sustainable biodiesel in brazil

Upload: -

Post on 15-Oct-2015

34 views

Category:

Documents


1 download

DESCRIPTION

xxx

TRANSCRIPT

  • 5/25/2018 Sustainable Biodiesel in Brazil

    1/12

    Environmental sustainability of biodiesel in Brazil

    rica Geraldes Castanheira a, Renata Grisoli b, Fausto Freire a, Vanessa Pecora b,Suani Teixeira Coelho b,n

    aADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Plo II Campus, Rua Lus Reis Santos, 3030-788 Coimbra, Portugalb CENBIO, Brazilian Reference Center on Biomass, Institute of Energy and Environment, University of So Paulo, Av. Prof Luciano Gualberto, 1289, 05508-010So Paulo, Brazil

    a r t i c l e i n f o

    Article history:Received 29 March 2013Received in revised form9 September 2013Accepted 14 September 2013Available online 21 November 2013

    Keywords:Soybean biodieselSustainability assessmentTallow biodiesel

    a b s t r a c t

    Biodiesel production in Brazil has grown from 736 m3

    in 2007 to 2.7 Mm3

    in 2012. It is an emergentbioenergy for which it is important to guarantee environmental sustainability. The objective of thisarticle is to characterise the biodiesel production chain in Brazil, to identify potential environmentalimpacts and to analyse key drivers and barriers for biodiesel environmental sustainability. This articleexplores these aspects and focusses on the increasing demand for the main feedstocks for biodieselproduction in Brazil: soybean oil and beef tallow. The impacts of land use and land-use change ongreenhouse gas emissions, biodiversity and water, as well as the energy balance, were found to be criticalfor the environmental sustainability assessment and development of biodiesel chains. Increasingagriculture yields, diversifying feedstocks and adopting ethyl transesterication can contribute tominimise environmental impacts. It was also found that environmental impacts could be mitigated byappropriate policies aiming at an integrated optimisation of food and bioenergy production and throughagro-economicecological zoning, allowing adequate use of land for each purpose. Despite the limitationand weakness of some sustainability tools and initiatives, certication and zoning can play an importantrole in the sustainability of the emerging biodiesel production in Brazil.

    &2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Current liquid biofuel production processes rely on rst-generation conversion pathways and comprise two distinct pro-ducts: bioethanol and biodiesel. Policies worldwide have stimu-lated biofuel demand by setting targets and blending quotas andhave aided its development by establishing support mechanisms(such as subsidies and tax exemptions in the starting point of theprogrammes) (Bringezu et al., 2009). In this context, over the past5 years, liquid biofuel production increased at an average annualrate of 17% for bioethanol and 27% for biodiesel, reaching over

    107.5 million m3

    (21.4 and 86.1 million m3

    of biodiesel andbioethanol, respectively) in 2011 (REN21, 2012). Biodieselaccounted for approximately 5% of the world biofuel productionin 2000, but this share has been rising and, in 2011, biodieselrepresented about 20% of the total biofuel production.

    Fig. 1shows the growth in biodiesel production since the year2000. The columns in the gure represent the contribution ofdifferent world regions for biodiesel production of the vemost important countries. Europe was the dominant region with

    increasing production since 2005. North America was a distantsecond producer led by the United States of America (USA) until2009 when production in USA fell by over 10,000 barrels per day(mainly due to the economic downturn, incentives changes forbiodiesel and foreign trade policies), while growth continued inCentral and South America and Asia and Oceania. The ve mostimportant countries (55% of world production in 2010) wereGermany, Brazil, France, Argentina and USA (EIA, 2012).

    In Brazil, the federal government created in 2004 the NationalBiodiesel Production and Use Program (PNPB). The objective of thePNPB was to implement, in a sustainable way, in technical and

    economic aspects, the production and use of biodiesel and to allowinitially the blend of 2% biodiesel (in volume) with diesel (B2) on avoluntary basis. Federal law 11,097 (Brasil, 2005) was approved in2005 to establish a mandatory target of 2% and 5% of biodieseladdition to diesel oil in 2008 and 2013, respectively. In July 2008,the National Council of Energy Policy (CNPE) adopted 3% ofbiodiesel as the compulsory blend, which was raised to 5% (B5)in January 2010, anticipating in 3 years the goal set in 2005 ( MME,2013).

    The fast growing interest and production of biodiesel world-wide has led to increasing concern about the environmental,economic and social impacts, especially regarding competitionfor land, air and water emissions, biodiversity and the fuel versus

    Contents lists available atScienceDirect

    journal homepage: www.elsevier.com/locate/enpol

    Energy Policy

    0301-4215/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.enpol.2013.09.062

    n Corresponding author.E-mail address:[email protected] (S.T. Coelho).

    Energy Policy 65 (2014) 680691

    http://www.sciencedirect.com/science/journal/03014215http://www.elsevier.com/locate/enpolhttp://dx.doi.org/10.1016/j.enpol.2013.09.062mailto:[email protected]://dx.doi.org/10.1016/j.enpol.2013.09.062http://dx.doi.org/10.1016/j.enpol.2013.09.062http://dx.doi.org/10.1016/j.enpol.2013.09.062http://dx.doi.org/10.1016/j.enpol.2013.09.062mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.enpol.2013.09.062&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.enpol.2013.09.062&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.enpol.2013.09.062&domain=pdfhttp://dx.doi.org/10.1016/j.enpol.2013.09.062http://dx.doi.org/10.1016/j.enpol.2013.09.062http://dx.doi.org/10.1016/j.enpol.2013.09.062http://www.elsevier.com/locate/enpolhttp://www.sciencedirect.com/science/journal/03014215
  • 5/25/2018 Sustainable Biodiesel in Brazil

    2/12

    food

    debate, also in Brazil (e.g., Padula et al., 2012; GEA, 2012;Janssen and Rutz, 2011; Diaz-Chavez, 2011; Lange, 2011; Lyndet al., 2011;Schaffel and La Rovere, 2010;Santos and Rathmann,2009). To counterbalance these potential negative effects, it iscrucial to establish an overview of current and future trends ofbiodiesel in Brazil, including characterisation of the productionchain, main impacts and several policies, standards and certica-tion schemes in place to help biodiesel sustainability assessmentand development.

