Figures 4.1 and 4.2, respectively. The design

    I I I I I ·I· ' '

    I I I· I I

    predictions and the measured data are plotted together in order to illustrate

    their agreement. In sunnnary, all measured rod worth values were satisfactory.

    16

  • I I I I I

    I

    I 1· I I I I

    -------------------------------------------,

    Table 4.1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    CONTROL ROD BANK WORTH SUMMARY

    MEASURED PREDICTED PERCENT DIFFERENCE BANK WORTH WORTH (M"""~) x 100

    (PCM) (PCM) p

    B-Reference Bank 1284 1225 +4.8

    D 1218 1214 +o.3

    C 849 850 +0.1

    A . 6-50 574 +13 .2

    SB 952 969 -1.8

    SA 1159 1059 +9.4

    Total Worth 6112 5891 +3.8

    17

  • I I I· I I I· I I I I I· I ,, I I I I I ·1

    ,...... ::c u 0..... __.

    I I-a::: 0 3:

    _J

    a: a:::: C) w I-z 1--1

    0 0

    " N

    0 0 '-' N

    D 0 (.O' .-

    D D

    "" -

    0 '-' a::)

    0 '-' .....

    I..J

    I I I I

    I I

    I I

    I I

    r I

    i

    I I

    I -I I

    I

    I

    I

    0

    FJGURE 4.1 2 CYCLE 5 BOL PHYSICS TEST SURRY UNIT

    BANK B INTEGRAL ROD NORTH HZP

    i i I r

    I r I I

    I I I

    '

    I i I / I ! I ! I I

    I ! I

    ' I I I I i I r ! r I i I I

    I I

    ! I

    I I I

    I I I I I

    I

    I I : I

    ' I I I

    I I I I

    I

    I I I I

    I I

    i i I i I I I I I i I I I I I I I I I !

    ! I I I ' I I

    I I I I I I I

    I I I I I I I I I I i I '

    i I I I I I I I : i I I I I I I I I I I I I I I

    I ! I I I I ! I ! ! I I r I i ! I I !

    I I I I I I ' I ! r I I I I I : : I I ; I. i I I r I I I I I I

    I ! i ! I I ' r I ' I I I I I ' I I I I I r I I ! I I I I

    I I I I I I I I I I ! I I i i : I

    1--..: ... :. : i i - ! I : ,. I

    B BANK·HJTH ALL OTHER BANKS OUT

    PREOJCTEO

    ?IE 11Ef!SUREO

    I i I I I I I i ! r r I i I I I I I i I I I !

    I I I I I i i I r I I r I I ! i I I

    I I i I I ! I I '

    I ' I I I I I I I ! I ! ! I I

    i I I I I i I I I I I I I

    I r I I r i I ' I I I I I i I i I i I I I I I I i I

    I I I ! I I I I : I i I ! I r I I I I ! i ! : I I I ! i i I I I I I i ' I I I ' I I I I I r I I I I. I I ' ! I ' I ! I I I I I I ' I I I I I I I I i r I ' I I I I I ' i

    I I I ! ! I I ' I I : I : I I I : i ! I ! : I I I I I I i I i i I i ' ! i I r I : I I I : i I I I i ! : I 1 I I I ! i I I I ! I i i i I !

    i ! ! i I I I r r i I I i ! I I ! : I I i I i : I I ., i ! I I I i I I ! I ' ' I I I I I i i I i I I I i I I I ! i i

    I I ! I : I I I ! ' I I ! i I ! I ' I I I i : I I I ' I I I I I I ! I I I I I I i ' ! I ' I I I i I I ! I i ! I I I I i r ' I I I '

    I I I ' I I :

    I I ' i i I ' I r I I I I I i I I I I I i ! I I I i I I I I I I I i I i ! I I

    ' I I ! I I I I I : I ' I I I I I i

    ! !

    ' I I ! I I ' I i I I : i I !

    I

    I I I I I I ! I I I I I ; ! I

    !

    I I i -,.........., i i I I I i i i i I I I i I I I i I I ' i I ! ! I I I I

    I I I I I I

    I I I

    I I I I I I I I i I

    I I I

    I

    i i

    40

    '" I I I I i I I I I I ' I I i I I I I I I i 'l'-" ! i I i I I I I I I I I I I I I I

    ~' r i ! I I I I I I ! I ' I I I i I I ,.N ! I I I I i I I I I I ' I i

    "" I I I i I I I I I i I I 'II' 'I I I ; I I I I I I I '\.l.' I I I I I I I I I

    "" 1,1 I I I I I I i I I I I I I l",1! I' I I I ! I I ! I I I ! I I I I I I I I ' " '·"'- I I i I I I I I I I iR.. 1'. : i I

    I I I ~ i i I I I I I I I I ,..._ I'- : I ! I I I I

    ;i, ~,! I I I I I I :Ii.. I"- I I

    I I i IN " I I I I I I I . ....., i I I

    I

    80 BANK 8

    I I I I I i

    I I I ! ! I i I I I

    I i I I

    I

    I

    ! I ! ' 120

    POSITION

    18

    I I

    "'"""-t" I I I i I

    l~~l ' ' I 1"; I i -~ I I I I ........ I ' " I I I I I I I I

    I I I

    160 (STEPS)

    i I I I i I I : ! I ! i I ! I i I I I I I I I I I I ! I I I I i

    I I i I I ! I I I I I I I I I I I i I I ! ! I I I I I I I I I . ! I i : I I : ! I I I I

    I ' I I I I I I I I I I I : I i

    I ! I I ! i i I I I I I I ! I : ! I i i i ; I I I ;

    r ' I I ! I I I ! i I ! ' ; I ! I ! I ; i ' I i I ' ' ' : : ' i : ! : : i I . I I I i i ! I I I ! I I ! ! : : i I I I I I i I ! ' ! i : ! I I ! ! r I ! I i I i I I r : i i I I I I I I I ! I ! i I I ! I' I I

    I l I I I I ' !

    ' I i : I ' ! I ! I :

    i I I i I I i i ' I i ' I i I ! I I i I I I i I i ! I I I I I I i i ! I ' !

    I

    I I I I i j I I I I I I I ! I I I

    I I I I I ! I I i ! I ! I I : I i I I l I I i I i I I I I i I I I I I

    I ! ! I I I ! ! ' I I I I I ;

    I I I I I i I I I I I I I I I I i I I I I I I I I I I ! I I I I I I ' I I I I I i I ! I I I ! I I I I

    I I i I I I I I I I

    """'" I I i= I I ! '>I I I I -", I I I I""' I I ~

    I

    200

    I

    I I I I ! I I I

    ' I I I ! ! i I !

    i I

    ! I ! : : i

    i

    i :

    i ! I i i I

    : I I I

    I I I I I I I

    I i

    I i

    I I I I I I I

    228

  • I I I I I I I I I I

    I I

    I I I I I

    C)

    a

    N -a C)

    a ........ --

    _J

    a: -a r-0 z· w"

  • I I I 1, I I I I I I I I I I I I I I I

    Section 5

    BORON ENDPOINT AND WORTH MEASUREMENTS

    Boron Endpoint

    With the reactor critical at hot zero power, reactor coolant system

    boron concentrations were measured at selected rod bank configurations to

    enable a direct comparison of measured boron endpoints with design predictions.

    For each measurement, the RCS conditions were stabilized with the control bank

    at or very near a selected endpoint position. The critical boron concentra-

    tion was then measured. If necessary, an adjustment to the measured critical

    boron concentration value was made to account for off-nominal core conditions,

    i.e., for rod position and moderator temperature.

    The results of these measurements are given in Table 5.1. As shown

    in this table and in the Startup Physics Test Results and Evaluation Sheets

    given in the Appendix, all measured critical boron endpoint values were within

    their respective design tolerances. All measured values met the accident

    analysis acceptance criterion. In summary, all results were satisfactory.

    Boron Worth Coefficient

    The measured boron endpoint values provide stable statepoint data

    from which the boron worth coefficient was determined. A plot of the boron

    concentration as a function of integrated reactivity can be constructed by

    relating each boron endpoint concentration to the integrated rod worth present

    in the core at the time of the endpoint measurement. The value of the

    boron worth coefficient, over the range of boron endpoint concentrations, is

    obtained directly from this plot.

    The boron worth plot is shown in Figure 5.1. As indicated in

    this figure and in the Appendix, the boron worth coefficient of reactivity

    was measured to be -9.11 pcm/ppm. The measured boron worth coefficient is

    within 5.9% of the predicted value of -8.60 pcm/ppm and is well within the

    20

  • I ~ design tolerance of +10%. The measurement result also met the accident analysis

    acceptance criterion. In summary, this result was satisfactory.

    I I I I I I I I I I I I I I I I I 21

  • I I I I I-I I I I I I I I I I I I I I I

    *

    Table 5.1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    BORON ENDPOINTS SUMMARY

    Control Rod Measured Predicted Difference Configuration Endpoint Endpoint M-P

    (ppm) (ppm) (ppm)

    ARO 1437 1394· +43

    B Bank In 1296 1301* -5

    The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

    22

  • - ··- ... - .... -j -· - -·· .. - .... ) .. - .. - -

    "' w

    2400

    2000

    FIGURE 5. 1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST BORON WORTH COEFFICIENT

    l!J ENDrOJNl NEASURENENTS

    ---+----l-----1---l--l---l----l-- -1---- - --· ·--1-----1---+--- --.,--l-,l-l-1---1---1--1---l-1--+--t-+--t--t--t

    l--l-+---+---1---l---+--+--l---,--J--t---t-- - -1--- -- -+-t--1--1---1--+--+--l----1---+--+-t------t-t-i-1

    l-~-l-----l---+---+--1--1--•- --1-t-- ·- --- --1- - - - _ __,___,_____, __ --1--1--+---!----~ --

    ~-+----l----+--l---+--+--l--l--+--1---r---1-----1--,--1--1--+---l-l---J-11-1-1-+--t-+-1-

    1-+--+---+---1--l---+--+---f---J--t---t-·- -- -- - --- ---l---l--1-1-1--.J___L__j___L__L_---1.-_f--l--t--+--

    -l--l--f-11-----rf-f--+- ---~ -- -- - -- ---· ·---- - -- ~ "'-9.11 pcm/ppm ---1--1----1--ac , B

    L 1 6 0 0 -1--l--l--l--1---1---l--+--1--l-il--l-+--t---t-+--t---t--t--t--t ---- ·- -- -- -~~~~.,.-+---+--1---;---1

    u (L

    >-

    ~-~-l-----1--1---l--+---l-- ---+---I-- --- ··---·- ·-·--· ··-- --- -- 1--- _,_____ - ----· --- -'-''-•-~-- -

    ,r-.....-=--...+--t---J--l--l--l--1-----1- - - --· ----· ------ -- --- _ ____,__,__, __

    l'---._ir-........~l,.,.-1--1--+---I- --•- --------- ·---- ------- ---· _____ ., --·----- --- ·-·-t,--- -l----l-1---1-•- -l-li--1 -- p....__ I°"-.. =: 1 2 o o -l--+--+--+--l-~c--+-J.-l---1-l-+-+-+--+-+--l--t--t--t--t--t---i----i---t~~-i-,-r-,11 ~, '-........._ >