    This article provides an overview of the key challenging factorstowards environmental sustainability of biodiesel in Brazil, basedon an overview of the biodiesel production chain and environ-mental impacts. It is organised in ve sections, including thisintroduction.Section 2presents a characterisation of the biodieselchain in Brazil, focussed on the main feedstocks (soybean oil andbeef tallow).Section 3analyses the main environmental impactsof biodiesel. The key drivers and barriers for the environmentalsustainability of biodiesel in Brazil are discussed in Section 4.Section 5sets forth the concluding remarks.

    This article aims to address only the environmental impacts ofbiodiesel from soybean and beef tallow in Brazil; however, it mustbe taken into account that the economic aspects of biodiesel arethe main reason for choosing these two raw materials for biodieselin Brazil. Other feedstocks such as palm and castor oil present highopportunity costs (NAE, 2005) as they are used in the foodindustry and others (more interesting in economic terms). Soy-bean oil is the main raw material because it is the by-product ofthe production of soybean meal for animal feed (to be exportedtogether with the grains). In a similar way, beef tallow is the by-

    product of meat production to be exported. However, it must beobserved that, even in the case of soybean and tallow biodiesel,most biodiesel is commercialised in auctions by Petrobras (theBrazilian oil company), which pays prices much higher that thenal price of biodiesel blended with diesel oil in the country(diesel oil prices are controlled by Federal Government as a toolagainst ination rates).

    2. Biodiesel production in Brazil

    Biodiesel production in Brazil has grown from 736 m3 in 2005to approximately 2.7 million m3 in 2011 (ANP, 2012). The effectiveproduction in 2011 represented only 44% of the actual total

    nominal capacity of biodiesel production (6.0 million m3)(MME,

    2012). The regions with a higher nominal capacity (which pro-duced over 76% of the biodiesel in Brazil) are the Central-West (thestates of Mato Grosso, Mato Grosso do Sul, Gois and DistritoFederal) and the South (the states of Rio Grande do Sul, Paran andSanta Catarina).

    Cerri et al. (2010)presented an estimation of the total biodieselproduction in the 20102020 period and the requirement fobiodiesel production to supply domestic demand by 2020, basedon data from the National Energy Plan 2030 (NEP) (MME, 2007and the National Plan on Climate Change (NPCC) (Governo Federal2008). Regarding biodiesel production, the results show a total o33.3 million m3 (NEP scenario) and 35.23 million m3 (NPCCscenario). Concerning the requirement for biodiesel (B5) produc-tion to meet domestic demand by 2020, the results vary between3.9 million m3 (NEP scenario) and 4.25 million m3 (NPCC scenario)These values show that the Brazilian requirement in 2020 can beachieved by the total nominal capacity of biodiesel production inBrazil in 2011 (6.0 million m3)(ANP, 2012).

    Soybean oil is currently the main feedstock of biodieseproduction in Brazil. According toANP (2011), in 2009 and 2010this raw material was responsible for about 7782% of biodieseproduction. Other raw materials are beef tallow (1317%) andcottonseed oil (2%).Cerri et al. (2010)estimated that biodiesel wilbe produced from ve raw materials in 2020: soybean (58%), beeftallow (27%), palm (10%), castor bean (4%) and sunower (1%). Thiscalculation took into account a decrease in the use of soybean asfeedstock in the long term, an increase in the participation of othercrops, the production of each oilseed in the Brazilian territory andthe amount of animals slaughtered by 2020 in Brazil. The two

    main biodiesel feedstocks in Brazil are presented in the nexsubsections.

    2.1. Soybean oil

    Soybean oil is a vegetable oil extracted from the seeds of thesoybean (Glycine max), which can be produced almost all over theBrazilian territory. Fig. 2 presents the historic evolution osoybean-cultivated area in the various Brazilian regions and thesoybean yield in Brazil. Since 20012002, the soybean-cultivatedarea grew about 53%. The Central-Western and Southern regionshave the highest cultivated area, representing together 83% of thetotal cultivated area in the last three seasons (20082009 to 20102011) (CONAB, 2012). The states of Mato Grosso (27%) and Gois

    (11%) in Central-West and Paran (20%) and Rio Grande do Sul

    Fig. 1. Global growth in biodiesel production (20002010).

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691 681

  • 5/25/2018 Sustainable Biodiesel in Brazil

    3/12

    (15%) in South are the major producers of soybean in Brazil(CONAB, 2012).1 Although the cultivated area in Brazil has grown

    in recent years, an increase in the yield associated with technolo-gical advances, management and efciency aspects is one of thereasons for the increase in soybean production.

    Fig. 3 presents the production, import, export and nationalconsumption (NC) of soybean grain (Fig. 3a), meal (3b) and oil (3c)in Brazil since 1961. The NC quantities used for biodiesel produc-tion and food purposes are also shown inFig. 3c. Soybean grainproduction increased about 76% since 2001, due to both anincrease in exportation and national demand. In 19801990,exported soybean represented on average 27% of the Brazilianproduction while in 2010, it represented over 42%. Brazil is self-sufcient in soybean grains, meal and oil, supplying the domesticmarket and exporting the surplus to international markets (MAPA,2011).

    The domestic consumption of soybean meal2 and oil has beengrowing signicantly, especially in the last 5 years. Over 93% of thesoybean grains consumed in the domestic market are processed toco-produce soybean oil and meal (52% of meal and 23% of the oilwere exported in 2010). Only 67% was consumed as food or feed.Oil exports have been reducing since 2005 due to the growingbiodiesel production (commercialised in Brazil since 2005). In2010, biodiesel production required about 32% of the total domes-tic consumption of soybean oil.

    2.2. Beef tallow

    Beef tallow is a co-product from the beef meat industry(slaughterhouse, rendering and retail). Appendix A shows cattleslaughter and beef tallow production and consumption in Brazilfrom 1997 to 2011. In 2011, a production of more than 430,000(metric) tonnes of beef tallow was calculated assuming that eachslaughtered cattle provides an average of 15 kg of usable tallow(Levy, 2011;Peres, 2010). However, it is important to mention thehigh uncertainty in the number of cattle slaughtered (statisticaldata only include the slaughterhouses under sanitary inspectionand vary depending on the source considered as reference) and inthe quantity of usable tallow that can be produced from eachanimal.

    Beef tallow consumption in Brazil almost doubled in the last 14years (since 1997), but little information is available about the

    various uses of tallow. One of the reasons is that tallow has beenconsidered a low-value co-product of the cattle beef industry and,historically, the main consumer of tallow is the soap industry. Thedifferent uses of tallow in Brazil in 2003 were (Andrade Filho,2007): 70% for soap production, 15% used as fuel in boilers, 10% foranimal feed and 5% others. In 2007, a study by Aboissa VegetableOils presented other values (Gomes et al., 2009): 61% for cleaningand hygiene purposes, 13% for chemical purposes, 12% for biodieselproduction, 10% for animal feed and 4% used as fuel in boilers.Since 2007, beef tallow consumption for biodiesel productionincreased almost six times and in 2010 more than 313,000 t ofbeef tallow was used to produce biodiesel. Biodiesel productionwas the main destination for beef tallow in Brazil in 2010 andrepresented about 72% of the total beef tallow consumed.

    The main driving forces behind the use of tallow as feedstockfor biodiesel in Brazil are the low price of raw material and the factthat Brazil has the second largest cattle herd in the world (Levy,2011). Biodiesel from beef tallow presents advantages in someproperties (cetane number and stability), compared with biodieselproduced from soybean oil (Moraes et al., 2008) but has someimportant limitations, namely viscosity, which does not allow100% production from beef tallow, as concluded from eld visitsfor this study.

    3. Environmental impacts

    Biofuel production has attracted the attention of stakeholdersbecause of concerns related with greenhouse gas (GHG) emissions

    (particularly from land conversion), food production, water secur-ity and biodiversity (Ravindranath et al., 2011). In this context, acountry-specic approach to life-cycle assessment (LCA) is vitalwhen evaluating the environmental impacts of bioenergy systems.Local conditions, such as agricultural practices, land-use changes(LUCs) and transport infrastructures, will have a major impact onthe environmental performance of the system being modelled(Panichelli et al., 2009). Only a few LCA studies were performed forsoybean and tallow biodiesel produced in Brazil, focussing onenergy and GHG balances (e.g., Cavalett and Ortega, 2009,2010;Mourad and Walter, 2011), and more recently on impacts resultingfrom water (consumption and pollution), land use and LUC(Prudncio da Silva et al., 2010; Batlle-Bayer et al., 2010;Castanheira and Freire, 2013, 2012; Grisoli et al., 2012). This

    section discusses the main environmental aspects.

    Fig. 2. Evolution of soybean cultivated area and soybean yields in Brazil.

    1 North and Northeast are the regions where the cultivated area is lower butthe area increased about 395% and 90%, respectively, in the last 10 years.

    2 Soybean meal is approximately 80% of the soybean grain in mass and is ahigh-quality, in-demand protein ingredient for animal feed and human food

    protein.

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691682

  • 5/25/2018 Sustainable Biodiesel in Brazil

    4/12

  • 5/25/2018 Sustainable Biodiesel in Brazil

    5/12

    grasslands still have a prominent place in the context of theBrazilian cattle industry, mainly in the Northeast and in Southregions in Brazil.

    Fig. 4 also shows the historic evolution (19702006) of thecattle population in Brazil and for each region. In 2006, the totalcattle heads in Brazil was more than 205 million (double com-pared to 1975) and 34% were located in the Central-West regionand 20% in North region of Brazil. Since 2000, there was a strongincrease of cattle heads in North region (67%) as a result of acombined effect of an overall total increase in cattle (21% more)and a shift in location. The total area of grassland was reducedduring the 19962006 period, while the cattle populationincreased. This was possible due to cattle production intensica-tion resulting from the conversion of natural grassland intograssland plantations and improved management and mainte-nance of grassland plantations. In addition, although cattle pro-duction in Brazil is essentially based on the use of pastures, moreintensive systems through supplementary feeding on pasture or bythe use of feedlots have become important in the Central-Westand Southeast regions (Cezar et al., 2005).

    Cropland area almost doubled since 1970, growing 45% ofperennial cropland and 86% annual cropland. The main reasonfor this growth is the increased area of soybean and, to a lesserextent, due to sugar cane. The area occupied by the mostimportant perennial and annual crops in Brazil is shown inFig. 5. In 1990, cropland was more diversied and maize (23%),soybean (22%), beans (10%), rice (10%) and sugar cane (10%)occupied most of the area. However, in 2010, most of the

    cropland was occupied by soybean (36%), maize (20%) and sugarcane (14%).

    As can be seen in Fig. 4, annual cropland area increasedsignicantly between 1996 and 2006, which according to Fig. 5,was driven by the rise in soybean area. There was also an increaseof grassland plantation and reducing natural grassland, besides themaintenance of forest plantation and native forest. Therefore, it ispossible to assume that soybean expansion occurred mainly withrespect to grassland (natural or plantation).

    3.2. GHG and energy balance

    The life-cycle (LC) GHG emissions of biodiesel arise directlyfrom LUC and from the use of fertilizers and fuels and indirectly

    from the manufacture of feedstock inputs (e.g., fertilizers and

    chemicals), electricity generation, transportation and transforma-tion of raw fossil fuels, etc.

    A wide range of GHG emissions has been reported in LCAstudies for biodiesel (e.g.,Castanheira and Freire, 2013;Mala andFreire, 2011). This wide variability of GHG emissions can be due totechnological and location issues such as the biodiesel conversionroute, agriculture mechanisation level, crop and farm managementand changes in land use for livestock and soybean production3 or

    associated with methodological assumptions in the LC calcula-tions. According to several authors, LC modelling choices can havea signicant effect on the GHG calculations. Mala and Freire(2011), in a review of biodiesel LC studies, identied a strongcorrelation between the key modelling issues addressed by thesurveyed LC models and biodiesel GHG intensity. This reviewshowed that LC studies of biodiesel that do not account for LUCand N2O emissions from soil (or adopt low values), presented GHGintensities below 73 g CO2eq MJ

    1. Instead, the studies thataccounted for higher N2O emissions from soil and LUC soil carbonemissions presented intensities above 146 g CO2eq MJ

    1.

    Fig. 4. Evolution of land use and cattle population in Brazil (19702006).