    1-u a: w er 800

    400

    0

    ._..__ _____ ·--~i----·----------------

    1-1--1--+.-1--l--i--+--t~ .. --~i"'---- --- - --- -i-- - -1----•-J-f-f--1-- __ ------~ ___ ., ---·-- ····-·-· ·-·-· ··---- - - 1--- ------ - --1-li--1- -· --l- ---

    ~t'-.

    r-----.. ,_ _ _, _ _,__ ____ ---'--- __ --- ----- -- . --·- --- _____ t::--,, K - -- -- --f---+--1-- 1--1--1---+--I

    - --~-.... -.c-r--- - - --- ------- -----~--1---

    1-~~l---·1··--~- - - -~ ----- ----- --· -- ·-- -- ··-- ----- --- --~ -- - -- -

  • I

    ' I I .I I 'i 1. I I I I I I I I ., ,I I

    Section 6

    TEMPERATURE COEFFICIENT MEASUREMENTS

    The isothermal temperature coefficient measurements were accomplished

    by controlling the RCS heat gains/losses with the steam dump valves to the

    condenser, establishing a constant and uniform heatup/cooldown rate, and then

    monitoring the resulting reactivity changes on the reactivity computer. These

    measurements were performed at very low power levels in order to minimize the

    effects of non-uniform nuclear heating, thus, the moderator and fuel were

    approximately at the same temperature (between 543-549 °F) during these measure-

    ments. To eliminate the boron reactivity effect of outflow from the pressurizer,

    the pressurizer level was maintained constant or slightly increasing during these

    measurements.

    Isothermal temperature coefficient measurements were performed at

    various control rod configurations. For each rod configuration, reactivity

    measurem.ents were taken during both RCS heatup and cooldown ramps during which

    the RCS temperature varied approximately 6°F. Reactivity was determined using

    the reactivity computer and was plotted against the RCS temperature on an x-y

    recorder. The temperature coefficient was then determined from the slope qf the

    plotted lines. The x-y recorder plots of reactivity change vs. RCS temperature

    for each measurement are shown in Figures 6.1 and 6.2.

    The predicted and measured isothermal temperature coefficient values

    are compared in Table 6.1. As can be seen from this summary and from the

    Startup Physics Test Results and Evaluation Sheets given in the Appendix, all

    measured isothermal temperature coefficient values were within the design tolerance

    of +3 pcm/°F and met the accident analysis acceptance criterion. In summary,

    all measured results were satisfactory.

    24

  • N U1

    BANK POSITION (STEPS)

    . B. D

    228 209

    21 228

    Table 6.1

    SURRY UNIT 2 - ·cYCLE 5 BOL PHYSICS TESTS

    ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY

    TEMPERATURE BORON ISOTHERMAL TEMPERATURE COEFFICIENT RANGE CONCENTRATION (PCM/°F) (OF) (PPM)

    HEATUP COOLDOWN AVERAGE PREDICTED DIFFERENCE (M-P)

    543-549 14'•4 -2.24 -2.76 -2.50 -3.05 +0.55

    543-549 1303 -5.61 -5.17 -5.39 -5.61 +0.22

  • I I I I I 'I I I I I I 'I I I I I I I I

    -a ~ -~ E-l H ::> H E-l c.., < ~

    Figure 6.1

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ISOTHERMAL TEMPERATURE COEFFICIENT

    HZP, ARO

    TEMPERATURE (°F)

    26

  • ----------

    I I I I I I I I I I I I I I I I .I I I

    -~ C,.) P-t ->4 E,-,1 H

    ~ E,-,1 C,.)

    < ~

    Figure 6.2

    SURRY UNIT 2 - CYCLES BOL PHYSICS TEST

    ISOTHERMAL TEMPERATURE COEFFICIENT

    HZP 1 B-BANK IN

    HORTZONTAL SCALE 1°F/inch

    TEMPERATURE (°F)

    27

  • I I I I I I I I I I I I I I I I I

    Section 7

    POWER DISTRIBUTION MEASUREMENTS

    The core power distributions were measured using the incore movable

    detector flux mapping system. This system consists of five fission detectors

    which traverse fuel assembly instrumentation thimbles in 50 core locations

    (see Figure 1.2). For each traverse, the detector output is continuously

    monitored on a strip chart recorder. The output is also scanned for 61 discrete

    axial points by the PRODAC P-250 process computer. Full core, three-dimensional

    power distributions are then determined by analyzing this data using the Westing-

    7 house computer program, INCORE. INCORE couples the measured flux map data

    with predetermined analytic power-to-flux ratios in order to determine the power

    distribution for the whole core.

    A list of all the flux maps taken during the test program together

    with a list of the measured values of the important power distribution parame-

    ters is given in Table 7.1. The measured power distribution parameter values

    are compared with their Technical Specifications limits in Table 7.2. Flux

    Maps 1 and 2 were taken at zero power. These flux maps serve as base case

    design checks. Figures 7.1 and 7.2 show the resulting radial power distributions

    associated with these flux maps. The results of Flux Map 1 indicated a quadrant

    power tilt ratio of slightly greater than 2%. However, during this map, the

    flux level was low and there was a significant amount of flux drift. It is

    believed that this contributed to the high tilt indication. Subsequent flux

    map results confirmed that the quadrant power tilt ratio was less than 2%.

    Flux Maps 4 through 13 were taken over a wide range of power levels and control

    rod configurations. These flux maps were taken to check the at-power design

    predictions and to measure core power distributions at various operating

    conditions. These maps also provide incore/excore calibration data for the

    28

  • I I I I I I I I I I I I I I I I I I I

    nuclear instrumentation system. The radial power distributions for these maps

    are given in Figures 7.3 through 7.10. These figures show that the measured

    relative assembly power values are generally within 6% of the predicted values.

    In conclusion, all power distribution measurement results were

    considered to be acceptalbe with respect to the design tolerances, the accident

    analysis acceptance criteria and the Technical Specification limits. It is

    therefore anticipated that the core will continue to operate safely throughout

    Cycle 5.

    29

  • - -

    w 0

    - - - - - ·- - - .. - - - -MAP BANK POSI'flON

    DESCRIPTION MAP PWR (S'l'EPS) NO. (%)

    n D ASSY.

    Flux Map - ARO l 0 228 216 F06

    Flux Map - n In 2 0 33/34 228 1109

    Flux Map 4XlC ..,5 228 106/107 Kl4

    Flux Map - 5 43 228 170 B06 I/E Calibration

    Flux Map - 6 50 228 183/184 B06 I/E Calibration

    Flux Map - 7 61 228 190 B06 'I/E Calibration

    Flux Map - 9++ 58 228 171 B06 1/E Calibration

    Flux Map - 11+1+ 71 228 185 B06 1/E Calibration

    Hux Map - 12 88 228 190 Kl4 1/E Calibration

    Flux Map - HFP, 13 100 228 215 ll06 Eq. Xenon

    'l'al>le 7.1

    SURRY UNI'l' 2 - CYCLE 5 IIOL PHYSICS TES'J'S

    INCOllE FLUX MAP SUMMAIIY

    FT 110'1' Q F~II HOT

    CHANNEL FACTOR* CHANNEL FAC'fOJlH

    AXIAL FT N PIN POIN'1' Q ASSY. PIN FAIi

    LK 13 2.48 1106 DE 1.46

    HG 13 2.lll GOS Ill 1.81

    LM 44 2.42 DOS HG 1.55

    DE 33 1.99 B06 DE 1.45

    DE 23 1.91 B06 DE 1.43

    DE 24 1.85 D07 Ill 1.42

    DE 32 1.93 D07 Ill 1.43

    DE 33 1.84 B06 DE 1.41

    KL 23 1. 79 D07 111 1.40

    DE 3/i 1.72 D07 Ill 1.39

    -CORE Fz

    MAX F + QPTRx AXIAL xy

    OFFSET AXIAL (%) POINT Fz

    14 1.64 1.44 1.023 +35. r2

    13 1.44 1. 76 1.006 +21.60

    43 1.51 1.53 1,019 -23.87

    32 1.30 1.41 1.011 - .-2.49

    23 1.28 1.39 1.009 +3.87

    23 1.25 1.38 1.008 +2.49

    32 1.29 1.39 1.011 -1.97

    33 1.24 1.37 1.005 -1.20

    23 1.23 1.34 1.008 +1.26

    23 1.17 1.35 1.005 +1.13

    Notes: Hot spot locations are specified by giving assembly locations {e.g. 11-8 is the center-of-core assel)lbly location), followed by the pin location (aenoted by the "Y" coordinate with the fifteen rows of ·fuel rods lettered A through k nnd the "x"· coordinate designated in a similar manner). In the "Z" direction the core is divided into 61 axial points starting from the top of the core.

    * T -FQ includes a total uncertainty of 1.08.

    ** N FAil includes_ a measurement uncertainty of 1.04

    +F is evaluated at the midplane of the core. xy

    xQPTR - Quadrant Power Tilt Ratio. This value is the maximum Ql''fR of the upper and lower halves of the core.

    xxMap 3 was aborted,

    ++Map 8 was a quarter core M/D flux map.

    +++Map 10 was a quarter core M/D flux map.

    NO. OF

    tl!Il!BLES

    42

    50

    47

    50

    47

    49

    48

    46

    48

    49

    .. -

  • - - - - - - - - - - - - - - .. -Table 7 .2

    SURRY UNIT 2 '- CYCLE 5 BOL PHYSICS TESTS

    COMPARISON OF MEASURED POWER DISTRIBU'J:ION l'AllAMETERS WI'l'll 'l'l!ElR TECHNICAL SPECIFICATIONS LIMIT

    T FQ Hot Channel Factor

    a N Fllll Hot Channel Factorb

    N ILOCA Fl\11 ASSY !lot Channel Factorb

    ,N ILOCA F Ml ROD Hot Channel Factorb

    Minimum Margin Mar~in Margin Margin

    Map Measured Limit (%) Measured Limit (%) Measured Limit (%) Measured Limit (%)

    5 1. 99 4.36 54.5 l.45 1. 73 16.2 1.29 3.43 62.4 1. 46 3.61 59.6

    6 1. 91 _ 4.27 55.3 1.43 1. 71 16.4 1.28 2.95 56.6 1.43 3.10 53.9

    7 1. 85 3.51 47 .2 1.42 1. 67 15.0 1.27 2. ,,2 47.5 1.42 2.54 44.1

    9c 1. 93 3.76 47.9 1.43 1.68 14.9 1.28 2.53 1,9. 4 1.43 2.65 46.0

    lld 1. 84 3.07 39.4 1.41 ·1.64 l/i.O 1.27 2.08 38.9 1.42 2.18 34.9

    12 1. 79 2.43 26.3 1.l,O 1.59 ll.9 1.27 1.68 24.4 1.39 1. 76 21.0

    13 1. 72 2.18 20.4 1.39 1.55 10.3 1.28 l.l,8 13.5 1.39 1.55 10.3

    a The Technical Specifications limit for the heat flux hot channel factor, Factor, FT, is a function of core height, The value for FT listed above is the maximum value of FT in the core. The Technical Specifigations limit listed above is evaluated at the r2ane of maximum FT. The minimum margin Salues listed above are the minimum percent difference between the measured values of Fq(Z) and th~ Technical Specifications limit for each map. All measured F6 hot channel factors include 8% total uncertainty.

    b ,,N 1,N l I.OCA N j LOCA • The measured values for the enthalpy rise hot channel factors, ~Lill' • Lill ASS)''. and F LIU ROD , include 4% measurement uncertainty. cMap 8 was a quarter core M/D flux map.

    d Hap 10 was a quarter core M/D flux map.