    0

    5

    10

    15

    20

    25

    1990

    1991

    1992

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    Cropland

    (106 ha)

    Soybean

    Maize

    Sugarcane

    Beans

    Rice

    Wheat

    Coffee

    Cassava

    Others

    Source: IBGE, 2011

    Fig. 5. Evolution of perennial and annual crops in Brazil (19902010).

    3 CO2 uxes from carbon stock changes

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691684

  • 5/25/2018 Sustainable Biodiesel in Brazil

    6/12

    A positive net energy balance4 (Kallivroussis et al., 2002;Pradhan et al., 2008; Fore et al., 2011) is also one necessarycriterion for a biodiesel to be a sustainable alternative to fossildiesel. To verify if biodiesel has a positive energy balance, an LCapproach must be employed, allowing quantication of the renew-ability of biofuel delivered to consumers (Mala and Freire, 2006).However, within the energy analysis and LCA literature, there islack of consensus concerning the denition and calculation of

    energy efciency indicators to characterise the LC energy require-ments of biofuels (Mala and Freire, 2011,2009).The energy balance of biofuels varies from one producer to

    another due, for example, to different yields, agricultural practices,industrial technologies, distances and transport used. In addition,there are different methodological approaches for calculating theenergy balances of biofuels, which make direct comparisons ofresults extremely difcult (Mourad and Walter, 2011). A large bodyof work that relies on LCA to investigate the biofuel productionprovides different, sometimes contradictory, results for net energyvalues (Menichetti and Otto, 2009,Bureau et al., 2010). Accordingto Cavalett and Ortega (2010), 0.27 kg of crude oil equivalent isrequired as input to produce 1 l of soybean biodiesel in Brazil,which means an energy return of 2.48 J of biodiesel per Joule of

    fossil fuel invested. A renewability factor of 4.3 for soybeanbiodiesel in Brazil was found byMourad and Walter (2011).5

    Recent studies performed for soybean biodiesel showed thatthe land conversion from forest, savannah or grassland (improved)to soybean plantation in Brazil leads to the most signicant LC CO2emissions. Castanheira and Freire (2012) and Grisoli et al. (2012)calculated a wide range of GHG emissions for soybean biodiesel(between 12 and 808 g CO2eq MJ

    -1) mainly due to alternative LUCscenarios. Emissions due to LUC represent 6080% of the total GHGemissions. When LUC is not considered, soybean cultivation is theLC phase that contributes most to the GHG balance. In the past,some LC studies reported a correlation between biodiesel energyinputs and GHG intensity; however, recent LC studies for biodieseldemonstrated that taking into account soil emissions in LCassessments, namely carbon emissions due to LUC and N2Oemissions due to land use, negates the correlation betweenbiodiesel energy inputs and GHG intensity (Mala and Freire,2011, 2010; Soimakallio et al., 2009; Reijnders and Huijbregts,2008).

    Regarding beef tallow biodiesel, various studies have dealt withGHG and energy balance and the results also can vary signicantly.Table 1shows some results of energy output and GHG emissionsfor tallow biodiesel. The large range observed is mainly related tothe system boundariesdenition and allocation methods. Render-ing (tallow production) generates the largest GHG emissions fortallow biodiesel (Prabhu et al., 2009;Barber et al., 2007;Niederland Narodoslawsky, 2006). As tallow production is considered tohave an inelastic supply (Brander et al., 2009), GHG emissionsfrom beef production (including LUC) are usually excluded in the

    studies (Brander et al., 2009;Niederl and Narodoslawsky, 2006;Prabhu et al., 2009). Related to energy balance, according toBarberet al. (2007), different energy ratios are due in part to differentallocation rates and have combined with different renderingenergy values. Furthermore, the results ofBruyninckx (2010)showthat the most critical stages in terms of energy requirements arethe transesterication process (47%), farming (32%) and slaughter-ing and rendering (19%).

    3.3. Biodiversity

    One global hotspot of biodiversity is the Brazilian Cerrado(Brazilian savannah), which represents about 9% of the tropicasavannahs worldwide (Myers et al., 2000). It is the largesneotropical savannah formation in America (Eiten, 1972; Furley1999) and is the second largest biome in Brazil extending over 200million ha (Batlle-Bayer et al., 2010). In the last years, there has

    been a signicant increase in agricultural and cattle production inthe Brazilian Cerrado. It was estimated that more than half of theCerradohas been transformed into pasture, cash-crop agricultureand other uses in a time period of only 35 years (Cederberg et al.2009). The development of agricultural activities (expansion andintensication) in the region has been rapidly reducing thebiodiversity of the ecosystems.

    The Cerradois the main biome of the Central-West region inBrazil, the most important beef-producing region in the country(35% of the national beef production in 2010). Almost all of thisproduction proceeds from extensive breeding systems, characterised for low animal productivity and low nancial paybackThese unfavourable indices reect the inadequate management othe landplantanimal system practiced in a large part of the

    cattle-breeding estates, what consequently leads to degradation ofthe pastures (Jnior and Vilela, 2002). Cultivated pastures coveraround 25% of the Cerradoarea (Klink and Machado, 2005) andmost of these cultivated pastures experience some degree odegradation (Da Silva et al., 2004). Pasture degradation is themost important obstacle to establishing sustainable cattle breed-ing in agronomic, economic and environmental terms in theCerrado. Among the factors that explain the degradation of thepasture areas in the region, the low soil fertility can be highlighted(Jnior and Vilela, 2002).

    Due to irrigation and soil amelioration techniques, the Cerradoalso became an important agricultural region for soybean, maizeand rice production in addition to its use for cattle breedingCurrently, the region is increasingly threatened by single-cropmonoculture plantations mainly for soybean cultivation (Janssenand Rutz, 2011). In 2010, 45% of soybean was produced in theCentral-West region of Brazil (more 30% than in 1980). Theexpansion of soybean production replaced pasture lands and smalfarms of varied crops.Flaskerud (2003)estimated that the overalexpansion of Brazilian cropland (also for soybean) will include 51%on former pastureland, 42% in the Cerrado area and 7% in theAmazon rainforest.