    -·- -

  • I I I I I I I I I I I I I I I I I I I

    R

    Figure 7.1

    SURRY UNIT 2 CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    HZP, ARO

    F' H M L K J H G E D C B

    PREDICTED • 0.40 0.73 0.40 MEASURED

    :F'CT DIFFEREIICE. • 0.41 • 0.7S • 0.40 • . 2.~. 2.3. 0.7.

    PP.ED!CTED 11EASL1REO

    .PCT DlFFf~EHCE.

    0.39 0.?4 l.06 l.13 1.06 0.94 0.39 • 0.40 • 0.95 . 1.07, l,14 • l.07. 0.93 . 0.19 .

    2.5. 0.3. 1.1 • l.2 • 0.2 • -1.q. 0.1 .

    o.52 1.01 1.11 1.22 1.~o 1.22 1.11 1.01 o.s2 • 0.54 . 1.03. 1.18 . 1.22 • 1.21 • 1.22 . 1.1q , l.03. 0.54 ,

    2.4 • 2.5 • 1.2 . 0.2. 0.5 • o.3 • o.~ . 1.1. 3.2 . .................................................... · .......................... . o.52 a.es 1.14 1.18 1.21 1.10 1.21 1.1~ 1.14 a.ea . o.s2

    • o.5o • o.aa. 1.11. 1.11 . 1.19. 1.oa . 1.22 . 1.21 . 1.11. o.?o . o.55 . . -5.l , -0.1 , 2.2. -0.l • -l.7. -1.4; 0.6. 2.9, 2.6 . 2.7 .· 5.5 ,

    0.39 1.01 l,14 1.23 1.01 1.02 1.20 l.02 1.01 1.23 1.14 1.01 0.3? • 0.37 • 0.96 • l.13. 1.24 . l.00 . 0.97 . 1.16 • 1.02 , 1.03. l.iS • 1.16 • 1.06 . 0.43 . . -5.l . -5.l . -1.1 • 0.7, -1.3 . -5.0 . -3.3. -0.4 . 2.3. 1.8 . 2,7 , 6.6 . 10.3.

    • 0.94 • 1.17. 1.18 . 1.01 • 1.23 . l.El . 1.11 , l,Zl • 1.23 , 1.01 . 1.18 , 1.17. 0.9, . • 0.94 . 1.17 , 1.17 . 0.99. l.~O , 1.16 . 1.07 , 1.17, 1.21. 1.03 . l.CO . 1.24 . 1.02. . -0.2 . -0.3 . -0.5. -1.5. -2.4. -3.5 . -2.9. -3.l • -1.2 . E.l . 2.4 . 6.3 . 6.0 .

    A

    0.40 1.06 1.22 1.21 1.02 1.21 1.09 1.15 1.09 1.21 1.02 1.21 1.22 1.06 0.40 • 0.41 . 1.10 , 1.27, 1.21 . 0.99. 1.17. 1.06 • l,li . 1.06 , 1.21 . 1.08 • 1.24 . 1.27. 1.12 , 0.42 , • 2.a. 3.3 . 4.l . o.3 . -3.s . -3.o . -2.3 • -2.s . -2.a • o., • 5.o . 2.a . 4.4 . 5.3. 5.3 .

    . • 0,73. 1.13. 1.20 . 1.10. 1.20. 1.11. 1.15. 0,87. 1.15. l.ll. l.ZO . 1.10 • 1.20 , 1.13, 0.73. , 0.75. 1.16 . 1.23, 1.09 . 1.15. 1.07, 1.13 . 0.86 • 1.15 . 1.14. 1.22 . 1.13. 1.24 • 1.18. 0.77. • 2.7 . 2.6 • 2.0 . -0.3 . -4.6 • -3.1 • -2.3. -1.4 . -o.o . 2.8 • l.l . 2.8 , 3.3. 4.4 • 5.0 •

    0.40 1.06 1.22 1.21 1.02 1.21 1.0? 1.15 1.09 1.21 . 1.02 1.21 1.22 1.06 0.40 , 0.41 • 1.09 . 1.24 . 1.19. 1.01 . 1.11. 1.02 • 1.14 . 1.10 . 1.11. 1.01 . 1.22 • 1.24 . 1.10 . o.~2 • . 2.8. 2.2 • 1.6 . -1.3 . -1.3. -3.4, -5.7. -l,3. 1.0 • ~2-7 J -1.0 . 0.5. 2.2 • 3.2 • 3.3 •

    . 0.94. 1.17. 1.18 . 1.01. 1.23. 1.21 . 1.11 . 1.21 . 1.23 . 1.01 . 1.18 . 1,17 . 0.94.

    . 0.97. 1.19, 1.14 . 0.98. 1.18, 1.14 . 1.06. 1.18 . 1.21 . 0.99. 1.16 • 1.17. 0,96 • 3.2. 1.6 . -3.o . -3.o . -4.2 . -5.8 . -4.l • -2.0 . -1.7. -1.a . -1.1 • o.4 . 1.8 .

    0.39 1.01 1.14 1.23 1.01 1.02 1.20 1.02 1.01 1.23 1.14 1.01 0.39 . 0.41 , l.06 • 1.13 . 1.17. 0,97. 0.99, 1.14. 0.99. 1.00. 1.22 • 1.16 . 1.05. 0,41 . . 5.5. 5.5. -1.0 • -5.3. -3.7. -3.7. -5.5. -3.3. -0.5 . -1.3 • 1.3. 4.2. 4,7.

    o.52 a.as 1.14 1.18 1.21 1.10 1.21 1.1a 1.14 o.a8 o.sz • o.55. o.89. 1.oa. 1.16 • 1.21. 1.01. 1.1a. 1.11. 1.13. o.92 • 0.57. • 5.5. 1.J. -5.3. -1.1. -0.1 . -2.1. -2.s. -o.8. -1.0 • 5.o. 9,1 •

    • 0.52. 1.01 , 1.17. 1.22 , 1.20 • 1.22 - 1.17. 1.01 • 0.52 • • 0.55 • 0.96 • 1.18. 1.22·. 1.20 , l,25. 1.24. 0.99. 0.57.

    .... ,-:-~ .~::.:. :~:\: .. \~;:. :~ :: . ; . :-~:~; ;:/:~. :-.-}: r .-~:;~:~.: .. !:~.:

    STAUOARO DEVIATION ,

    =2.036

    • 0;39. 0.94 . 1.06 • 1.13. 1.06 • o. 14. 0.39. • 0.41 • 0.99. 1.09. 1.16 • 1.12. 1.00. 0.41 • • 5.5, 5,4. 2.8. 3.1. 5.l. 5,7. 5,7.

    0.40 0.73. 0.40 • 0.42 • 0.77. 0.42. • s.J. s.4. s.a.

    AVERAGE .PCT DIFFERENCE.

    : 2,8

    MAP NO: S2-5-l DATE: 8/15/80

    FT= 2.476

    POWER == 0%

    CONTROL ROD POSITIONS:

    D BANK AT 216 STEPS

    Q N

    FAH = 1. 462

    F = 1. 644 z

    A. 0, = +35.921

    BURNUP == 0 MWD/MTU

    32

    QPTR:

    NW 0.982

    NE· 1.023

    SW 0.984

    SE - 1.011

    3

    "

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

  • I I I I I I I I I I I I I I I I I I I

    R p H

    Figure 7 .2

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    HZP , B-BAi.'lK IN

    M K J H G E D C B

    PREDICTED MEASURED

    ,PCT DIFFEREtlCE,

    0. 46 0 . 86 0. 46 , 0.46 • 0.86 , 0.46 , , o.s, o.s • 0.2 •

    PREDICTED 11EASUPED

    .PCT DIFFERENCE • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . ~

    0.37 0.95 l.16 1.2? 1.16 0.95 0.37 , 0.37 , o.,s • l.16 , 1.29 . 1.16 , 0.94. 0.37 ,

    0.2 , 0.3. -o.o . -0.2. :0,3 • -0.4 . 0.7 .

    0.46 0.86 l,Ol l.22 l,30 1,22 l.Ot 0.86 0.46 , 0,46 • 0.86 • 1.01 , l.22 • 1,28. 1,21, l.Ol • 0.87. 0.47 .

    0.2 , 0.3 . 0.3 • -0,0 , -1,0 . -0,7 . -0.l . l.O . 2,3.

    0.46 0.74 0.90 0.63 1.14 l.16 1.14 0.63 0.10 0,74 0.46 , 0.47, 0.75 , 0.89 , 0.62 . 1.12 . 1.15 . 1.13 • 0.63 . 0.90 . 0.76 • 0.48, . 2.1 . 0.2 • -0.2 • -1.6 , -1.4, -1.4, -0.6 , -0.l , 0.6 . 1.5 , 4.9 ,

    0.37 0.86 0.90 l,04 0.92 l.ll 1.39 l.11 0.92 1.04 0.90 0.86 0.37 • o.Ja • o.a,. o.o, • 1.01 • o.9o • 1.01. 1.35 . 1.oa. o.91 . 1.oJ • o.91 . 0.,1 • o.fto . • 3.5 • 3.3 . -o.5 . -2.6 • -~.4 • -3.4 • -2.9 • -2.2 • -1.6 . -o.a. 1.7. 6.2 • 10.1 •

    , 0.95, 1.01 . 0.63 , 0.92 . 1,39, l.49. 1.41 , l.49 , l.39. 0.92 . 0.63 , l.01 . 0.95 • • 0.98 , 1.05. 0.63, 0.90 , 1.35. 1.44 , 1.36 , l.ft4 . 1.33 , 0.92 . 0.64 , 1.06 . 1.02 •

    3.5. 3.4. -0.7. -3.0 , -3.0 , -3.4. -3.6 , -3.6 , -4,0 . -0.8 • 1.0 • S,l • 8.2 .