    Change in land use in the Cerrado may cause indirect defor-estation of the Amazon forest. The shift from small-scale farmingand cattle pasture to large-scale soybean monocultures forcefarmers and cattle breeders to search for alternative land, whichis often in the Amazon area. Valuable areas of the Cerradoneed tobe protected by future biofuel sustainability schemes (Lucon2009;Janssen and Rutz, 2011).

    3.4. Water footprint

    The water footprint (WF) of a given product is the volume offreshwater used to produce the product, measured in terms ofwater volume consumed (evaporated) or polluted over the varioussteps of the production chain (Hoekstra, 2012). The WF of biofuelsis highly dependent on feedstock type, geographic region (locaclimatic, hydrological and soil conditions) and crop (or livestockmanagement practices (Stone et al., 2010;Berndes, 2008).

    The production of energy crops for biofuel production can havesubstantial impacts on water demand, especially if irrigation isused (Jumbe et al., 2007;Coelho et al., 2012;Gerbens-Leenes et al.2009; Emmenegger et al., 2011). As conventional production

    methods, bioenergy feedstocks production can have water quality

    4 This means a positive energy return compared with the energy required toproduce the biofuel.

    5 They also showed that the soybean biodiesel production is strongly depen-dent on the use of non-renewable resources in the industrial processing stages,agricultural production and transport (Mourad and Walter, 2011; Cavalett and

    Ortega, 2010).

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691 685

  • 5/25/2018 Sustainable Biodiesel in Brazil

    7/12

    impacts from fertilizer and pesticide use (Lovett et al., 2009;Goldemberg et al., 2008). Furthermore, converting pastures orwoodlands into cropland (both for food or bioenergy production)may exacerbate problems such as soil erosion, sedimentation andexcess nutrient (nitrogen and phosphorous) run-off into surfacewaters and inltration into groundwater from increased use offertilizers (FAO, 2008).

    According toGerbens-Leenes et al. (2009), the WF of biofuelsranges between 59 (ethanol from sugar beet) and 574 (biodiesel

    fromJatropha curcas) l MJ

    1

    . Biodiesel WFs are nearly two to fourtimes higher than the WF for bioethanol crops, because oilseedcrops are less water efcient (Gerbens-Leenes et al., 2009;Singhand Kumar, 2011).Gerbens-Leenes et al. (2009)calculated a WF forsoybean biodiesel of 394 l MJ1 (13,676 l per litre of biodiesel);according to the authors, in terms of the bioenergy sourcesconsidered in this study, biodiesel has the bigger WF, followedby ethanol and bioelectricity. WF studies of biodiesel in Brazil arestill rare; few of them are indeed representative and this issue stillneeds to be studied in depth in the country. A preliminary studyfor showed that the soybean biodiesel WF varies from 40 to60 l MJ1 (Seabra et al., 2011). Another study in southern Brazilfor the production of biodiesel indicates that the major contribu-tion to degradative water use is the agricultural phase (93.4%),while for consumptive use the largest contribution is the oilextraction process (37.6%) (Muller, 2012). No WF studies werefound for tallow biodiesel but Gerbens-Leenes et al. (2011) pre-sented the WF of beef production in Brazil (881023,892 l per kgof beef).

    4. Environmental sustainability of biodiesel: key drivers

    and barriers in Brazil

    Environmental sustainability is a difcult concept to explain,but it can be dened as the maintenance of natural capital(Goodland, 1995). The two fundamental environmental services(the source and the sink functions) must be maintained unim-paired during the period over which sustainability is required. In

    this context, the environmental sustainability of biodiesel iscritically related to LC impacts associated with air (GHG emissionsand others), water and soil, energy balance and biodiversity (FAO,2013b). Another important issue involves developing strategies toensure that as the production of biofuels increases, adequatesupplies of other needed agricultural and forest-based goods areproduced (FAO, 2013b). However, to quantify the environmentalsustainability of biodiesel is complex.

    An increasing number of countries have established initiativesto dene sustainability criteria for biofuels. For instance, theEuropean Union Directive on the Promotion of Renewable EnergySources (RED) dened that for biofuels to be counted as renewableenergy, a minimum GHG saving of 35% is required by 2014(comparing with fossil fuel). The directive also stipulates no-go

    zones for feedstock production (e.g., areas where land is deemed

    to be of high biodiversity value or high carbon stock, wetlandsand peatland) (FAO, 2013b). In addition, there is an importantinitiative from the Global Bioenergy Partnership (FAO/GBEP, 2011)dening sustainability indicators for bioenergy (FAO/GBEP, 2011),which are now starting to be evaluated for different countries.

    4.1. Land expansion versus agriculture intensication

    The Brazilian annual growth rate of soybean production isestimated at 2.4% by 2019, close to the global rate estimated(2.6%) for the next 10 years (MAPA, 2011). This may be achieved intwo ways (Elobeid et al., 2010): land expansion or land intensica-tion. Some authors consider that expansion of land area comeswith a number of environmental challenges highlighted by therecent debate on direct and indirect LUC brought about by biofuelexpansion (Searchinger et al., 2008;Fargione et al., 2008). How-ever, there are several studies (Goldemberg et al., 2008;Goldemberg, 2009;Goldemberg and Guardabassi, 2009) showingpositive results for Brazil and also presenting the benets fordeveloping countries when sustainable bioenergy productionoccurs, such as job generation in rural areas and local investmentsallowing signicant development in such countries.

    In the case of soybean in Brazil, the increased production comesfrom additional land (land expansion), rather than from higheryields (intensication). As shown inFig. 2, the soybean-cultivatedarea in 20112012 was 3.6 times greater than the area in 197677,while the soybean yield in 20112012 was only 1.5 times greaterthan in 19761977. The United Nations Environment Programme(UNEP, 2010) analysed that the limited potential for the expansionof cultivated lands and the need to increase agricultural produc-tion over the next decades leave no alternative other than landintensication. In this context, it is essential to gain a betterunderstanding of the yield trends and the future yield potentialof biofuel feedstocks to help determine the impact of biofuelexpansion on agricultural markets (Elobeid et al., 2010). A moredetailed discussion on this subject is presented inGEA (2012), inparticular considering the specicities between the different typesof biofuels (mainly between bioethanol and biodiesel, which is thefocus of this analysis).

    Brazil has achieved a soybean yield of 26653000 kg ha1 inthe last 3 years (Fig. 2). An enhancement of 52% in 20112012compared to 19761977 can be related to the improvement ofagricultural practices. Although future productivity is critical, as itwill shape emissions from conversion of native landscapes to foodand biodiesel, investment in agricultural research is rarely men-tioned as a mitigation strategy (Burney et al., 2010; Somervilleet al., 2010). Experience shows that production can indeed beintensied (meaning more production per unit area) whilst redu-cing inputs and lowering the environmental impacts of agricul-ture. Intensication and environmental sustainability are notnecessarily incompatible (Somerville et al., 2010). Burney et al.

    (2010)estimated the net effect of historical agricultural intensi-cation on GHG emissions between 1961 and 2005 and they foundthat while emissions from factors such as fertilizer production andapplication have increased, the net effect of higher yields hasavoided emissions of up to 161 gigatons of carbon (GtC) since 1961.Their analysis indicates that yield improvements should thereforebe prominent among efforts to reduce future GHG emissions.

    In addition, genetic improvements can allow the growth ofsoybean production without excessive land-use expansion. Geneti-cally modied (GM) crops are mostly herbicide-resistant or insect-resistant. Since Brazil legalised GM soybean in 2005, GM soybeanhas been growing and it represented 85% of the total planted areain 20112012 (21.3 million ha). In the long term, some authorsexpect that genetically modied organism (GMO) applications will

    increase even more in Latin America (Janssen and Rutz, 2011). The

    Table 1

    Energy output and GHG emission for tallow biodiesel.

    Reference Energy output

    (per MJ input)

    GHG emission

    (g CO2eq MJ-1)

    Bruyninckx, 2010; 2.9 62.0Brander et al., 2009a 13.097.2Prabhu et al., 2009 1.6 38.6Barber et al., 2007 2.0 42.0

    Beer et al., 2001 5.6 47.0

    a There are no results for energy requirements in this study.

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691686

  • 5/25/2018 Sustainable Biodiesel in Brazil

    8/12

  • 5/25/2018 Sustainable Biodiesel in Brazil

    9/12

    Table A1

    Cattle slaughter and beef tallow production, consumption (and uses), import and export in Brazil.

    1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

    Cattle slaughtern (n1 heads)

    N 890113 1436898 1787135 2037926 2228498 2842327 3079544 3620810 4381201 5450274 NE 1298742 1433337 1525136 1605456 1736169 1970116 2094144 2165947 2384238 2794912 CW 5848513 5635106 7167359 7284476 7351833 7707560 8461016 10054356 10695347 11394666 SE 3906186 3760769 3673406 3718451 4842747 5137540 5457989 6714962 6737399 6827814 S 2680705 2558825 2540725 2337085 2160345 2208671 2453963 3200967 3681183 3809259

    Total 14624259 14824935 16693761 16983394 18319592 19866214 21546656 25757042 27879368 30276925

    Beef tallow production# (t)

    N 13352 21553 26807 30569 33427 42635 46193 54312 65718 81754 NE 19481 21500 22877 24082 26043 29552 31412 32489 35764 41924 CW 87728 84527 107510 109267 110277 115613 126915 150815 160430 170920 SE 58593 56412 55101 55777 72641 77063 81870 100724 101061 102417 S 40211 38382 38111 35056 32405 33130 36809 48015 55218 57139

    Total 219364 222374 250406 254751 274794 297993 323200 386356 418191 454154

    Beef tallow import % 4% 8% 7% 13% 3% 2% 1% 0% 1% 1% (t) 9313 17430 17655 34000 9209 7044 3011 1238 4483 4076

    Beef tallow export % 2% 0% 0% 0% 5% 3% 1% 9% 8% 2% (t) 5345 99 37 89 14158 8403 2794 33939 33615 9847

    National beef tallow use (t)

    Total 223332 239705 268025 288662 269845 296634 323416 353655 389058 44 8384

    Cleaning&hygiene Soap production 226391Chemical Biodiesel

    Animal Feed 32342 Boilers (as fuel) 48512 Others 16171

    n Data fromIBGE (2011).# Estimation based on cattle slaughter and assuming a yield of 15 kg tallow/cattle slaughtered (Levy, 2011;Peres, 2010). Estimation based on the beef tallow production plus imports and minus exports (FAO, 2013a). It was considered that no tallow was imported and exported in Bra

    account that these percentages are very low (less than 5%) in the last years. Estimation based on the percentage of different uses in 2003 (Andrade Filho, 2007), 2007(Gomes et al., 2009) and 2009-10 (ANP, 2011).

  • 5/25/2018 Sustainable Biodiesel in Brazil

    10/12

  • 5/25/2018 Sustainable Biodiesel in Brazil

    11/12

  • 5/25/2018 Sustainable Biodiesel in Brazil

    12/12

    Klink, C.A., Machado, R.B., 2005. Conservation of the Brazilian Cerrado. Conserva-tion Biology 19, 707713.

    Lange, M., 2011. The GHG balance of biofuels taking into account land use change.Energy Policy 39, 23732385.

    Levy, G., 2011. A insero do sebo bovino na indstria brasileira do biodiesel:anlise sob a tica da Economia dos Custos de Transao e da Teoria dos Custosde Mensurao. Dissertao apresentada para obteno do ttulo de Mestre emCincias. Universidade de So Paulo - Escola Superior de Agricultura Luiz deQueiroz, Piracicaba.

    Lovett, A.A., Sunnenberg, G.M., Richter, G.M., Dailey, A.G., Riche, A.B., Karp, A., 20 09.Land use implications of increased biomass production identied by GIS-basedsuitability and yield mapping for Miscanthus in England. BioEnergy Research 2,1728.

    Lucon, O., 2009. Overview of sustainability assessment tools for biomass productionin Latin America. Final Report prepared for the BioTop project supported by theEuropean Commission in the 7th Framework Programme, April 2009.

    Lynd, L.R., Aziz, R.A., de Brito Cruz, C.H., Chimphango, A.F.A., Cortez, L.A.B., Faaij, A.,Greene, N., Keller, M., Osseweijer, P., Richard, T.L., Sheehan, J., Chugh, A., van derWielen, L., Woods, J., van Zyl, W.H., 2011. A global conversation about energyfrom biomass: the continental conventions of the global sustainable bioenergyproject. Interface Focus 1, 271279.