    0.46 1.16 1.22 1.14 1.11 1.49 1.45 1.57 1.45 1.49 1.11 1.14 1.22 1.16 0.46 , 0.49 , l,21 • 1.27, 1.15. 1.07, 1.45 , 1.40 , l.SJ . 1.40 , 1.44, l.O? • 1.16 , 1.28 . 1.23 . 0.49 • 6,9 , 4.6 , 3.5 . 0.7, -3.2 , -3.0 , -2.9. -3.1, -3.0 , -3.4. -1.3 • 2.2 . 4.8 . 6.2 , 6.6,

    • 0.86 • 1.29, 1.30 . 1.16 , 1.39, 1,41, 1.57 , 1.21 • 1.57 , 1.41 , 1,39. 1.16 . 1.30 • 1.29 '. 0.86 , 0.91 , 1.35. 1.35 , 1,17, 1.34, 1.37, 1.53, 1.18 . 1.53. 1.37. l.36 . 1.2~ , 1.36 , l.38 , 0.?4. 6.9 • s.o : 4.o • o.6 . -3.3. -2.a. -2.a. -Z.4 . -2.a. -3.l . -1.0 . 1.3 . 4.8 . ,., • 9.4 •

    0.46 1,16 l,22 1.14 1.11 1.49 1.45 1.57 1.45 1.49 1.11 1.14 l.22 l.16 0.46 , 0.49 , l,22 , 1.27. 1.15 . 1.09 . 1.45. 1.38 . 1.53, 1.41 . 1.44 , 1.09. 1,17. 1,£8. 1.25 , o.sz , • 6.9. 5.o . 4.o • o.5 . -1.a . -z.9. -4.3 . -z.a . -z.1 • -3.3 . -1.a . 3.1 . 4.8 • a.o . 12.s • ..........................................................................................................

    0.95 1.01 0.63 0.92 l,39 1.49 1.41 1.49 1.39 0,92 0.63 1.01 0.95 . o.9a • 1.05 • o.64. o.9o • 1.35 • 1.,.2 . 1.34. 1.43 . 1.36 . o.92 • o.64. 1.os • 1.00 •

    3.9, 3.7, 0.3. -Z.2. -3.l . -4.7. -5.3, -4.0 , -z.z . -0.4 . 1.6 , 3.7 , 6.2 •

    0.37 0.86 0.90 1.04 0.92 1.11 1.39 1.11 0.92 1.04 0.90 0.86 0;37 • o.38. o.89. 0,90 • 1.01 • 0.90 • 1.05 • 1.2a. 1.0, • o.90 . 1.os. Q,92 • o.9o • o.39.

    3.9, 3.8. 0.8. -3.0 , -3.2 • -5.l, -7.6 • -5.9 • -Z.7. 0,6 , Z.8 . 4.7, 6,l •

    0.46 0.74 0.90 0.63 l,14 l.16 1.14 0.63 0.90 0.74 0.46 • 0.47. 0.75 , 0,87, 0.62, l.10 • 1.11 , 1.10 • 0.63. ~.90 • 0.77, 0.49 ,

    3.8 , l,l , ·-3.0 , -Z.9, -3,2 , -4.9, -3.6 , -1.3, 0.6 , 3.4, 6.5 ,

    , 0.46 , 0.86 , 1.01 , 1.22. l.30 , 1.22 , l,01 • 0.86 • 0.46 , , 0.48. 0.93, 1.04, 1.16. 1.26 • 1.22 , l.02, 0.87, 0.48, . 6.o . a.1 • 2.8 • -3.1 • -l.l • -0.2 • 0;9 • l.6 • 4.6 •

    0.37 0.95 1.16 1.29 1.16 0.95 0.37 , 0.40, l.01 , 1,10, 1.30 , 1.18, 0.96 , 0.37, , 8.2 , 6.9 , 1.5 • 0.6 • 1.6 , 1,6 , 0.9 ,

    STANDARO DEVIATION ,

    =2.311

    0.46 0.66 0.46 , 0.48, 0.69, 0.47, , 4.8, 3.S, 2.2 ,

    AVERAGE ,PCT DIFFEREIICE,

    : 3,0

    MAP NO: S2-5-2

    CONTROL ROD POSITIONS:

    D BANK AT 228 STEPS

    B BANK AT 34/33 STEPS

    DATE: 8/16/80

    FT= 2.809 Q N

    F t.H = 1. 806

    F = 1. 440 z

    A. 0. = +21. 595

    BURNUP :e O MWD/MTU

    33

    POWER :e 0%

    QPTR:

    NW 0.991

    NE 1. 006

    SW 0.997

    SE - 1.006

    4

    5

    10

    11

    13

    14

    15

  • I 11 I

    I I I I I I I I I I I I I I I I I

    R p H

    Figure 7.3

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    D-BANK AT 106 STEPS

    H L K J II s 0 C 9

    P~EOICTEO HEASUREO

    .PCT DIFFEREtlCE,

    0,37 0.63 0.37 • 0.37, O.o3. 0.37.

    0.5. -o.o , 1.5 ,

    PREDICTED t1E.4SU1lEO

    ,PCT DIFFEREIICE.

    o.42 o.97 1.00 o.~o 1.00 o.97 o.42 • 0.43. 0.?6 , l.00 • 0.87 , 1.02 . 1.00 • 0.44 .

    1.4 , •l,2 , -C,6 • -1,l , 1.3 , 3,1 • 3.7.

    0.58 1.09 1.23 1.22 1.16 1.22 1.23 1.09 0.58 • o.se • 1.10 . 1.22 • 1.21 • 1.15 . 1.22 • 1.25 • 1.12 • o.,o .

    l.Z • 1.2 • -0.3. -1.2 . -1.l • 0.3. 1.9 • J.l • 4.5.

    o.se o.96 1.23 1.23 1.24 1.11 • 1.24 1.23 1.23 o.9& o.sa • 0.59 , 0.97. 1.24 , 1 .• 2 • 1.22 , 1.10 • 1.24 . 1.24 , 1.,6 , 1.01 . 0.61 •

    1.1. 1.J • 1.0 • -o.6 . -1.4. -1.0 • -o.J • 0.1. 2.e . 4.9 . 6.3 .

    0.42 l.09 1.23 1.27 0.99 I.02 I.21 1.02 0.99 1.27 1.23 l,09 0.42 • 0.43 • 1.11 , 1.24 , 1.27. 0,98 , 0.99 , 1.18 , l.00 , 0.99 , 1.29 . I.Jl , 1.10 , 0.43 .

    2.1 • 2,0 • 0,7 , -0,4. -1,3 • -2.8 • -3.l . -1.9 • -0,2 , 1.2 , 7.0 • 8,1 , 3.I ,

    0.97 l,23 1 .• 3 0.99 , 1.01 1.15 , 1.10 , 1.15, 1.01 . 0.99 1.23 , 1.23 0.97 . , 0.99, 1.25 • 1.23 . 0.97 , 0.98 . 1.10 , 1.04 • 1.12 , 0.98 , 1.01 . 1.28 , 1.28 , 1.00 .

    2.1 • 2.l • 0.4 . -1.9 . -2.8 . -4.0 • -s.o • -2.7 • -2.8 • 1.6 , 3.9 • 4.4 . 3.2 ,

    A

    0,37 1.00 1,22 1.2~ 1.02 1.15 1.06 1.15 1.06 1.15 1.02 1.24 1.22 , 1.00 0.37 . o.3? . 1.04 . 1.24 . 1.,3 . o.oa • 1.11 • 1.,2 , 1.11 . l.D4 • 1.12 . 1.01 . 1.26 . 1.2s . 1.04 . o.Js . 6.8 . 3.5 . 2.0 • -0.7 . -4.1 . •3.8 . -3.6 • -3.3 . -1.6 . -2.5 . -I.O , 1.7 . 2.6 . 3.4 . 3.9 .

    i · o: 6; · · ·;: ;o · · · i: i6 · · · i: ii· · · i: ii .. · i: ia · · · i: is·· ·;: ~; · · · i: is· · · i: ia · · · i:; i .. · i: ii· · · i: i6 · · ·a: 90 · · ·.;: 6; · · o.67. o.94 . 1.1, . 1.09 . 1.1q . 1.a4 . 1.11 . o.e5 . 1.11 . 1.os , 1.1a . 1.1J . 1.1s • o.94 . c.68 • 6.6 • 4.0 . 2.1 • -i.1 . -~.J • -5.4 . -3.3 , -2.7. -J.6 • -4.6 . -3.2 . 1.3 . 1.1 . 4.1 . a.o •

    0.)7 1.00 1.22 1.24 1.02 1.15 l.06 1.15 l.06 1.15 l.U2 I.24 l.~2 , 1.00 . 0.37 , 0.19 . 1.04 • 1,25 . l.Zl • 0.96 . 1.~9 . 1,02 , 1.10 . 1.02 , l.O~ • 0,98 . l.Z4 . I.ZS , 1.00 . 0,41 . 6.8 . J.9 . 2.4 . -2.s . -,.z . -5.5 • -4.o • -4.0 • -'+.4 . -s.:; • -3.9 . o .. z . 2.1 . 7,3 . lJ.J •

    0.97 1.23 l.ZJ 0.?9 1.01 1,15 l.IO 1,15 1.01 0.?9 l.ZJ , l.23 0.97 . , 1.00 . l,Z6 • l,ZO , 0.13 , 0.1~ • 1.10 , I.04 . J,09 , 0.?7. 0.97 . I.Z3 . 1.:6 , I.04 ,

    2.6 . 2.5 , -2.l . -5.6 , -5.I , -4.3. -5.0 , -5.l • -4.0 • •l,S , -0.l • Z.6 • 6.6 ,

    0.42 1.09 l.Z3 1.27 0.99 1,02 1.21 • 1,02 , 0.99 1.27 . 1,23. l,09 • 0.42 . • 0,43 • 1.12 . 1.:0 . l.21 , o. 0 S • o.~a , 1.14 , O.?i , 0.96 . l.Z3 • l.Z6 . 1.14 • 0.45 ,

    2.s • 2.s . -2.1 . -s.1 . -J.7. -3.9 . -,.o • -s.2 . -3.l . o.a . z.4 • 4.s . ,.1 .

    o.sa o.96 1.23 1.23 1.z1 1.11 1.24 1.23 1.23 o.?6 o.58 . . 0.59 . 0,91 . I.16 , l.?O • 1.21 • 1.07. I.ZO • 1.22 . l.c3 • 0.99 . 0,62 •

    2.5 . -5.l , -5.1 . -2.7. -2.0 • -4.) , -3.5 . -0.5 , 0.6 , 2.7 . 7,5 •

    . o.5a . 1.09. 1.2J • 1.22 • 1.16 • 1.22 . 1.23 . 1.0, • o.s8 . • 0.62 • 1.1a • 1.21 • 1.1a • 1.12 • 1.:2 . 1.24 • 1.11 . 0.60 .

    1.a • 1.a • J.4 • -3,l • -4.o • -o.o • 1.5 . 1.4 • 4.4 • . -·· -~- -................................................................

    0.42 0.97 1.00 0.90 1.00 0.97 0.42 • 0.45 • 1-04 • 1.03 , 0.91 , 1.03 , 1.00 , 0.43 •

    1.1. 7.6 • 2.4. 1.1 • 2.6 • 2.s • 1.2 •

    STAHOARO OEYIATIOH

    =2.195

    0.37 0.63 0.37 0.39, 0.67 0.!8 7.3 S.8 , 3,5 •

    AVERAGE .PCT DIHEREHCE.