    Mala, J., Freire, F., 2006. Renewability and life-cycle energy efciency of bioethanoland bio-ethyl tertiary butyl ether (bioETBE): assessing the implications ofallocation. Energy The International Journal 31, 33623380.

    Mala, J., Freire, F., 2009. Energy and Environmental Benets of Rapeseed OilReplacing Diesel. International Journal of Green Energy 6, 287301.

    Mala, J., Freire, F., 2010. Uncertainty Analysis in Biofuel Systems: An Application tothe Life Cycle of Rapeseed Oil. Journal of Industrial Ecology 14, 322 334.

    Mala, J., Freire, F., 2011. Life-cycle studies of biodiesel in Europe: A review

    addressing the variability of results and modeling issues. Renewable andSustainable Energy Reviews 15, 338351.MAPA, 2011. Soja Mercado interno. Ministrio da Agricultura, Pecuria e

    Abastecimento MAPA. Available: http://www.agricultura.gov.br/vegetal/culturas/soja(accessed July 10, 2012).

    Menichetti E., Otto, M., 2009. Energy balance and greenhouse gas emissions ofbiofuels from a life-cycle perspective. In: R.W. Howarth and S. Bringezu (eds)Biofuels: Environmental Consequences and Interactions with Changing LandUse. Proceedings of the Scientic Committee on Problems of the Environment(SCOPE). International Biofuels Project Rapid Assessment, 22-25 September2008, Gummersbach Germany. Cornell University, Ithaca NY, USA.

    Mil i Canals, L., Bauer, C., Depestele, J., Dubreuil, A., Knuchel, R.F., Gaillard, G.,Michelsen, O., Mller-Wenk, R., Rydgren, B., 2007. Key Elements in a Frame-work for Land Use Impact Assessment within LCA. Int J LCA 12, 515.

    MME, 2007. Plano Nacional de Energia 2030. Ministrio de Minas e Energia,Braslia, DF, Brazil. 12v.

    MME, 2012. Boletim Mensal dos Combustveis Renovveis. Ministrio de Minas eEnergia, Secretaria de Petrleo, Gs Natural e Combustveis Renovveis,Departamento de Combustveis Renovveis. Edio n.148, Janeiro/2012.

    MME, 2013. Portal do Programa Nacional de Produo e Uso do Biodiesel. Availableat: http://www.mme.gov.br/programas/biodiesel(accessed March 22, 2013).

    Moraes, M.S.A., Krause, L.C., da Cunha, M.E., Faccini, C.S., de Menezes, E.W., Veses, R.C.,Rodrigues, M.R.A., Caramo, E.B., 2008. Tallow biodiesel: properties evaluation andconsumption tests in diesel engine. Energy Fuels 22, 19491954.

    Mourad, A.L., Walter, A., 2011. The energy balance of soybean biodiesel in Brazil: acase article. Biofuels, Bioproducts and Biorenery 5, 185197.

    Muller, G.T., 2012. Emprego da pegada hdrica e da anlise de ciclo de vida para aavaliao do uso da gua na cadeia produtiva do biodiesel de soja. Dissertaode mestrado. Programa de Ps-graduao em Recursos Hdricos e Saneamentoambiental da Universidade Federal do Rio Grande do Sul.

    Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.Biodiversity hotspots for conservation priorities. Nature 403, 853858.

    NAE, 2005. Cadernos NAE: Processos estratgicos de longo prazo Biocombustveis.NAE: Ncleo de Assuntos Estratgicos da Presidncia da Repblica, n1. 2 (jan.2005). Braslia, 2005. ISSN 1806-8588.

    Nassar, A.M., Antoniazzi, L.B., Moreira, M.R., Chiodi, L., Harfuch, L., 2010. Anallocation methodology to assess GHG emissions associated with land use

    change

    Final Report. ICONE. (Institute for International Trade Negotiations).Niederl, A., Narodoslawsky, M., 2006. Ecological Evaluation of Processes Based onBy-Products or Waste from Agriculture: Life Cycle Assessment of Biodiesel fromTallow and Used Vegetable Oil. In: Bozell, J., et al. (Eds.), Feedstocks for thefuture; ACS Symposium Series 921, 2006. American Chemical Society,Washington, DC, p. 239.

    Obermaier, M.; Herrera, S.; Rovere, E.L., 2010. Anlise de problemas estruturais daincluso da agricultura familiar na cadeia produtiva de biodiesel. IV CongressoBrasileiro de Mamona e I Simpsio de Oleaginosas Energticas, Joo Pessoa, PB.

    Oplinger, E.S.M.J., Martinka, J.M., Gaska, K.A., Schmitz, C.R., 1998. WisconsinSoybean Variety Test Results. A3654, Department of Agronomy and Plant

    Pathology, University of Wisconsin-Madison. Available at http://soybeanuwex.edu/soytrials/printable/documents/98soyvar.pdf.

    Padula, A.D., Santos, M.S., Ferreira, L., Borenstein, D., 2012. The emergence of thebiodiesel industry in Brazil: Current gures and future prospects. Energy Policy44, 395405.

    Panichelli, L., Dauriat, A., Gnansounou, E., 2009. Life cycle assessment of soybeanbased biodiesel in Argentina for export. Int J Life Cycle Assess 14, 144 159.

    Peres, S., 2010. Aproveitamento de Resduos de Animais para Produo de BiodieselII Seminrio Biodiesel Fonte de Energia das Oleaginosas em PernambucoRecife, 3-4 Maio de 2010.

    Ponsioen, T.C., Blonk, T.J., 2012. Calculating land use change in carbon footprints oagricultural products as an impact of current land use. Journal of CleanerProduction 28, 120126.

    Prabhu, A., Pham, C., Glabe, A., 2009. Detailed California-Modied GREET Pathwayfor Renewable Diesel Produced in California from Tallow (U. S. Sourced)Alternative Fuels Section and Fuels Section of the California Air ResourceBoard. Stationary Source Division Release Date: July 20, 2009 Version: 1.0.

    Pradhan, A., Shrestha, D.S., Van Gerpen, J., Dufeld, J., 2008. The energy balance osoybean oil biodiesel production: a review of past studies. American Society ofAgricultural and Biological Engineers 51, 185194.