    : 3.2

    MAP NO: S2-5-4

    CONTROL ROD POSITIONS:

    DATE: 8/18/80

    FT= 2.415 Q

    POWER

    QPTR:

    == 5%

    D BANK AT 107/106 STEPS N F t:.H = 1.545 NW 0.986

    F = 1.512 z

    A. 0. = -23.873

    BURNUP == 0 MWD/HTU

    34

    NE 1.019

    SW 0.992

    SE - 1.003

    4

    s

    6

    ai

    11

    12

    13

    14

    15

  • I I I I I I I I I I I I I I I I I I I

    R p N

    Figure 7.4

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    M L K H G E D C B

    PREDICTED • MEASURED

    ,PCT DIFFERENCE.

    • ·0.41 0.72 0.41 • 0.40 . 0.71 , 0.41 • • -1.l , -1.4. O.l.

    P~EDICTED MEASURED

    • PCT DIFFEREllCE.

    0.42 0.95 1.03 1.04 l.03 0.95 0.42 • 0.41 • 0.94. 1.02 . 1.02 . 1.03. 0.97. 0.42 . • -2.4. -1.7. -1.5. -1.9 . 0.1 , l.8 . 1.0 .

    , 0.56 . 1.04 . 1.17. 1.20 . 1.18. 1.20 . 1.17. 1.04 . 0.56 • • 0.55 . l.03. 1.16 , 1.17. 1.15 , 1.18 • 1.17. 1.04. 0.56 . • -2.2 • -0.8 . -0.7 . -2.0 . -2.1 . -1.2 • 0.7. 0.3. -0.1 •

    • 0.56 0.93. 1.17 1.18 1.20 . 1.10 1.20 . 1.18 1.17 0.93 0.56 . 0.56 • 0.92. 1.17. 1.17 . 1.17. l.06 . 1.18. 1.18. 1.17. 0.?4 , 0.59 . . -0.5 , -0.9. 0.1 • -1.5 • -3.l . -4.0 . -2.2 . -0.6 , 0.1 . 1.5 . 3.9 .

    0.42 1.04 1.17 1.24 1.01 l.03 1.20 1.03 1.01 1.24 1.17 1.04 0.42 • 0.42 • 1.05. 1.16 . 1.22 . 0.99. 0.99. 1,15 . 1.00 . 0.99 . 1,22 . l,22. l.lD . 0.44. . 0.9 . 0.9 . -0.7. -2.l . -2.l . -3.9. -4.0 . -2.9. -2.3. -1.8 . 4.8 . 6.0 . 5.9 .

    . 0.95. 1.17. 1.18. 1.01 . 1.14, 1.18 . 1.11 , 1.18. 1.14 . 1.01 . 1,18. 1.17 , 0.95 . • 0.96 . 1.18. l,18 . 1.00 • 1.11 , 1.14. 1.00. 1.15. 1.10 . 1.01 . 1.21 . 1.23 . 1.02 .

    1.1 • 1.1 . -o.6 . -1.s . -2.5 . -2.9. -3.o . -2.4. -3.7 . -o.3 . 2.4. 5.6 . 6.9 .

    A

    0.41 1.03 1.20 1.20 1.03 1.18 1.09 1.16 1.09 1,18 1,03 1.20 1.20 1.03 0.41 0.42 . 1.04 . 1.21 • 1.19. 1.00 • 1.15 . l.07 , 1.14 . l.08. 1.15 • 1.03. 1.23. 1.24 . 1.10 . 0.43.

    3.1 . 1.0 , 0.8 . -1.2 . -3.l , -2.3. -1.4 , -1.6 , -1.0 . -2.3. -0.7. 2.2 , 3.5 . 6.6 , 5.~ ,

    0.72 . 1.04 , 1.18. 1.10. 1.20 . 1.11 . 1.16 , 0.89 , 1.16 , 1.11. 1.20 , 1.10 . 1.18 . 1.04 , 0.72 , 0.74 . 1.05 . 1.17 • 1.08 . 1.15 , 1.08 . 1.15 • 0.89 . 1.14 . 1.08 . 1.19 . 1.12 . 1.20 • 1.06 . 0.75 . 3.1. o.8. -a.a. -2.1 . -4.4. -3.2 . -1.1 • -0.1. -1.5 • -2.5 . -1.2 . 1.8 . 1.9 . 2.4 . s.o •

    ·····:··································································································· • 0.41 , 1.03 . 1.20 . 1.20 . 1.03. 1.18 . 1.09 . 1.16 • 1.09 . 1.18. 1.03 . 1.20 . 1.20 . 1.03 , 0,41. 0.42 , 1.06 • 1.22 , l,19 . 1.00 • 1.13. 1.04. 1.13. 1.07 , l.J5. 1.01 . 1.20 . 1.22 . 1.07. 0.43. 3.1 . 2.3. 1.8 . -1.3 . -3.4 . -4.0 . -4.5, -2.3. -1.3. -2.4. -2.0 • 0.1 . 1.6 . 3.7. 5,9.

    0.95 1.17 l,18 1.01 1.14 1.18 1.11 1.18 1.14 1.01 1.18 1.17 Q.95 , 1.00 • 1.22. 1.19. 0.98. 1.10 , 1.12 . 1.07 , 1.15. 1.12 , 1.00 , 1,18 . 1.18 , 0.99, • 4.7. 4.6 , 0.2 . -3.2 , -4.0 , -4.5. -3.4. -2.5. -2.2 , -1.2 . -0.5, 1.6 , 4.1 .

    , 0.42 , 1.04 . 1.17, 1.24 . 1.01 • 1.03 , 1.20 , 1.03, 1.01 . 1.24. 1.17, 1.04 . 0.42 . • 0.43. 1.07. 1.17. 1.20 , 0.99. 1.00 , 1.16 . 1.00 • 0.99 . 1.24. 1.18 . 1.06 • 0.43 .

    J,Q • 2.? . 0.3. -3.2 , -2.6 , -2,7 , -3.5. -3.6 • -2.8. -o.o , 1.0 • 2.1 , 3.4 ,

    0.56 0.93 l,17 l,18 1.20 , 1.10 1.20 1,16. 1.17 0.93 0.56 , 0.57. 0.92 , 1.13, l.17 , 1.20 • l.08. 1.16. l,l?. 1.18, 0.95 , 0.58 , • 1.3. -o.5. -3.2 • -1.1. -o.5. -2.5. -1.9. 0.2 , o.8. 2.0 • 2.a •

    , 0.56 , 1.04. 1.17, 1.20 . 1,18, 1.20 . 1.17, l.04 , 0.56 . , 0.58, l,06 • 1.18. 1.18 , 1.14. 1.21 , 1.21, 1.07, 0.58, • 1.?. 2.1. 1.s. -1.9. -3.o • o.6 • 3.4. 2.9. 2.4 •

    STAHDARO DEVIATION •

    =l.462

    • o.42. o.95. 1.03. 1.04. 1.03. o.?s. o.42 • , 0.43. 0,99, 1.05 , 1.04. 1.06 • 0,98, 0,43 • • 2.7, 3.5, 1.1 . 0.6 • 2.0 , 2.9, 3.5.

    0.41 0.72 0.41 , 0.43 . 0.74. 0.42, , 4.4 , 3.7 • 2,6 ,

    AVERAGE .PCT DIFFERENCE.

    : 2.3

    MAP NO: S2-5-5 DATE: 8/20/80

    FT=l.985

    POWER"' 43%

    CONTROL ROD POSITIONS:

    D BANK AT 170 STEPS

    Q N

    F tiH - 1.-446

    F = 1.299 z

    A. 0. = -2.494

    BURNUP"' 10 MWD/MTU

    35

    QPTR:

    NW 0.989

    NE 1.011

    SW 0.997

    SE - 1. 003

    l • .

    3

    4.

    5

    6

    1.

    10'

    ll

    12

    13

    14

    15

  • I I I I I I I I I I I I I I I I I I I

    R p H

    Figure 7.5

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    M K J H G D C 8

    PREDICTED MUSUPEO

    .PCT DIFFERENCE,

    0.41 0.72 0.41 • 0.42 • 0.73 • 0.42 •

    1.6 . 1.3 . 1.s •

    PREDICTED MEASURED

    ,PCT DIFFEP.EHCE,

    0,42 0.95 . 1.04 1.06 1.04 0.95 0.42 • 0.41. 0.95 • l.04 , l.05 , l.04 , 0.96 • 0.42 • . -1.1 . 0.4 •· -0.l • -0.7, 0.3 . l.l . 1.2 .

    0.56 1.03 1,16 1.20 l.18 l,ZO 1.11 1.03 O.S6 , O.S6 . l.03. 1.17, 1.20 . 1.15. 1.18 . l.lb , l.C4 . 0,57 • , ·l.O , O.l • 0.7 , -0.l , -2.3 , ·l.3 • -0.2 , 0.5 , 1.4 ,

    0.56 0.92 l.16 1.18 1.20 l.10 l,20 , l.18 l.16 0.92 O.S6 • o.57. o.92 . 1.11. 1.11. 1.19. 1.oa. 1.1a • 1.16 . 1.16 • o.93 . o.ss .

    l.O , -0.2. 0.4, ·0.6 • -1.~. -1.6 • -2.0 . -1.6 . -0.3 . l.l . 3.2 .

    0.42 1.03 1.16 1.24 1.02 l.03 1.20 1.03 1.0[ 1.24 1.16 1.03 0.42 • 0.43 , 1.06 , 1.16 , 1.21 • 1,00 , 1.01 , 1.18 , 1.01 , 0.99 , 1.22 , l.JQ • 1.07. 0.44 .

    2.6 , 2.6 , -o.s. -2,7, -l.8, -2.0 • -2.0 , -2.5 , -2.6 , -1.7 . 2,2 , 4.l , 5.3 ,

    0.95 1.16 1.18 1.02 1.16 1.18 1.11 1.18 1.16 1.02 l,18 1.16 0.95 • 0.98. l.~9. 1.18. 0.99 . 1.13. 1.16 • l.09 , l.15 . l.ll , 1.01 . 1.20 , 1.21 . 1.00 .