    Prudncio da Silva, V., van der Werf, H.M.G., Spies, A., Soares, S.R., 2010. Variabilityin environmental impacts of Brazilian soybean according to crop productionand transport scenarios. Journal of Environmental Management 91, 18311839

    Ravindranath, N.H., Sita Lakshmi, C., Manuvie, R., Balachandra, P., 2011. Biofueproduction and implications for land use, food production and environment inIndia. Energy Policy 39, 57375745.

    Reijnders, L., Huijbregts, M., 2008. Biogenic greenhouse gas emissions linked to thelife cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    JCleanProd 16 (18), 19431948.

    REN21, 2012. Renewables 2012 - Global Status Report. Renewable Energy PolicyNetwork for the 21st century. Available at: http://www.map.ren21.ne(accessed July 10, 2012).

    Santos, O.I.B., Rathmann, R., 2009. Identication and analysis of local and regionaimpacts from the introduction of biodiesel production in the state of PiauEnergy Policy 37, 40114020.

    Schaffel, S.B., La Rovere, E.L., 2010. The quest for eco-social efciency in biofuelproduction in Brazil. Journal of Cleaner Production 18, 16631670.

    Seabra, J., Hernandes, T., Galdos, M., 2011. Water Footprint and Water Consumptionfor the Main Crops and Biofuels Produced in Brazil. American GeophysicaUnion, Fall Meeting 2011, abstract #H11M-05.

    Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S.Hayes, D., Yu, T.-H., 2008. Use of U.S. Croplands for Biofuels Increases GreenhouseGases Through Emissions from Land-Use Change. Science 319, 12381240.

    Singh, S., Kumar, A., 2011. Development of water requirement factors for biomasconversion pathway. Bioresource Technology 102, 13161328.

    Soares, L.H.B., Alves, B.J.R., Urquiaga, S., Boddey, R.M., 2009. Mitigao das Emissesde Gases de Efeito Estufa pelo Uso de Etanol de Cana-de-acar Produzido no

    Brasil. Circular Tcnica 27. Embrapa, Seropdia, Rio de Janeiro. ISSN 1519-7328Soimakallio, S., Makinen, T., Ekholma, T., Pahkala, K., Mikkola, H., Paappanen, T.2009. Greenhouse gas balances of transportation biofuels, electricity and heatgeneration in Finland: dealing with the uncertainties. Energy Policy 37, 8090

    Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P., 2010. Feedstocks forLignocellulosic Biofuels. Science 5993 (329), 790792.

    Stone, K.C., Hunt, P.G., Cantrell, K.B., Ro, K.S., 2010. The potential impacts of biomasfeedstock production on water resource availability. Bioresource Technology101, 20142025.

    Strapasson, A.B., Ramalho-Filho, A., Ferreira, D., Vieira, J.N.S., Job, L.C.M.A., 2012Agro-ecological zoning and biofuels: the Brazilian experience and the potentiaapplication in Africa. In: Johnson, F.X., Seebaluck, V. (Eds.), Bioenergy fosustainable development and international competitiveness - the role of sugarcane in Africa. Routledge, London, pp. 4865.

    UNEP, 2010. Sustainable agriculture and the sustainable use of agriculturabiodiversity: Concepts, Trends and challenges. Fourteenth meeting Nairobi10-21 May 2010. Available at: www.cbd.int.

    van Meijl, H., von Tongeren, F., 2004. International Diffusion of Gains fromBiotechnology and the European Union's Common Agricultural Policy. Agricultural Economics 31, 307316.

    Walter, A., Dolzan, P., Quilodrn, O., de Oliveira, J.G., da Silva, C., Piacente, F.Segerstedt, A., 2011. Sustainability assessment of bio-ethanol production inBrazil considering land use change, GHG emissions and socio-economiaspects. Energy Policy 39, 57035716.

    Witcover, J., Yeh, S., Sperling, D., 2013. Policy options to address global land usechange from biofuels. Energy Policy 56, 6374.

    Yang, H., Zhou, Y., Liu, J., 2009. Land and water requirements of biofuel andimplications for food supply and the environment in China. Energy Policy 3718761885.

    . Geraldes Castanheira et al. / Energy Policy 65 (2014) 680691 691

    http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0195http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0195http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0195http://www.agricultura.gov.br/vegetal/culturas/sojahttp://www.agricultura.gov.br/vegetal/culturas/sojahttp://www.agricultura.gov.br/vegetal/culturas/sojahttp://www.agricultura.gov.br/vegetal/culturas/sojahttp://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0205http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0205http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0215http://www.mme.gov.br/programas/biodieselhttp://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0235http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0235http://soybean.uwex.edu/soytrials/printable/documents/98soyvar.pdfhttp://soybean.uwex.edu/soytrials/printable/documents/98soyvar.pdfhttp://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0250http://www.map.ren21.net/http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0265http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0265http://www.cbd.int/http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref63http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref62http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref61http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref60http://www.cbd.int/http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0265http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0265http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref59http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref58http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref57http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref56http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0260http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref55http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref54http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0255http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref53http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref52http://www.map.ren21.net/http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0250http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref51http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref50http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref49http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref48http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0245http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref47http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0240http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref46http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref45http://soybean.uwex.edu/soytrials/printable/documents/98soyvar.pdfhttp://soybean.uwex.edu/soytrials/printable/documents/98soyvar.pdfhttp://refhub.elsevier.com/S0301-4215(13)00986-5/othref0235http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0235http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0230http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref44http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref43http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0225http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref42http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0220http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref41http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref40http://www.mme.gov.br/programas/biodieselhttp://refhub.elsevier.com/S0301-4215(13)00986-5/othref0215http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0210http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0205http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0205http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref39http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0200http://www.agricultura.gov.br/vegetal/culturas/sojahttp://www.agricultura.gov.br/vegetal/culturas/sojahttp://refhub.elsevier.com/S0301-4215(13)00986-5/othref0195http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref38http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref37http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref36http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref35http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref34http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0190http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref33http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/othref0185http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref32http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31http://refhub.elsevier.com/S0301-4215(13)00986-5/sbref31