    2.7. 2,6 , -0.4 , -z.s , -2.7 , -2.2 , -2.l , -2,Q , -4.6 , -0.8. 1.4 , 4.1 , 5.7,

    A

    0.41 1.04 1.20 1.20 l.03 1.18 1.09 1.16 1.0? 1.18 1.03 1.20 1.20 1.04 0.41 0.42 , l.06 , 1.22 • 1.20 • 1.00 . l.15. 1.07. 1.13. 1.06 , l,14 . l.03 . l.[3 . l.24 , l.10 . 0.44 , 2.9. 1.9. 2.2 . -0.4. -2.9 . -2.b , -2,l , -2.2 . -2,5 , -3.3 . -0.2 • 2.2 , 3.3. 5.7 . 6.2 •

    0.72 1.06 1.18 1.10 l.20 1.11 1.16 0.89 1.16 l.ll 1.20 l.10 1.18 1.06 0.72 o.74 . 1.01. 1.19. 1.09. 1.16 , 1.os. 1.14. a.ea . 1.15. 1.10 • 1.21 • 1.12 • 1.•o . 1.11 . o.78 • 2.7, 1.4 , 0.4, -0.7. -,.2 • -2.4 • -2.l , -1.5 . -1,2 • -1.1 . 0.7, 1.9, 1.9 . 4.7, 7.2 •

    0.41 1.04 1.20 1.20 1.03 1.18 1.09 1.16 1.09 l.18 1.03 1.20 1.20 l.04 0,41 0,42 , l.O~ • 1.21 , l.l?, l,02 , 1.16 , 1.07 , l,15 , l.09 . l.17 . 1.03 , 1.21 , 1,22 • 1.08. 0.44 ,

    2.9 , l.9, !·3 , -0.5. -1.4, -2.1 , -2.l , -0.8, -0.3 , -0.9 , -0.4 , 0.8, l.4 . 4.4 , 7,5,

    0.95 1.16 1.18 1.02 1.16 1.18 l.ll 1.18 , l,16 1.02 1.18 1.16 0,95 . 0.97 , 1.19. 1.18. 0.99 • 1.13 , l,15 . 1.08. l.16 , 1.14 , 1.01 • I.la. 1.18. 0,98 .

    2.5 , Z.5. -0.4. -2,7. ·2.7 , -2.4 • -2.5. -1,7 ~-l.b . -0.?. 0.1 • 1.3. 3.0 .

    0.42 1.03 1,16 1.24 1.02 l.03 1.20 I.OJ 1.02 1.24 1.16 1.03 0,42 , 0.42 • 1.05. 1.15. 1.19. 0,99. 1.01 , 1.15 , 1.00 , l.CO , 1.22 , l,17 • l.06 , 0.43 ,

    1.7 . 1.7. -0.9 . -4.4 . •2,4 , -2.l , -3,8 , -3.0 , -1.i • -1.3 • 1.0 • 2,6 • 3,1 •

    0.56 0.92 1.16 1.18 1.20 1.10 1.20 1.18 1.16 0.92 0.56 • 0.57. 0.91 . 1.11 , I.lb • 1.20 . l.07. 1.13 , l.18 • 1.17. 0.94 . 0.58.

    l.O • •l,l , -4.4 , •l,5 , ·0,4 • -2,4 • ·l.4 , 0,3 , 0.5 • 2.3 • 4.0 •

    STA!lO~RO DEVIATIO!l =l. 427

    0.56 1.03 1.16 1.20 1.18 1.20 1.16 1.03 0.56 , 0.57. 1.04 • 1.17. l,18 , 1.15 . 1.21 • l.20 , L.06 • 0.58 ,

    l.l , 1.2 • 0.8 , -1.4. -2.2. l.l • 3.3 , 2.9. 3.l •

    , 0,42 , 0,95 l,04 , 1.06 1,04 0.95 0.42 , 0.42 • 0.98. 1.06 • 1.07. l,06 , 0.98 , 0.43.

    1,2 • 3.3. 2.5. l.3. 2.5 , 3,1 • 3.3.

    0.41 0.72 0.41 , 0.44 , 0.76 • 0.42 ,

    6.0 , 4,7. 3.0 •

    AVERAGE .PCT DIFFEREHCE.

    = 2.0

    4

    5

    7

    8

    9

    10 ·

    ll

    ).2

    13

    14.

    15

    MAP NO: S2-5-6 DATE: 8/21/80

    FT = 1. 909

    POWER= 50%

    CONTROL ROD POSITIONS:

    D BANK AT 184/183 STEPS

    Q N

    F ~H = 1. 426

    F = z

    1.281

    A. 0. = +3.873

    BURNUP = 25 MWD/MTU

    36

    QPTR:

    NW 0.994

    NE 1.000

    SW 0.997

    SE - 1.009

  • I I I I I I I I I I I I I I I I I I I

    l_

    p H

    Figure 7.6

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    H L K H G u " PREDICTED H.EASUREO

    ,FCT DIFFERENCE.

    0.41 0.73 0.41 , 0.41 , 0,73. 0.41 • • -o.a. -o.a. -0.2 •

    PllECICTED t1EASUREO

    ,PCT DIFFEREHCE • .................................................. o.41 o.95 1.04 1.os 1.u .. ··• o.95 o.41

    • o.41 . o.9,, . 1.0::s • 1.00 • 1.04 • o .. 95 . 0.42 . • -0.2 • -1.0 . -1.5 • -1.1. -o.a . o.4 . o.7.

    0.56 l.OZ l,16 l.20 1.18 1.20 l,16 l.02 0.56 , 0.56 • l.03 . 1.15 , 1.18, 1.15 , 1.18, 1.15 • 1.03 , 0.56 , , -0.l , 0.4, -0.2 . -1.3 , -2.7, -1.6 . -0.3 , 0.4 . l.3 .

    • 0.56 , 0,91 , l.lS , l.la , 1.20 , 1,10 • 1.20 • 1.18 . l.15 • 0.9l . 0.56 , , 0.56 . 0.91 , 1.16 , l,17. 1.18 , 1.08 . 1.18 , 1.16 , 1.15 , 0,92 , 0.57 ,

    0,6 , -0.2 , 0.2 . -0,9 . -1.7 , -2,l • -1.9 , -1,2 , -0.2 , 0.3 , 3.0 ,

    0.41 1.02 1.15 1.24 1.02 1.03 1.20 1.03 1.02 1.24 , 1.15 1.02 , 0.41 , 0.42 , 1.04 , 1.15 , 1.21 , l.00 , 1.02 , 1.18. 1.01 , l.00 , 1.22 , 1.17 , 1.06 . 0.44 .

    1.2 . 1.2 • -a.a. -2.5 • -1.s . -1.4 . -i.7. -1.a . -l.9. -L.4 ~. l.6 • 3.9 . s.7 .

    o.95 1.16 1.1a 1.02 1.1a 1.19 1.11 1.19 1.1a 1.02 1.1a . 1.16 . o.95 . 0.96 , 1.17 , 1.17, l,00 , 1.16 , 1.17 , 1.10 , 1.17 ~ 1,15 , l.Ol , l,19 ,-1,20 , 1.00 ,

    1.2 . 1.1 . -o.a . -1.9 . -1.9. -1.2 • -1.4 . -1.1 . -3.o . -o.4 . 1.~ . J.6 • s.o .

    ,.

    0.41 1.04 1.20 1.20 1.03 l,19 1.09 1.16 1.09 1.19 1.03 1.20 1.20 1.04 0.41 , 0.43 , 1.06 , 1.21 . 1.19 . 1.01 , l,17 . 1.08, 1.15 , 1.08 , 1.17 , 1.04 . 1.22 , 1.23 . 1.08 . 0.43 .

    2.a • 1.0 . 0.1 . -a.a . -2.::s • -1.6 • -o.6 . -o.9 . -o.9 . -1.1. o.5 . z.z . 2.6 • J.o . J.5 • 0.73 1.08 1.18 1.10 1.20 1.11 1.16 0.89 1.16 1.11 1.20 1.10 1.18 1.08 , 0.73

    . 0.75 , l,09. 1.18 , l.09 , 1.17, l,09 , 1.15 , 0.89 , 1.16 , l.ll , l.~l , 1.12 . 1.:0 , 1.10 . 0.77 , 2,7 . 0.9 . -0.2 , -1.0 • -2.7 . -1.7. -0.5 , -0.2 , -0.l , -0.2 • 1.0 . l.7 , 1.6 , 2.0 . 4.3 , . ...........................................................................................................

    0,41 1.04 1.20 l.ZO 1,03 1.19 l.O? 1,16 l.09 1.19 l,C3 l.ZO l.ZO l.04 0.41 • 0,43 , 1.C6 , 1.21 , l.19 . 1.02 , 1.17 , 1.07, l,16 , l.09 , 1.18 . l.03. l.ZO . 1.21 , 1.08 . 0.44.,

    z.a . 1.a • 1.2 . -o.4 . -1.1 • -1.1 . -1.1 • -o.3 • o.4 • -o.3 • -o.3 . o.3 . t.4 . 3,4 • 6.1·.

    , 0.95 1.16 1.18 1.02 l.18 1.19 , l.ll 1.19 , 1.18 1.02 1.18 1,1? , 0.95 , . 0.97 , 1,19 , 1.18 , l.00 , 1.15 . l,16 , 1.09 , 1.17 , 1.17, 1.01 . 1.17 . 1.17 , 0.98 .

    2.a . ~.1 . -0.1 . -2.2 • -2.2 . -z.o . -2.1 . -1.1 • -1.0 • -o.a . -o.4 • 1.~ • z.9 .

    0,41 1.02 l.15 , l.24 l.02 l.03 l.20 l.03 l.O:? , l.24 l.15 l.OZ •• 0.41 • o.~2 • 1.04 . 1.1s,. 1.19 • 0,99 • 1.01 • 1.1s . 1.01 • 1.01 . 1.22 • 1.16 . 1.04 • o.42 •

    2.0 , 2.0 . -0.5 , -3.7, -2.3 • -2.2 , -3.7 . -2.6 • -1.l • ··l.l , 0.6 . l.9 , 2,5 ,

    MAP NO:

    0.56 0,91 1.15 l,18 1.20 1.10 1.20 1.18 l.15 0.91 0.56 , 0.56 • 0,91 • 1.11 , 1.16 , l,18 , 1.07, 1.16 , 1.18 , l,16 , 0.93 , 0,57 ,

    l,3 • -o.7 • -,.7. -1.e • -1.2 • -2.a. -1.5 • 0.4 • o.6 . 2.1 • 2.e.

    0.56 1.02 1.16 1.20 1.1e 1.20 . 1.16 1.02 o.5~ , 0,57 , l,05 , 1.17 , l,17. l.15 • 1.20 , 1.19 , l.05 , 0.57,

    2,0 , 2,6 , l,l , -2,2 , -3.0 , O.l.. 2,7. 2.7 • 2.5 •

    0.41 0.95 l.04 1.08 1.04 0.9~ 0.41 , 0,43 , 0.99, l,06 , 1.08, 1.05 , 0.97, 0.43 ,

    2.a . 4.o • 1.a • 0.2 • o.a • 2.0 . 2.9 •

    STMIOARO DEVIATION ,

    =l,191

    0.41 0.73 , 0,44 , 0.76

    5.4 . 3.6

    0,41·,. 0.42 l. l

    AVERAGE ,PCT DIFFERENCE,

    = l, 7

    S2-5-7 DATE: 8/21/80 POWER "'

    CONTROL ROD POSITIONS: FT = 1.854 QPTR: Q

    61%

    D BANK AT 190 STEPS N F.tiH = 1.416 NW 0.993

    F = 1. 252 NE 1.000 z

    A. 0. = +2.493 SW 0.999

    BURNUP "' 30 MWD /MTU SE - 1.008

    37

    3

    4

    5

    7

    ·10

    ll

    13

    , 14

    15

  • I I I I I I I I I I I I I I I I I I I

    R p

    Figure 7.7

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    H L K H G 0

    ........................ C B

    PREDICTED MEASURED

    ,!'CT DIFFERENCE.

    0.41 0.72 0.41 , 0.40 , 0.7l , 0.41 , , -1.4. -l.4. -0.4 ,

    PP.EOICTEO tlEASUREO

    .PCT OIFFEREHCE,

    0.42 0.95 l.04 l.05 1.04 0.95 0.42 • 0.4Z . 0.94. 1.02 • l.03 , l.03 . 0.96 • 0.42 • • -0.4 • -1.5 , -1.8 , -2.0 , -0.7 , l,O , l.O ,

    0.56 1.03 l.16 1.20 l.18 1.20 1.16 1.03 0,56 , 0.56 , 1.04 • 1.16 . 1.18. l.15 . l.18. 1.17. 1.04 , 0.57 , • -o.3 • 0.2 • -o.5. -1.a. -2.7. -1.b • o.J . o.6 . 1.1 •

    0.56 0.92 1.16 l,18 l.20 l.10 1.20 1.18 1.16 0.92 0.56 . o.s1. o.92 • 1.11. 1.11 • 1.11. 1.01 . 1.18 • 1.18 . 1.11 . o.94 • o.sa •

    0.1. -o.J • o.z . -1.z • -2.5 • -3.3 .--z.2 • -o.s. o.6 . 1.6 • 3.6 .

    0,42 1.03 l.16 l.Z~ 1.01 1.03 1,20 1.03 1.01 1.24 1.16 l.OJ 0.42 , 0.42 . 1.05 , 1.15, 1.21 , 0,99 , 1.01 , 1.17, 1.01 . l,00 , 1.24 , 1.20 , 1.08 , 0.44 .

    1.6 , l,6 . -0.9 • -2.7 . -2.l . -2.4. -2.9 . -2.6 • -1.6 • -0.4 , 3.0 . 4., . 6.2 .

    0.95 1.16 1.18 l.Ol l.lS 1.18 l.ll l.18 l.15 l.Ol 1.18 l.16 0.95 , 0.97 , l.18 . 1.17, 0,98 , l.12 • 1.15 , 1.08 • 1.15 • 1.11 . 1.01 , l.Zl , l.:c . 1.00 ,

    l.4 • 1.4. -1.l . -3.0 . -2.7. -2.Z , -2.5. -2.5 . -3.9 , -0.0 . 2.3 , 4.4 . 5.6 ,

    0,41 l.04 l.20 l.ZO 1.03 1.18 1.09 1,16 1,09 1.18 l.03 1.20 1.20 1.04 O.~l • 0.42 • 1.05 . 1.21 , 1.19 • 1.00 • 1.15 • 1.07. 1.14 , 1.07. l.l5 . 1.04 . 1,24 , 1.23 . 1.08 , 0.4Z .

    2.6 , 1,6 , 1.2 . -0.9 , -3.5 • -z.6 , -1.5 • -1.6 • -1.3 . -2,l . 0.4. 2.7 , 2,9 . 4,3 . J.7 , ............................................................................................................

    0.72 1.05 1.18 1.10 1.20 1.11 1.16 0.89 1.16 l.ll 1.20 1.10 1.18 1.05 0.72 • 0.1~ . 1.06 . 1.11 . 1.09 • 1.16 . 1.08 . ,.14 • o.a9 • 1.15 . 1.10 • 1.21 . 1.1J . 1.to . 1.01 . o.,s .

    Z.5 , 1.7 . 1.1 . -0.9 , -3.7. -Z.6 , -1.3 . -0.7, -0.S • -0.7. 0.9 . Z.2 . 1.9 . 1.9. 4.5 •

    0.41 l.04 1.2~ 1.20 l.03 1.18 1.09 l,l6 l.09 l.18 1.03 1.20 1.20 l.04 0.41 . o.•z , 1.06 . l.Z3 . 1.20 , 1.01 , 1,15 , 1.07. 1.16 . 1.09. 1.17, 1.03 , 1.21 , l.ZZ . l,07 . 0.44 .

    2.6 , Z.5. Z.3 . -o.4 • -1.9. -2.6 • •1,4 • 0.0 • -o.z • -1.l , -0.6 • 0.8 . 1.7 . J.6 , 6.4 ,

    MAP NO:

    o.os l,16 1.18 1.01 l.15 1.18 1.11 1.18 l.15 1.01 1.18 1.16 0.?5 • o.98 • 1.20 . 1.1a • o.9? . t.12 • 1.1J . 1.oa . 1.11 • 1.13 • 1.01 . 1.1a . 1.18 . o.98 •

    3.5 , J.4 . O.l . -Z.6 . -Z.7. -4.3 • -Z.6 , -l.6 , -l.5 . -1.B . 0.1 , 1.6 , 3.4 •

    0.4Z 1.03 1.16 l.Z4 l.Ol 1.03 l,ZO l.03 l,01 1.24 1.16 l,03 0.42 , 0.43. l.06 , l.16 , 1.20 . 0,99 . 1.01 . 1.15 . 1.00 , l.00 , 1.23 . 1.18 , l.06 • 0.43 ,

    2.4 , 2.4 . -0.3 , -J.7, -2.3 . -2.3 . -3.9 . -Z.9. -1,6 , -0.8 . l.Z . 2.7, 3.3 ,

    0.56 0.92 1.16 1.18 1.20 1.10 1.ZO 1.18 1.16 0.92 0.56 • o.57. o.92 • 1.12 • 1.16 . 1.11 • 1.01 • 1.19 . 1.19 , 1.1a . o.95 • o.sa.

    l.3 , -0.6 , -3.7. -1.6 , -0.?, -2,7, -l.3 , 0.6 , l,0 , 2,7. 3.8.

    STAHOAP.O

    , 0.56 , 1.03 . l.16 , 1.20 , l,18 , l,20 . l.16 , l.03 , 0.56 , , 0.58. l.07 , l.18 , :.17. l.15 , 1.20 • 1.21 • 1.07. 0.58 ,

    2.5 • 3.6 • l.7 • -1.9, -2.9 , 0.4. 3.6 , 3.5 • 3.3 .

    o.~2 • o.95 1.04 1.05 1.04 o.95 o.42 , 0.43, 0,99 , 1.05 , 1.05 , 1.04 • 0.97, 0.43 ,

    3.6 • 4.2 , 1.5 , o.o , 0.7. 2.3 • 3.8 ,

    0,41 0.72 0,41 OEVIATIOH , • 0.43, 0.74 , 0.41 •

    , 4,8. 3,2 • 0.8,

    .I.VERAGE ,PCT OIFFEREHCE,

    = 2.0 •1.319

    S2-5-9 DATE: 8/24/80 POWER

    CONTROL ROD POSITIONS: FT = 1.933 QPTR: Q D BANK AT 171 STEPS N Ft,H = 1.429 NW

    F = 1. 291 NE z A. o. = -1. 970 SW

    = 58%

    0.985

    1.004

    1.000

    BURl.UP = 65 MWD/MTU SE - 1.0ll

    38

    3

    4"

    5_

    6

    8

    10 ~

    11.

    lZ

    15

  • I I I I I I I I I I I I I I I I I I I

    ! I

    H

    Figure 7.8

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    n L J 11 r "

    P'REDICTEO MEASURED

    • PCT DIFFERENCE.

    0.41 0.73 0.41 • 0.41 • 0.73. 0.41 • • 0.4. 0.3. 0.4 •

    PREDICTED MEASURED

    .PCT DIFFEREUCE •

    0.41 0.95 1.04 1.07 1.04 0.95 0.41 . 0.41 • 0.95 • 1.03. 1.0• • 1.04. 0.95 . 0.42 . • -0.1 . -o.z • -0.9. -1.3. -0.6 • 0.3 . 0.9.

    0.56 1.02 l.16 l.ZO 1.18 1.20 1.16 1.02 0.56 . 0.56 • 1.02 • 1.16 • 1.19. 1.15. 1.18 . 1.16 , 1.04 . 0.57 . • -0.2 . -0.2 • -o.z • -0.7 . -2.7. -1.2 . 0.5 . l.l . l.9 •

    0.56 0.92 1.16 1.18 1.20 1.10 1.20 1.18 1.16 0.92 0.56 • 0.56 . 0.91 . 1.13 • 1.16 • 1.18. 1.08 • 1.19 . 1.18 . 1.16 . 0.93 . 0.58 • • 1.0 • -0.6 . -2.l • -l.5 . -l.3 . -1.6 • -1.l • 0.6 . 0.7. 1.2 . 3.3 •

    0.41 1.02 1.16 1.24 1.02 1.03 1.20 1.03 1.02 1.24 1.16 1.02 0.41 . 0.42 • 1.04 • 1.15 • l.ZO • l.00 • 1.02 • 1.18. 1.02 . 1.01 • 1.23 • 1.18. 1.07 . o.,4 •

    1.a. 1.0 • -o.9 . -3.l • -1.9. -1.0 . -1.2 • -1.2 . -1.1 • -o.7 • 1.7 . 4.1 • 6.1 •

    0.95 1.16 1.18 l.02 1.18 1.19 1.11 1.19 • 1.18 1.02 1.18 1.16 0.?5 • 0.96 . 1.17 • l.17 . 1.00 . l.16 • 1.18 . l.10 . l.16 . l.14. l.Ol. 1.19. l.21 • l.00 •

    l.5 . 1.5 • -o.5 . -1.1 • -1.6 • -o.a. -1.1 • -1.a . -3.3 • -1.0 • o.9 . 4.1 . s.1 •

    A

    o.41 1.04 1.zo 1.20 1.03 1.19 1.09 1.16 1.0, 1.19 1.03 1.20 1.20 1.04 o.41 • 0.42 • 1.05 • 1.21 . 1.19 . 1.01 • 1.17. 1.09 . 1.15 • 1.08 . 1.16 • 1.00 • 1.21 . 1.23 . 1.08 . 0.43.

    2.1 • 1.1 • o.9 . -o.6 . -2.2 • -1.3 . -o.z . -o.a • -1.2 . -2.0 . -2.1 . 0.1 . z.3 . 3.5 . 3.2 .

    O.i3 1.07 1.18 1.10 1.20 l.ll 1.16 0,89 1.16 1.11 l."O 1.10 1.13 1.07 0,73 • o.;s . 1.oa . 1.1? . 1.09 • 1.11 . 1.10 . 1.16 . o.a9 • 1.16 . 1.11 . 1.1, . 1.11 . 1.20 . 1.01 . o.76 .

    l.? • 0.1 • 0.2 • -0.1 • -z.5 . -1.l. -0.1. Q.l. -o.o. -o.z . -o.5 . o.7. 1.1 . 1.a . 4.o .

    0,41 1.04 l.ZO l.ZO 1.03 1.19 1.09 1.16 1.09 1.19 l.~3 1.20 l.:o 1.04 O.~l . • 0.42 . l.C6 • !.21 • 1.20 . 1.03 . 1.17 • 1.08 . 1.16 . 1.10 , 1.19 . 1.03 . l.ZO . l.Zl • 1.07 . 0.44.

    2.1 . 1.4 . 1.0 • -0.2 • -o.4 . -1.3 . -1.3 • o.z . o.9. -o.~ . -o.z . o.4 • 1.2 • 3.o • s.7.

    0.95 1.16 1.18 1.02 1.18 1.19 l.ll 1.19 1.18 l.C2 l.18 l.16 0.95 • 0.97. 1.18 . 1.17. 1.00 . 1.15 . 1.17 . 1.09 . 1.18 . 1.17 . l.01 • 1.18 . 1.17 • 0.97 .

    l.9 • l.9 . -o.3. -2.1 • -z.o . -l.6 . -l.6 . -~.s . -o.a . -o.a . -0.1 • 1.0 • 2.4 .

    0.41 1.02 1.16 l.Z4 l.02 1.03 1.:0 1.03 1.02 1.24 l.16 1.02 0.41 • 0.42 • 1.04 • 1.15 • l.19 • 0.99 • 1.01 • 1.16 • 0.99 . 1.00 . 1.22 • l.17. l.05 • 0.43.

    1.a. 1.e • -a.a. -4.l . -2.4 • -l.9 . -3.3 . -3.a • -2.0 . -l.4 . o.9. 2.l • z.7.

    0.56 0.92 1.16 1.18 1.20 1.10 1.20 1.18 1.16 0.9Z 0.56 • O.S7 . 0.91 , 1.11 , 1.15 • l.18 • 1.07 . 1.18 • 1.18 . 1.17 • 0.94 • 0.58 •

    1.e • -o.s . -4.l . -z.o • -1.z • -2.1. -1.1. o.6 . ·a.a. 2.4 . l.6 •

    ST At/DARO

    • 0.56 • l.02 . 1.16 • l.ZO • 1.18 . 1.20 , 1.16 • 1.02 . 0.56 • • 0.57 • 1.06 • 1.17. 1.17. 1.15 • 1.20 . 1.18 • 1.05 • 0.57.

    2.S • 3.3. l.4. -2.2 . -3.0 . 0.1 • 2.3 • 2,4 • 3.1 •

    0.41 0.95 1.04 1.07 1.04 0.95 0.41 , 0.43. 0.99 • 1.06 • 1.06 • 1.06 • 0.97 . 0.42 • • 3.3 • 4.4 • 1.9. 0.4. 1.3. 2.1 , 2.3 •

    ················o:;.i···o:1;···0:;.i················ OEVIATIOH • • 0.44. 0.76. 0.42 ,

    • S.6 . 4.0 . 1.7.

    AVERAGE .PCT DIFFEREflCE •

    : l.6 :1.z34

    MAP NO: S2-5-ll DATE: 8/26/80 POWER ::: 71%

    CONTROL ROD POSITIONS: FT = 1.842 QPTR: Q D BANK AT 185 STEPS N FtH = 1. 410 NW 0.996

    F = 1.239 z NE 1.004

    A. o. = -1.195 SW 0.995

    BURNUP ::: 9 0 MWD /MTU SE - 1. 005

    39

    l

    2

    7

    10

    ll

    12.

    14

    15

  • I I I I I I I I I I I I I I I I I I I

    R

    Figure 7.9

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    I/E CALIBRATION - FLUX MAP

    p tl H L K J H u " PREDICTED NEAS!.mED

    ,PCT DIFFEREtlCE,

    0.42 0.74 0.42 , 0.42 , 0.74 , 0,42 , . -0.1 . -0.2 , -0.1 ,

    PREDICTED NEASURED

    .PCT OIFFEF.EIICE.

    0.42 0.94 l.04 l.07 1.04 0.?4 0.4Z , 0.42, 0.?4 . 1.03. 1.07, 1.04 , 0.94 . 0.42 , , -0,8. -0,3 , -0.2 . -0.4 . -0.l , -0.3 , -0.3 .

    0.56 l,OZ 1.14 1.19 1.18 1.19 1.14 l.OZ 0.56 • O.S6 . 1.01 , 1.14 . 1.18 . 1.17 . 1.18 , l,14 , l,01 . 0.56 , , -0.8 , -0.5 , -0.2 , -0.4 , -0.7. -0.8 , -0.7 . -0.5, -0.3 ,

    0.56 0.9Z 1,15 1.17 l.19. 1.10 1.19 l.17 1,15 0.92 0,56 , 0.56 , 0.91 , l.14 , 1.16 , l,18 , l.09 , 1.18 , 1.16 , 1.14 . 0.92 , 0.58 ,

    O.l • -0.9 , -0.7. -l.2 , -o.~. -l.l , -1.l • -1.l , -0.6 . O,l . Z.l ,

    , 0.42 , l,02 , 1.15 l.24 l.OZ , 1.04 , 1.20 1.04 1.02 1.24 1.15 1.02 0.42 , 0,42 , 1.03 . l,14 • 1,20 , 1.01 , 1.03 • 1.19 . l,02 . l.Ol . l.22 • l.l~ . 1.05 , 0.44 ,

    0,9. 0,8 , -1.0 , -Z.8 . -1,7, -1.2 , -1.J . -1.4 , -1.6 . -1.3 , l.Z , 3.4 . 5.1 .

    , 0.94 . l.14, 1.17 . 1.02 . 1.18 . 1,19 . l,12 . 1.19 • 1.18 . 1.02 . 1.17 , 1.14 . 0.94 , , 0.95 , 1.15 . 1.16 , l.Ol • 1.17. 1.18 . l.ll • l.18 • 1.16 • 1.02 , 1.18 . I.la . 0.95 ,

    o.6 • o.6 . -o.8 • -1.4 . -1.6 • -1.0 . -1.z • -o.9 . -Z.3. -o.4 • o.? . 2.9. 4.1 •

    A

    0.42 , 1.04 1.19 • 1.19 1.04 1.19 , 1.10 1.17 1.10 1.19 1.04 1.19 1.19 1.04 0.42 0,43 . l.04 . 1.19 , 1.18 . 1.02 . 1.18 , 1.10 . 1.17. 1.11 . 1.18 . 1.04 . 1.21 . 1.£1 . l.07. 0.43 . 1.6 • o.6 . o.z . -o.7 • -1.9 . -1.1 • -a.1 • -o.z • o.5. -a.5 • o.4 • 1.a . z.o . z.1 . Z.6 .

    0.74 . 1.07. 1.18 . 1.10 , l.ZO , 1.12 , l,17 . 0.91 . !.17 . 1,12 • l.tO , 1.10 . l.!8 . l.07 • 0.74 . 0.75 . 1.08 , 1.18 , l,09 . 1.17, 1.10 . l.17, 0.91 . l,18 . 1.12 , 1.:1 . l.lZ . 1.19 . 1.09 . 0.77 . 1.5. o.s . -1.0 . -0.9, -z.s. -1.4. 0.1. 0.6 . o.s . 0.3 . 0.5 . 1.4 . 1.2 . 1.8 . 4.0 .

    0.42 . 1.0• • 1.11 1.19 l,04 1.1? . 1.10 1.17 1.10 1.19 1.n~ 1.19 1.19 1.04 0.42 0,43 , l.05 . l.20 , l.19 • 1.03 . l.17 , 1.08 • 1.17 . 1.10 . l.l~ . l.04 . l.ZO . l.ZO . 1.07 . 0.45 . l.6 , 1.2 . l.O • -0.3. -0.9 . -1.5 , -1.6 . -0.3 . 0.4 . -o.: . -0.Z . 0.3 . 1.0 . Z.9 . 5.9 •

    . 0.94 , 1.14 . 1.17 . l.OZ . l.la . 1.19. l.lZ . 1.19 , l.lD . l.CZ . 1.17 . 1.14 . 0.?4 .

    . o.96 . 1.11 . 1.11 . 1.00 . 1.lb . 1.11 . 1.10 . 1.18 . 1.1a . 1.02 . 1.11 . 1.1s . o.q6 • z.o • z.o . -a.4. -Z.l . -z.3. -1.a . -1.1 . -o.,. -o.6 . -o.6 . -o.3 . o.s . 1., .

    , 0.42 , 1.02 l.lS l,24 l.OZ . 1.04 1.20 l.04 1.0. 1.24 l,15 1.oc 0.42 , 0.42 . l,03 , 1.14. 1.19, l.00 , l.02 , 1.16 . l.OZ , l.Ol . 1.23 . 1.16 , 1.03 . 0.43 ,

    1,2 , l,Z , -1.l . -4.0 • -2.6 , -2,l • -3.l , -z.z , -1.0 , -0,7 , 0.6 . 1.3 , l.S ,

    o.56 o.92 1.1s 1.11 1.19 1.10 1.1, 1.11 1.1s o.,~ o.56 , 0.57 , 0,91 . l,10 , 1.14 , 1.17, l.07 , 1.18 , 1.18 , 1.16 , 0.93 . 0.57 ,

    0.3 . -1.3. -4.0 • -C.4 . -1.8 . -Z.9 , -1.3 , 0.4 , 0.7 , 1.8 , l.8 ,

    . 0.56 , l,02. 1.14 . 1.19 . 1,18. 1.19, l.14 , I.OZ . 0.56 , , 0,57 , l.05, 1.16 , 1.16 . 1.14 , 1.19 , 1.17, l.04 , 0.58. , 1.9, 3.5. l,l • -2.6 . -3.Z , -o.o , 2.6 , Z.S • 2,0 ,

    STANDARD DEVIATION ,

    •l.091

    MAP NO: S2-5-12

    0,42 0.94 1.04 1.07 1.04 0.94 0,42 • o.43. o.9e • 1.04 • 1.01 . 1.04 • o.,~ • o.43 • • 3.s. 3.7. 0.1.-0.3. o.7. 1.a. 2.8.

    , 0.42 , 0.74 • 0.42 . , 0.44, 0,76 , 0,43 .

    3.5 , 2,5 , 1,0 .

    CONTROL ROD POSITIONS:

    DATE: 9/1/80

    FT = 1. 790 Q

    D BANK AT 190 STEPS N F llli = 1.398

    F = 1.234 z

    A. O. = +1.257

    BURNUP ::: 175 MWD/MTU

    40

    AVERAGE ,PCT OIFFEREIICE.

    = l.4

    POWER::: 88%

    QPTR:

    NW 0.996

    NE 1.005

    SW 0.991

    SE - 1. 008

    4

    5' i

    I 6/

    10

    ll

    12·

    I 13!

    14

  • I I I I I I I I I I I I I I I I I I I

    ? N

    Figure 7.10

    SURRY UNIT 2 - CYCLE 5 BOL PHYSICS TEST

    ASSEMBLYWISE POWER DISTRIBUTION

    HFP, EQ. XENON

    i'1 L K J H G 0 C 6

    PREDICTED t":CASU~ED

    .PCT